eb7500atx_machdep.c revision 1.10
1/*	$NetBSD: eb7500atx_machdep.c,v 1.10 2008/11/11 06:46:40 dyoung Exp $	*/
2
3/*
4 * Copyright (c) 2000-2002 Reinoud Zandijk.
5 * Copyright (c) 1994-1998 Mark Brinicombe.
6 * Copyright (c) 1994 Brini.
7 * All rights reserved.
8 *
9 * This code is derived from software written for Brini by Mark Brinicombe
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by Brini.
22 * 4. The name of the company nor the name of the author may be used to
23 *    endorse or promote products derived from this software without specific
24 *    prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
27 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
28 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
29 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
30 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
31 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
32 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * RiscBSD kernel project
39 *
40 * machdep.c
41 *
42 * Machine dependant functions for kernel setup
43 *
44 * This file still needs a lot of work
45 *
46 * Created      : 17/09/94
47 * Updated for yet another new bootloader 28/12/02
48 */
49
50#include "opt_ddb.h"
51#include "opt_pmap_debug.h"
52#include "vidcvideo.h"
53#include "pckbc.h"
54
55#include <sys/param.h>
56
57__KERNEL_RCSID(0, "$NetBSD: eb7500atx_machdep.c,v 1.10 2008/11/11 06:46:40 dyoung Exp $");
58
59#include <sys/systm.h>
60#include <sys/kernel.h>
61#include <sys/reboot.h>
62#include <sys/proc.h>
63#include <sys/msgbuf.h>
64#include <sys/exec.h>
65#include <sys/ksyms.h>
66
67#include <dev/cons.h>
68
69#include <machine/db_machdep.h>
70#include <ddb/db_sym.h>
71#include <ddb/db_extern.h>
72
73#include <uvm/uvm.h>
74
75#include <machine/signal.h>
76#include <machine/frame.h>
77#include <machine/bootconfig.h>
78#include <machine/cpu.h>
79#include <machine/io.h>
80#include <machine/intr.h>
81#include <arm/cpuconf.h>
82#include <arm/arm32/katelib.h>
83#include <arm/arm32/machdep.h>
84#include <arm/undefined.h>
85#include <machine/rtc.h>
86#include <machine/bus.h>
87
88#include <arm/iomd/vidc.h>
89#include <arm/iomd/iomdreg.h>
90#include <arm/iomd/iomdvar.h>
91
92#include <arm/iomd/vidcvideo.h>
93
94#include <sys/device.h>
95#include <dev/ic/pckbcvar.h>
96
97#include <dev/i2c/i2cvar.h>
98#include <dev/i2c/pcf8583var.h>
99#include <arm/iomd/iomdiicvar.h>
100
101/* static i2c_tag_t acorn32_i2c_tag;*/
102
103#include "ksyms.h"
104
105/* Kernel text starts at the base of the kernel address space. */
106#define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00000000)
107#define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
108
109/*
110 * The range 0xf1000000 - 0xf5ffffff is available for kernel VM space
111 * Fixed mappings exist from 0xf6000000 - 0xffffffff
112 */
113#define	KERNEL_VM_SIZE		0x05000000
114
115/*
116 * Address to call from cpu_reset() to reset the machine.
117 * This is machine architecture dependant as it varies depending
118 * on where the ROM appears when you turn the MMU off.
