eb7500atx_machdep.c revision 1.17
1/*	$NetBSD: eb7500atx_machdep.c,v 1.17 2009/11/26 00:19:11 matt Exp $	*/
2
3/*
4 * Copyright (c) 2000-2002 Reinoud Zandijk.
5 * Copyright (c) 1994-1998 Mark Brinicombe.
6 * Copyright (c) 1994 Brini.
7 * All rights reserved.
8 *
9 * This code is derived from software written for Brini by Mark Brinicombe
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by Brini.
22 * 4. The name of the company nor the name of the author may be used to
23 *    endorse or promote products derived from this software without specific
24 *    prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
27 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
28 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
29 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
30 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
31 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
32 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * RiscBSD kernel project
39 *
40 * machdep.c
41 *
42 * Machine dependant functions for kernel setup
43 *
44 * This file still needs a lot of work
45 *
46 * Created      : 17/09/94
47 * Updated for yet another new bootloader 28/12/02
48 */
49
50#include "opt_ddb.h"
51#include "opt_modular.h"
52#include "opt_pmap_debug.h"
53#include "vidcvideo.h"
54#include "pckbc.h"
55
56#include <sys/param.h>
57
58__KERNEL_RCSID(0, "$NetBSD: eb7500atx_machdep.c,v 1.17 2009/11/26 00:19:11 matt Exp $");
59
60#include <sys/systm.h>
61#include <sys/kernel.h>
62#include <sys/reboot.h>
63#include <sys/proc.h>
64#include <sys/msgbuf.h>
65#include <sys/exec.h>
66#include <sys/exec_aout.h>
67#include <sys/ksyms.h>
68
69#include <dev/cons.h>
70
71#include <machine/db_machdep.h>
72#include <ddb/db_sym.h>
73#include <ddb/db_extern.h>
74
75#include <uvm/uvm.h>
76
77#include <machine/signal.h>
78#include <machine/frame.h>
79#include <machine/bootconfig.h>
80#include <machine/cpu.h>
81#include <machine/io.h>
82#include <machine/intr.h>
83#include <arm/cpuconf.h>
84#include <arm/arm32/katelib.h>
85#include <arm/arm32/machdep.h>
86#include <arm/undefined.h>
87#include <machine/rtc.h>
88#include <machine/bus.h>
89
90#include <arm/iomd/vidc.h>
91#include <arm/iomd/iomdreg.h>
92#include <arm/iomd/iomdvar.h>
93
94#include <arm/iomd/vidcvideo.h>
95
96#include <sys/device.h>
97#include <dev/ic/pckbcvar.h>
98
99#include <dev/i2c/i2cvar.h>
100#include <dev/i2c/pcf8583var.h>
101#include <arm/iomd/iomdiicvar.h>
102
103/* static i2c_tag_t acorn32_i2c_tag;*/
104
105#include "ksyms.h"
106
107/* Kernel text starts at the base of the kernel address space. */
108#define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00000000)
109#define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
110
111/*
112 * The range 0xf1000000 - 0xf5ffffff is available for kernel VM space
113 * Fixed mappings exist from 0xf6000000 - 0xffffffff
114 */
115#define	KERNEL_VM_SIZE		0x05000000
116
117/*
118 * Address to call from cpu_reset() to reset the machine.
119 * This is machine architecture dependant as it varies depending
120 * on where the ROM appears when you turn the MMU off.
