lfs.c revision 1.33
1/* $NetBSD: lfs.c,v 1.33 2010/02/21 16:24:21 mlelstv Exp $ */
2/*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant@hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30/*
31 * Copyright (c) 1989, 1991, 1993
32 *	The Regents of the University of California.  All rights reserved.
33 * (c) UNIX System Laboratories, Inc.
34 * All or some portions of this file are derived from material licensed
35 * to the University of California by American Telephone and Telegraph
36 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
37 * the permission of UNIX System Laboratories, Inc.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 *    notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 *    notice, this list of conditions and the following disclaimer in the
46 *    documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 *    may be used to endorse or promote products derived from this software
49 *    without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 *	@(#)ufs_bmap.c	8.8 (Berkeley) 8/11/95
64 */
65
66
67#include <sys/types.h>
68#include <sys/param.h>
69#include <sys/time.h>
70#include <sys/buf.h>
71#include <sys/mount.h>
72
73#include <ufs/ufs/inode.h>
74#include <ufs/ufs/ufsmount.h>
75#define vnode uvnode
76#include <ufs/lfs/lfs.h>
77#undef vnode
78
79#include <assert.h>
80#include <err.h>
81#include <errno.h>
82#include <stdarg.h>
83#include <stdio.h>
84#include <stdlib.h>
85#include <string.h>
86#include <unistd.h>
87#include <util.h>
88
89#include "bufcache.h"
90#include "vnode.h"
91#include "lfs_user.h"
92#include "segwrite.h"
93#include "kernelops.h"
94
95#define panic call_panic
96
97extern u_int32_t cksum(void *, size_t);
98extern u_int32_t lfs_sb_cksum(struct dlfs *);
99extern void pwarn(const char *, ...);
100
101extern struct uvnodelst vnodelist;
102extern struct uvnodelst getvnodelist[VNODE_HASH_MAX];
103extern int nvnodes;
104
105long dev_bsize = DEV_BSIZE;
106
107static int
108lfs_fragextend(struct uvnode *, int, int, daddr_t, struct ubuf **);
109
110int fsdirty = 0;
111void (*panic_func)(int, const char *, va_list) = my_vpanic;
112
113/*
114 * LFS buffer and uvnode operations
115 */
116
117int
118lfs_vop_strategy(struct ubuf * bp)
119{
120	int count;
121
122	if (bp->b_flags & B_READ) {
123		count = kops.ko_pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
124		    bp->b_blkno * dev_bsize);
125		if (count == bp->b_bcount)
126			bp->b_flags |= B_DONE;
127	} else {
128		count = kops.ko_pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
129		    bp->b_blkno * dev_bsize);
130		if (count == 0) {
131			perror("pwrite");
132			return -1;
133		}
134		bp->b_flags &= ~B_DELWRI;
135		reassignbuf(bp, bp->b_vp);
136	}
137	return 0;
138}
139
140int
141lfs_vop_bwrite(struct ubuf * bp)
142{
143	struct lfs *fs;
144
145	fs = bp->b_vp->v_fs;
146	if (!(bp->b_flags & B_DELWRI)) {
147		fs->lfs_avail -= btofsb(fs, bp->b_bcount);
148	}
149	bp->b_flags |= B_DELWRI | B_LOCKED;
150	reassignbuf(bp, bp->b_vp);
151	brelse(bp, 0);
152	return 0;
153}
154
155/*
156 * ufs_bmaparray does the bmap conversion, and if requested returns the
157 * array of logical blocks which must be traversed to get to a block.
158 * Each entry contains the offset into that block that gets you to the
159 * next block and the disk address of the block (if it is assigned).
160 */
161int
162ufs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
163{
164	struct inode *ip;
165	struct ubuf *bp;
166	struct indir a[NIADDR + 1], *xap;
167	daddr_t daddr;
168	daddr_t metalbn;
169	int error, num;
170
171	ip = VTOI(vp);
172
173	if (bn >= 0 && bn < NDADDR) {
174		if (nump != NULL)
175			*nump = 0;
176		*bnp = fsbtodb(fs, ip->i_ffs1_db[bn]);
177		if (*bnp == 0)
178			*bnp = -1;
179		return (0);
180	}
181	xap = ap == NULL ? a : ap;
182	if (!nump)
183		nump = &num;
184	if ((error = ufs_getlbns(fs, vp, bn, xap, nump)) != 0)
185		return (error);
186
187	num = *nump;
188
189	/* Get disk address out of indirect block array */
190	daddr = ip->i_ffs1_ib[xap->in_off];
191
192	for (bp = NULL, ++xap; --num; ++xap) {
193		/* Exit the loop if there is no disk address assigned yet and
194		 * the indirect block isn't in the cache, or if we were
195		 * looking for an indirect block and we've found it. */
196
197		metalbn = xap->in_lbn;
198		if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
199			break;
200		/*
201		 * If we get here, we've either got the block in the cache
202		 * or we have a disk address for it, go fetch it.