119 */
120u_int cpu_reset_address = 0x0; /* XXX 0x3800000 too for rev0 RiscPC 600 */
121
122
123#define VERBOSE_INIT_ARM
124
125
126/* Define various stack sizes in pages */
127#define IRQ_STACK_SIZE	1
128#define ABT_STACK_SIZE	1
129#define UND_STACK_SIZE	1
130
131
132struct bootconfig bootconfig;	/* Boot config storage */
133videomemory_t videomemory;	/* Video memory descriptor */
134
135char *boot_args = NULL;		/* holds the pre-processed boot arguments */
136extern char *booted_kernel;	/* used for ioctl to retrieve booted kernel */
137
138extern int       *vidc_base;
139extern u_int32_t  iomd_base;
140extern struct bus_space iomd_bs_tag;
141
142paddr_t physical_start;
143paddr_t physical_freestart;
144paddr_t physical_freeend;
145paddr_t physical_end;
146paddr_t dma_range_begin;
147paddr_t dma_range_end;
148
149u_int free_pages;
150int physmem = 0;
151paddr_t memoryblock_end;
152
153#ifndef PMAP_STATIC_L1S
154int max_processes = 64;		/* Default number */
155#endif	/* !PMAP_STATIC_L1S */
156
157u_int videodram_size = 0;	/* Amount of DRAM to reserve for video */
158
159/* Physical and virtual addresses for some global pages */
160pv_addr_t systempage;
161pv_addr_t irqstack;
162pv_addr_t undstack;
163pv_addr_t abtstack;
164pv_addr_t kernelstack;
165
166paddr_t msgbufphys;
167
168extern u_int data_abort_handler_address;
169extern u_int prefetch_abort_handler_address;
170extern u_int undefined_handler_address;
171
172#ifdef PMAP_DEBUG
173extern int pmap_debug_level;
174#endif	/* PMAP_DEBUG */
175
176#define	KERNEL_PT_VMEM		0 /* Page table for mapping video memory */
177#define	KERNEL_PT_SYS		1 /* Page table for mapping proc0 zero page */
178#define	KERNEL_PT_KERNEL	2 /* Page table for mapping kernel */
179#define	KERNEL_PT_VMDATA	3 /* Page tables for mapping kernel VM */
180#define	KERNEL_PT_VMDATA_NUM	4 /* start with 16MB of KVM */
181#define	NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
182
183pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
184
185struct user *proc0paddr;
186
187#ifdef CPU_SA110
188#define CPU_SA110_CACHE_CLEAN_SIZE (0x4000 * 2)
189static vaddr_t sa110_cc_base;
190#endif	/* CPU_SA110 */
191
192/* Prototypes */
193void physcon_display_base(u_int);
194extern void consinit(void);
195
196void data_abort_handler(trapframe_t *);
197void prefetch_abort_handler(trapframe_t *);
198void undefinedinstruction_bounce(trapframe_t *frame);
199
200static void canonicalise_bootconfig(struct bootconfig *, struct bootconfig *);
201static void process_kernel_args(void);
202
203extern void dump_spl_masks(void);
204
205void rpc_sa110_cc_setup(void);
206
207void parse_rpc_bootargs(char *args);
208
209extern void dumpsys(void);
210
211
212#	define console_flush()		/* empty */
213
214
215#define panic2(a) do {							\
216	memset((void *) (videomemory.vidm_vbase), 0x55, 50*1024);	\
217	consinit();							\
218	panic a;							\
219} while (/* CONSTCOND */ 0)
220
221/*
222 * void cpu_reboot(int howto, char *bootstr)
223 *
224 * Reboots the system
225 *
226 * Deal with any syncing, unmounting, dumping and shutdown hooks,
227 * then reset the CPU.
228 */
229
230/* NOTE: These variables will be removed, well some of them */
231
232extern u_int current_mask;
233
234void
235cpu_reboot(int howto, char *bootstr)
236{
237
238#ifdef DIAGNOSTIC
239	printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
240
241	printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
242	    irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
243	    irqmasks[IPL_VM]);
244	printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
245	    irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
246
247	/* dump_spl_masks(); */
248#endif	/* DIAGNOSTIC */
249
250	/*
251	 * If we are still cold then hit the air brakes
252	 * and crash to earth fast
253	 */
254	if (cold) {
255		doshutdownhooks();
256		pmf_system_shutdown(boothowto);
257		printf("Halted while still in the ICE age.\n");
258		printf("The operating system has halted.\n");
259		printf("Please press any key to reboot.\n\n");
260		cngetc();
261		printf("rebooting...\n");
262		cpu_reset();
263		/*NOTREACHED*/
264	}
265
266	/* Disable console buffering */
267	cnpollc(1);
268
269	/*
270	 * If RB_NOSYNC was not specified sync the discs.
271	 * Note: Unless cold is set to 1 here, syslogd will die during
272	 * the unmount.  It looks like syslogd is getting woken up
273	 * only to find that it cannot page part of the binary in as
274	 * the filesystem has been unmounted.