121 */
122u_int cpu_reset_address = 0x0; /* XXX 0x3800000 too for rev0 RiscPC 600 */
123
124#define VERBOSE_INIT_ARM
125
126
127/* Define various stack sizes in pages */
128#define IRQ_STACK_SIZE	1
129#define ABT_STACK_SIZE	1
130#define UND_STACK_SIZE	1
131
132
133struct bootconfig bootconfig;	/* Boot config storage */
134videomemory_t videomemory;	/* Video memory descriptor */
135
136char *boot_args = NULL;		/* holds the pre-processed boot arguments */
137extern char *booted_kernel;	/* used for ioctl to retrieve booted kernel */
138
139extern int       *vidc_base;
140extern u_int32_t  iomd_base;
141extern struct bus_space iomd_bs_tag;
142
143paddr_t physical_start;
144paddr_t physical_freestart;
145paddr_t physical_freeend;
146paddr_t physical_end;
147paddr_t dma_range_begin;
148paddr_t dma_range_end;
149
150u_int free_pages;
151paddr_t memoryblock_end;
152
153#ifndef PMAP_STATIC_L1S
154int max_processes = 64;		/* Default number */
155#endif	/* !PMAP_STATIC_L1S */
156
157u_int videodram_size = 0;	/* Amount of DRAM to reserve for video */
158
159/* Physical and virtual addresses for some global pages */
160pv_addr_t systempage;
161pv_addr_t irqstack;
162pv_addr_t undstack;
163pv_addr_t abtstack;
164pv_addr_t kernelstack;
165
166paddr_t msgbufphys;
167
168extern u_int data_abort_handler_address;
169extern u_int prefetch_abort_handler_address;
170extern u_int undefined_handler_address;
171
172#ifdef PMAP_DEBUG
173extern int pmap_debug_level;
174#endif	/* PMAP_DEBUG */
175
176#define	KERNEL_PT_VMEM		0 /* Page table for mapping video memory */
177#define	KERNEL_PT_SYS		1 /* Page table for mapping proc0 zero page */
178#define	KERNEL_PT_KERNEL	2 /* Page table for mapping kernel */
179#define	KERNEL_PT_VMDATA	3 /* Page tables for mapping kernel VM */
180#define	KERNEL_PT_VMDATA_NUM	4 /* start with 16MB of KVM */
181#define	NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
182
183pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
184
185
186#ifdef CPU_SA110
187#define CPU_SA110_CACHE_CLEAN_SIZE (0x4000 * 2)
188static vaddr_t sa110_cc_base;
189#endif	/* CPU_SA110 */
190
191/* Prototypes */
192void physcon_display_base(u_int);
193extern void consinit(void);
194
195void data_abort_handler(trapframe_t *);
196void prefetch_abort_handler(trapframe_t *);
197void undefinedinstruction_bounce(trapframe_t *frame);
198
199static void canonicalise_bootconfig(struct bootconfig *, struct bootconfig *);
200static void process_kernel_args(void);
201
202extern void dump_spl_masks(void);
203
204void rpc_sa110_cc_setup(void);
205
206void parse_rpc_bootargs(char *args);
207
208extern void dumpsys(void);
209
210
211#	define console_flush()		/* empty */
212
213
214#define panic2(a) do {							\
215	memset((void *) (videomemory.vidm_vbase), 0x55, 50*1024);	\
216	consinit();							\
217	panic a;							\
218} while (/* CONSTCOND */ 0)
219
220/*
221 * void cpu_reboot(int howto, char *bootstr)
222 *
223 * Reboots the system
224 *
225 * Deal with any syncing, unmounting, dumping and shutdown hooks,
226 * then reset the CPU.
227 */
228
229/* NOTE: These variables will be removed, well some of them */
230
231extern u_int current_mask;
232
233void
234cpu_reboot(int howto, char *bootstr)
235{
236
237#ifdef DIAGNOSTIC
238	printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
239
240	printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
241	    irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
242	    irqmasks[IPL_VM]);
243	printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
244	    irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
245
246	/* dump_spl_masks(); */
247#endif	/* DIAGNOSTIC */
248
249	/*
250	 * If we are still cold then hit the air brakes
251	 * and crash to earth fast
252	 */
253	if (cold) {
254		doshutdownhooks();
255		pmf_system_shutdown(boothowto);
256		printf("Halted while still in the ICE age.\n");
257		printf("The operating system has halted.\n");
258		printf("Please press any key to reboot.\n\n");
259		cngetc();
260		printf("rebooting...\n");
261		cpu_reset();
262		/*NOTREACHED*/
263	}
264
265	/* Disable console buffering */
266	cnpollc(1);
267
268	/*
269	 * If RB_NOSYNC was not specified sync the discs.
270	 * Note: Unless cold is set to 1 here, syslogd will die during
271	 * the unmount.  It looks like syslogd is getting woken up
272	 * only to find that it cannot page part of the binary in as
273	 * the filesystem has been unmounted.