203		 */
204		if (bp)
205			brelse(bp, 0);
206
207		xap->in_exists = 1;
208		bp = getblk(vp, metalbn, fs->lfs_bsize);
209
210		if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
211			bp->b_blkno = fsbtodb(fs, daddr);
212			bp->b_flags |= B_READ;
213			VOP_STRATEGY(bp);
214		}
215		daddr = ((ufs_daddr_t *) bp->b_data)[xap->in_off];
216	}
217	if (bp)
218		brelse(bp, 0);
219
220	daddr = fsbtodb(fs, (ufs_daddr_t) daddr);
221	*bnp = daddr == 0 ? -1 : daddr;
222	return (0);
223}
224
225/*
226 * Create an array of logical block number/offset pairs which represent the
227 * path of indirect blocks required to access a data block.  The first "pair"
228 * contains the logical block number of the appropriate single, double or
229 * triple indirect block and the offset into the inode indirect block array.
230 * Note, the logical block number of the inode single/double/triple indirect
231 * block appears twice in the array, once with the offset into the i_ffs1_ib and
232 * once with the offset into the page itself.
233 */
234int
235ufs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
236{
237	daddr_t metalbn, realbn;
238	int64_t blockcnt;
239	int lbc;
240	int i, numlevels, off;
241	int lognindir, indir;
242
243	metalbn = 0;    /* XXXGCC -Wuninitialized [sh3] */
244
245	if (nump)
246		*nump = 0;
247	numlevels = 0;
248	realbn = bn;
249	if (bn < 0)
250		bn = -bn;
251
252	lognindir = -1;
253	for (indir = fs->lfs_nindir; indir; indir >>= 1)
254		++lognindir;
255
256	/* Determine the number of levels of indirection.  After this loop is
257	 * done, blockcnt indicates the number of data blocks possible at the
258	 * given level of indirection, and NIADDR - i is the number of levels
259	 * of indirection needed to locate the requested block. */
260
261	bn -= NDADDR;
262	for (lbc = 0, i = NIADDR;; i--, bn -= blockcnt) {
263		if (i == 0)
264			return (EFBIG);
265
266		lbc += lognindir;
267		blockcnt = (int64_t) 1 << lbc;
268
269		if (bn < blockcnt)
270			break;
271	}
272
273	/* Calculate the address of the first meta-block. */
274	metalbn = -((realbn >= 0 ? realbn : -realbn) - bn + NIADDR - i);
275
276	/* At each iteration, off is the offset into the bap array which is an
277	 * array of disk addresses at the current level of indirection. The
278	 * logical block number and the offset in that block are stored into
279	 * the argument array. */
280	ap->in_lbn = metalbn;
281	ap->in_off = off = NIADDR - i;
282	ap->in_exists = 0;
283	ap++;
284	for (++numlevels; i <= NIADDR; i++) {
285		/* If searching for a meta-data block, quit when found. */
286		if (metalbn == realbn)
287			break;
288
289		lbc -= lognindir;
290		blockcnt = (int64_t) 1 << lbc;
291		off = (bn >> lbc) & (fs->lfs_nindir - 1);
292
293		++numlevels;
294		ap->in_lbn = metalbn;
295		ap->in_off = off;
296		ap->in_exists = 0;
297		++ap;
298
299		metalbn -= -1 + (off << lbc);
300	}
301	if (nump)
302		*nump = numlevels;
303	return (0);
304}
305
306int
307lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
308{
309	return ufs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
310}
311
312/* Search a block for a specific dinode. */
313struct ufs1_dinode *
314lfs_ifind(struct lfs * fs, ino_t ino, struct ubuf * bp)
315{
316	struct ufs1_dinode *dip = (struct ufs1_dinode *) bp->b_data;
317	struct ufs1_dinode *ldip, *fin;
318
319	fin = dip + INOPB(fs);
320
321	/*
322	 * Read the inode block backwards, since later versions of the
323	 * inode will supercede earlier ones.  Though it is unlikely, it is
324	 * possible that the same inode will appear in the same inode block.
325	 */
326	for (ldip = fin - 1; ldip >= dip; --ldip)
327		if (ldip->di_inumber == ino)
328			return (ldip);
329	return NULL;
330}
331
332/*
333 * lfs_raw_vget makes us a new vnode from the inode at the given disk address.
334 * XXX it currently loses atime information.