275	 */
276	if (!(howto & RB_NOSYNC))
277		bootsync();
278
279	/* Say NO to interrupts */
280	splhigh();
281
282	/* Do a dump if requested. */
283	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
284		dumpsys();
285
286	/*
287	 * Auto reboot overload protection
288	 *
289	 * This code stops the kernel entering an endless loop of reboot
290	 * - panic cycles. This will have the effect of stopping further
291	 * reboots after it has rebooted 8 times after panics. A clean
292	 * halt or reboot will reset the counter.
293	 */
294
295	/* Run any shutdown hooks */
296	doshutdownhooks();
297
298	pmf_system_shutdown(boothowto);
299
300	/* Make sure IRQ's are disabled */
301	IRQdisable;
302
303	if (howto & RB_HALT) {
304		printf("The operating system has halted.\n");
305		printf("Please press any key to reboot.\n\n");
306		cngetc();
307	}
308
309	printf("rebooting...\n");
310	cpu_reset();
311	/*NOTREACHED*/
312}
313
314
315/*
316 * u_int initarm(BootConfig *bootconf)
317 *
318 * Initial entry point on startup. This gets called before main() is
319 * entered.
320 * It should be responsible for setting up everything that must be
321 * in place when main is called.
322 * This includes
323 *   Taking a copy of the boot configuration structure.
324 *   Initialising the physical console so characters can be printed.
325 *   Setting up page tables for the kernel
326 *   Relocating the kernel to the bottom of physical memory
327 */
328
329/*
330 * this part is completely rewritten for the new bootloader ... It features
331 * a flat memory map with a mapping comparable to the EBSA arm32 machine
332 * to boost the portability and likeness of the code
333 */
334
335/*
336 * Mapping table for core kernel memory. This memory is mapped at init
337 * time with section mappings.
338 *
339 * XXX One big assumption in the current architecture seems that the kernel is
340 * XXX supposed to be mapped into bootconfig.dram[0].
341 */
342
343#define ONE_MB	0x100000
344
345struct l1_sec_map {
346	vaddr_t		va;
347	paddr_t		pa;
348	vsize_t		size;
349	vm_prot_t	prot;
350	int		cache;
351} l1_sec_table[] = {
352	/* Map 1Mb section for VIDC20 */
353	{ VIDC_BASE,		VIDC_HW_BASE,
354	    ONE_MB,		VM_PROT_READ|VM_PROT_WRITE,
355	    PTE_NOCACHE },
356
357	/* Map 1Mb section from IOMD */
358	{ IOMD_BASE,		IOMD_HW_BASE,
359	    ONE_MB,		VM_PROT_READ|VM_PROT_WRITE,
360	    PTE_NOCACHE },
361
362	/* Map 1Mb of COMBO (and module space) */
363	{ IO_BASE,		IO_HW_BASE,
364	    ONE_MB,		VM_PROT_READ|VM_PROT_WRITE,
365	    PTE_NOCACHE },
366	{ 0, 0, 0, 0, 0 }
367};
368
369
370static void
371canonicalise_bootconfig(struct bootconfig *bootconf, struct bootconfig *raw_bootconf)
372{
373	/* check for bootconfig v2+ structure */
374	if (raw_bootconf->magic == BOOTCONFIG_MAGIC) {
375		/* v2+ cleaned up structure found */
376		*bootconf = *raw_bootconf;
377		return;
378	} else {
379		panic2(("Internal error: no valid bootconfig block found"));
380	}
381}
382
383
384u_int
385initarm(void *cookie)
386{
387	struct bootconfig *raw_bootconf = cookie;
388	int loop;
389	int loop1;
390	u_int logical;
391	u_int kerneldatasize;
392	u_int l1pagetable;
393	struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE;
394	pv_addr_t kernel_l1pt = { {0} };
395
396	/*
397	 * Heads up ... Setup the CPU / MMU / TLB functions
398	 */
399	set_cpufuncs();
400
401	/* canonicalise the boot configuration structure to alow versioning */
402	canonicalise_bootconfig(&bootconfig, raw_bootconf);
403	booted_kernel = bootconfig.kernelname;
404
405	/* if the wscons interface is used, switch off VERBOSE booting :( */
406#if NVIDCVIDEO>0
407#	undef VERBOSE_INIT_ARM
408#	undef PMAP_DEBUG
409#endif
410
411	/*
412	 * Initialise the video memory descriptor
413	 *
414	 * Note: all references to the video memory virtual/physical address
415	 * should go via this structure.