274	 */
275	if (!(howto & RB_NOSYNC))
276		bootsync();
277
278	/* Say NO to interrupts */
279	splhigh();
280
281	/* Do a dump if requested. */
282	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
283		dumpsys();
284
285	/*
286	 * Auto reboot overload protection
287	 *
288	 * This code stops the kernel entering an endless loop of reboot
289	 * - panic cycles. This will have the effect of stopping further
290	 * reboots after it has rebooted 8 times after panics. A clean
291	 * halt or reboot will reset the counter.
292	 */
293
294	/* Run any shutdown hooks */
295	doshutdownhooks();
296
297	pmf_system_shutdown(boothowto);
298
299	/* Make sure IRQ's are disabled */
300	IRQdisable;
301
302	if (howto & RB_HALT) {
303		printf("The operating system has halted.\n");
304		printf("Please press any key to reboot.\n\n");
305		cngetc();
306	}
307
308	printf("rebooting...\n");
309	cpu_reset();
310	/*NOTREACHED*/
311}
312
313
314/*
315 * u_int initarm(BootConfig *bootconf)
316 *
317 * Initial entry point on startup. This gets called before main() is
318 * entered.
319 * It should be responsible for setting up everything that must be
320 * in place when main is called.
321 * This includes
322 *   Taking a copy of the boot configuration structure.
323 *   Initialising the physical console so characters can be printed.
324 *   Setting up page tables for the kernel
325 *   Relocating the kernel to the bottom of physical memory
326 */
327
328/*
329 * this part is completely rewritten for the new bootloader ... It features
330 * a flat memory map with a mapping comparable to the EBSA arm32 machine
331 * to boost the portability and likeness of the code
332 */
333
334/*
335 * Mapping table for core kernel memory. This memory is mapped at init
336 * time with section mappings.
337 *
338 * XXX One big assumption in the current architecture seems that the kernel is
339 * XXX supposed to be mapped into bootconfig.dram[0].
340 */
341
342#define ONE_MB	0x100000
343
344struct l1_sec_map {
345	vaddr_t		va;
346	paddr_t		pa;
347	vsize_t		size;
348	vm_prot_t	prot;
349	int		cache;
350} l1_sec_table[] = {
351	/* Map 1Mb section for VIDC20 */
352	{ VIDC_BASE,		VIDC_HW_BASE,
353	    ONE_MB,		VM_PROT_READ|VM_PROT_WRITE,
354	    PTE_NOCACHE },
355
356	/* Map 1Mb section from IOMD */
357	{ IOMD_BASE,		IOMD_HW_BASE,
358	    ONE_MB,		VM_PROT_READ|VM_PROT_WRITE,
359	    PTE_NOCACHE },
360
361	/* Map 1Mb of COMBO (and module space) */
362	{ IO_BASE,		IO_HW_BASE,
363	    ONE_MB,		VM_PROT_READ|VM_PROT_WRITE,
364	    PTE_NOCACHE },
365	{ 0, 0, 0, 0, 0 }
366};
367
368
369static void
370canonicalise_bootconfig(struct bootconfig *bootconf, struct bootconfig *raw_bootconf)
371{
372	/* check for bootconfig v2+ structure */
373	if (raw_bootconf->magic == BOOTCONFIG_MAGIC) {
374		/* v2+ cleaned up structure found */
375		*bootconf = *raw_bootconf;
376		return;
377	} else {
378		panic2(("Internal error: no valid bootconfig block found"));
379	}
380}
381
382
383u_int
384initarm(void *cookie)
385{
386	struct bootconfig *raw_bootconf = cookie;
387	int loop;
388	int loop1;
389	u_int logical;
390	u_int kerneldatasize;
391	u_int l1pagetable;
392	struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE;
393
394	/*
395	 * Heads up ... Setup the CPU / MMU / TLB functions
396	 */
397	set_cpufuncs();
398
399	/* canonicalise the boot configuration structure to alow versioning */
400	canonicalise_bootconfig(&bootconfig, raw_bootconf);
401	booted_kernel = bootconfig.kernelname;
402
403	/* if the wscons interface is used, switch off VERBOSE booting :( */
404#if NVIDCVIDEO>0
405#	undef VERBOSE_INIT_ARM
406#	undef PMAP_DEBUG
407#endif
408
409	/*
410	 * Initialise the video memory descriptor
411	 *
412	 * Note: all references to the video memory virtual/physical address
413	 * should go via this structure.
