1/*	$NetBSD: pte.h,v 1.23 2020/05/04 18:36:24 joerg Exp $	*/
2
3/*
4 * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed for the NetBSD Project by
20 *	Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 *    or promote products derived from this software without specific prior
23 *    written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38#ifndef _ARM_PTE_H_
39#define	_ARM_PTE_H_
40
41/*
42 * The ARM MMU architecture was introduced with ARM v3 (previous ARM
43 * architecture versions used an optional off-CPU memory controller
44 * to perform address translation).
45 *
46 * The ARM MMU consists of a TLB and translation table walking logic.
47 * There is typically one TLB per memory interface (or, put another
48 * way, one TLB per software-visible cache).
49 *
50 * The ARM MMU is capable of mapping memory in the following chunks:
51 *
52 *	16M	SuperSections (L1 table, ARMv6+)
53 *
54 *	1M	Sections (L1 table)
55 *
56 *	64K	Large Pages (L2 table)
57 *
58 *	4K	Small Pages (L2 table)
59 *
60 *	1K	Tiny Pages (L2 table)
61 *
62 * There are two types of L2 tables: Coarse Tables and Fine Tables (not
63 * available on ARMv6+).  Coarse Tables can map Large and Small Pages.
64 * Fine Tables can map Tiny Pages.
65 *
66 * Coarse Tables can define 4 Subpages within Large and Small pages.
67 * Subpages define different permissions for each Subpage within
68 * a Page.  ARMv6 format Coarse Tables have no subpages.
69 *
70 * Coarse Tables are 1K in length.  Fine tables are 4K in length.
71 *
72 * The Translation Table Base register holds the pointer to the
73 * L1 Table.  The L1 Table is a 16K contiguous chunk of memory
74 * aligned to a 16K boundary.  Each entry in the L1 Table maps
75 * 1M of virtual address space, either via a Section mapping or
76 * via an L2 Table.
77 *
78 * ARMv6+ has a second TTBR register which can be used if any of the
79 * upper address bits are non-zero (think kernel).  For NetBSD, this
80 * would be 1 upper bit splitting user/kernel in a 2GB/2GB split.
81 * This would also reduce the size of the L1 Table to 8K.
82 *
83 * In addition, the Fast Context Switching Extension (FCSE) is available
84 * on some ARM v4 and ARM v5 processors.  FCSE is a way of eliminating
85 * TLB/cache flushes on context switch by use of a smaller address space
86 * and a "process ID" that modifies the virtual address before being
87 * presented to the translation logic.
88 */
89
90#ifndef _LOCORE
91typedef uint32_t	pd_entry_t;	/* L1 table entry */
92#ifndef	__BSD_PTENTRY_T__
93#define	__BSD_PTENTRY_T__
94typedef uint32_t pt_entry_t;
95#define PRIxPTE		PRIx32
96#endif
97#endif /* _LOCORE */
98
99#define	L1_SS_SIZE	0x01000000	/* 16M */
100#define	L1_SS_OFFSET	(L1_SS_SIZE - 1)
101#define	L1_SS_FRAME	(~L1_SS_OFFSET)
102#define	L1_SS_SHIFT	24
103
104#define	L1_S_SIZE	0x00100000	/* 1M */
105#define	L1_S_OFFSET	(L1_S_SIZE - 1)
106#define	L1_S_FRAME	(~L1_S_OFFSET)
107#define	L1_S_SHIFT	20
108
109#define	L2_L_SIZE	0x00010000	/* 64K */
110#define	L2_L_OFFSET	(L2_L_SIZE - 1)
111#define	L2_L_FRAME	(~L2_L_OFFSET)
112#define	L2_L_SHIFT	16
113
114#define	L2_S_SEGSIZE	(PAGE_SIZE * L2_S_SIZE / 4)
115#define	L2_S_SIZE	0x00001000	/* 4K */
116#define	L2_S_OFFSET	(L2_S_SIZE - 1)
117#define	L2_S_FRAME	(~L2_S_OFFSET)
118#define	L2_S_SHIFT	12
119
120#define	L2_T_SIZE	0x00000400	/* 1K */
121#define	L2_T_OFFSET	(L2_T_SIZE - 1)
122#define	L2_T_FRAME	(~L2_T_OFFSET)
123#define	L2_T_SHIFT	10
124
125/*
126 * The NetBSD VM implementation only works on whole pages (4K),
127 * whereas the ARM MMU's Coarse tables are sized in terms of 1K
128 * (16K L1 table, 1K L2 table).