416	 */
417
418	/* Hardwire it on the place the bootloader tells us */
419	videomemory.vidm_vbase = bootconfig.display_start;
420	videomemory.vidm_pbase = bootconfig.display_phys;
421	videomemory.vidm_size = bootconfig.display_size;
422	if (bootconfig.vram[0].pages)
423		videomemory.vidm_type = VIDEOMEM_TYPE_VRAM;
424	else
425		videomemory.vidm_type = VIDEOMEM_TYPE_DRAM;
426	vidc_base = (int *) VIDC_HW_BASE;
427	iomd_base =         IOMD_HW_BASE;
428
429	/*
430	 * Initialise the physical console
431	 * This is done in main() but for the moment we do it here so that
432	 * we can use printf in initarm() before main() has been called.
433	 * only for `vidcconsole!' ... not wscons
434	 */
435#if NVIDCVIDEO == 0
436	consinit();
437#endif
438
439	/*
440	 * Initialise the diagnostic serial console
441	 * This allows a means of generating output during initarm().
442	 * Once all the memory map changes are complete we can call consinit()
443	 * and not have to worry about things moving.
444	 */
445	/* fcomcnattach(DC21285_ARMCSR_BASE, comcnspeed, comcnmode); */
446	/* XXX snif .... i am still not able to this */
447
448	/*
449	 * We have the following memory map (derived from EBSA)
450	 *
451	 * virtual address == physical address apart from the areas:
452	 * 0x00000000 -> 0x000fffff which is mapped to
453	 * top 1MB of physical memory
454	 * 0xf0000000 -> 0xf0ffffff wich is mapped to
455	 * physical address 0x01000000 -> 0x01ffffff (DRAM0a, dram[0])
456	 *
457	 * This means that the kernel is mapped suitably for continuing
458	 * execution, all I/O is mapped 1:1 virtual to physical and
459	 * physical memory is accessible.
460	 *
461	 * The initarm() has the responsibility for creating the kernel
462	 * page tables.
463	 * It must also set up various memory pointers that are used
464	 * by pmap etc.
465	 */
466
467	/* START OF REAL NEW STUFF */
468
469	/* Check to make sure the page size is correct */
470	if (PAGE_SIZE != bootconfig.pagesize)
471		panic2(("Page size is %d bytes instead of %d !! (huh?)\n",
472			   bootconfig.pagesize, PAGE_SIZE));
473
474	/* process arguments */
475	process_kernel_args();
476
477
478	/*
479	 * Now set up the page tables for the kernel ... this part is copied
480	 * in a (modified?) way from the EBSA machine port....
481	 */
482
483#ifdef VERBOSE_INIT_ARM
484	printf("Allocating page tables\n");
485#endif
486	/*
487	 * Set up the variables that define the availablilty of physical
488	 * memory
489	 */
490	physical_start = 0xffffffff;
491	physical_end = 0;
492	for (loop = 0, physmem = 0; loop < bootconfig.dramblocks; ++loop) {
493	    	if (bootconfig.dram[loop].address < physical_start)
494			physical_start = bootconfig.dram[loop].address;
495		memoryblock_end = bootconfig.dram[loop].address +
496		    bootconfig.dram[loop].pages * PAGE_SIZE;
497		if (memoryblock_end > physical_end)
498			physical_end = memoryblock_end;
499		physmem += bootconfig.dram[loop].pages;
500	};
501	/* constants for now, but might be changed/configured */
502	dma_range_begin = (paddr_t) physical_start;
503	dma_range_end   = (paddr_t) MIN(physical_end, 512*1024*1024);
504	/* XXX HACK HACK XXX */
505	/* dma_range_end   = 0x18000000; */
506
507	if (physical_start !=  bootconfig.dram[0].address) {
508		int oldblocks = 0;
509
510		/*
511		 * must be a kinetic, as it's the only thing to shuffle memory
512		 * around
513		 */
514		/* hack hack - throw away the slow dram */
515		for (loop = 0; loop < bootconfig.dramblocks; ++loop) {
516			if (bootconfig.dram[loop].address <
517			    bootconfig.dram[0].address)	{
518				/* non kinetic ram */
519				bootconfig.dram[loop].address = 0;
520				physmem -= bootconfig.dram[loop].pages;