414	 */
415
416	/* Hardwire it on the place the bootloader tells us */
417	videomemory.vidm_vbase = bootconfig.display_start;
418	videomemory.vidm_pbase = bootconfig.display_phys;
419	videomemory.vidm_size = bootconfig.display_size;
420	if (bootconfig.vram[0].pages)
421		videomemory.vidm_type = VIDEOMEM_TYPE_VRAM;
422	else
423		videomemory.vidm_type = VIDEOMEM_TYPE_DRAM;
424	vidc_base = (int *) VIDC_HW_BASE;
425	iomd_base =         IOMD_HW_BASE;
426
427	/*
428	 * Initialise the physical console
429	 * This is done in main() but for the moment we do it here so that
430	 * we can use printf in initarm() before main() has been called.
431	 * only for `vidcconsole!' ... not wscons
432	 */
433#if NVIDCVIDEO == 0
434	consinit();
435#endif
436
437	/*
438	 * Initialise the diagnostic serial console
439	 * This allows a means of generating output during initarm().
440	 * Once all the memory map changes are complete we can call consinit()
441	 * and not have to worry about things moving.
442	 */
443	/* fcomcnattach(DC21285_ARMCSR_BASE, comcnspeed, comcnmode); */
444	/* XXX snif .... i am still not able to this */
445
446	/*
447	 * We have the following memory map (derived from EBSA)
448	 *
449	 * virtual address == physical address apart from the areas:
450	 * 0x00000000 -> 0x000fffff which is mapped to
451	 * top 1MB of physical memory
452	 * 0xf0000000 -> 0xf0ffffff wich is mapped to
453	 * physical address 0x01000000 -> 0x01ffffff (DRAM0a, dram[0])
454	 *
455	 * This means that the kernel is mapped suitably for continuing
456	 * execution, all I/O is mapped 1:1 virtual to physical and
457	 * physical memory is accessible.
458	 *
459	 * The initarm() has the responsibility for creating the kernel
460	 * page tables.
461	 * It must also set up various memory pointers that are used
462	 * by pmap etc.
463	 */
464
465	/* START OF REAL NEW STUFF */
466
467	/* Check to make sure the page size is correct */
468	if (PAGE_SIZE != bootconfig.pagesize)
469		panic2(("Page size is %d bytes instead of %d !! (huh?)\n",
470			   bootconfig.pagesize, PAGE_SIZE));
471
472	/* process arguments */
473	process_kernel_args();
474
475
476	/*
477	 * Now set up the page tables for the kernel ... this part is copied
478	 * in a (modified?) way from the EBSA machine port....
479	 */
480
481#ifdef VERBOSE_INIT_ARM
482	printf("Allocating page tables\n");
483#endif
484	/*
485	 * Set up the variables that define the availablilty of physical
486	 * memory
487	 */
488	physical_start = 0xffffffff;
489	physical_end = 0;
490	for (loop = 0, physmem = 0; loop < bootconfig.dramblocks; ++loop) {
491	    	if (bootconfig.dram[loop].address < physical_start)
492			physical_start = bootconfig.dram[loop].address;
493		memoryblock_end = bootconfig.dram[loop].address +
494		    bootconfig.dram[loop].pages * PAGE_SIZE;
495		if (memoryblock_end > physical_end)
496			physical_end = memoryblock_end;
497		physmem += bootconfig.dram[loop].pages;
498	};
499	/* constants for now, but might be changed/configured */
500	dma_range_begin = (paddr_t) physical_start;
501	dma_range_end   = (paddr_t) MIN(physical_end, 512*1024*1024);
502	/* XXX HACK HACK XXX */
503	/* dma_range_end   = 0x18000000; */
504
505	if (physical_start !=  bootconfig.dram[0].address) {
506		int oldblocks = 0;
507
508		/*
509		 * must be a kinetic, as it's the only thing to shuffle memory
510		 * around
511		 */
512		/* hack hack - throw away the slow dram */
513		for (loop = 0; loop < bootconfig.dramblocks; ++loop) {
514			if (bootconfig.dram[loop].address <
515			    bootconfig.dram[0].address)	{
516				/* non kinetic ram */
517				bootconfig.dram[loop].address = 0;
518				physmem -= bootconfig.dram[loop].pages;