335 */
336struct uvnode *
337lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, ufs_daddr_t daddr)
338{
339	struct uvnode *vp;
340	struct inode *ip;
341	struct ufs1_dinode *dip;
342	struct ubuf *bp;
343	int i, hash;
344
345	vp = ecalloc(1, sizeof(*vp));
346	vp->v_fd = fd;
347	vp->v_fs = fs;
348	vp->v_usecount = 0;
349	vp->v_strategy_op = lfs_vop_strategy;
350	vp->v_bwrite_op = lfs_vop_bwrite;
351	vp->v_bmap_op = lfs_vop_bmap;
352	LIST_INIT(&vp->v_cleanblkhd);
353	LIST_INIT(&vp->v_dirtyblkhd);
354
355	ip = ecalloc(1, sizeof(*ip));
356
357	ip->i_din.ffs1_din = ecalloc(1, sizeof(*ip->i_din.ffs1_din));
358
359	/* Initialize the inode -- from lfs_vcreate. */
360	ip->inode_ext.lfs = ecalloc(1, sizeof(*ip->inode_ext.lfs));
361	vp->v_data = ip;
362	/* ip->i_vnode = vp; */
363	ip->i_number = ino;
364	ip->i_lockf = 0;
365	ip->i_diroff = 0;
366	ip->i_lfs_effnblks = 0;
367	ip->i_flag = 0;
368
369	/* Load inode block and find inode */
370	if (daddr > 0) {
371		bread(fs->lfs_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize,
372		    NULL, 0, &bp);
373		bp->b_flags |= B_AGE;
374		dip = lfs_ifind(fs, ino, bp);
375		if (dip == NULL) {
376			brelse(bp, 0);
377			free(ip);
378			free(vp);
379			return NULL;
380		}
381		memcpy(ip->i_din.ffs1_din, dip, sizeof(*dip));
382		brelse(bp, 0);
383	}
384	ip->i_number = ino;
385	/* ip->i_devvp = fs->lfs_devvp; */
386	ip->i_lfs = fs;
387
388	ip->i_lfs_effnblks = ip->i_ffs1_blocks;
389	ip->i_lfs_osize = ip->i_ffs1_size;
390#if 0
391	if (fs->lfs_version > 1) {
392		ip->i_ffs1_atime = ts.tv_sec;
393		ip->i_ffs1_atimensec = ts.tv_nsec;
394	}
395#endif
396
397	memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
398	for (i = 0; i < NDADDR; i++)
399		if (ip->i_ffs1_db[i] != 0)
400			ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
401
402	++nvnodes;
403	hash = ((int)(intptr_t)fs + ino) & (VNODE_HASH_MAX - 1);
404	LIST_INSERT_HEAD(&getvnodelist[hash], vp, v_getvnodes);
405	LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
406
407	return vp;
408}
409
410static struct uvnode *
411lfs_vget(void *vfs, ino_t ino)
412{
413	struct lfs *fs = (struct lfs *)vfs;
414	ufs_daddr_t daddr;
415	struct ubuf *bp;
416	IFILE *ifp;
417
418	LFS_IENTRY(ifp, fs, ino, bp);
419	daddr = ifp->if_daddr;
420	brelse(bp, 0);
421	if (daddr <= 0 || dtosn(fs, daddr) >= fs->lfs_nseg)
422		return NULL;
423	return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
424}
425
426/* Check superblock magic number and checksum */
427static int
428check_sb(struct lfs *fs)
429{
430	u_int32_t checksum;
431
432	if (fs->lfs_magic != LFS_MAGIC) {
433		printf("Superblock magic number (0x%lx) does not match "
434		       "expected 0x%lx\n", (unsigned long) fs->lfs_magic,
435		       (unsigned long) LFS_MAGIC);
436		return 1;
437	}
438	/* checksum */
439	checksum = lfs_sb_cksum(&(fs->lfs_dlfs));
440	if (fs->lfs_cksum != checksum) {
441		printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
442		    (unsigned long) fs->lfs_cksum, (unsigned long) checksum);
443		return 1;
444	}
445	return 0;
446}
447
448/* Initialize LFS library; load superblocks and choose which to use. */
449struct lfs *
450lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int dummy_read, int debug)
451{
452	struct uvnode *devvp;
453	struct ubuf *bp;
454	int tryalt;
455	struct lfs *fs, *altfs;
456	int error;
457
458	vfs_init();
459
460	devvp = ecalloc(1, sizeof(*devvp));
461	devvp->v_fs = NULL;
462	devvp->v_fd = devfd;
463	devvp->v_strategy_op = raw_vop_strategy;
464	devvp->v_bwrite_op = raw_vop_bwrite;
465	devvp->v_bmap_op = raw_vop_bmap;
466	LIST_INIT(&devvp->v_cleanblkhd);
467	LIST_INIT(&devvp->v_dirtyblkhd);
468
469	tryalt = 0;
470	if (dummy_read) {
471		if (sblkno == 0)
472			sblkno = LFS_LABELPAD / dev_bsize;
473		fs = ecalloc(1, sizeof(*fs));
474		fs->lfs_devvp = devvp;
475	} else {
476		if (sblkno == 0) {
477			sblkno = LFS_LABELPAD / dev_bsize;
478			tryalt = 1;
479		} else if (debug) {
480			printf("No -b flag given, not attempting to verify checkpoint\n");
481		}
482
483		dev_bsize = DEV_BSIZE;
484
485		error = bread(devvp, sblkno, LFS_SBPAD, NOCRED, 0, &bp);
486		fs = ecalloc(1, sizeof(*fs));
487		fs->lfs_dlfs = *((struct dlfs *) bp->b_data);
488		fs->lfs_devvp = devvp;
489		bp->b_flags |= B_INVAL;
490		brelse(bp, 0);
491
492		dev_bsize = fs->lfs_fsize >> fs->lfs_fsbtodb;
493
494		if (tryalt) {
495			error = bread(devvp, fsbtodb(fs, fs->lfs_sboffs[1]),
496		    	LFS_SBPAD, NOCRED, 0, &bp);
497			altfs = ecalloc(1, sizeof(*altfs));
498			altfs->lfs_dlfs = *((struct dlfs *) bp->b_data);
499			altfs->lfs_devvp = devvp;
500			bp->b_flags |= B_INVAL;
501			brelse(bp, 0);
502
503			if (check_sb(fs) || fs->lfs_idaddr <= 0) {
504				if (debug)
505					printf("Primary superblock is no good, using first alternate\n");
506				free(fs);
507				fs = altfs;
508			} else {
509				/* If both superblocks check out, try verification */
510				if (check_sb(altfs)) {
511					if (debug)
512						printf("First alternate superblock is no good, using primary\n");
513					free(altfs);
514				} else {
515					if (lfs_verify(fs, altfs, devvp, debug) == fs) {
516						free(altfs);
517					} else {
518						free(fs);
519						fs = altfs;
520					}
521				}
522			}
523		}
524		if (check_sb(fs)) {
525			free(fs);
526			return NULL;
527		}
528	}
529
530	/* Compatibility */
531	if (fs->lfs_version < 2) {
532		fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
533		fs->lfs_ibsize = fs->lfs_bsize;
534		fs->lfs_start = fs->lfs_sboffs[0];
535		fs->lfs_tstamp = fs->lfs_otstamp;
536		fs->lfs_fsbtodb = 0;
537	}
538
539	if (!dummy_read) {
540		fs->lfs_suflags = emalloc(2 * sizeof(u_int32_t *));
541		fs->lfs_suflags[0] = emalloc(fs->lfs_nseg * sizeof(u_int32_t));
542		fs->lfs_suflags[1] = emalloc(fs->lfs_nseg * sizeof(u_int32_t));
543	}
544
545	if (idaddr == 0)
546		idaddr = fs->lfs_idaddr;
547	else
548		fs->lfs_idaddr = idaddr;
549	/* NB: If dummy_read!=0, idaddr==0 here so we get a fake inode. */
550	fs->lfs_ivnode = lfs_raw_vget(fs,
551		(dummy_read ? LFS_IFILE_INUM : fs->lfs_ifile), devvp->v_fd,
552		idaddr);
553	if (fs->lfs_ivnode == NULL)
554		return NULL;
555
556	register_vget((void *)fs, lfs_vget);
557
558	return fs;
559}
560
561/*
562 * Check partial segment validity between fs->lfs_offset and the given goal.