521				bootconfig.drampages -=
522				    bootconfig.dram[loop].pages;
523				bootconfig.dram[loop].pages = 0;
524				oldblocks++;
525			}
526		}
527		physical_start = bootconfig.dram[0].address;
528		bootconfig.dramblocks -= oldblocks;
529	}
530
531	physical_freestart = physical_start;
532	free_pages = bootconfig.drampages;
533	physical_freeend = physical_end;
534
535
536	/*
537	 * AHUM !! set this variable ... it was set up in the old 1st
538	 * stage bootloader
539	 */
540	kerneldatasize = bootconfig.kernsize + bootconfig.MDFsize;
541
542	/* Update the address of the first free page of physical memory */
543	/* XXX Assumption that the kernel and stuff is at the LOWEST physical memory address? XXX */
544	physical_freestart +=
545	    bootconfig.kernsize + bootconfig.MDFsize + bootconfig.scratchsize;
546	free_pages -= (physical_freestart - physical_start) / PAGE_SIZE;
547
548	/* Define a macro to simplify memory allocation */
549#define	valloc_pages(var, np)						\
550	alloc_pages((var).pv_pa, (np));					\
551	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
552
553#define alloc_pages(var, np)						\
554	(var) = physical_freestart;					\
555	physical_freestart += ((np) * PAGE_SIZE);			\
556	free_pages -= (np);						\
557	memset((char *)(var), 0, ((np) * PAGE_SIZE));
558
559	loop1 = 0;
560	kernel_l1pt.pv_pa = 0;
561	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
562		/* Are we 16KB aligned for an L1 ? */
563		if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
564		    && kernel_l1pt.pv_pa == 0) {
565			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
566		} else {
567			valloc_pages(kernel_pt_table[loop1],
568					L2_TABLE_SIZE / PAGE_SIZE);
569			++loop1;
570		}
571	}
572
573
574#ifdef DIAGNOSTIC
575	/* This should never be able to happen but better confirm that. */
576	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
577		panic2(("initarm: Failed to align the kernel page "
578		    "directory\n"));
579#endif
580
581	/*
582	 * Allocate a page for the system page mapped to V0x00000000
583	 * This page will just contain the system vectors and can be
584	 * shared by all processes.
585	 */
586	alloc_pages(systempage.pv_pa, 1);
587
588	/* Allocate stacks for all modes */
589	valloc_pages(irqstack, IRQ_STACK_SIZE);
590	valloc_pages(abtstack, ABT_STACK_SIZE);
591	valloc_pages(undstack, UND_STACK_SIZE);
592	valloc_pages(kernelstack, UPAGES);
593
594#ifdef VERBOSE_INIT_ARM
595	printf("Setting up stacks :\n");
596	printf("IRQ stack: p0x%08lx v0x%08lx\n",
597	    irqstack.pv_pa, irqstack.pv_va);
598	printf("ABT stack: p0x%08lx v0x%08lx\n",
599	    abtstack.pv_pa, abtstack.pv_va);
600	printf("UND stack: p0x%08lx v0x%08lx\n",
601	    undstack.pv_pa, undstack.pv_va);
602	printf("SVC stack: p0x%08lx v0x%08lx\n",
603	    kernelstack.pv_pa, kernelstack.pv_va);
604	printf("\n");
605#endif
606
607	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
608
609#ifdef CPU_SA110
610	/*
611	 * XXX totally stuffed hack to work round problems introduced
612	 * in recent versions of the pmap code. Due to the calls used there
613	 * we cannot allocate virtual memory during bootstrap.
614	 */
615	sa110_cc_base = (KERNEL_BASE + (physical_freestart - physical_start)
616	    + (CPU_SA110_CACHE_CLEAN_SIZE - 1))
617	    & ~(CPU_SA110_CACHE_CLEAN_SIZE - 1);
618#endif	/* CPU_SA110 */
619
620	/*
621	 * Ok we have allocated physical pages for the primary kernel
622	 * page tables
623	 */
624
625#ifdef VERBOSE_INIT_ARM
626	printf("Creating L1 page table\n");
627#endif
628
629	/*
630	 * Now we start construction of the L1 page table
631	 * We start by mapping the L2 page tables into the L1.