519				bootconfig.drampages -=
520				    bootconfig.dram[loop].pages;
521				bootconfig.dram[loop].pages = 0;
522				oldblocks++;
523			}
524		}
525		physical_start = bootconfig.dram[0].address;
526		bootconfig.dramblocks -= oldblocks;
527	}
528
529	physical_freestart = physical_start;
530	free_pages = bootconfig.drampages;
531	physical_freeend = physical_end;
532
533
534	/*
535	 * AHUM !! set this variable ... it was set up in the old 1st
536	 * stage bootloader
537	 */
538	kerneldatasize = bootconfig.kernsize + bootconfig.MDFsize;
539
540	/* Update the address of the first free page of physical memory */
541	/* XXX Assumption that the kernel and stuff is at the LOWEST physical memory address? XXX */
542	physical_freestart +=
543	    bootconfig.kernsize + bootconfig.MDFsize + bootconfig.scratchsize;
544	free_pages -= (physical_freestart - physical_start) / PAGE_SIZE;
545
546	/* Define a macro to simplify memory allocation */
547#define	valloc_pages(var, np)						\
548	alloc_pages((var).pv_pa, (np));					\
549	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
550
551#define alloc_pages(var, np)						\
552	(var) = physical_freestart;					\
553	physical_freestart += ((np) * PAGE_SIZE);			\
554	free_pages -= (np);						\
555	memset((char *)(var), 0, ((np) * PAGE_SIZE));
556
557	loop1 = 0;
558	kernel_l1pt.pv_pa = 0;
559	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
560		/* Are we 16KB aligned for an L1 ? */
561		if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
562		    && kernel_l1pt.pv_pa == 0) {
563			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
564		} else {
565			valloc_pages(kernel_pt_table[loop1],
566					L2_TABLE_SIZE / PAGE_SIZE);
567			++loop1;
568		}
569	}
570
571
572#ifdef DIAGNOSTIC
573	/* This should never be able to happen but better confirm that. */
574	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
575		panic2(("initarm: Failed to align the kernel page "
576		    "directory\n"));
577#endif
578
579	/*
580	 * Allocate a page for the system page mapped to V0x00000000
581	 * This page will just contain the system vectors and can be
582	 * shared by all processes.
583	 */
584	alloc_pages(systempage.pv_pa, 1);
585
586	/* Allocate stacks for all modes */
587	valloc_pages(irqstack, IRQ_STACK_SIZE);
588	valloc_pages(abtstack, ABT_STACK_SIZE);
589	valloc_pages(undstack, UND_STACK_SIZE);
590	valloc_pages(kernelstack, UPAGES);
591
592#ifdef VERBOSE_INIT_ARM
593	printf("Setting up stacks :\n");
594	printf("IRQ stack: p0x%08lx v0x%08lx\n",
595	    irqstack.pv_pa, irqstack.pv_va);
596	printf("ABT stack: p0x%08lx v0x%08lx\n",
597	    abtstack.pv_pa, abtstack.pv_va);
598	printf("UND stack: p0x%08lx v0x%08lx\n",
599	    undstack.pv_pa, undstack.pv_va);
600	printf("SVC stack: p0x%08lx v0x%08lx\n",
601	    kernelstack.pv_pa, kernelstack.pv_va);
602	printf("\n");
603#endif
604
605	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
606
607#ifdef CPU_SA110
608	/*
609	 * XXX totally stuffed hack to work round problems introduced
610	 * in recent versions of the pmap code. Due to the calls used there
611	 * we cannot allocate virtual memory during bootstrap.
612	 */
613	sa110_cc_base = (KERNEL_BASE + (physical_freestart - physical_start)
614	    + (CPU_SA110_CACHE_CLEAN_SIZE - 1))
615	    & ~(CPU_SA110_CACHE_CLEAN_SIZE - 1);
616#endif	/* CPU_SA110 */
617
618	/*
619	 * Ok we have allocated physical pages for the primary kernel
620	 * page tables
621	 */
622
623#ifdef VERBOSE_INIT_ARM
624	printf("Creating L1 page table\n");
625#endif
626
627	/*
628	 * Now we start construction of the L1 page table
629	 * We start by mapping the L2 page tables into the L1.
