altq_hfsc.c revision 1.21
1/*	$NetBSD: altq_hfsc.c,v 1.21 2006/10/20 21:55:56 elad Exp $	*/
2/*	$KAME: altq_hfsc.c,v 1.26 2005/04/13 03:44:24 suz Exp $	*/
3
4/*
5 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
6 *
7 * Permission to use, copy, modify, and distribute this software and
8 * its documentation is hereby granted (including for commercial or
9 * for-profit use), provided that both the copyright notice and this
10 * permission notice appear in all copies of the software, derivative
11 * works, or modified versions, and any portions thereof.
12 *
13 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
14 * WHICH MAY HAVE SERIOUS CONSEQUENCES.  CARNEGIE MELLON PROVIDES THIS
15 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
16 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 * DISCLAIMED.  IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
21 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
23 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
25 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26 * DAMAGE.
27 *
28 * Carnegie Mellon encourages (but does not require) users of this
29 * software to return any improvements or extensions that they make,
30 * and to grant Carnegie Mellon the rights to redistribute these
31 * changes without encumbrance.
32 */
33/*
34 * H-FSC is described in Proceedings of SIGCOMM'97,
35 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
36 * Real-Time and Priority Service"
37 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
38 *
39 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
40 * when a class has an upperlimit, the fit-time is computed from the
41 * upperlimit service curve.  the link-sharing scheduler does not schedule
42 * a class whose fit-time exceeds the current time.
43 */
44
45#include <sys/cdefs.h>
46__KERNEL_RCSID(0, "$NetBSD: altq_hfsc.c,v 1.21 2006/10/20 21:55:56 elad Exp $");
47
48#ifdef _KERNEL_OPT
49#include "opt_altq.h"
50#include "opt_inet.h"
51#include "pf.h"
52#endif
53
54#ifdef ALTQ_HFSC  /* hfsc is enabled by ALTQ_HFSC option in opt_altq.h */
55
56#include <sys/param.h>
57#include <sys/malloc.h>
58#include <sys/mbuf.h>
59#include <sys/socket.h>
60#include <sys/systm.h>
61#include <sys/errno.h>
62#include <sys/queue.h>
63#if 1 /* ALTQ3_COMPAT */
64#include <sys/sockio.h>
65#include <sys/proc.h>
66#include <sys/kernel.h>
67#endif /* ALTQ3_COMPAT */
68#include <sys/kauth.h>
69
70#include <net/if.h>
71#include <netinet/in.h>
72
73#if NPF > 0
74#include <net/pfvar.h>
75#endif
76#include <altq/altq.h>
77#include <altq/altq_hfsc.h>
78#ifdef ALTQ3_COMPAT
79#include <altq/altq_conf.h>
80#endif
81
82/*
83 * function prototypes
84 */
85static int			 hfsc_clear_interface(struct hfsc_if *);
86static int			 hfsc_request(struct ifaltq *, int, void *);
87static void			 hfsc_purge(struct hfsc_if *);
88static struct hfsc_class	*hfsc_class_create(struct hfsc_if *,
89    struct service_curve *, struct service_curve *, struct service_curve *,
90    struct hfsc_class *, int, int, int);
91static int			 hfsc_class_destroy(struct hfsc_class *);
92static struct hfsc_class	*hfsc_nextclass(struct hfsc_class *);
93static int			 hfsc_enqueue(struct ifaltq *, struct mbuf *,
94				    struct altq_pktattr *);
95static struct mbuf		*hfsc_dequeue(struct ifaltq *, int);
96
97static int		 hfsc_addq(struct hfsc_class *, struct mbuf *);
98static struct mbuf	*hfsc_getq(struct hfsc_class *);
99static struct mbuf	*hfsc_pollq(struct hfsc_class *);
100static void		 hfsc_purgeq(struct hfsc_class *);
101
102static void		 update_cfmin(struct hfsc_class *);
103static void		 set_active(struct hfsc_class *, int);
104static void		 set_passive(struct hfsc_class *);
105
106static void		 init_ed(struct hfsc_class *, int);
107static void		 update_ed(struct hfsc_class *, int);
108static void		 update_d(struct hfsc_class *, int);
109static void		 init_vf(struct hfsc_class *, int);
110static void		 update_vf(struct hfsc_class *, int, u_int64_t);
111static ellist_t		*ellist_alloc(void);
112static void		 ellist_destroy(ellist_t *);
113static void		 ellist_insert(struct hfsc_class *);
114static void		 ellist_remove(struct hfsc_class *);
115static void		 ellist_update(struct hfsc_class *);
116struct hfsc_class	*ellist_get_mindl(ellist_t *, u_int64_t);
117static actlist_t	*actlist_alloc(void);
118static void		 actlist_destroy(actlist_t *);
119static void		 actlist_insert(struct hfsc_class *);
120static void		 actlist_remove(struct hfsc_class *);
121static void		 actlist_update(struct hfsc_class *);
122
123static struct hfsc_class	*actlist_firstfit(struct hfsc_class *,
124				    u_int64_t);
125
126static inline u_int64_t	seg_x2y(u_int64_t, u_int64_t);
127static inline u_int64_t	seg_y2x(u_int64_t, u_int64_t);
128static inline u_int64_t	m2sm(u_int);
129static inline u_int64_t	m2ism(u_int);
130static inline u_int64_t	d2dx(u_int);
131static u_int			sm2m(u_int64_t);
132static u_int			dx2d(u_int64_t);
133
134static void		sc2isc(struct service_curve *, struct internal_sc *);
135static void		rtsc_init(struct runtime_sc *, struct internal_sc *,
136			    u_int64_t, u_int64_t);
137static u_int64_t	rtsc_y2x(struct runtime_sc *, u_int64_t);
138static u_int64_t	rtsc_x2y(struct runtime_sc *, u_int64_t);
139static void		rtsc_min(struct runtime_sc *, struct internal_sc *,
140			    u_int64_t, u_int64_t);
141
142static void			 get_class_stats(struct hfsc_classstats *,
143				    struct hfsc_class *);
144static struct hfsc_class	*clh_to_clp(struct hfsc_if *, u_int32_t);
145
146
147#ifdef ALTQ3_COMPAT
148static struct hfsc_if *hfsc_attach(struct ifaltq *, u_int);
149static int hfsc_detach(struct hfsc_if *);
150static int hfsc_class_modify(struct hfsc_class *, struct service_curve *,
151    struct service_curve *, struct service_curve *);
152
153static int hfsccmd_if_attach(struct hfsc_attach *);
154static int hfsccmd_if_detach(struct hfsc_interface *);
155static int hfsccmd_add_class(struct hfsc_add_class *);
156static int hfsccmd_delete_class(struct hfsc_delete_class *);
157static int hfsccmd_modify_class(struct hfsc_modify_class *);
158static int hfsccmd_add_filter(struct hfsc_add_filter *);
159static int hfsccmd_delete_filter(struct hfsc_delete_filter *);
160static int hfsccmd_class_stats(struct hfsc_class_stats *);
161
162altqdev_decl(hfsc);
163#endif /* ALTQ3_COMPAT */
164
165/*
166 * macros
167 */
168#define	is_a_parent_class(cl)	((cl)->cl_children != NULL)
169
170#define	HT_INFINITY	0xffffffffffffffffLL	/* infinite time value */
171
172#ifdef ALTQ3_COMPAT
173/* hif_list keeps all hfsc_if's allocated. */
174static struct hfsc_if *hif_list = NULL;
175#endif /* ALTQ3_COMPAT */
176
177#if NPF > 0
178int
179hfsc_pfattach(struct pf_altq *a)
180{
181	struct ifnet *ifp;
182	int s, error;
183
184	if ((ifp = ifunit(a->ifname)) == NULL || a->altq_disc == NULL)
185		return (EINVAL);
186	s = splnet();
187	error = altq_attach(&ifp->if_snd, ALTQT_HFSC, a->altq_disc,
188	    hfsc_enqueue, hfsc_dequeue, hfsc_request, NULL, NULL);
189	splx(s);
190	return (error);
191}
192
193int
194hfsc_add_altq(struct pf_altq *a)
195{
196	struct hfsc_if *hif;
197	struct ifnet *ifp;
198
199	if ((ifp = ifunit(a->ifname)) == NULL)
200		return (EINVAL);
201	if (!ALTQ_IS_READY(&ifp->if_snd))
202		return (ENODEV);
203
204	hif = malloc(sizeof(struct hfsc_if), M_DEVBUF, M_WAITOK|M_ZERO);
205	if (hif == NULL)