129 *
130 * So, we allocate L2 tables 4 at a time, thus yielding a 4K L2
131 * table.
132 */
133#define	L1_ADDR_BITS	0xfff00000	/* L1 PTE address bits */
134#define	L2_ADDR_BITS	0x000ff000	/* L2 PTE address bits */
135
136#define	L1_TABLE_SIZE	0x4000		/* 16K */
137#define	L2_TABLE_SIZE	0x1000		/* 4K */
138
139/*
140 * The new pmap deals with the 1KB coarse L2 tables by
141 * allocating them from a pool. Until every port has been converted,
142 * keep the old L2_TABLE_SIZE define lying around. Converted ports
143 * should use L2_TABLE_SIZE_REAL until then.
144 */
145#define	L2_TABLE_SIZE_REAL	0x400	/* 1K */
146
147#define L1TT_SIZE		0x2000	/* 8K */
148
149/*
150 * ARM L1 Descriptors
151 */
152
153#define	L1_TYPE_INV	0x00		/* Invalid (fault) */
154#define	L1_TYPE_C	0x01		/* Coarse L2 */
155#define	L1_TYPE_S	0x02		/* Section */
156#define	L1_TYPE_F	0x03		/* Fine L2 */
157#define	L1_TYPE_MASK	0x03		/* mask of type bits */
158
159/* L1 Section Descriptor */
160#define	L1_S_B		0x00000004	/* bufferable Section */
161#define	L1_S_C		0x00000008	/* cacheable Section */
162#define	L1_S_IMP	0x00000010	/* implementation defined */
163#define	L1_S_DOM(x)	((x) << 5)	/* domain */
164#define	L1_S_DOM_MASK	L1_S_DOM(0xf)
165#define	L1_S_AP(x)	((x) << 10)	/* access permissions */
166#define	L1_S_ADDR_MASK	0xfff00000	/* phys address of section */
167
168#define	L1_S_XSCALE_P	0x00000200	/* ECC enable for this section */
169#define	L1_S_XS_TEX(x) ((x) << 12)	/* Type Extension */
170#define	L1_S_V6_TEX(x)	L1_S_XS_TEX(x)
171#define	L1_S_V6_P	0x00000200	/* ECC enable for this section */
172#define	L1_S_V6_SUPER	0x00040000	/* ARMv6 SuperSection (16MB) bit */
173#define	L1_S_V6_XN	L1_S_IMP	/* ARMv6 eXecute Never */
174#define	L1_S_V6_APX	0x00008000	/* ARMv6 AP eXtension */
175#define	L1_S_V6_S	0x00010000	/* ARMv6 Shared */
176#define	L1_S_V6_nG	0x00020000	/* ARMv6 not-Global */
177#define	L1_S_V6_SS	0x00040000	/* ARMv6 SuperSection */
178#define	L1_S_V6_NS	0x00080000	/* ARMv6 Not Secure */
179
180/* L1 Coarse Descriptor */
181#define	L1_C_IMP0	0x00000004	/* implementation defined */
182#define	L1_C_IMP1	0x00000008	/* implementation defined */
183#define	L1_C_IMP2	0x00000010	/* implementation defined */
184#define	L1_C_DOM(x)	((x) << 5)	/* domain */
185#define	L1_C_DOM_MASK	L1_C_DOM(0xf)
186#define	L1_C_ADDR_MASK	0xfffffc00	/* phys address of L2 Table */
187
188#define	L1_C_XSCALE_P	0x00000200	/* ECC enable for this section */
189#define	L1_C_V6_P	0x00000200	/* ECC enable for this section */
190