563 *
564 * If goal == 0, just keep on going until the segments stop making sense,
565 * and return the address of the last valid partial segment.
566 *
567 * If goal != 0, return the address of the first partial segment that failed,
568 * or "goal" if we reached it without failure (the partial segment *at* goal
569 * need not be valid).
570 */
571ufs_daddr_t
572try_verify(struct lfs *osb, struct uvnode *devvp, ufs_daddr_t goal, int debug)
573{
574	ufs_daddr_t daddr, odaddr;
575	SEGSUM *sp;
576	int i, bc, hitclean;
577	struct ubuf *bp;
578	ufs_daddr_t nodirop_daddr;
579	u_int64_t serial;
580
581	bc = 0;
582	hitclean = 0;
583	odaddr = -1;
584	daddr = osb->lfs_offset;
585	nodirop_daddr = daddr;
586	serial = osb->lfs_serial;
587	while (daddr != goal) {
588		/*
589		 * Don't mistakenly read a superblock, if there is one here.
590		 */
591		if (sntod(osb, dtosn(osb, daddr)) == daddr) {
592			if (daddr == osb->lfs_start)
593				daddr += btofsb(osb, LFS_LABELPAD);
594			for (i = 0; i < LFS_MAXNUMSB; i++) {
595				if (osb->lfs_sboffs[i] < daddr)
596					break;
597				if (osb->lfs_sboffs[i] == daddr)
598					daddr += btofsb(osb, LFS_SBPAD);
599			}
600		}
601
602		/* Read in summary block */
603		bread(devvp, fsbtodb(osb, daddr), osb->lfs_sumsize,
604		    NULL, 0, &bp);
605		sp = (SEGSUM *)bp->b_data;
606
607		/*
608		 * Check for a valid segment summary belonging to our fs.
609		 */
610		if (sp->ss_magic != SS_MAGIC ||
611		    sp->ss_ident != osb->lfs_ident ||
612		    sp->ss_serial < serial ||	/* XXX strengthen this */
613		    sp->ss_sumsum != cksum(&sp->ss_datasum, osb->lfs_sumsize -
614			sizeof(sp->ss_sumsum))) {
615			brelse(bp, 0);
616			if (debug) {
617				if (sp->ss_magic != SS_MAGIC)
618					pwarn("pseg at 0x%x: "
619					      "wrong magic number\n",
620					      (int)daddr);
621				else if (sp->ss_ident != osb->lfs_ident)
622					pwarn("pseg at 0x%x: "
623					      "expected ident %llx, got %llx\n",
624					      (int)daddr,
625					      (long long)sp->ss_ident,
626					      (long long)osb->lfs_ident);
627				else if (sp->ss_serial >= serial)
628					pwarn("pseg at 0x%x: "
629					      "serial %d < %d\n", (int)daddr,
630					      (int)sp->ss_serial, (int)serial);
631				else
632					pwarn("pseg at 0x%x: "
633					      "summary checksum wrong\n",
634					      (int)daddr);
635			}
636			break;
637		}
638		if (debug && sp->ss_serial != serial)
639			pwarn("warning, serial=%d ss_serial=%d\n",
640				(int)serial, (int)sp->ss_serial);
641		++serial;
642		bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
643		if (bc == 0) {
644			brelse(bp, 0);
645			break;
646		}
647		if (debug)
648			pwarn("summary good: 0x%x/%d\n", (int)daddr,
649			      (int)sp->ss_serial);
650		assert (bc > 0);
651		odaddr = daddr;
652		daddr += btofsb(osb, osb->lfs_sumsize + bc);
653		if (dtosn(osb, odaddr) != dtosn(osb, daddr) ||
654		    dtosn(osb, daddr) != dtosn(osb, daddr +
655			btofsb(osb, osb->lfs_sumsize + osb->lfs_bsize) - 1)) {
656			daddr = sp->ss_next;
657		}
658
659		/*
660		 * Check for the beginning and ending of a sequence of
661		 * dirops.  Writes from the cleaner never involve new
662		 * information, and are always checkpoints; so don't try
663		 * to roll forward through them.  Likewise, psegs written
664		 * by a previous roll-forward attempt are not interesting.