206		return (ENOMEM);
207
208	hif->hif_eligible = ellist_alloc();
209	if (hif->hif_eligible == NULL) {
210		free(hif, M_DEVBUF);
211		return (ENOMEM);
212	}
213
214	hif->hif_ifq = &ifp->if_snd;
215
216	/* keep the state in pf_altq */
217	a->altq_disc = hif;
218
219	return (0);
220}
221
222int
223hfsc_remove_altq(struct pf_altq *a)
224{
225	struct hfsc_if *hif;
226
227	if ((hif = a->altq_disc) == NULL)
228		return (EINVAL);
229	a->altq_disc = NULL;
230
231	(void)hfsc_clear_interface(hif);
232	(void)hfsc_class_destroy(hif->hif_rootclass);
233
234	ellist_destroy(hif->hif_eligible);
235
236	free(hif, M_DEVBUF);
237
238	return (0);
239}
240
241int
242hfsc_add_queue(struct pf_altq *a)
243{
244	struct hfsc_if *hif;
245	struct hfsc_class *cl, *parent;
246	struct hfsc_opts *opts;
247	struct service_curve rtsc, lssc, ulsc;
248
249	if ((hif = a->altq_disc) == NULL)
250		return (EINVAL);
251
252	opts = &a->pq_u.hfsc_opts;
253
254	if (a->parent_qid == HFSC_NULLCLASS_HANDLE &&
255	    hif->hif_rootclass == NULL)
256		parent = NULL;
257	else if ((parent = clh_to_clp(hif, a->parent_qid)) == NULL)
258		return (EINVAL);
259
260	if (a->qid == 0)
261		return (EINVAL);
262
263	if (clh_to_clp(hif, a->qid) != NULL)
264		return (EBUSY);
265
266	rtsc.m1 = opts->rtsc_m1;
267	rtsc.d  = opts->rtsc_d;
268	rtsc.m2 = opts->rtsc_m2;
269	lssc.m1 = opts->lssc_m1;
270	lssc.d  = opts->lssc_d;
271	lssc.m2 = opts->lssc_m2;
272	ulsc.m1 = opts->ulsc_m1;
273	ulsc.d  = opts->ulsc_d;
274	ulsc.m2 = opts->ulsc_m2;
275
276	cl = hfsc_class_create(hif, &rtsc, &lssc, &ulsc,
277	    parent, a->qlimit, opts->flags, a->qid);
278	if (cl == NULL)
279		return (ENOMEM);
280
281	return (0);
282}
283
284int
285hfsc_remove_queue(struct pf_altq *a)
286{
287	struct hfsc_if *hif;
288	struct hfsc_class *cl;
289
290	if ((hif = a->altq_disc) == NULL)
291		return (EINVAL);
292
293	if ((cl = clh_to_clp(hif, a->qid)) == NULL)
294		return (EINVAL);
295
296	return (hfsc_class_destroy(cl));
297}
298
299int
300hfsc_getqstats(struct pf_altq *a, void *ubuf, int *nbytes)
301{
302	struct hfsc_if *hif;
303	struct hfsc_class *cl;
304	struct hfsc_classstats stats;
305	int error = 0;
306
307	if ((hif = altq_lookup(a->ifname, ALTQT_HFSC)) == NULL)
308		return (EBADF);
309
310	if ((cl = clh_to_clp(hif, a->qid)) == NULL)
311		return (EINVAL);
312
313	if (*nbytes < sizeof(stats))
314		return (EINVAL);
315
316	get_class_stats(&stats, cl);
317
318	if ((error = copyout((caddr_t)&stats, ubuf, sizeof(stats))) != 0)
319		return (error);
320	*nbytes = sizeof(stats);
321	return (0);
322}
323#endif /* NPF > 0 */
324
325/*
326 * bring the interface back to the initial state by discarding
327 * all the filters and classes except the root class.
328 */
329static int
330hfsc_clear_interface(struct hfsc_if *hif)
331{
332	struct hfsc_class	*cl;
333
334#ifdef ALTQ3_COMPAT
335	/* free the filters for this interface */
336	acc_discard_filters(&hif->hif_classifier, NULL, 1);
337#endif
338
339	/* clear out the classes */
340	while (hif->hif_rootclass != NULL &&
341	    (cl = hif->hif_rootclass->cl_children) != NULL) {
342		/*
343		 * remove the first leaf class found in the hierarchy
344		 * then start over
345		 */
346		for (; cl != NULL; cl = hfsc_nextclass(cl)) {
347			if (!is_a_parent_class(cl)) {
348				(void)hfsc_class_destroy(cl);
349				break;
350			}
351		}
352	}
353
354	return (0);
355}
356
357static int
358hfsc_request(struct ifaltq *ifq, int req, void *arg __unused)
359{
360	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
361
362	switch (req) {
363	case ALTRQ_PURGE:
364		hfsc_purge(hif);
365		break;
366	}
367	return (0);
368}
369
370/* discard all the queued packets on the interface */
371static void
372hfsc_purge(struct hfsc_if *hif)
373{
374	struct hfsc_class *cl;
375
376	for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
377		if (!qempty(cl->cl_q))
378			hfsc_purgeq(cl);
379	if (ALTQ_IS_ENABLED(hif->hif_ifq))
380		hif->hif_ifq->ifq_len = 0;
381}
382
383struct hfsc_class *
384hfsc_class_create(struct hfsc_if *hif, struct service_curve *rsc,
385    struct service_curve *fsc, struct service_curve *usc,
386    struct hfsc_class *parent, int qlimit, int flags, int qid)
387{
388	struct hfsc_class *cl, *p;
389	int i, s;
390
391	if (hif->hif_classes >= HFSC_MAX_CLASSES)
392		return (NULL);
393
394#ifndef ALTQ_RED
395	if (flags & HFCF_RED) {
396#ifdef ALTQ_DEBUG
397		printf("hfsc_class_create: RED not configured for HFSC!\n");
398#endif
399		return (NULL);
400	}
401#endif
402
403	cl = malloc(sizeof(struct hfsc_class), M_DEVBUF, M_WAITOK|M_ZERO);
404	if (cl == NULL)
405		return (NULL);
406
407	cl->cl_q = malloc(sizeof(class_queue_t), M_DEVBUF, M_WAITOK|M_ZERO);
408	if (cl->cl_q == NULL)
409		goto err_ret;
410
411	cl->cl_actc = actlist_alloc();
412	if (cl->cl_actc == NULL)
413		goto err_ret;
414
415	if (qlimit == 0)
416		qlimit = 50;  /* use default */
417	qlimit(cl->cl_q) = qlimit;
418	qtype(cl->cl_q) = Q_DROPTAIL;
419	qlen(cl->cl_q) = 0;
420	cl->cl_flags = flags;
421#ifdef ALTQ_RED
422	if (flags & (HFCF_RED|HFCF_RIO)) {
423		int red_flags, red_pkttime;
424		u_int m2;
425
426		m2 = 0;
427		if (rsc != NULL && rsc->m2 > m2)
428			m2 = rsc->m2;
429		if (fsc != NULL && fsc->m2 > m2)
430			m2 = fsc->m2;
431		if (usc != NULL && usc->m2 > m2)
432			m2 = usc->m2;
433
434		red_flags = 0;
435		if (flags & HFCF_ECN)
436			red_flags |= REDF_ECN;
437#ifdef ALTQ_RIO
438		if (flags & HFCF_CLEARDSCP)
439			red_flags |= RIOF_CLEARDSCP;
440#endif
441		if (m2 < 8)
442			red_pkttime = 1000 * 1000 * 1000; /* 1 sec */
443		else
444			red_pkttime = (int64_t)hif->hif_ifq->altq_ifp->if_mtu
445				* 1000 * 1000 * 1000 / (m2 / 8);
446		if (flags & HFCF_RED) {
447			cl->cl_red = red_alloc(0, 0,
448			    qlimit(cl->cl_q) * 10/100,
449			    qlimit(cl->cl_q) * 30/100,
450			    red_flags, red_pkttime);
451			if (cl->cl_red != NULL)
452				qtype(cl->cl_q) = Q_RED;
453		}
454#ifdef ALTQ_RIO
455		else {
456			cl->cl_red = (red_t *)rio_alloc(0, NULL,
457			    red_flags, red_pkttime);
458			if (cl->cl_red != NULL)
459				qtype(cl->cl_q) = Q_RIO;
460		}
461#endif
462	}
463#endif /* ALTQ_RED */
464
465	if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0)) {
466		cl->cl_rsc = malloc(sizeof(struct internal_sc), M_DEVBUF,
467		    M_WAITOK|M_ZERO);
468		if (cl->cl_rsc == NULL)
469			goto err_ret;
470		sc2isc(rsc, cl->cl_rsc);
471		rtsc_init(&cl->cl_deadline, cl->cl_rsc, 0, 0);
472		rtsc_init(&cl->cl_eligible, cl->cl_rsc, 0, 0);
473	}
474	if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0)) {
475		cl->cl_fsc = malloc(sizeof(struct internal_sc), M_DEVBUF,
476		    M_WAITOK|M_ZERO);
477		if (cl->cl_fsc == NULL)
478			goto err_ret;
479		sc2isc(fsc, cl->cl_fsc);
480		rtsc_init(&cl->cl_virtual, cl->cl_fsc, 0, 0);
481	}
482	if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0)) {
483		cl->cl_usc = malloc(sizeof(struct internal_sc), M_DEVBUF,
484		    M_WAITOK|M_ZERO);
485		if (cl->cl_usc == NULL)
486			goto err_ret;
487		sc2isc(usc, cl->cl_usc);
488		rtsc_init(&cl->cl_ulimit, cl->cl_usc, 0, 0);
489	}
490
491	cl->cl_id = hif->hif_classid++;
492	cl->cl_handle = qid;
493	cl->cl_hif = hif;
494	cl->cl_parent = parent;
495
496	s = splnet();
497	hif->hif_classes++;
498
499	/*
500	 * find a free slot in the class table.  if the slot matching
501	 * the lower bits of qid is free, use this slot.  otherwise,
502	 * use the first free slot.