630	 * This means that we can replace L1 mappings later on if necessary
631	 */
632	l1pagetable = kernel_l1pt.pv_pa;
633
634	/* Map the L2 pages tables in the L1 page table */
635	pmap_link_l2pt(l1pagetable, 0x00000000,
636	    &kernel_pt_table[KERNEL_PT_SYS]);
637	pmap_link_l2pt(l1pagetable, KERNEL_BASE,
638	    &kernel_pt_table[KERNEL_PT_KERNEL]);
639	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
640		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
641		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
642	pmap_link_l2pt(l1pagetable, VMEM_VBASE,
643	    &kernel_pt_table[KERNEL_PT_VMEM]);
644
645	/* update the top of the kernel VM */
646	pmap_curmaxkvaddr =
647	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
648
649#ifdef VERBOSE_INIT_ARM
650	printf("Mapping kernel\n");
651#endif
652
653	/* Now we fill in the L2 pagetable for the kernel code/data */
654	/* XXX Kernel doesn't have to be on physical_start (!) use bootconfig XXX */
655	/*
656	 * The defines are a workaround for a recent problem that occurred
657	 * with ARM 610 processors and some ARM 710 processors
658	 * Other ARM 710 and StrongARM processors don't have a problem.
659	 */
660	if (N_GETMAGIC(kernexec[0]) == ZMAGIC) {
661#if defined(CPU_ARM6) || defined(CPU_ARM7)
662		logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
663		    physical_start, kernexec->a_text,
664		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
665#else	/* CPU_ARM6 || CPU_ARM7 */
666		logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
667		    physical_start, kernexec->a_text,
668		    VM_PROT_READ, PTE_CACHE);
669#endif	/* CPU_ARM6 || CPU_ARM7 */
670		logical += pmap_map_chunk(l1pagetable,
671		    KERNEL_TEXT_BASE + logical, physical_start + logical,
672		    kerneldatasize - kernexec->a_text,
673		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
674	} else {	/* !ZMAGIC */
675		/*
676		 * Most likely an ELF kernel ...
677		 * XXX no distinction yet between read only and
678		 * read/write area's ...
679		 */
680		pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
681		    physical_start, kerneldatasize,
682		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
683	};
684
685
686#ifdef VERBOSE_INIT_ARM
687	printf("Constructing L2 page tables\n");
688#endif
689
690	/* Map the stack pages */
691	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
692	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
693	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
694	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
695	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
696	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
697	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
698	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
699
700	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
701	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
702
703	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
704		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
705		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
706		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
707	}
708
709	/* Now we fill in the L2 pagetable for the VRAM */
710	/*
711	 * Current architectures mean that the VRAM is always in 1
712	 * continuous bank.  This means that we can just map the 2 meg
713	 * that the VRAM would occupy.  In theory we don't need a page
714	 * table for VRAM, we could section map it but we would need
715	 * the page tables if DRAM was in use.
716	 * XXX please map two adjacent virtual areas to ONE physical
717	 * area
718	 */
719	pmap_map_chunk(l1pagetable, VMEM_VBASE, videomemory.vidm_pbase,
720	    videomemory.vidm_size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
721	pmap_map_chunk(l1pagetable, VMEM_VBASE + videomemory.vidm_size,
722	    videomemory.vidm_pbase, videomemory.vidm_size,
723	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
724
725	/* Map the vector page. */
726	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
727	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
728
729	/* Map the core memory needed before autoconfig */
730	loop = 0;
731	while (l1_sec_table[loop].size) {
732		vm_size_t sz;
733
734#ifdef VERBOSE_INIT_ARM
735		printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
736			l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
737			l1_sec_table[loop].va);
738#endif
739		for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
740			pmap_map_section(l1pagetable,
741			    l1_sec_table[loop].va + sz,
742			    l1_sec_table[loop].pa + sz,
743			    l1_sec_table[loop].prot,
744			    l1_sec_table[loop].cache);
745		++loop;
746	}
747
748	/*
749	 * Now we have the real page tables in place so we can switch
750	 * to them.  Once this is done we will be running with the
751	 * REAL kernel page tables.
752	 */
753
754#ifdef VERBOSE_INIT_ARM
755	printf("switching domains\n");
756#endif
757	/* be a client to all domains */
758	cpu_domains(0x55555555);
759
760	/* Switch tables */
761#ifdef VERBOSE_INIT_ARM
762	printf("switching to new L1 page table\n");
763#endif
764	setttb(kernel_l1pt.pv_pa);
765
766	/*
767	 * We must now clean the cache again....
