lfs.c revision 1.3
1/* $NetBSD: lfs.c,v 1.3 2003/05/08 18:39:09 petrov Exp $ */
2/*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant@hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the NetBSD
20 *	Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 *    contributors may be used to endorse or promote products derived
23 *    from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37/*
38 * Copyright (c) 1989, 1991, 1993
39 *	The Regents of the University of California.  All rights reserved.
40 * (c) UNIX System Laboratories, Inc.
41 * All or some portions of this file are derived from material licensed
42 * to the University of California by American Telephone and Telegraph
43 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
44 * the permission of UNIX System Laboratories, Inc.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 *    notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 *    notice, this list of conditions and the following disclaimer in the
53 *    documentation and/or other materials provided with the distribution.
54 * 3. All advertising materials mentioning features or use of this software
55 *    must display the following acknowledgement:
56 *	This product includes software developed by the University of
57 *	California, Berkeley and its contributors.
58 * 4. Neither the name of the University nor the names of its contributors
59 *    may be used to endorse or promote products derived from this software
60 *    without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 *	@(#)ufs_bmap.c	8.8 (Berkeley) 8/11/95
75 */
76
77
78#include <sys/types.h>
79#include <sys/param.h>
80#include <sys/time.h>
81#include <sys/buf.h>
82#include <sys/mount.h>
83
84#include <ufs/ufs/inode.h>
85#include <ufs/ufs/ufsmount.h>
86#define vnode uvnode
87#include <ufs/lfs/lfs.h>
88#undef vnode
89
90#include <assert.h>
91#include <err.h>
92#include <errno.h>
93#include <stdarg.h>
94#include <stdio.h>
95#include <stdlib.h>
96#include <string.h>
97#include <unistd.h>
98
99#include "bufcache.h"
100#include "vnode.h"
101#include "lfs.h"
102#include "segwrite.h"
103
104#define panic call_panic
105
106extern u_int32_t cksum(void *, size_t);
107extern u_int32_t lfs_sb_cksum(struct dlfs *);
108
109extern struct uvnodelst vnodelist;
110extern struct uvnodelst getvnodelist;
111extern int nvnodes;
112
113int fsdirty = 0;
114void (*panic_func)(int, const char *, va_list) = my_vpanic;
115
116/*
117 * LFS buffer and uvnode operations
118 */
119
120int
121lfs_vop_strategy(struct ubuf * bp)
122{
123	int count;
124
125	if (bp->b_flags & B_READ) {
126		count = pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
127		    dbtob(bp->b_blkno));
128		if (count == bp->b_bcount)
129			bp->b_flags |= B_DONE;
130	} else {
131		count = pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
132		    dbtob(bp->b_blkno));
133		if (count == 0) {
134			perror("pwrite");
135			return -1;
136		}
137		bp->b_flags &= ~B_DELWRI;
138		reassignbuf(bp, bp->b_vp);
139	}
140	return 0;
141}
142
143int
144lfs_vop_bwrite(struct ubuf * bp)
145{
146	struct lfs *fs;
147
148	fs = bp->b_vp->v_fs;
149	if (!(bp->b_flags & B_DELWRI)) {
150		fs->lfs_avail -= btofsb(fs, bp->b_bcount);
151	}
152	bp->b_flags |= B_DELWRI | B_LOCKED;
153	reassignbuf(bp, bp->b_vp);
154	brelse(bp);
155	return 0;
156}
157
158/*
159 * ufs_bmaparray does the bmap conversion, and if requested returns the
160 * array of logical blocks which must be traversed to get to a block.
161 * Each entry contains the offset into that block that gets you to the
162 * next block and the disk address of the block (if it is assigned).
163 */
164int
165ufs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
166{
167	struct inode *ip;
168	struct ubuf *bp;
169	struct indir a[NIADDR + 1], *xap;
170	daddr_t daddr;
171	daddr_t metalbn;
172	int error, num;
173
174	ip = VTOI(vp);
175
176	if (bn >= 0 && bn < NDADDR) {
177		if (nump != NULL)
178			*nump = 0;
179		*bnp = fsbtodb(fs, ip->i_ffs1_db[bn]);
180		if (*bnp == 0)
181			*bnp = -1;
182		return (0);
183	}
184	xap = ap == NULL ? a : ap;
185	if (!nump)
186		nump = &num;
187	if ((error = ufs_getlbns(fs, vp, bn, xap, nump)) != 0)
188		return (error);
189
190	num = *nump;
191
192	/* Get disk address out of indirect block array */
193	daddr = ip->i_ffs1_ib[xap->in_off];
194
195	for (bp = NULL, ++xap; --num; ++xap) {
196		/* Exit the loop if there is no disk address assigned yet and
197		 * the indirect block isn't in the cache, or if we were
198		 * looking for an indirect block and we've found it. */
199
200		metalbn = xap->in_lbn;
201		if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
202			break;
203		/*
204		 * If we get here, we've either got the block in the cache
205		 * or we have a disk address for it, go fetch it.