503	 */
504	i = qid % HFSC_MAX_CLASSES;
505	if (hif->hif_class_tbl[i] == NULL)
506		hif->hif_class_tbl[i] = cl;
507	else {
508		for (i = 0; i < HFSC_MAX_CLASSES; i++)
509			if (hif->hif_class_tbl[i] == NULL) {
510				hif->hif_class_tbl[i] = cl;
511				break;
512			}
513		if (i == HFSC_MAX_CLASSES) {
514			splx(s);
515			goto err_ret;
516		}
517	}
518
519	if (flags & HFCF_DEFAULTCLASS)
520		hif->hif_defaultclass = cl;
521
522	if (parent == NULL) {
523		/* this is root class */
524		hif->hif_rootclass = cl;
525	} else {
526		/* add this class to the children list of the parent */
527		if ((p = parent->cl_children) == NULL)
528			parent->cl_children = cl;
529		else {
530			while (p->cl_siblings != NULL)
531				p = p->cl_siblings;
532			p->cl_siblings = cl;
533		}
534	}
535	splx(s);
536
537	return (cl);
538
539 err_ret:
540	if (cl->cl_actc != NULL)
541		actlist_destroy(cl->cl_actc);
542	if (cl->cl_red != NULL) {
543#ifdef ALTQ_RIO
544		if (q_is_rio(cl->cl_q))
545			rio_destroy((rio_t *)cl->cl_red);
546#endif
547#ifdef ALTQ_RED
548		if (q_is_red(cl->cl_q))
549			red_destroy(cl->cl_red);
550#endif
551	}
552	if (cl->cl_fsc != NULL)
553		free(cl->cl_fsc, M_DEVBUF);
554	if (cl->cl_rsc != NULL)
555		free(cl->cl_rsc, M_DEVBUF);
556	if (cl->cl_usc != NULL)
557		free(cl->cl_usc, M_DEVBUF);
558	if (cl->cl_q != NULL)
559		free(cl->cl_q, M_DEVBUF);
560	free(cl, M_DEVBUF);
561	return (NULL);
562}
563
564static int
565hfsc_class_destroy(struct hfsc_class *cl)
566{
567	int i, s;
568
569	if (cl == NULL)
570		return (0);
571
572	if (is_a_parent_class(cl))
573		return (EBUSY);
574
575	s = splnet();
576
577#ifdef ALTQ3_COMPAT
578	/* delete filters referencing to this class */
579	acc_discard_filters(&cl->cl_hif->hif_classifier, cl, 0);
580#endif /* ALTQ3_COMPAT */
581
582	if (!qempty(cl->cl_q))
583		hfsc_purgeq(cl);
584
585	if (cl->cl_parent == NULL) {
586		/* this is root class */
587	} else {
588		struct hfsc_class *p = cl->cl_parent->cl_children;
589
590		if (p == cl)
591			cl->cl_parent->cl_children = cl->cl_siblings;
592		else do {
593			if (p->cl_siblings == cl) {
594				p->cl_siblings = cl->cl_siblings;
595				break;
596			}
597		} while ((p = p->cl_siblings) != NULL);
598		ASSERT(p != NULL);
599	}
600
601	for (i = 0; i < HFSC_MAX_CLASSES; i++)
602		if (cl->cl_hif->hif_class_tbl[i] == cl) {
603			cl->cl_hif->hif_class_tbl[i] = NULL;
604			break;
605		}
606
607	cl->cl_hif->hif_classes--;
608	splx(s);
609
610	actlist_destroy(cl->cl_actc);
611
612	if (cl->cl_red != NULL) {
613#ifdef ALTQ_RIO
614		if (q_is_rio(cl->cl_q))
615			rio_destroy((rio_t *)cl->cl_red);
616#endif
617#ifdef ALTQ_RED
618		if (q_is_red(cl->cl_q))
619			red_destroy(cl->cl_red);
620#endif
621	}
622
623	if (cl == cl->cl_hif->hif_rootclass)
624		cl->cl_hif->hif_rootclass = NULL;
625	if (cl == cl->cl_hif->hif_defaultclass)
626		cl->cl_hif->hif_defaultclass = NULL;
627
628	if (cl->cl_usc != NULL)
629		free(cl->cl_usc, M_DEVBUF);
630	if (cl->cl_fsc != NULL)
631		free(cl->cl_fsc, M_DEVBUF);
632	if (cl->cl_rsc != NULL)
633		free(cl->cl_rsc, M_DEVBUF);
634	free(cl->cl_q, M_DEVBUF);
635	free(cl, M_DEVBUF);
636
637	return (0);
638}
639
640/*
641 * hfsc_nextclass returns the next class in the tree.
642 *   usage:
643 *	for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
644 *		do_something;
645 */
646static struct hfsc_class *
647hfsc_nextclass(struct hfsc_class *cl)
648{
649	if (cl->cl_children != NULL)
650		cl = cl->cl_children;
651	else if (cl->cl_siblings != NULL)
652		cl = cl->cl_siblings;
653	else {
654		while ((cl = cl->cl_parent) != NULL)
655			if (cl->cl_siblings) {
656				cl = cl->cl_siblings;
657				break;
658			}
659	}
660
661	return (cl);
662}
663
664/*
665 * hfsc_enqueue is an enqueue function to be registered to
666 * (*altq_enqueue) in struct ifaltq.
667 */
668static int
669hfsc_enqueue(struct ifaltq *ifq, struct mbuf *m, struct altq_pktattr *pktattr)
670{
671	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
672	struct hfsc_class *cl;
673	struct m_tag *t;
674	int len;
675
676	/* grab class set by classifier */
677	if ((m->m_flags & M_PKTHDR) == 0) {
678		/* should not happen */
679		printf("altq: packet for %s does not have pkthdr\n",
680		    ifq->altq_ifp->if_xname);
681		m_freem(m);
682		return (ENOBUFS);
683	}
684	cl = NULL;
685	if ((t = m_tag_find(m, PACKET_TAG_PF_QID, NULL)) != NULL)
686		cl = clh_to_clp(hif, ((struct altq_tag *)(t+1))->qid);
687#ifdef ALTQ3_COMPAT
688	else if ((ifq->altq_flags & ALTQF_CLASSIFY) && pktattr != NULL)
689		cl = pktattr->pattr_class;
690#endif
691	if (cl == NULL || is_a_parent_class(cl)) {
692		cl = hif->hif_defaultclass;
693		if (cl == NULL) {
694			m_freem(m);
695			return (ENOBUFS);
696		}
697	}
698#ifdef ALTQ3_COMPAT
699	if (pktattr != NULL)
700		cl->cl_pktattr = pktattr;  /* save proto hdr used by ECN */
701	else
702#endif
703		cl->cl_pktattr = NULL;
704	len = m_pktlen(m);
705	if (hfsc_addq(cl, m) != 0) {
706		/* drop occurred.  mbuf was freed in hfsc_addq. */
707		PKTCNTR_ADD(&cl->cl_stats.drop_cnt, len);
708		return (ENOBUFS);
709	}
710	IFQ_INC_LEN(ifq);
711	cl->cl_hif->hif_packets++;
712
713	/* successfully queued. */
714	if (qlen(cl->cl_q) == 1)
715		set_active(cl, m_pktlen(m));
716
717	return (0);
718}
719
720/*
721 * hfsc_dequeue is a dequeue function to be registered to
722 * (*altq_dequeue) in struct ifaltq.
723 *
724 * note: ALTDQ_POLL returns the next packet without removing the packet
725 *	from the queue.  ALTDQ_REMOVE is a normal dequeue operation.
726 *	ALTDQ_REMOVE must return the same packet if called immediately
727 *	after ALTDQ_POLL.
728 */
729static struct mbuf *
730hfsc_dequeue(struct ifaltq *ifq, int op)
731{
732	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
733	struct hfsc_class *cl;
734	struct mbuf *m;
735	int len, next_len;
736	int realtime = 0;
737	u_int64_t cur_time;
738
739	if (hif->hif_packets == 0)
740		/* no packet in the tree */
741		return (NULL);
742
743	cur_time = read_machclk();
744
745	if (op == ALTDQ_REMOVE && hif->hif_pollcache != NULL) {
746
747		cl = hif->hif_pollcache;
748		hif->hif_pollcache = NULL;
749		/* check if the class was scheduled by real-time criteria */
750		if (cl->cl_rsc != NULL)
751			realtime = (cl->cl_e <= cur_time);
752	} else {
753		/*
754		 * if there are eligible classes, use real-time criteria.
755		 * find the class with the minimum deadline among
756		 * the eligible classes.
757		 */
758		if ((cl = ellist_get_mindl(hif->hif_eligible, cur_time))
759		    != NULL) {
760			realtime = 1;
761		} else {
762#ifdef ALTQ_DEBUG
763			int fits = 0;
764#endif
765			/*
766			 * use link-sharing criteria
767			 * get the class with the minimum vt in the hierarchy
768			 */
769			cl = hif->hif_rootclass;
770			while (is_a_parent_class(cl)) {
771
772				cl = actlist_firstfit(cl, cur_time);
773				if (cl == NULL) {
774#ifdef ALTQ_DEBUG
775					if (fits > 0)
776						printf("%d fit but none found\n",fits);
777#endif
778					return (NULL);
779				}
780				/*
781				 * update parent's cl_cvtmin.