768	 * Cleaning may be done by reading new data to displace any
769	 * dirty data in the cache. This will have happened in setttb()
770	 * but since we are boot strapping the addresses used for the read
771	 * may have just been remapped and thus the cache could be out
772	 * of sync. A re-clean after the switch will cure this.
773	 * After booting there are no gross reloations of the kernel thus
774	 * this problem will not occur after initarm().
775	 */
776	cpu_idcache_wbinv_all();
777	cpu_tlb_flushID();
778	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
779
780	/*
781	 * Moved from cpu_startup() as data_abort_handler() references
782	 * this during uvm init
783	 */
784	lwp0.l_addr = (struct user *)kernelstack.pv_va;
785
786	/*
787	 * if there is support for a serial console ...we should now
788	 * reattach it
789	 */
790	/*      fcomcndetach();*/
791
792	/*
793	 * Reflect videomemory relocation in the videomemory structure
794	 * and reinit console
795	 */
796	if (bootconfig.vram[0].pages == 0) {
797		videomemory.vidm_vbase   = VMEM_VBASE;
798	} else {
799		videomemory.vidm_vbase   = VMEM_VBASE;
800		bootconfig.display_start = VMEM_VBASE;
801	};
802	vidc_base = (int *) VIDC_BASE;
803	iomd_base =         IOMD_BASE;
804
805#ifdef VERBOSE_INIT_ARM
806	printf("running on the new L1 page table!\n");
807	printf("done.\n");
808#endif
809
810	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
811
812#ifdef VERBOSE_INIT_ARM
813	printf("\n");
814#endif
815
816	/*
817	 * Pages were allocated during the secondary bootstrap for the
818	 * stacks for different CPU modes.
819	 * We must now set the r13 registers in the different CPU modes to
820	 * point to these stacks.
821	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
822	 * of the stack memory.
823	 */
824#ifdef VERBOSE_INIT_ARM
825	printf("init subsystems: stacks ");
826	console_flush();
827#endif
828
829	set_stackptr(PSR_IRQ32_MODE,
830	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
831	set_stackptr(PSR_ABT32_MODE,
832	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
833	set_stackptr(PSR_UND32_MODE,
834	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
835#ifdef PMAP_DEBUG
836	if (pmap_debug_level >= 0)
837		printf("kstack V%08lx P%08lx\n", kernelstack.pv_va,
838		    kernelstack.pv_pa);
839#endif	/* PMAP_DEBUG */
840
841	/*
842	 * Well we should set a data abort handler.
843	 * Once things get going this will change as we will need a proper
844	 * handler. Until then we will use a handler that just panics but
845	 * tells us why.
846	 * Initialisation of the vectors will just panic on a data abort.
847	 * This just fills in a slightly better one.
848	 */
849#ifdef VERBOSE_INIT_ARM
850	printf("vectors ");
851#endif
852	data_abort_handler_address = (u_int)data_abort_handler;
853	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
854	undefined_handler_address = (u_int)undefinedinstruction_bounce;
855	console_flush();
856
857
858	/*
859	 * At last !
860	 * We now have the kernel in physical memory from the bottom upwards.
861	 * Kernel page tables are physically above this.
862	 * The kernel is mapped to 0xf0000000
863	 * The kernel data PTs will handle the mapping of
864	 *   0xf1000000-0xf5ffffff (80 Mb)
865	 * 2Meg of VRAM is mapped to 0xf7000000
866	 * The page tables are mapped to 0xefc00000
867	 * The IOMD is mapped to 0xf6000000
868	 * The VIDC is mapped to 0xf6100000
869	 * The IOMD/VIDC could be pushed up higher but i havent got
870	 * sufficient documentation to do so; the addresses are not
871	 * parametized yet and hard to read... better fix this before;
872	 * its pretty unforgiving.