206		 */
207		if (bp)
208			brelse(bp);
209
210		xap->in_exists = 1;
211		bp = getblk(vp, metalbn, fs->lfs_bsize);
212
213		if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
214			bp->b_blkno = fsbtodb(fs, daddr);
215			bp->b_flags |= B_READ;
216			VOP_STRATEGY(bp);
217		}
218		daddr = ((ufs_daddr_t *) bp->b_data)[xap->in_off];
219	}
220	if (bp)
221		brelse(bp);
222
223	daddr = fsbtodb(fs, (ufs_daddr_t) daddr);
224	*bnp = daddr == 0 ? -1 : daddr;
225	return (0);
226}
227
228/*
229 * Create an array of logical block number/offset pairs which represent the
230 * path of indirect blocks required to access a data block.  The first "pair"
231 * contains the logical block number of the appropriate single, double or
232 * triple indirect block and the offset into the inode indirect block array.
233 * Note, the logical block number of the inode single/double/triple indirect
234 * block appears twice in the array, once with the offset into the i_ffs1_ib and
235 * once with the offset into the page itself.
236 */
237int
238ufs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
239{
240	daddr_t metalbn, realbn;
241	int64_t blockcnt;
242	int lbc;
243	int i, numlevels, off;
244	int lognindir, indir;
245
246	if (nump)
247		*nump = 0;
248	numlevels = 0;
249	realbn = bn;
250	if (bn < 0)
251		bn = -bn;
252
253	lognindir = -1;
254	for (indir = fs->lfs_nindir; indir; indir >>= 1)
255		++lognindir;
256
257	/* Determine the number of levels of indirection.  After this loop is
258	 * done, blockcnt indicates the number of data blocks possible at the
259	 * given level of indirection, and NIADDR - i is the number of levels
260	 * of indirection needed to locate the requested block. */
261
262	bn -= NDADDR;
263	for (lbc = 0, i = NIADDR;; i--, bn -= blockcnt) {
264		if (i == 0)
265			return (EFBIG);
266
267		lbc += lognindir;
268		blockcnt = (int64_t) 1 << lbc;
269
270		if (bn < blockcnt)
271			break;
272	}
273
274	/* Calculate the address of the first meta-block. */
275	if (realbn >= 0)
276		metalbn = -(realbn - bn + NIADDR - i);
277	else
278		metalbn = -(-realbn - bn + NIADDR - i);
279
280	/* At each iteration, off is the offset into the bap array which is an
281	 * array of disk addresses at the current level of indirection. The
282	 * logical block number and the offset in that block are stored into
283	 * the argument array. */
284	ap->in_lbn = metalbn;
285	ap->in_off = off = NIADDR - i;
286	ap->in_exists = 0;
287	ap++;
288	for (++numlevels; i <= NIADDR; i++) {
289		/* If searching for a meta-data block, quit when found. */
290		if (metalbn == realbn)
291			break;
292
293		lbc -= lognindir;
294		blockcnt = (int64_t) 1 << lbc;
295		off = (bn >> lbc) & (fs->lfs_nindir - 1);
296
297		++numlevels;
298		ap->in_lbn = metalbn;
299		ap->in_off = off;
300		ap->in_exists = 0;
301		++ap;
302
303		metalbn -= -1 + (off << lbc);
304	}
305	if (nump)
306		*nump = numlevels;
307	return (0);
308}
309
310int
311lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
312{
313	return ufs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
314}
315
316/* Search a block for a specific dinode. */
317struct ufs1_dinode *
318lfs_ifind(struct lfs * fs, ino_t ino, struct ubuf * bp)
319{
320	struct ufs1_dinode *dip = (struct ufs1_dinode *) bp->b_data;
321	struct ufs1_dinode *ldip, *fin;
322
323	fin = dip + INOPB(fs);
324
325	/*
326	 * Read the inode block backwards, since later versions of the
327	 * inode will supercede earlier ones.  Though it is unlikely, it is
328	 * possible that the same inode will appear in the same inode block.
329	 */
330	for (ldip = fin - 1; ldip >= dip; --ldip)
331		if (ldip->di_inumber == ino)
332			return (ldip);
333	return NULL;
334}
335
336/*
337 * lfs_raw_vget makes us a new vnode from the inode at the given disk address.