191/* L1 Fine Descriptor */
192#define	L1_F_IMP0	0x00000004	/* implementation defined */
193#define	L1_F_IMP1	0x00000008	/* implementation defined */
194#define	L1_F_IMP2	0x00000010	/* implementation defined */
195#define	L1_F_DOM(x)	((x) << 5)	/* domain */
196#define	L1_F_DOM_MASK	L1_F_DOM(0xf)
197#define	L1_F_ADDR_MASK	0xfffff000	/* phys address of L2 Table */
198
199#define	L1_F_XSCALE_P	0x00000200	/* ECC enable for this section */
200
201/*
202 * ARM L2 Descriptors
203 */
204
205#define	L2_TYPE_INV	0x00		/* Invalid (fault) */
206#define	L2_TYPE_L	0x01		/* Large Page */
207#define	L2_TYPE_S	0x02		/* Small Page */
208#define	L2_TYPE_T	0x03		/* Tiny Page (not armv7) */
209#define	L2_TYPE_MASK	0x03		/* mask of type bits */
210
211/*
212 * This L2 Descriptor type is available on XScale processors
213 * when using a Coarse L1 Descriptor.  The Extended Small
214 * Descriptor has the same format as the XScale Tiny Descriptor,
215 * but describes a 4K page, rather than a 1K page.
216 * For V6 MMU, this is used when XP bit is cleared.
217 */
218#define	L2_TYPE_XS	0x03		/* XScale/ARMv6 Extended Small Page */
219
220#define	L2_B		0x00000004	/* Bufferable page */
221#define	L2_C		0x00000008	/* Cacheable page */
222#define	L2_AP0(x)	((x) << 4)	/* access permissions (sp 0) */
223#define	L2_AP1(x)	((x) << 6)	/* access permissions (sp 1) */
224#define	L2_AP2(x)	((x) << 8)	/* access permissions (sp 2) */
225#define	L2_AP3(x)	((x) << 10)	/* access permissions (sp 3) */
226#define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
227
228#define	L2_XS_L_TEX(x)	((x) << 12)	/* Type Extension */
229#define	L2_XS_T_TEX(x)	((x) << 6)	/* Type Extension */
230#define	L2_XS_XN	0x00000001	/* ARMv6 eXecute Never (when XP=1) */
231#define	L2_XS_APX	0x00000200	/* ARMv6 AP eXtension */
232#define	L2_XS_S		0x00000400	/* ARMv6 Shared */
233#define	L2_XS_nG	0x00000800	/* ARMv6 Not-Global */
234#define	L2_V6_L_TEX	L2_XS_L_TEX
235#define	L2_V6_XS_TEX	L2_XS_T_TEX
236#define	L2_XS_L_XN	0x00008000	/* ARMv6 eXecute Never */
237
238
239/*
240 * Access Permissions for L1 and L2 Descriptors.
241 */
242#define	AP_W		0x01		/* writable */
243#define	AP_U		0x02		/* user */
244
245/*
246 * Access Permissions for L1 and L2 of ARMv6 with XP=1 and ARMv7
247 */
248#define	AP_R		0x01		/* readable */
249#define	AP_RO		0x20		/* read-only (L2_XS_APX >> 4) */
250
251/*
252 * Short-hand for common AP_* constants.
253 *
254 * Note: These values assume the S (System) bit is set and
255 * the R (ROM) bit is clear in CP15 register 1.