873	 */
874
875	/* Initialise the undefined instruction handlers */
876#ifdef VERBOSE_INIT_ARM
877	printf("undefined ");
878#endif
879	undefined_init();
880	console_flush();
881
882	/* Load memory into UVM. */
883#ifdef VERBOSE_INIT_ARM
884	printf("page ");
885#endif
886	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
887	for (loop = 0; loop < bootconfig.dramblocks; loop++) {
888		paddr_t start = (paddr_t)bootconfig.dram[loop].address;
889		paddr_t end = start + (bootconfig.dram[loop].pages * PAGE_SIZE);
890
891		if (start < physical_freestart)
892			start = physical_freestart;
893		if (end > physical_freeend)
894			end = physical_freeend;
895
896		/* XXX Consider DMA range intersection checking. */
897
898		uvm_page_physload(atop(start), atop(end),
899		    atop(start), atop(end), VM_FREELIST_DEFAULT);
900	}
901
902	/* Boot strap pmap telling it where the kernel page table is */
903#ifdef VERBOSE_INIT_ARM
904	printf("pmap ");
905#endif
906	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
907	console_flush();
908
909	/* Setup the IRQ system */
910#ifdef VERBOSE_INIT_ARM
911	printf("irq ");
912#endif
913	console_flush();
914	irq_init();
915#ifdef VERBOSE_INIT_ARM
916	printf("done.\n\n");
917#endif
918
919#if NVIDCVIDEO>0
920	consinit();		/* necessary ? */
921#endif
922
923	/* Talk to the user */
924	printf("NetBSD/evbarm booting ... \n");
925
926	/* Tell the user if his boot loader is too old */
927	if ((bootconfig.magic < BOOTCONFIG_MAGIC) ||
928	    (bootconfig.version != BOOTCONFIG_VERSION)) {
929		printf("\nDETECTED AN OLD BOOTLOADER. PLEASE UPGRADE IT\n\n");
930		delay(5000000);
931	}
932
933	printf("Kernel loaded from file %s\n", bootconfig.kernelname);
934	printf("Kernel arg string (@%p) %s\n",
935	    bootconfig.args, bootconfig.args);
936	printf("\nBoot configuration structure reports the following "
937	    "memory\n");
938
939	printf(" DRAM block 0a at %08x size %08x "
940	    "DRAM block 0b at %08x size %08x\n\r",
941	    bootconfig.dram[0].address,
942	    bootconfig.dram[0].pages * bootconfig.pagesize,
943	    bootconfig.dram[1].address,
944	    bootconfig.dram[1].pages * bootconfig.pagesize);
945	printf(" DRAM block 1a at %08x size %08x "
946	    "DRAM block 1b at %08x size %08x\n\r",
947	    bootconfig.dram[2].address,
948	    bootconfig.dram[2].pages * bootconfig.pagesize,
949	    bootconfig.dram[3].address,
950	    bootconfig.dram[3].pages * bootconfig.pagesize);
951	printf(" VRAM block 0  at %08x size %08x\n\r",
952	    bootconfig.vram[0].address,
953	    bootconfig.vram[0].pages * bootconfig.pagesize);
954
955#if NKSYMS || defined(DDB) || defined(MODULAR)
956	ksyms_addsyms_elf(bootconfig.ksym_end - bootconfig.ksym_start,
957		(void *) bootconfig.ksym_start, (void *) bootconfig.ksym_end);
958#endif
959
960
961#ifdef DDB
962	db_machine_init();
963	if (boothowto & RB_KDB)
964		Debugger();
965#endif	/* DDB */
966
967	/* We return the new stack pointer address */
968	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
969}
970
971
972static void
973process_kernel_args(void)
974{
975	char *args;
976
977	/* Ok now we will check the arguments for interesting parameters. */
978	args = bootconfig.args;
979	boothowto = 0;
980
981	/* Only arguments itself are passed from the new bootloader */
982	while (*args == ' ')
983		++args;
984
985	boot_args = args;
986	parse_mi_bootargs(boot_args);
987	parse_rpc_bootargs(boot_args);
988}
989
990
991void
992parse_rpc_bootargs(char *args)
993{
994	int integer;
995
996	if (get_bootconf_option(args, "videodram", BOOTOPT_TYPE_INT,
997	    &integer)) {
998		videodram_size = integer;
999		/* Round to 4K page */
1000		videodram_size *= 1024;
1001		videodram_size = round_page(videodram_size);
1002		if (videodram_size > 1024*1024)
1003			videodram_size = 1024*1024;
1004	}
1005}
1006/* End of machdep.c */
1007