665		 */
666		if (sp->ss_flags & (SS_CLEAN | SS_RFW))
667			hitclean = 1;
668		if (hitclean == 0 && (sp->ss_flags & SS_CONT) == 0)
669			nodirop_daddr = daddr;
670
671		brelse(bp, 0);
672	}
673
674	if (goal == 0)
675		return nodirop_daddr;
676	else
677		return daddr;
678}
679
680/* Use try_verify to check whether the newer superblock is valid. */
681struct lfs *
682lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
683{
684	ufs_daddr_t daddr;
685	struct lfs *osb, *nsb;
686
687	/*
688	 * Verify the checkpoint of the newer superblock,
689	 * if the timestamp/serial number of the two superblocks is
690	 * different.
691	 */
692
693	osb = NULL;
694	if (debug)
695		pwarn("sb0 %lld, sb1 %lld",
696		      (long long) sb0->lfs_serial,
697		      (long long) sb1->lfs_serial);
698
699	if ((sb0->lfs_version == 1 &&
700		sb0->lfs_otstamp != sb1->lfs_otstamp) ||
701	    (sb0->lfs_version > 1 &&
702		sb0->lfs_serial != sb1->lfs_serial)) {
703		if (sb0->lfs_version == 1) {
704			if (sb0->lfs_otstamp > sb1->lfs_otstamp) {
705				osb = sb1;
706				nsb = sb0;
707			} else {
708				osb = sb0;
709				nsb = sb1;
710			}
711		} else {
712			if (sb0->lfs_serial > sb1->lfs_serial) {
713				osb = sb1;
714				nsb = sb0;
715			} else {
716				osb = sb0;
717				nsb = sb1;
718			}
719		}
720		if (debug) {
721			printf("Attempting to verify newer checkpoint...");
722			fflush(stdout);
723		}
724		daddr = try_verify(osb, devvp, nsb->lfs_offset, debug);
725
726		if (debug)
727			printf("done.\n");
728		if (daddr == nsb->lfs_offset) {
729			pwarn("** Newer checkpoint verified, recovered %lld seconds of data\n",
730			    (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
731			sbdirty();
732		} else {
733			pwarn("** Newer checkpoint invalid, lost %lld seconds of data\n", (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
734		}
735		return (daddr == nsb->lfs_offset ? nsb : osb);
736	}
737	/* Nothing to check */
738	return osb;
739}
740
741/* Verify a partial-segment summary; return the number of bytes on disk. */
742int
743check_summary(struct lfs *fs, SEGSUM *sp, ufs_daddr_t pseg_addr, int debug,
744	      struct uvnode *devvp, void (func(ufs_daddr_t, FINFO *)))
745{
746	FINFO *fp;
747	int bc;			/* Bytes in partial segment */
748	int nblocks;
749	ufs_daddr_t seg_addr, daddr;
750	ufs_daddr_t *dp, *idp;
751	struct ubuf *bp;
752	int i, j, k, datac, len;
753	long sn;
754	u_int32_t *datap;
755	u_int32_t ccksum;
756
757	sn = dtosn(fs, pseg_addr);
758	seg_addr = sntod(fs, sn);
759
760	/* We've already checked the sumsum, just do the data bounds and sum */
761
762	/* Count the blocks. */
763	nblocks = howmany(sp->ss_ninos, INOPB(fs));
764	bc = nblocks << (fs->lfs_version > 1 ? fs->lfs_ffshift : fs->lfs_bshift);
765	assert(bc >= 0);
766
767	fp = (FINFO *) (sp + 1);
768	for (i = 0; i < sp->ss_nfinfo; i++) {
769		nblocks += fp->fi_nblocks;
770		bc += fp->fi_lastlength + ((fp->fi_nblocks - 1)
771					   << fs->lfs_bshift);
772		assert(bc >= 0);
773		fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
774		if (((char *)fp) - (char *)sp > fs->lfs_sumsize)
775			return 0;
776	}
777	datap = emalloc(nblocks * sizeof(*datap));
778	datac = 0;
779
780	dp = (ufs_daddr_t *) sp;
781	dp += fs->lfs_sumsize / sizeof(ufs_daddr_t);
782	dp--;
783
784	idp = dp;
785	daddr = pseg_addr + btofsb(fs, fs->lfs_sumsize);
786	fp = (FINFO *) (sp + 1);
787	for (i = 0, j = 0;
788	     i < sp->ss_nfinfo || j < howmany(sp->ss_ninos, INOPB(fs)); i++) {
789		if (i >= sp->ss_nfinfo && *idp != daddr) {
790			pwarn("Not enough inode blocks in pseg at 0x%" PRIx32
791			      ": found %d, wanted %d\n",
792			      pseg_addr, j, howmany(sp->ss_ninos, INOPB(fs)));
793			if (debug)
794				pwarn("*idp=%x, daddr=%" PRIx32 "\n", *idp,
795				      daddr);
796			break;
797		}
798		while (j < howmany(sp->ss_ninos, INOPB(fs)) && *idp == daddr) {
799			bread(devvp, fsbtodb(fs, daddr), fs->lfs_ibsize,
800			    NOCRED, 0, &bp);
801			datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
802			brelse(bp, 0);
803
804			++j;
805			daddr += btofsb(fs, fs->lfs_ibsize);
806			--idp;
807		}
808		if (i < sp->ss_nfinfo) {
809			if (func)
810				func(daddr, fp);
811			for (k = 0; k < fp->fi_nblocks; k++) {
812				len = (k == fp->fi_nblocks - 1 ?