632	 * This means that we can replace L1 mappings later on if necessary
633	 */
634	l1pagetable = kernel_l1pt.pv_pa;
635
636	/* Map the L2 pages tables in the L1 page table */
637	pmap_link_l2pt(l1pagetable, 0x00000000,
638	    &kernel_pt_table[KERNEL_PT_SYS]);
639	pmap_link_l2pt(l1pagetable, KERNEL_BASE,
640	    &kernel_pt_table[KERNEL_PT_KERNEL]);
641	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
642		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
643		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
644	pmap_link_l2pt(l1pagetable, VMEM_VBASE,
645	    &kernel_pt_table[KERNEL_PT_VMEM]);
646
647	/* update the top of the kernel VM */
648	pmap_curmaxkvaddr =
649	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
650
651#ifdef VERBOSE_INIT_ARM
652	printf("Mapping kernel\n");
653#endif
654
655	/* Now we fill in the L2 pagetable for the kernel code/data */
656	/* XXX Kernel doesn't have to be on physical_start (!) use bootconfig XXX */
657	/*
658	 * The defines are a workaround for a recent problem that occurred
659	 * with ARM 610 processors and some ARM 710 processors
660	 * Other ARM 710 and StrongARM processors don't have a problem.
661	 */
662	if (N_GETMAGIC(kernexec[0]) == ZMAGIC) {
663#if defined(CPU_ARM6) || defined(CPU_ARM7)
664		logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
665		    physical_start, kernexec->a_text,
666		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
667#else	/* CPU_ARM6 || CPU_ARM7 */
668		logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
669		    physical_start, kernexec->a_text,
670		    VM_PROT_READ, PTE_CACHE);
671#endif	/* CPU_ARM6 || CPU_ARM7 */
672		logical += pmap_map_chunk(l1pagetable,
673		    KERNEL_TEXT_BASE + logical, physical_start + logical,
674		    kerneldatasize - kernexec->a_text,
675		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
676	} else {	/* !ZMAGIC */
677		/*
678		 * Most likely an ELF kernel ...
679		 * XXX no distinction yet between read only and
680		 * read/write area's ...
681		 */
682		pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
683		    physical_start, kerneldatasize,
684		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
685	};
686
687
688#ifdef VERBOSE_INIT_ARM
689	printf("Constructing L2 page tables\n");
690#endif
691
692	/* Map the stack pages */
693	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
694	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
695	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
696	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
697	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
698	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
699	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
700	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
701
702	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
703	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
704
705	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
706		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
707		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
708		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
709	}
710
711	/* Now we fill in the L2 pagetable for the VRAM */
712	/*
713	 * Current architectures mean that the VRAM is always in 1
714	 * continuous bank.  This means that we can just map the 2 meg
715	 * that the VRAM would occupy.  In theory we don't need a page
716	 * table for VRAM, we could section map it but we would need
717	 * the page tables if DRAM was in use.
718	 * XXX please map two adjacent virtual areas to ONE physical
719	 * area
720	 */
721	pmap_map_chunk(l1pagetable, VMEM_VBASE, videomemory.vidm_pbase,
722	    videomemory.vidm_size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
723	pmap_map_chunk(l1pagetable, VMEM_VBASE + videomemory.vidm_size,
724	    videomemory.vidm_pbase, videomemory.vidm_size,
725	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
726
727	/* Map the vector page. */
728	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
729	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
730
731	/* Map the core memory needed before autoconfig */
732	loop = 0;
733	while (l1_sec_table[loop].size) {
734		vm_size_t sz;
735
736#ifdef VERBOSE_INIT_ARM
737		printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
738			l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
739			l1_sec_table[loop].va);
740#endif
741		for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
742			pmap_map_section(l1pagetable,
743			    l1_sec_table[loop].va + sz,
744			    l1_sec_table[loop].pa + sz,
745			    l1_sec_table[loop].prot,
746			    l1_sec_table[loop].cache);
747		++loop;
748	}
749
750	/*
751	 * Now we have the real page tables in place so we can switch
752	 * to them.  Once this is done we will be running with the
753	 * REAL kernel page tables.
754	 */
755
756	/* Switch tables */
757#ifdef VERBOSE_INIT_ARM
758	printf("switching to new L1 page table\n");
759#endif
760#ifdef VERBOSE_INIT_ARM
761	printf("switching domains\n");
762#endif
763	/* be a client to all domains */
764	cpu_domains(0x55555555);
765
766	setttb(kernel_l1pt.pv_pa);
767
768	/*
769	 * We must now clean the cache again....