782				 * don't update if the new vt is smaller.
783				 */
784				if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
785					cl->cl_parent->cl_cvtmin = cl->cl_vt;
786#ifdef ALTQ_DEBUG
787				fits++;
788#endif
789			}
790		}
791
792		if (op == ALTDQ_POLL) {
793			hif->hif_pollcache = cl;
794			m = hfsc_pollq(cl);
795			return (m);
796		}
797	}
798
799	m = hfsc_getq(cl);
800	if (m == NULL)
801		panic("hfsc_dequeue:");
802	len = m_pktlen(m);
803	cl->cl_hif->hif_packets--;
804	IFQ_DEC_LEN(ifq);
805	PKTCNTR_ADD(&cl->cl_stats.xmit_cnt, len);
806
807	update_vf(cl, len, cur_time);
808	if (realtime)
809		cl->cl_cumul += len;
810
811	if (!qempty(cl->cl_q)) {
812		if (cl->cl_rsc != NULL) {
813			/* update ed */
814			next_len = m_pktlen(qhead(cl->cl_q));
815
816			if (realtime)
817				update_ed(cl, next_len);
818			else
819				update_d(cl, next_len);
820		}
821	} else {
822		/* the class becomes passive */
823		set_passive(cl);
824	}
825
826	return (m);
827}
828
829static int
830hfsc_addq(struct hfsc_class *cl, struct mbuf *m)
831{
832
833#ifdef ALTQ_RIO
834	if (q_is_rio(cl->cl_q))
835		return rio_addq((rio_t *)cl->cl_red, cl->cl_q,
836				m, cl->cl_pktattr);
837#endif
838#ifdef ALTQ_RED
839	if (q_is_red(cl->cl_q))
840		return red_addq(cl->cl_red, cl->cl_q, m, cl->cl_pktattr);
841#endif
842	if (qlen(cl->cl_q) >= qlimit(cl->cl_q)) {
843		m_freem(m);
844		return (-1);
845	}
846
847	if (cl->cl_flags & HFCF_CLEARDSCP)
848		write_dsfield(m, cl->cl_pktattr, 0);
849
850	_addq(cl->cl_q, m);
851
852	return (0);
853}
854
855static struct mbuf *
856hfsc_getq(struct hfsc_class *cl)
857{
858#ifdef ALTQ_RIO
859	if (q_is_rio(cl->cl_q))
860		return rio_getq((rio_t *)cl->cl_red, cl->cl_q);
861#endif
862#ifdef ALTQ_RED
863	if (q_is_red(cl->cl_q))
864		return red_getq(cl->cl_red, cl->cl_q);
865#endif
866	return _getq(cl->cl_q);
867}
868
869static struct mbuf *
870hfsc_pollq(struct hfsc_class *cl)
871{
872	return qhead(cl->cl_q);
873}
874
875static void
876hfsc_purgeq(struct hfsc_class *cl)
877{
878	struct mbuf *m;
879
880	if (qempty(cl->cl_q))
881		return;
882
883	while ((m = _getq(cl->cl_q)) != NULL) {
884		PKTCNTR_ADD(&cl->cl_stats.drop_cnt, m_pktlen(m));
885		m_freem(m);
886		cl->cl_hif->hif_packets--;
887		IFQ_DEC_LEN(cl->cl_hif->hif_ifq);
888	}
889	ASSERT(qlen(cl->cl_q) == 0);
890
891	update_vf(cl, 0, 0);	/* remove cl from the actlist */
892	set_passive(cl);
893}
894
895static void
896set_active(struct hfsc_class *cl, int len)
897{
898	if (cl->cl_rsc != NULL)
899		init_ed(cl, len);
900	if (cl->cl_fsc != NULL)
901		init_vf(cl, len);
902
903	cl->cl_stats.period++;
904}
905
906static void
907set_passive(struct hfsc_class *cl)
908{
909	if (cl->cl_rsc != NULL)
910		ellist_remove(cl);
911
912	/*
913	 * actlist is now handled in update_vf() so that update_vf(cl, 0, 0)
914	 * needs to be called explicitly to remove a class from actlist
915	 */
916}
917
918static void
919init_ed(struct hfsc_class *cl, int next_len)
920{
921	u_int64_t cur_time;
922
923	cur_time = read_machclk();
924
925	/* update the deadline curve */
926	rtsc_min(&cl->cl_deadline, cl->cl_rsc, cur_time, cl->cl_cumul);
927
928	/*
929	 * update the eligible curve.
930	 * for concave, it is equal to the deadline curve.
931	 * for convex, it is a linear curve with slope m2.
932	 */
933	cl->cl_eligible = cl->cl_deadline;
934	if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
935		cl->cl_eligible.dx = 0;
936		cl->cl_eligible.dy = 0;
937	}
938
939	/* compute e and d */
940	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
941	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
942
943	ellist_insert(cl);
944}
945
946static void
947update_ed(struct hfsc_class *cl, int next_len)
948{
949	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
950	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
951
952	ellist_update(cl);
953}
954
955static void
956update_d(struct hfsc_class *cl, int next_len)
957{
958	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
959}
960
961static void
962init_vf(struct hfsc_class *cl, int len __unused)
963{
964	struct hfsc_class *max_cl, *p;
965	u_int64_t vt, f, cur_time;
966	int go_active;
967
968	cur_time = 0;
969	go_active = 1;
970	for ( ; cl->cl_parent != NULL; cl = cl->cl_parent) {
971
972		if (go_active && cl->cl_nactive++ == 0)
973			go_active = 1;
974		else
975			go_active = 0;
976
977		if (go_active) {
978			max_cl = actlist_last(cl->cl_parent->cl_actc);
979			if (max_cl != NULL) {
980				/*
981				 * set vt to the average of the min and max
982				 * classes.  if the parent's period didn't
983				 * change, don't decrease vt of the class.
984				 */
985				vt = max_cl->cl_vt;
986				if (cl->cl_parent->cl_cvtmin != 0)
987					vt = (cl->cl_parent->cl_cvtmin + vt)/2;
988
989				if (cl->cl_parent->cl_vtperiod !=
990				    cl->cl_parentperiod || vt > cl->cl_vt)
991					cl->cl_vt = vt;
992			} else {
993				/*
994				 * first child for a new parent backlog period.
995				 * add parent's cvtmax to vtoff of children
996				 * to make a new vt (vtoff + vt) larger than
997				 * the vt in the last period for all children.
998				 */
999				vt = cl->cl_parent->cl_cvtmax;
1000				for (p = cl->cl_parent->cl_children; p != NULL;
1001				     p = p->cl_siblings)
1002					p->cl_vtoff += vt;
1003				cl->cl_vt = 0;
1004				cl->cl_parent->cl_cvtmax = 0;
1005				cl->cl_parent->cl_cvtmin = 0;
1006			}
1007			cl->cl_initvt = cl->cl_vt;
1008
1009			/* update the virtual curve */
1010			vt = cl->cl_vt + cl->cl_vtoff;
1011			rtsc_min(&cl->cl_virtual, cl->cl_fsc, vt, cl->cl_total);
1012			if (cl->cl_virtual.x == vt) {
1013				cl->cl_virtual.x -= cl->cl_vtoff;
1014				cl->cl_vtoff = 0;
1015			}
1016			cl->cl_vtadj = 0;
1017
1018			cl->cl_vtperiod++;  /* increment vt period */
1019			cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
1020			if (cl->cl_parent->cl_nactive == 0)
1021				cl->cl_parentperiod++;
1022			cl->cl_f = 0;
1023
1024			actlist_insert(cl);
1025
1026			if (cl->cl_usc != NULL) {
1027				/* class has upper limit curve */
1028				if (cur_time == 0)
1029					cur_time = read_machclk();
1030
1031				/* update the ulimit curve */
1032				rtsc_min(&cl->cl_ulimit, cl->cl_usc, cur_time,
1033				    cl->cl_total);
1034				/* compute myf */
1035				cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
1036				    cl->cl_total);
1037				cl->cl_myfadj = 0;
1038			}
1039		}
1040
1041		if (cl->cl_myf > cl->cl_cfmin)
1042			f = cl->cl_myf;
1043		else
1044			f = cl->cl_cfmin;
1045		if (f != cl->cl_f) {
1046			cl->cl_f = f;
1047			update_cfmin(cl->cl_parent);
1048		}
1049	}
1050}
1051
1052static void
1053update_vf(struct hfsc_class *cl, int len, u_int64_t cur_time)
1054{
1055	u_int64_t f, myf_bound, delta;
1056	int go_passive;
1057
1058	go_passive = qempty(cl->cl_q);
1059
1060	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
1061
1062		cl->cl_total += len;
1063
1064		if (cl->cl_fsc == NULL || cl->cl_nactive == 0)
1065			continue;
1066
1067		if (go_passive && --cl->cl_nactive == 0)
1068			go_passive = 1;
1069		else
1070			go_passive = 0;
1071
1072		if (go_passive) {
1073			/* no more active child, going passive */
1074
1075			/* update cvtmax of the parent class */
1076			if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
1077				cl->cl_parent->cl_cvtmax = cl->cl_vt;
1078
1079			/* remove this class from the vt list */
1080			actlist_remove(cl);
1081
1082			update_cfmin(cl->cl_parent);
1083
1084			continue;
1085		}
1086
1087		/*
1088		 * update vt and f
1089		 */
1090		cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
1091		    - cl->cl_vtoff + cl->cl_vtadj;
1092
1093		/*
1094		 * if vt of the class is smaller than cvtmin,
1095		 * the class was skipped in the past due to non-fit.