813				       fp->fi_lastlength
814				       : fs->lfs_bsize);
815				bread(devvp, fsbtodb(fs, daddr), len,
816				    NOCRED, 0, &bp);
817				datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
818				brelse(bp, 0);
819				daddr += btofsb(fs, len);
820			}
821			fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
822		}
823	}
824
825	if (datac != nblocks) {
826		pwarn("Partial segment at 0x%llx expected %d blocks counted %d\n",
827		    (long long) pseg_addr, nblocks, datac);
828	}
829	ccksum = cksum(datap, nblocks * sizeof(u_int32_t));
830	/* Check the data checksum */
831	if (ccksum != sp->ss_datasum) {
832		pwarn("Partial segment at 0x%" PRIx32 " data checksum"
833		      " mismatch: given 0x%x, computed 0x%x\n",
834		      pseg_addr, sp->ss_datasum, ccksum);
835		free(datap);
836		return 0;
837	}
838	free(datap);
839	assert(bc >= 0);
840	return bc;
841}
842
843/* print message and exit */
844void
845my_vpanic(int fatal, const char *fmt, va_list ap)
846{
847        (void) vprintf(fmt, ap);
848	exit(8);
849}
850
851void
852call_panic(const char *fmt, ...)
853{
854	va_list ap;
855
856	va_start(ap, fmt);
857        panic_func(1, fmt, ap);
858	va_end(ap);
859}
860
861/* Allocate a new inode. */
862struct uvnode *
863lfs_valloc(struct lfs *fs, ino_t ino)
864{
865	struct ubuf *bp, *cbp;
866	struct ifile *ifp;
867	ino_t new_ino;
868	int error;
869	int new_gen;
870	CLEANERINFO *cip;
871
872	/* Get the head of the freelist. */
873	LFS_GET_HEADFREE(fs, cip, cbp, &new_ino);
874
875	/*
876	 * Remove the inode from the free list and write the new start
877	 * of the free list into the superblock.
878	 */
879	LFS_IENTRY(ifp, fs, new_ino, bp);
880	if (ifp->if_daddr != LFS_UNUSED_DADDR)
881		panic("lfs_valloc: inuse inode %d on the free list", new_ino);
882	LFS_PUT_HEADFREE(fs, cip, cbp, ifp->if_nextfree);
883
884	new_gen = ifp->if_version; /* version was updated by vfree */
885	brelse(bp, 0);
886
887	/* Extend IFILE so that the next lfs_valloc will succeed. */
888	if (fs->lfs_freehd == LFS_UNUSED_INUM) {
889		if ((error = extend_ifile(fs)) != 0) {
890			LFS_PUT_HEADFREE(fs, cip, cbp, new_ino);
891			return NULL;
892		}
893	}
894
895	/* Set superblock modified bit and increment file count. */
896        sbdirty();
897	++fs->lfs_nfiles;
898
899        return lfs_raw_vget(fs, ino, fs->lfs_devvp->v_fd, 0x0);
900}
901
902#ifdef IN_FSCK_LFS
903void reset_maxino(ino_t);
904#endif
905
906/*
907 * Add a new block to the Ifile, to accommodate future file creations.
908 */
909int
910extend_ifile(struct lfs *fs)
911{
912	struct uvnode *vp;
913	struct inode *ip;
914	IFILE *ifp;
915	IFILE_V1 *ifp_v1;
916	struct ubuf *bp, *cbp;
917	daddr_t i, blkno, max;
918	ino_t oldlast;
919	CLEANERINFO *cip;
920
921	vp = fs->lfs_ivnode;
922	ip = VTOI(vp);
923	blkno = lblkno(fs, ip->i_ffs1_size);
924
925	lfs_balloc(vp, ip->i_ffs1_size, fs->lfs_bsize, &bp);
926	ip->i_ffs1_size += fs->lfs_bsize;
927	ip->i_flag |= IN_MODIFIED;
928
929	i = (blkno - fs->lfs_segtabsz - fs->lfs_cleansz) *
930		fs->lfs_ifpb;
931	LFS_GET_HEADFREE(fs, cip, cbp, &oldlast);
932	LFS_PUT_HEADFREE(fs, cip, cbp, i);
933	max = i + fs->lfs_ifpb;
934	fs->lfs_bfree -= btofsb(fs, fs->lfs_bsize);
935
936	if (fs->lfs_version == 1) {
937		for (ifp_v1 = (IFILE_V1 *)bp->b_data; i < max; ++ifp_v1) {
938			ifp_v1->if_version = 1;
939			ifp_v1->if_daddr = LFS_UNUSED_DADDR;
940			ifp_v1->if_nextfree = ++i;
941		}
942		ifp_v1--;
943		ifp_v1->if_nextfree = oldlast;
944	} else {
945		for (ifp = (IFILE *)bp->b_data; i < max; ++ifp) {
946			ifp->if_version = 1;
947			ifp->if_daddr = LFS_UNUSED_DADDR;
948			ifp->if_nextfree = ++i;
949		}
950		ifp--;
951		ifp->if_nextfree = oldlast;
952	}
953	LFS_PUT_TAILFREE(fs, cip, cbp, max - 1);
954
955	LFS_BWRITE_LOG(bp);
956
957#ifdef IN_FSCK_LFS
958	reset_maxino(((ip->i_ffs1_size >> fs->lfs_bshift) - fs->lfs_segtabsz -
959		     fs->lfs_cleansz) * fs->lfs_ifpb);
960#endif
961	return 0;
962}
963
964/*
965 * Allocate a block, and to inode and filesystem block accounting for it
966 * and for any indirect blocks the may need to be created in order for
967 * this block to be created.