770	 * Cleaning may be done by reading new data to displace any
771	 * dirty data in the cache. This will have happened in setttb()
772	 * but since we are boot strapping the addresses used for the read
773	 * may have just been remapped and thus the cache could be out
774	 * of sync. A re-clean after the switch will cure this.
775	 * After booting there are no gross reloations of the kernel thus
776	 * this problem will not occur after initarm().
777	 */
778	cpu_idcache_wbinv_all();
779	cpu_tlb_flushID();
780	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
781
782	/*
783	 * Moved from cpu_startup() as data_abort_handler() references
784	 * this during uvm init
785	 */
786	proc0paddr = (struct user *)kernelstack.pv_va;
787	lwp0.l_addr = proc0paddr;
788
789	/*
790	 * if there is support for a serial console ...we should now
791	 * reattach it
792	 */
793	/*      fcomcndetach();*/
794
795	/*
796	 * Reflect videomemory relocation in the videomemory structure
797	 * and reinit console
798	 */
799	if (bootconfig.vram[0].pages == 0) {
800		videomemory.vidm_vbase   = VMEM_VBASE;
801	} else {
802		videomemory.vidm_vbase   = VMEM_VBASE;
803		bootconfig.display_start = VMEM_VBASE;
804	};
805	vidc_base = (int *) VIDC_BASE;
806	iomd_base =         IOMD_BASE;
807
808#ifdef VERBOSE_INIT_ARM
809	printf("running on the new L1 page table!\n");
810	printf("done.\n");
811#endif
812
813	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
814
815#ifdef VERBOSE_INIT_ARM
816	printf("\n");
817#endif
818
819	/*
820	 * Pages were allocated during the secondary bootstrap for the
821	 * stacks for different CPU modes.
822	 * We must now set the r13 registers in the different CPU modes to
823	 * point to these stacks.
824	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
825	 * of the stack memory.
826	 */
827#ifdef VERBOSE_INIT_ARM
828	printf("init subsystems: stacks ");
829	console_flush();
830#endif
831
832	set_stackptr(PSR_IRQ32_MODE,
833	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
834	set_stackptr(PSR_ABT32_MODE,
835	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
836	set_stackptr(PSR_UND32_MODE,
837	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
838#ifdef PMAP_DEBUG
839	if (pmap_debug_level >= 0)
840		printf("kstack V%08lx P%08lx\n", kernelstack.pv_va,
841		    kernelstack.pv_pa);
842#endif	/* PMAP_DEBUG */
843
844	/*
845	 * Well we should set a data abort handler.
846	 * Once things get going this will change as we will need a proper
847	 * handler. Until then we will use a handler that just panics but
848	 * tells us why.
849	 * Initialisation of the vectors will just panic on a data abort.
850	 * This just fills in a slightly better one.
851	 */
852#ifdef VERBOSE_INIT_ARM
853	printf("vectors ");
854#endif
855	data_abort_handler_address = (u_int)data_abort_handler;
856	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
857	undefined_handler_address = (u_int)undefinedinstruction_bounce;
858	console_flush();
859
860
861	/*
862	 * At last !
863	 * We now have the kernel in physical memory from the bottom upwards.
864	 * Kernel page tables are physically above this.
865	 * The kernel is mapped to 0xf0000000
866	 * The kernel data PTs will handle the mapping of
867	 *   0xf1000000-0xf5ffffff (80 Mb)
868	 * 2Meg of VRAM is mapped to 0xf7000000
869	 * The page tables are mapped to 0xefc00000
870	 * The IOMD is mapped to 0xf6000000
871	 * The VIDC is mapped to 0xf6100000
872	 * The IOMD/VIDC could be pushed up higher but i havent got
873	 * sufficient documentation to do so; the addresses are not
874	 * parametized yet and hard to read... better fix this before;
875	 * its pretty unforgiving.