1096		 * if so, we need to adjust vtadj.
1097		 */
1098		if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
1099			cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
1100			cl->cl_vt = cl->cl_parent->cl_cvtmin;
1101		}
1102
1103		/* update the vt list */
1104		actlist_update(cl);
1105
1106		if (cl->cl_usc != NULL) {
1107			cl->cl_myf = cl->cl_myfadj
1108			    + rtsc_y2x(&cl->cl_ulimit, cl->cl_total);
1109
1110			/*
1111			 * if myf lags behind by more than one clock tick
1112			 * from the current time, adjust myfadj to prevent
1113			 * a rate-limited class from going greedy.
1114			 * in a steady state under rate-limiting, myf
1115			 * fluctuates within one clock tick.
1116			 */
1117			myf_bound = cur_time - machclk_per_tick;
1118			if (cl->cl_myf < myf_bound) {
1119				delta = cur_time - cl->cl_myf;
1120				cl->cl_myfadj += delta;
1121				cl->cl_myf += delta;
1122			}
1123		}
1124
1125		/* cl_f is max(cl_myf, cl_cfmin) */
1126		if (cl->cl_myf > cl->cl_cfmin)
1127			f = cl->cl_myf;
1128		else
1129			f = cl->cl_cfmin;
1130		if (f != cl->cl_f) {
1131			cl->cl_f = f;
1132			update_cfmin(cl->cl_parent);
1133		}
1134	}
1135}
1136
1137static void
1138update_cfmin(struct hfsc_class *cl)
1139{
1140	struct hfsc_class *p;
1141	u_int64_t cfmin;
1142
1143	if (TAILQ_EMPTY(cl->cl_actc)) {
1144		cl->cl_cfmin = 0;
1145		return;
1146	}
1147	cfmin = HT_INFINITY;
1148	TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
1149		if (p->cl_f == 0) {
1150			cl->cl_cfmin = 0;
1151			return;
1152		}
1153		if (p->cl_f < cfmin)
1154			cfmin = p->cl_f;
1155	}
1156	cl->cl_cfmin = cfmin;
1157}
1158
1159/*
1160 * TAILQ based ellist and actlist implementation
1161 * (ion wanted to make a calendar queue based implementation)
1162 */
1163/*
1164 * eligible list holds backlogged classes being sorted by their eligible times.
1165 * there is one eligible list per interface.
1166 */
1167
1168static ellist_t *
1169ellist_alloc(void)
1170{
1171	ellist_t *head;
1172
1173	head = malloc(sizeof(ellist_t), M_DEVBUF, M_WAITOK);
1174	TAILQ_INIT(head);
1175	return (head);
1176}
1177
1178static void
1179ellist_destroy(ellist_t *head)
1180{
1181	free(head, M_DEVBUF);
1182}
1183
1184static void
1185ellist_insert(struct hfsc_class *cl)
1186{
1187	struct hfsc_if	*hif = cl->cl_hif;
1188	struct hfsc_class *p;
1189
1190	/* check the last entry first */
1191	if ((p = TAILQ_LAST(hif->hif_eligible, _eligible)) == NULL ||
1192	    p->cl_e <= cl->cl_e) {
1193		TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
1194		return;
1195	}
1196
1197	TAILQ_FOREACH(p, hif->hif_eligible, cl_ellist) {
1198		if (cl->cl_e < p->cl_e) {
1199			TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
1200			return;
1201		}
1202	}
1203	ASSERT(0); /* should not reach here */
1204}
1205
1206static void
1207ellist_remove(struct hfsc_class *cl)
1208{
1209	struct hfsc_if	*hif = cl->cl_hif;
1210
1211	TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1212}
1213
1214static void
1215ellist_update(struct hfsc_class *cl)
1216{
1217	struct hfsc_if	*hif = cl->cl_hif;
1218	struct hfsc_class *p, *last;
1219
1220	/*
1221	 * the eligible time of a class increases monotonically.
1222	 * if the next entry has a larger eligible time, nothing to do.
1223	 */
1224	p = TAILQ_NEXT(cl, cl_ellist);
1225	if (p == NULL || cl->cl_e <= p->cl_e)
1226		return;
1227
1228	/* check the last entry */
1229	last = TAILQ_LAST(hif->hif_eligible, _eligible);
1230	ASSERT(last != NULL);
1231	if (last->cl_e <= cl->cl_e) {
1232		TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1233		TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
1234		return;
1235	}
1236
1237	/*
1238	 * the new position must be between the next entry
1239	 * and the last entry
1240	 */
1241	while ((p = TAILQ_NEXT(p, cl_ellist)) != NULL) {
1242		if (cl->cl_e < p->cl_e) {
1243			TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1244			TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
1245			return;
1246		}
1247	}
1248	ASSERT(0); /* should not reach here */
1249}
1250
1251/* find the class with the minimum deadline among the eligible classes */
1252struct hfsc_class *
1253ellist_get_mindl(ellist_t *head, u_int64_t cur_time)
1254{
1255	struct hfsc_class *p, *cl = NULL;
1256
1257	TAILQ_FOREACH(p, head, cl_ellist) {
1258		if (p->cl_e > cur_time)
1259			break;
1260		if (cl == NULL || p->cl_d < cl->cl_d)
1261			cl = p;
1262	}
1263	return (cl);
1264}
1265
1266/*
1267 * active children list holds backlogged child classes being sorted
1268 * by their virtual time.
1269 * each intermediate class has one active children list.
1270 */
1271static actlist_t *
1272actlist_alloc(void)
1273{
1274	actlist_t *head;
1275
1276	head = malloc(sizeof(actlist_t), M_DEVBUF, M_WAITOK);
1277	TAILQ_INIT(head);
1278	return (head);
1279}
1280
1281static void
1282actlist_destroy(actlist_t *head)
1283{
1284	free(head, M_DEVBUF);
1285}
1286static void
1287actlist_insert(struct hfsc_class *cl)
1288{
1289	struct hfsc_class *p;
1290
1291	/* check the last entry first */
1292	if ((p = TAILQ_LAST(cl->cl_parent->cl_actc, _active)) == NULL
1293	    || p->cl_vt <= cl->cl_vt) {
1294		TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
1295		return;
1296	}
1297
1298	TAILQ_FOREACH(p, cl->cl_parent->cl_actc, cl_actlist) {
1299		if (cl->cl_vt < p->cl_vt) {
1300			TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1301			return;
1302		}
1303	}
1304	ASSERT(0); /* should not reach here */
1305}
1306
1307static void
1308actlist_remove(struct hfsc_class *cl)
1309{
1310	TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1311}
1312
1313static void
1314actlist_update(struct hfsc_class *cl)
1315{
1316	struct hfsc_class *p, *last;
1317
1318	/*
1319	 * the virtual time of a class increases monotonically during its
1320	 * backlogged period.
1321	 * if the next entry has a larger virtual time, nothing to do.
1322	 */
1323	p = TAILQ_NEXT(cl, cl_actlist);
1324	if (p == NULL || cl->cl_vt < p->cl_vt)
1325		return;
1326
1327	/* check the last entry */
1328	last = TAILQ_LAST(cl->cl_parent->cl_actc, _active);
1329	ASSERT(last != NULL);
1330	if (last->cl_vt <= cl->cl_vt) {
1331		TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1332		TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
1333		return;
1334	}
1335
1336	/*
1337	 * the new position must be between the next entry
1338	 * and the last entry
1339	 */
1340	while ((p = TAILQ_NEXT(p, cl_actlist)) != NULL) {
1341		if (cl->cl_vt < p->cl_vt) {
1342			TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1343			TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1344			return;
1345		}
1346	}
1347	ASSERT(0); /* should not reach here */
1348}
1349
1350static struct hfsc_class *
1351actlist_firstfit(struct hfsc_class *cl, u_int64_t cur_time)
1352{
1353	struct hfsc_class *p;
1354
1355	TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
1356		if (p->cl_f <= cur_time)
1357			return (p);
1358	}
1359	return (NULL);
1360}
1361
1362/*
1363 * service curve support functions
1364 *
1365 *  external service curve parameters
1366 *	m: bits/sec
1367 *	d: msec
1368 *  internal service curve parameters
1369 *	sm: (bytes/tsc_interval) << SM_SHIFT
1370 *	ism: (tsc_count/byte) << ISM_SHIFT
1371 *	dx: tsc_count
1372 *
1373 * SM_SHIFT and ISM_SHIFT are scaled in order to keep effective digits.
1374 * we should be able to handle 100K-1Gbps linkspeed with 200Hz-1GHz CPU
1375 * speed.  SM_SHIFT and ISM_SHIFT are selected to have at least 3 effective
1376 * digits in decimal using the following table.