968 *
969 * Blocks which have never been accounted for (i.e., which "do not exist")
970 * have disk address 0, which is translated by ufs_bmap to the special value
971 * UNASSIGNED == -1, as in the historical UFS.
972 *
973 * Blocks which have been accounted for but which have not yet been written
974 * to disk are given the new special disk address UNWRITTEN == -2, so that
975 * they can be differentiated from completely new blocks.
976 */
977int
978lfs_balloc(struct uvnode *vp, off_t startoffset, int iosize, struct ubuf **bpp)
979{
980	int offset;
981	daddr_t daddr, idaddr;
982	struct ubuf *ibp, *bp;
983	struct inode *ip;
984	struct lfs *fs;
985	struct indir indirs[NIADDR+2], *idp;
986	daddr_t	lbn, lastblock;
987	int bcount;
988	int error, frags, i, nsize, osize, num;
989
990	ip = VTOI(vp);
991	fs = ip->i_lfs;
992	offset = blkoff(fs, startoffset);
993	lbn = lblkno(fs, startoffset);
994
995	/*
996	 * Three cases: it's a block beyond the end of file, it's a block in
997	 * the file that may or may not have been assigned a disk address or
998	 * we're writing an entire block.
999	 *
1000	 * Note, if the daddr is UNWRITTEN, the block already exists in
1001	 * the cache (it was read or written earlier).	If so, make sure
1002	 * we don't count it as a new block or zero out its contents. If
1003	 * it did not, make sure we allocate any necessary indirect
1004	 * blocks.
1005	 *
1006	 * If we are writing a block beyond the end of the file, we need to
1007	 * check if the old last block was a fragment.	If it was, we need
1008	 * to rewrite it.
1009	 */
1010
1011	if (bpp)
1012		*bpp = NULL;
1013
1014	/* Check for block beyond end of file and fragment extension needed. */
1015	lastblock = lblkno(fs, ip->i_ffs1_size);
1016	if (lastblock < NDADDR && lastblock < lbn) {
1017		osize = blksize(fs, ip, lastblock);
1018		if (osize < fs->lfs_bsize && osize > 0) {
1019			if ((error = lfs_fragextend(vp, osize, fs->lfs_bsize,
1020						    lastblock,
1021						    (bpp ? &bp : NULL))))
1022				return (error);
1023			ip->i_ffs1_size = ip->i_ffs1_size =
1024			    (lastblock + 1) * fs->lfs_bsize;
1025			ip->i_flag |= IN_CHANGE | IN_UPDATE;
1026			if (bpp)
1027				(void) VOP_BWRITE(bp);
1028		}
1029	}
1030
1031	/*
1032	 * If the block we are writing is a direct block, it's the last
1033	 * block in the file, and offset + iosize is less than a full
1034	 * block, we can write one or more fragments.  There are two cases:
1035	 * the block is brand new and we should allocate it the correct
1036	 * size or it already exists and contains some fragments and
1037	 * may need to extend it.
1038	 */
1039	if (lbn < NDADDR && lblkno(fs, ip->i_ffs1_size) <= lbn) {
1040		osize = blksize(fs, ip, lbn);
1041		nsize = fragroundup(fs, offset + iosize);
1042		if (lblktosize(fs, lbn) >= ip->i_ffs1_size) {
1043			/* Brand new block or fragment */
1044			frags = numfrags(fs, nsize);
1045			if (bpp) {
1046				*bpp = bp = getblk(vp, lbn, nsize);
1047				bp->b_blkno = UNWRITTEN;
1048			}
1049			ip->i_lfs_effnblks += frags;
1050			fs->lfs_bfree -= frags;
1051			ip->i_ffs1_db[lbn] = UNWRITTEN;
1052		} else {
1053			if (nsize <= osize) {
1054				/* No need to extend */
1055				if (bpp && (error = bread(vp, lbn, osize,
1056				    NOCRED, 0, &bp)))
1057					return error;
1058			} else {
1059				/* Extend existing block */
1060				if ((error =
1061				     lfs_fragextend(vp, osize, nsize, lbn,
1062						    (bpp ? &bp : NULL))))
1063					return error;
1064			}
1065			if (bpp)
1066				*bpp = bp;
1067		}
1068		return 0;
1069	}
1070
1071	error = ufs_bmaparray(fs, vp, lbn, &daddr, &indirs[0], &num);
1072	if (error)
1073		return (error);
1074
1075	daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1076
1077	/*
1078	 * Do byte accounting all at once, so we can gracefully fail *before*
1079	 * we start assigning blocks.