876	 */
877
878	/* Initialise the undefined instruction handlers */
879#ifdef VERBOSE_INIT_ARM
880	printf("undefined ");
881#endif
882	undefined_init();
883	console_flush();
884
885	/* Load memory into UVM. */
886#ifdef VERBOSE_INIT_ARM
887	printf("page ");
888#endif
889	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
890	for (loop = 0; loop < bootconfig.dramblocks; loop++) {
891		paddr_t start = (paddr_t)bootconfig.dram[loop].address;
892		paddr_t end = start + (bootconfig.dram[loop].pages * PAGE_SIZE);
893
894		if (start < physical_freestart)
895			start = physical_freestart;
896		if (end > physical_freeend)
897			end = physical_freeend;
898
899		/* XXX Consider DMA range intersection checking. */
900
901		uvm_page_physload(atop(start), atop(end),
902		    atop(start), atop(end), VM_FREELIST_DEFAULT);
903	}
904
905	/* Boot strap pmap telling it where the kernel page table is */
906#ifdef VERBOSE_INIT_ARM
907	printf("pmap ");
908#endif
909	pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
910	    KERNEL_VM_BASE + KERNEL_VM_SIZE);
911	console_flush();
912
913	/* Setup the IRQ system */
914#ifdef VERBOSE_INIT_ARM
915	printf("irq ");
916#endif
917	console_flush();
918	irq_init();
919#ifdef VERBOSE_INIT_ARM
920	printf("done.\n\n");
921#endif
922
923#if NVIDCVIDEO>0
924	consinit();		/* necessary ? */
925#endif
926
927	/* Talk to the user */
928	printf("NetBSD/evbarm booting ... \n");
929
930	/* Tell the user if his boot loader is too old */
931	if ((bootconfig.magic < BOOTCONFIG_MAGIC) ||
932	    (bootconfig.version != BOOTCONFIG_VERSION)) {
933		printf("\nDETECTED AN OLD BOOTLOADER. PLEASE UPGRADE IT\n\n");
934		delay(5000000);
935	}
936
937	printf("Kernel loaded from file %s\n", bootconfig.kernelname);
938	printf("Kernel arg string (@%p) %s\n",
939	    bootconfig.args, bootconfig.args);
940	printf("\nBoot configuration structure reports the following "
941	    "memory\n");
942
943	printf(" DRAM block 0a at %08x size %08x "
944	    "DRAM block 0b at %08x size %08x\n\r",
945	    bootconfig.dram[0].address,
946	    bootconfig.dram[0].pages * bootconfig.pagesize,
947	    bootconfig.dram[1].address,
948	    bootconfig.dram[1].pages * bootconfig.pagesize);
949	printf(" DRAM block 1a at %08x size %08x "
950	    "DRAM block 1b at %08x size %08x\n\r",
951	    bootconfig.dram[2].address,
952	    bootconfig.dram[2].pages * bootconfig.pagesize,
953	    bootconfig.dram[3].address,
954	    bootconfig.dram[3].pages * bootconfig.pagesize);
955	printf(" VRAM block 0  at %08x size %08x\n\r",
956	    bootconfig.vram[0].address,
957	    bootconfig.vram[0].pages * bootconfig.pagesize);
958
959#if NKSYMS || defined(DDB) || defined(LKM)
960	ksyms_init(bootconfig.ksym_end - bootconfig.ksym_start,
961		(void *) bootconfig.ksym_start, (void *) bootconfig.ksym_end);
962#endif
963
964
965#ifdef DDB
966	db_machine_init();
967	if (boothowto & RB_KDB)
968		Debugger();
969#endif	/* DDB */
970
971	/* We return the new stack pointer address */
972	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
973}
974
975
976static void
977process_kernel_args(void)
978{
979	char *args;
980
981	/* Ok now we will check the arguments for interesting parameters. */
982	args = bootconfig.args;
983	boothowto = 0;
984
985	/* Only arguments itself are passed from the new bootloader */
986	while (*args == ' ')
987		++args;
988
989	boot_args = args;
990	parse_mi_bootargs(boot_args);
991	parse_rpc_bootargs(boot_args);
992}
993
994
995void
996parse_rpc_bootargs(char *args)
997{
998	int integer;
999
1000	if (get_bootconf_option(args, "videodram", BOOTOPT_TYPE_INT,
1001	    &integer)) {
1002		videodram_size = integer;
1003		/* Round to 4K page */
1004		videodram_size *= 1024;
1005		videodram_size = round_page(videodram_size);
1006		if (videodram_size > 1024*1024)
1007			videodram_size = 1024*1024;
1008	}
1009}
1010/* End of machdep.c */
1011