1377 *
1378 *  bits/sec    100Kbps     1Mbps     10Mbps     100Mbps    1Gbps
1379 *  ----------+-------------------------------------------------------
1380 *  bytes/nsec  12.5e-6    125e-6     1250e-6    12500e-6   125000e-6
1381 *  sm(500MHz)  25.0e-6    250e-6     2500e-6    25000e-6   250000e-6
1382 *  sm(200MHz)  62.5e-6    625e-6     6250e-6    62500e-6   625000e-6
1383 *
1384 *  nsec/byte   80000      8000       800        80         8
1385 *  ism(500MHz) 40000      4000       400        40         4
1386 *  ism(200MHz) 16000      1600       160        16         1.6
1387 */
1388#define	SM_SHIFT	24
1389#define	ISM_SHIFT	10
1390
1391#define	SM_MASK		((1LL << SM_SHIFT) - 1)
1392#define	ISM_MASK	((1LL << ISM_SHIFT) - 1)
1393
1394static inline u_int64_t
1395seg_x2y(u_int64_t x, u_int64_t sm)
1396{
1397	u_int64_t y;
1398
1399	/*
1400	 * compute
1401	 *	y = x * sm >> SM_SHIFT
1402	 * but divide it for the upper and lower bits to avoid overflow
1403	 */
1404	y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
1405	return (y);
1406}
1407
1408static inline u_int64_t
1409seg_y2x(u_int64_t y, u_int64_t ism)
1410{
1411	u_int64_t x;
1412
1413	if (y == 0)
1414		x = 0;
1415	else if (ism == HT_INFINITY)
1416		x = HT_INFINITY;
1417	else {
1418		x = (y >> ISM_SHIFT) * ism
1419		    + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
1420	}
1421	return (x);
1422}
1423
1424static inline u_int64_t
1425m2sm(u_int m)
1426{
1427	u_int64_t sm;
1428
1429	sm = ((u_int64_t)m << SM_SHIFT) / 8 / machclk_freq;
1430	return (sm);
1431}
1432
1433static inline u_int64_t
1434m2ism(u_int m)
1435{
1436	u_int64_t ism;
1437
1438	if (m == 0)
1439		ism = HT_INFINITY;
1440	else
1441		ism = ((u_int64_t)machclk_freq << ISM_SHIFT) * 8 / m;
1442	return (ism);
1443}
1444
1445static inline u_int64_t
1446d2dx(u_int d)
1447{
1448	u_int64_t dx;
1449
1450	dx = ((u_int64_t)d * machclk_freq) / 1000;
1451	return (dx);
1452}
1453
1454static u_int
1455sm2m(u_int64_t sm)
1456{
1457	u_int64_t m;
1458
1459	m = (sm * 8 * machclk_freq) >> SM_SHIFT;
1460	return ((u_int)m);
1461}
1462
1463static u_int
1464dx2d(u_int64_t dx)
1465{
1466	u_int64_t d;
1467
1468	d = dx * 1000 / machclk_freq;
1469	return ((u_int)d);
1470}
1471
1472static void
1473sc2isc(struct service_curve *sc, struct internal_sc *isc)
1474{
1475	isc->sm1 = m2sm(sc->m1);
1476	isc->ism1 = m2ism(sc->m1);
1477	isc->dx = d2dx(sc->d);
1478	isc->dy = seg_x2y(isc->dx, isc->sm1);
1479	isc->sm2 = m2sm(sc->m2);
1480	isc->ism2 = m2ism(sc->m2);
1481}
1482
1483/*
1484 * initialize the runtime service curve with the given internal
1485 * service curve starting at (x, y).
1486 */
1487static void
1488rtsc_init(struct runtime_sc *rtsc, struct internal_sc * isc, u_int64_t x,
1489    u_int64_t y)
1490{
1491	rtsc->x =	x;
1492	rtsc->y =	y;
1493	rtsc->sm1 =	isc->sm1;
1494	rtsc->ism1 =	isc->ism1;
1495	rtsc->dx =	isc->dx;
1496	rtsc->dy =	isc->dy;
1497	rtsc->sm2 =	isc->sm2;
1498	rtsc->ism2 =	isc->ism2;
1499}
1500
1501/*
1502 * calculate the y-projection of the runtime service curve by the
1503 * given x-projection value
1504 */
1505static u_int64_t
1506rtsc_y2x(struct runtime_sc *rtsc, u_int64_t y)
1507{
1508	u_int64_t	x;
1509
1510	if (y < rtsc->y)
1511		x = rtsc->x;
1512	else if (y <= rtsc->y + rtsc->dy) {
1513		/* x belongs to the 1st segment */
1514		if (rtsc->dy == 0)
1515			x = rtsc->x + rtsc->dx;
1516		else
1517			x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
1518	} else {
1519		/* x belongs to the 2nd segment */
1520		x = rtsc->x + rtsc->dx
1521		    + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
1522	}
1523	return (x);
1524}
1525
1526static u_int64_t
1527rtsc_x2y(struct runtime_sc *rtsc, u_int64_t x)
1528{
1529	u_int64_t	y;
1530
1531	if (x <= rtsc->x)
1532		y = rtsc->y;
1533	else if (x <= rtsc->x + rtsc->dx)
1534		/* y belongs to the 1st segment */
1535		y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
1536	else
1537		/* y belongs to the 2nd segment */
1538		y = rtsc->y + rtsc->dy
1539		    + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
1540	return (y);
1541}
1542
1543/*
1544 * update the runtime service curve by taking the minimum of the current
1545 * runtime service curve and the service curve starting at (x, y).
1546 */
1547static void
1548rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u_int64_t x,
1549    u_int64_t y)
1550{
1551	u_int64_t	y1, y2, dx, dy;
1552
1553	if (isc->sm1 <= isc->sm2) {
1554		/* service curve is convex */
1555		y1 = rtsc_x2y(rtsc, x);
1556		if (y1 < y)
1557			/* the current rtsc is smaller */
1558			return;
1559		rtsc->x = x;
1560		rtsc->y = y;
1561		return;
1562	}
1563
1564	/*
1565	 * service curve is concave
1566	 * compute the two y values of the current rtsc
1567	 *	y1: at x
1568	 *	y2: at (x + dx)
1569	 */
1570	y1 = rtsc_x2y(rtsc, x);
1571	if (y1 <= y) {
1572		/* rtsc is below isc, no change to rtsc */
1573		return;
1574	}
1575
1576	y2 = rtsc_x2y(rtsc, x + isc->dx);
1577	if (y2 >= y + isc->dy) {
1578		/* rtsc is above isc, replace rtsc by isc */
1579		rtsc->x = x;
1580		rtsc->y = y;
1581		rtsc->dx = isc->dx;
1582		rtsc->dy = isc->dy;
1583		return;
1584	}
1585
1586	/*
1587	 * the two curves intersect
1588	 * compute the offsets (dx, dy) using the reverse
1589	 * function of seg_x2y()
1590	 *	seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
1591	 */
1592	dx = ((y1 - y) << SM_SHIFT) / (isc->sm1 - isc->sm2);
1593	/*
1594	 * check if (x, y1) belongs to the 1st segment of rtsc.
1595	 * if so, add the offset.
1596	 */
1597	if (rtsc->x + rtsc->dx > x)
1598		dx += rtsc->x + rtsc->dx - x;
1599	dy = seg_x2y(dx, isc->sm1);
1600
1601	rtsc->x = x;
1602	rtsc->y = y;
1603	rtsc->dx = dx;
1604	rtsc->dy = dy;
1605	return;
1606}
1607
1608static void
1609get_class_stats(struct hfsc_classstats *sp, struct hfsc_class *cl)
1610{
1611	sp->class_id = cl->cl_id;
1612	sp->class_handle = cl->cl_handle;
1613
1614	if (cl->cl_rsc != NULL) {
1615		sp->rsc.m1 = sm2m(cl->cl_rsc->sm1);
1616		sp->rsc.d = dx2d(cl->cl_rsc->dx);
1617		sp->rsc.m2 = sm2m(cl->cl_rsc->sm2);
1618	} else {
1619		sp->rsc.m1 = 0;
1620		sp->rsc.d = 0;
1621		sp->rsc.m2 = 0;
1622	}
1623	if (cl->cl_fsc != NULL) {
1624		sp->fsc.m1 = sm2m(cl->cl_fsc->sm1);
1625		sp->fsc.d = dx2d(cl->cl_fsc->dx);
1626		sp->fsc.m2 = sm2m(cl->cl_fsc->sm2);
1627	} else {
1628		sp->fsc.m1 = 0;
1629		sp->fsc.d = 0;
1630		sp->fsc.m2 = 0;
1631	}
1632	if (cl->cl_usc != NULL) {
1633		sp->usc.m1 = sm2m(cl->cl_usc->sm1);
1634		sp->usc.d = dx2d(cl->cl_usc->dx);
1635		sp->usc.m2 = sm2m(cl->cl_usc->sm2);
1636	} else {
1637		sp->usc.m1 = 0;
1638		sp->usc.d = 0;
1639		sp->usc.m2 = 0;
1640	}
1641
1642	sp->total = cl->cl_total;
1643	sp->cumul = cl->cl_cumul;
1644
1645	sp->d = cl->cl_d;
1646	sp->e = cl->cl_e;
1647	sp->vt = cl->cl_vt;
1648	sp->f = cl->cl_f;
1649
1650	sp->initvt = cl->cl_initvt;
1651	sp->vtperiod = cl->cl_vtperiod;
1652	sp->parentperiod = cl->cl_parentperiod;
1653	sp->nactive = cl->cl_nactive;
1654	sp->vtoff = cl->cl_vtoff;
1655	sp->cvtmax = cl->cl_cvtmax;
1656	sp->myf = cl->cl_myf;
1657	sp->cfmin = cl->cl_cfmin;
1658	sp->cvtmin = cl->cl_cvtmin;
1659	sp->myfadj = cl->cl_myfadj;
1660	sp->vtadj = cl->cl_vtadj;
1661
1662	sp->cur_time = read_machclk();
1663	sp->machclk_freq = machclk_freq;
1664
1665	sp->qlength = qlen(cl->cl_q);
1666	sp->qlimit = qlimit(cl->cl_q);
1667	sp->xmit_cnt = cl->cl_stats.xmit_cnt;
1668	sp->drop_cnt = cl->cl_stats.drop_cnt;
1669	sp->period = cl->cl_stats.period;
1670
1671	sp->qtype = qtype(cl->cl_q);
1672#ifdef ALTQ_RED
1673	if (q_is_red(cl->cl_q))
1674		red_getstats(cl->cl_red, &sp->red[0]);
1675#endif
1676#ifdef ALTQ_RIO
1677	if (q_is_rio(cl->cl_q))
1678		rio_getstats((rio_t *)cl->cl_red, &sp->red[0]);
1679#endif
1680}
1681
1682/* convert a class handle to the corresponding class pointer */
1683static struct hfsc_class *
1684clh_to_clp(struct hfsc_if *hif, u_int32_t chandle)
1685{
1686	int i;
1687	struct hfsc_class *cl;
1688
1689	if (chandle == 0)
1690		return (NULL);
1691	/*
1692	 * first, try optimistically the slot matching the lower bits of
1693	 * the handle.  if it fails, do the linear table search.