1080	 */
1081        frags = fsbtodb(fs, 1); /* frags = VFSTOUFS(vp->v_mount)->um_seqinc; */
1082	bcount = 0;
1083	if (daddr == UNASSIGNED) {
1084		bcount = frags;
1085	}
1086	for (i = 1; i < num; ++i) {
1087		if (!indirs[i].in_exists) {
1088			bcount += frags;
1089		}
1090	}
1091	fs->lfs_bfree -= bcount;
1092	ip->i_lfs_effnblks += bcount;
1093
1094	if (daddr == UNASSIGNED) {
1095		if (num > 0 && ip->i_ffs1_ib[indirs[0].in_off] == 0) {
1096			ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1097		}
1098
1099		/*
1100		 * Create new indirect blocks if necessary
1101		 */
1102		if (num > 1) {
1103			idaddr = ip->i_ffs1_ib[indirs[0].in_off];
1104			for (i = 1; i < num; ++i) {
1105				ibp = getblk(vp, indirs[i].in_lbn,
1106				    fs->lfs_bsize);
1107				if (!indirs[i].in_exists) {
1108					memset(ibp->b_data, 0, ibp->b_bufsize);
1109					ibp->b_blkno = UNWRITTEN;
1110				} else if (!(ibp->b_flags & (B_DELWRI | B_DONE))) {
1111					ibp->b_blkno = fsbtodb(fs, idaddr);
1112					ibp->b_flags |= B_READ;
1113					VOP_STRATEGY(ibp);
1114				}
1115				/*
1116				 * This block exists, but the next one may not.
1117				 * If that is the case mark it UNWRITTEN to
1118                                 * keep the accounting straight.
1119				 */
1120				/* XXX ondisk32 */
1121				if (((int32_t *)ibp->b_data)[indirs[i].in_off] == 0)
1122					((int32_t *)ibp->b_data)[indirs[i].in_off] =
1123						UNWRITTEN;
1124				/* XXX ondisk32 */
1125				idaddr = ((int32_t *)ibp->b_data)[indirs[i].in_off];
1126				if ((error = VOP_BWRITE(ibp)))
1127					return error;
1128			}
1129		}
1130	}
1131
1132
1133	/*
1134	 * Get the existing block from the cache, if requested.
1135	 */
1136	if (bpp)
1137		*bpp = bp = getblk(vp, lbn, blksize(fs, ip, lbn));
1138
1139	/*
1140	 * The block we are writing may be a brand new block
1141	 * in which case we need to do accounting.
1142	 *
1143	 * We can tell a truly new block because ufs_bmaparray will say
1144	 * it is UNASSIGNED.  Once we allocate it we will assign it the
1145	 * disk address UNWRITTEN.
1146	 */
1147	if (daddr == UNASSIGNED) {
1148		if (bpp) {
1149			/* Note the new address */
1150			bp->b_blkno = UNWRITTEN;
1151		}
1152
1153		switch (num) {
1154		    case 0:
1155			ip->i_ffs1_db[lbn] = UNWRITTEN;
1156			break;
1157		    case 1:
1158			ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1159			break;
1160		    default:
1161			idp = &indirs[num - 1];
1162			if (bread(vp, idp->in_lbn, fs->lfs_bsize, NOCRED,
1163				  0, &ibp))
1164				panic("lfs_balloc: bread bno %lld",
1165				    (long long)idp->in_lbn);
1166			/* XXX ondisk32 */
1167			((int32_t *)ibp->b_data)[idp->in_off] = UNWRITTEN;
1168			VOP_BWRITE(ibp);
1169		}
1170	} else if (bpp && !(bp->b_flags & (B_DONE|B_DELWRI))) {
1171		/*
1172		 * Not a brand new block, also not in the cache;
1173		 * read it in from disk.
1174		 */
1175		if (iosize == fs->lfs_bsize)
1176			/* Optimization: I/O is unnecessary. */
1177			bp->b_blkno = daddr;
1178		else {
1179			/*
1180			 * We need to read the block to preserve the
1181			 * existing bytes.
1182			 */
1183			bp->b_blkno = daddr;
1184			bp->b_flags |= B_READ;
1185			VOP_STRATEGY(bp);
1186			return 0;
1187		}
1188	}
1189
1190	return (0);
1191}
1192
1193int
1194lfs_fragextend(struct uvnode *vp, int osize, int nsize, daddr_t lbn,
1195               struct ubuf **bpp)
1196{
1197	struct inode *ip;
1198	struct lfs *fs;
1199	int frags;
1200	int error;
1201	size_t obufsize;
1202
1203	ip = VTOI(vp);
1204	fs = ip->i_lfs;
1205	frags = (long)numfrags(fs, nsize - osize);
1206	error = 0;
1207
1208	/*
1209	 * If we are not asked to actually return the block, all we need
1210	 * to do is allocate space for it.  UBC will handle dirtying the
1211	 * appropriate things and making sure it all goes to disk.
1212	 * Don't bother to read in that case.
1213	 */
1214	if (bpp && (error = bread(vp, lbn, osize, NOCRED, 0, bpp))) {
1215		brelse(*bpp, 0);
1216		goto out;
1217	}
1218
1219	fs->lfs_bfree -= frags;
1220	ip->i_lfs_effnblks += frags;
1221	ip->i_flag |= IN_CHANGE | IN_UPDATE;
1222
1223	if (bpp) {
1224		obufsize = (*bpp)->b_bufsize;
1225		(*bpp)->b_data = erealloc((*bpp)->b_data, nsize);
1226		(void)memset((*bpp)->b_data + osize, 0, nsize - osize);
1227	}
1228
1229    out:
1230	return (error);
1231}
1232