256 */
257#define	AP_KR		0x00		/* kernel read */
258#define	AP_KRW		0x01		/* kernel read/write */
259#define	AP_KRWUR	0x02		/* kernel read/write user read */
260#define	AP_KRWURW	0x03		/* kernel read/write user read/write */
261
262/*
263 * Note: These values assume the S (System) and the R (ROM) bits are clear and
264 * the XP (eXtended page table) bit is set in CP15 register 1.  ARMv6 only.
265 */
266#define	APX_KR(APX)	(APX|0x01)	/* kernel read */
267#define	APX_KRUR(APX)	(APX|0x02)	/* kernel read user read */
268#define	APX_KRW(APX)	(    0x01)	/* kernel read/write */
269#define	APX_KRWUR(APX)	(    0x02)	/* kernel read/write user read */
270#define	APX_KRWURW(APX)	(    0x03)	/* kernel read/write user read/write */
271
272/*
273 * Note: These values are for the simplified access permissions model
274 * of ARMv7. Assumes that AFE is clear in CP15 register 1.
275 * Also used for ARMv6 with XP bit set.
276 */
277#define	AP7_KR		0x21		/* kernel read */
278#define	AP7_KRUR	0x23		/* kernel read user read */
279#define	AP7_KRW		0x01		/* kernel read/write */
280#define	AP7_KRWURW	0x03		/* kernel read/write user read/write */
281
282/*
283 * Domain Types for the Domain Access Control Register.
284 */
285#define	DOMAIN_FAULT	0x00		/* no access */
286#define	DOMAIN_CLIENT	0x01		/* client */
287#define	DOMAIN_RESERVED	0x02		/* reserved */
288#define	DOMAIN_MANAGER	0x03		/* manager */
289
290/*
291 * Type Extension bits for XScale processors.
292 *
293 * Behavior of C and B when X == 0:
294 *
295 * C B  Cacheable  Bufferable  Write Policy  Line Allocate Policy
296 * 0 0      N          N            -                 -
297 * 0 1      N          Y            -                 -
298 * 1 0      Y          Y       Write-through    Read Allocate
299 * 1 1      Y          Y        Write-back      Read Allocate
300 *
301 * Behavior of C and B when X == 1:
302 * C B  Cacheable  Bufferable  Write Policy  Line Allocate Policy
303 * 0 0      -          -            -                 -           DO NOT USE
304 * 0 1      N          Y            -                 -
305 * 1 0  Mini-Data      -            -                 -
306 * 1 1      Y          Y        Write-back       R/W Allocate
307 */
308#define	TEX_XSCALE_X	0x01		/* X modifies C and B */
309
310/*
311 * Type Extension bits for ARM V6 and V7 MMU
312 *
313 * TEX C B                                                    Shared
314 * 000 0 0  Strong order                                      yes
315 * 000 0 1  Shared device                                     yes
316 * 000 1 0  Outer and Inner write through, no write alloc     S-bit
317 * 000 1 1  Outer and Inner write back, no write alloc        S-bit
318 * 001 0 0  Outer and Inner non-cacheable                     S-bit
319 * 001 0 1  reserved
320 * 001 1 0  reserved
321 * 001 1 1  Outer and Inner write back, write alloc           S-bit
322 * 010 0 0  Non-shared device                                 no
323 * 010 0 1  reserved
324 * 010 1 X  reserved
325 * 011 X X  reserved
326 * 1BB A A  BB for inner, AA for outer                        S-bit
327 *
328 *    BB    inner cache
329 *    0 0   Non-cacheable
330 *    0 1   Write back, write alloc
331 *    1 0   Write through, no write alloc
332 *    1 1   Write back, no write alloc
333 *
334 *    AA    outer cache
335 *    0 0   Non-cacheable
336 *    0 1   Write back, write alloc
337 *    1 0   Write through, no write alloc
338 *    1 1   Write back, no write alloc
339 */
340
341#define	TEX_ARMV6_TEX	0x07		/* 3 bits in TEX */
342
343#endif /* _ARM_PTE_H_ */
344