1694	 */
1695	i = chandle % HFSC_MAX_CLASSES;
1696	if ((cl = hif->hif_class_tbl[i]) != NULL && cl->cl_handle == chandle)
1697		return (cl);
1698	for (i = 0; i < HFSC_MAX_CLASSES; i++)
1699		if ((cl = hif->hif_class_tbl[i]) != NULL &&
1700		    cl->cl_handle == chandle)
1701			return (cl);
1702	return (NULL);
1703}
1704
1705#ifdef ALTQ3_COMPAT
1706static struct hfsc_if *
1707hfsc_attach(struct ifaltq *ifq, u_int bandwidth __unused)
1708{
1709	struct hfsc_if *hif;
1710
1711	hif = malloc(sizeof(struct hfsc_if), M_DEVBUF, M_WAITOK|M_ZERO);
1712	if (hif == NULL)
1713		return (NULL);
1714
1715	hif->hif_eligible = ellist_alloc();
1716	if (hif->hif_eligible == NULL) {
1717		free(hif, M_DEVBUF);
1718		return NULL;
1719	}
1720
1721	hif->hif_ifq = ifq;
1722
1723	/* add this state to the hfsc list */
1724	hif->hif_next = hif_list;
1725	hif_list = hif;
1726
1727	return (hif);
1728}
1729
1730static int
1731hfsc_detach(struct hfsc_if *hif)
1732{
1733	(void)hfsc_clear_interface(hif);
1734	(void)hfsc_class_destroy(hif->hif_rootclass);
1735
1736	/* remove this interface from the hif list */
1737	if (hif_list == hif)
1738		hif_list = hif->hif_next;
1739	else {
1740		struct hfsc_if *h;
1741
1742		for (h = hif_list; h != NULL; h = h->hif_next)
1743			if (h->hif_next == hif) {
1744				h->hif_next = hif->hif_next;
1745				break;
1746			}
1747		ASSERT(h != NULL);
1748	}
1749
1750	ellist_destroy(hif->hif_eligible);
1751
1752	free(hif, M_DEVBUF);
1753
1754	return (0);
1755}
1756
1757static int
1758hfsc_class_modify(struct hfsc_class *cl, struct service_curve *rsc,
1759    struct service_curve *fsc, struct service_curve *usc)
1760{
1761	struct internal_sc *rsc_tmp, *fsc_tmp, *usc_tmp;
1762	u_int64_t cur_time;
1763	int s;
1764
1765	rsc_tmp = fsc_tmp = usc_tmp = NULL;
1766	if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0) &&
1767	    cl->cl_rsc == NULL) {
1768		rsc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
1769		    M_WAITOK);
1770		if (rsc_tmp == NULL)
1771			return (ENOMEM);
1772	}
1773	if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0) &&
1774	    cl->cl_fsc == NULL) {
1775		fsc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
1776		    M_WAITOK);
1777		if (fsc_tmp == NULL)
1778			return (ENOMEM);
1779	}
1780	if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0) &&
1781	    cl->cl_usc == NULL) {
1782		usc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
1783		    M_WAITOK);
1784		if (usc_tmp == NULL)
1785			return (ENOMEM);
1786	}
1787
1788	cur_time = read_machclk();
1789	s = splnet();
1790
1791	if (rsc != NULL) {
1792		if (rsc->m1 == 0 && rsc->m2 == 0) {
1793			if (cl->cl_rsc != NULL) {
1794				if (!qempty(cl->cl_q))
1795					hfsc_purgeq(cl);
1796				free(cl->cl_rsc, M_DEVBUF);
1797				cl->cl_rsc = NULL;
1798			}
1799		} else {
1800			if (cl->cl_rsc == NULL)
1801				cl->cl_rsc = rsc_tmp;
1802			sc2isc(rsc, cl->cl_rsc);
1803			rtsc_init(&cl->cl_deadline, cl->cl_rsc, cur_time,
1804			    cl->cl_cumul);
1805			cl->cl_eligible = cl->cl_deadline;
1806			if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
1807				cl->cl_eligible.dx = 0;
1808				cl->cl_eligible.dy = 0;
1809			}
1810		}
1811	}
1812
1813	if (fsc != NULL) {
1814		if (fsc->m1 == 0 && fsc->m2 == 0) {
1815			if (cl->cl_fsc != NULL) {
1816				if (!qempty(cl->cl_q))
1817					hfsc_purgeq(cl);
1818				free(cl->cl_fsc, M_DEVBUF);
1819				cl->cl_fsc = NULL;
1820			}
1821		} else {
1822			if (cl->cl_fsc == NULL)
1823				cl->cl_fsc = fsc_tmp;
1824			sc2isc(fsc, cl->cl_fsc);
1825			rtsc_init(&cl->cl_virtual, cl->cl_fsc, cl->cl_vt,
1826			    cl->cl_total);
1827		}
1828	}
1829
1830	if (usc != NULL) {
1831		if (usc->m1 == 0 && usc->m2 == 0) {
1832			if (cl->cl_usc != NULL) {
1833				free(cl->cl_usc, M_DEVBUF);
1834				cl->cl_usc = NULL;
1835				cl->cl_myf = 0;
1836			}
1837		} else {
1838			if (cl->cl_usc == NULL)
1839				cl->cl_usc = usc_tmp;
1840			sc2isc(usc, cl->cl_usc);
1841			rtsc_init(&cl->cl_ulimit, cl->cl_usc, cur_time,
1842			    cl->cl_total);
1843		}
1844	}
1845
1846	if (!qempty(cl->cl_q)) {
1847		if (cl->cl_rsc != NULL)
1848			update_ed(cl, m_pktlen(qhead(cl->cl_q)));
1849		if (cl->cl_fsc != NULL)
1850			update_vf(cl, 0, cur_time);
1851		/* is this enough? */
1852	}
1853
1854	splx(s);
1855
1856	return (0);
1857}
1858
1859/*
1860 * hfsc device interface
1861 */
1862int
1863hfscopen(dev_t dev __unused, int flag __unused, int fmt __unused,
1864    struct lwp *l __unused)
1865{
1866	if (machclk_freq == 0)
1867		init_machclk();
1868
1869	if (machclk_freq == 0) {
1870		printf("hfsc: no CPU clock available!\n");
1871		return (ENXIO);
1872	}
1873
1874	/* everything will be done when the queueing scheme is attached. */
1875	return 0;
1876}
1877
1878int
1879hfscclose(dev_t dev __unused, int flag __unused, int fmt __unused,
1880    struct lwp *l __unused)
1881{
1882	struct hfsc_if *hif;
1883	int err, error = 0;
1884
1885	while ((hif = hif_list) != NULL) {
1886		/* destroy all */
1887		if (ALTQ_IS_ENABLED(hif->hif_ifq))
1888			altq_disable(hif->hif_ifq);
1889
1890		err = altq_detach(hif->hif_ifq);
1891		if (err == 0)
1892			err = hfsc_detach(hif);
1893		if (err != 0 && error == 0)
1894			error = err;
1895	}
1896
1897	return error;
1898}
1899
1900int
1901hfscioctl(dev_t dev __unused, ioctlcmd_t cmd, caddr_t addr, int flag __unused,
1902    struct lwp *l)
1903{
1904	struct hfsc_if *hif;
1905	struct hfsc_interface *ifacep;
1906	int	error = 0;
1907
1908	/* check super-user privilege */
1909	switch (cmd) {
1910	case HFSC_GETSTATS:
1911		break;
1912	default:
1913#if (__FreeBSD_version > 400000)
1914		if ((error = suser(p)) != 0)
1915			return (error);
1916#else
1917		if ((error = kauth_authorize_network(l->l_cred,
1918		    KAUTH_NETWORK_ALTQ, KAUTH_REQ_NETWORK_ALTQ_HFSC, NULL,
1919		    NULL, NULL)) != 0)
1920			return (error);
1921#endif
1922		break;
1923	}
1924
1925	switch (cmd) {
1926
1927	case HFSC_IF_ATTACH:
1928		error = hfsccmd_if_attach((struct hfsc_attach *)addr);
1929		break;
1930
1931	case HFSC_IF_DETACH:
1932		error = hfsccmd_if_detach((struct hfsc_interface *)addr);
1933		break;
1934
1935	case HFSC_ENABLE:
1936	case HFSC_DISABLE:
1937	case HFSC_CLEAR_HIERARCHY:
1938		ifacep = (struct hfsc_interface *)addr;
1939		if ((hif = altq_lookup(ifacep->hfsc_ifname,
1940				       ALTQT_HFSC)) == NULL) {
1941			error = EBADF;
1942			break;
1943		}
1944
1945		switch (cmd) {
1946
1947		case HFSC_ENABLE:
1948			if (hif->hif_defaultclass == NULL) {
1949#ifdef ALTQ_DEBUG
1950				printf("hfsc: no default class\n");
1951#endif
1952				error = EINVAL;
1953				break;
1954			}
1955			error = altq_enable(hif->hif_ifq);
1956			break;
1957
1958		case HFSC_DISABLE:
1959			error = altq_disable(hif->hif_ifq);
1960			break;
1961
1962		case HFSC_CLEAR_HIERARCHY:
1963			hfsc_clear_interface(hif);
1964			break;
1965		}
1966		break;
1967
1968	case HFSC_ADD_CLASS:
1969		error = hfsccmd_add_class((struct hfsc_add_class *)addr);
1970		break;
1971
1972	case HFSC_DEL_CLASS:
1973		error = hfsccmd_delete_class((struct hfsc_delete_class *)addr);
1974		break;
1975
1976	case HFSC_MOD_CLASS:
1977		error = hfsccmd_modify_class((struct hfsc_modify_class *)addr);
1978		break;
1979
1980	case HFSC_ADD_FILTER:
1981		error = hfsccmd_add_filter((struct hfsc_add_filter *)addr);
1982		break;
1983
1984	case HFSC_DEL_FILTER:
1985		error = hfsccmd_delete_filter((struct hfsc_delete_filter *)addr);
1986		break;
1987
1988	case HFSC_GETSTATS:
1989		error = hfsccmd_class_stats((struct hfsc_class_stats *)addr);
1990		break;
1991
1992	default:
1993		error = EINVAL;
1994		break;
1995	}
1996	return error;
1997}
1998
1999static int
2000hfsccmd_if_attach(struct hfsc_attach *ap)
2001{
2002	struct hfsc_if *hif;
2003	struct ifnet *ifp;
2004	int error;
2005
2006	if ((ifp = ifunit(ap->iface.hfsc_ifname)) == NULL)
2007		return (ENXIO);
2008
2009	if ((hif = hfsc_attach(&ifp->if_snd, ap->bandwidth)) == NULL)
2010		return (ENOMEM);
2011
2012	/*
2013	 * set HFSC to this ifnet structure.
2014	 */
2015	if ((error = altq_attach(&ifp->if_snd, ALTQT_HFSC, hif,
2016				 hfsc_enqueue, hfsc_dequeue, hfsc_request,
2017				 &hif->hif_classifier, acc_classify)) != 0)
2018		(void)hfsc_detach(hif);
2019
2020	return (error);
2021}
2022
2023static int
2024hfsccmd_if_detach(struct hfsc_interface *ap)
2025{
2026	struct hfsc_if *hif;
2027	int error;
2028
2029	if ((hif = altq_lookup(ap->hfsc_ifname, ALTQT_HFSC)) == NULL)
2030		return (EBADF);
2031
2032	if (ALTQ_IS_ENABLED(hif->hif_ifq))
2033		altq_disable(hif->hif_ifq);
2034
2035	if ((error = altq_detach(hif->hif_ifq)))
2036		return (error);
2037
2038	return hfsc_detach(hif);
2039}
2040
2041static int
2042hfsccmd_add_class(struct hfsc_add_class *ap)
2043{
2044	struct hfsc_if *hif;
2045	struct hfsc_class *cl, *parent;
2046	int	i;
2047
2048	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2049		return (EBADF);
2050
2051	if (ap->parent_handle == HFSC_NULLCLASS_HANDLE &&
2052	    hif->hif_rootclass == NULL)
2053		parent = NULL;
2054	else if ((parent = clh_to_clp(hif, ap->parent_handle)) == NULL)
2055		return (EINVAL);
2056
2057	/* assign a class handle (use a free slot number for now) */
2058	for (i = 1; i < HFSC_MAX_CLASSES; i++)
2059		if (hif->hif_class_tbl[i] == NULL)
2060			break;
2061	if (i == HFSC_MAX_CLASSES)
2062		return (EBUSY);
2063
2064	if ((cl = hfsc_class_create(hif, &ap->service_curve, NULL, NULL,
2065	    parent, ap->qlimit, ap->flags, i)) == NULL)
2066		return (ENOMEM);
2067
2068	/* return a class handle to the user */
2069	ap->class_handle = i;
2070
2071	return (0);
2072}
2073
2074static int
2075hfsccmd_delete_class(struct hfsc_delete_class *ap)
2076{
2077	struct hfsc_if *hif;
2078	struct hfsc_class *cl;
2079
2080	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2081		return (EBADF);
2082
2083	if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
2084		return (EINVAL);
2085
2086	return hfsc_class_destroy(cl);
2087}
2088
2089static int
2090hfsccmd_modify_class(struct hfsc_modify_class *ap)
2091{
2092	struct hfsc_if *hif;
2093	struct hfsc_class *cl;
2094	struct service_curve *rsc = NULL;
2095	struct service_curve *fsc = NULL;
2096	struct service_curve *usc = NULL;
2097
2098	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2099		return (EBADF);
2100
2101	if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
2102		return (EINVAL);
2103
2104	if (ap->sctype & HFSC_REALTIMESC)
2105		rsc = &ap->service_curve;
2106	if (ap->sctype & HFSC_LINKSHARINGSC)
2107		fsc = &ap->service_curve;
2108	if (ap->sctype & HFSC_UPPERLIMITSC)
2109		usc = &ap->service_curve;
2110
2111	return hfsc_class_modify(cl, rsc, fsc, usc);
2112}
2113
2114static int
2115hfsccmd_add_filter(struct hfsc_add_filter *ap)
2116{
2117	struct hfsc_if *hif;
2118	struct hfsc_class *cl;
2119
2120	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2121		return (EBADF);
2122
2123	if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
2124		return (EINVAL);
2125
2126	if (is_a_parent_class(cl)) {
2127#ifdef ALTQ_DEBUG
2128		printf("hfsccmd_add_filter: not a leaf class!\n");
2129#endif
2130		return (EINVAL);
2131	}
2132
2133	return acc_add_filter(&hif->hif_classifier, &ap->filter,
2134			      cl, &ap->filter_handle);
2135}
2136
2137static int
2138hfsccmd_delete_filter(struct hfsc_delete_filter *ap)
2139{
2140	struct hfsc_if *hif;
2141
2142	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2143		return (EBADF);
2144
2145	return acc_delete_filter(&hif->hif_classifier,
2146				 ap->filter_handle);
2147}
2148
2149static int
2150hfsccmd_class_stats(struct hfsc_class_stats *ap)
2151{
2152	struct hfsc_if *hif;
2153	struct hfsc_class *cl;
2154	struct hfsc_classstats stats, *usp;
2155	int	n, nclasses, error;
2156
2157	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2158		return (EBADF);
2159
2160	ap->cur_time = read_machclk();
2161	ap->machclk_freq = machclk_freq;
2162	ap->hif_classes = hif->hif_classes;
2163	ap->hif_packets = hif->hif_packets;
2164
2165	/* skip the first N classes in the tree */
2166	nclasses = ap->nskip;
2167	for (cl = hif->hif_rootclass, n = 0; cl != NULL && n < nclasses;
2168	     cl = hfsc_nextclass(cl), n++)
2169		;
2170	if (n != nclasses)
2171		return (EINVAL);
2172
2173	/* then, read the next N classes in the tree */
2174	nclasses = ap->nclasses;
2175	usp = ap->stats;
2176	for (n = 0; cl != NULL && n < nclasses; cl = hfsc_nextclass(cl), n++) {
2177
2178		get_class_stats(&stats, cl);
2179
2180		if ((error = copyout((caddr_t)&stats, (caddr_t)usp++,
2181				     sizeof(stats))) != 0)
2182			return (error);
2183	}
2184
2185	ap->nclasses = n;
2186
2187	return (0);
2188}
2189
2190#ifdef KLD_MODULE
2191
2192static struct altqsw hfsc_sw =
2193	{"hfsc", hfscopen, hfscclose, hfscioctl};
2194
2195ALTQ_MODULE(altq_hfsc, ALTQT_HFSC, &hfsc_sw);
2196MODULE_DEPEND(altq_hfsc, altq_red, 1, 1, 1);
2197MODULE_DEPEND(altq_hfsc, altq_rio, 1, 1, 1);
2198
2199#endif /* KLD_MODULE */
2200#endif /* ALTQ3_COMPAT */
2201
2202#endif /* ALTQ_HFSC */
2203