338 * XXX it currently loses atime information.
339 */
340struct uvnode *
341lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, ufs_daddr_t daddr)
342{
343	struct uvnode *vp;
344	struct inode *ip;
345	struct ufs1_dinode *dip;
346	struct ubuf *bp;
347	int i;
348
349	vp = (struct uvnode *) malloc(sizeof(*vp));
350	memset(vp, 0, sizeof(*vp));
351	vp->v_fd = fd;
352	vp->v_fs = fs;
353	vp->v_usecount = 0;
354	vp->v_strategy_op = lfs_vop_strategy;
355	vp->v_bwrite_op = lfs_vop_bwrite;
356	vp->v_bmap_op = lfs_vop_bmap;
357
358	++nvnodes;
359	LIST_INSERT_HEAD(&getvnodelist, vp, v_getvnodes);
360	LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
361
362	vp->v_data = ip = (struct inode *) malloc(sizeof(*ip));
363	memset(ip, 0, sizeof(*ip));
364
365	ip->i_din.ffs1_din = (struct ufs1_dinode *)
366	    malloc(sizeof(struct ufs1_dinode));
367	memset(ip->i_din.ffs1_din, 0, sizeof (struct ufs1_dinode));
368
369	/* Initialize the inode -- from lfs_vcreate. */
370	ip->inode_ext.lfs = malloc(sizeof(struct lfs_inode_ext));
371	memset(ip->inode_ext.lfs, 0, sizeof(struct lfs_inode_ext));
372	vp->v_data = ip;
373	/* ip->i_vnode = vp; */
374	ip->i_number = ino;
375	ip->i_lockf = 0;
376	ip->i_diroff = 0;
377	ip->i_lfs_effnblks = 0;
378	ip->i_flag = 0;
379
380	/* Load inode block and find inode */
381	bread(fs->lfs_unlockvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NULL, &bp);
382	bp->b_flags |= B_AGE;
383	dip = lfs_ifind(fs, ino, bp);
384	if (dip == NULL) {
385		brelse(bp);
386		free(vp);
387		return NULL;
388	}
389	memcpy(ip->i_din.ffs1_din, dip, sizeof(*dip));
390	brelse(bp);
391	ip->i_number = ino;
392	/* ip->i_devvp = fs->lfs_unlockvp; */
393	ip->i_lfs = fs;
394
395	ip->i_ffs_effnlink = ip->i_ffs1_nlink;
396	ip->i_lfs_effnblks = ip->i_ffs1_blocks;
397	ip->i_lfs_osize = ip->i_ffs1_size;
398#if 0
399	if (fs->lfs_version > 1) {
400		ip->i_ffs1_atime = ts.tv_sec;
401		ip->i_ffs1_atimensec = ts.tv_nsec;
402	}
403#endif
404
405	memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
406	for (i = 0; i < NDADDR; i++)
407		if (ip->i_ffs1_db[i] != 0)
408			ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
409
410	return vp;
411}
412
413static struct uvnode *
414lfs_vget(void *vfs, ino_t ino)
415{
416	struct lfs *fs = (struct lfs *)vfs;
417	ufs_daddr_t daddr;
418	struct ubuf *bp;
419	IFILE *ifp;
420
421	LFS_IENTRY(ifp, fs, ino, bp);
422	daddr = ifp->if_daddr;
423	brelse(bp);
424	if (daddr == 0)
425		return NULL;
426	return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
427}
428
429/* Check superblock magic number and checksum */
430static int
431check_sb(struct lfs *fs)
432{
433	u_int32_t checksum;
434
435	if (fs->lfs_magic != LFS_MAGIC) {
436		printf("Superblock magic number (0x%lx) does not match "
437		       "expected 0x%lx\n", (unsigned long) fs->lfs_magic,
438		       (unsigned long) LFS_MAGIC);
439		return 1;
440	}
441	/* checksum */
442	checksum = lfs_sb_cksum(&(fs->lfs_dlfs));
443	if (fs->lfs_cksum != checksum) {
444		printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
445		    (unsigned long) fs->lfs_cksum, (unsigned long) checksum);
446		return 1;
447	}
448	return 0;
449}
450
451/* Initialize LFS library; load superblocks and choose which to use. */
452struct lfs *
453lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int debug)
454{
455	struct uvnode *devvp;
456	struct ubuf *bp;
457	int tryalt;
458	struct lfs *fs, *altfs;
459	int error;
460
461	vfs_init();
462
463	devvp = (struct uvnode *) malloc(sizeof(*devvp));
464	devvp->v_fs = NULL;
465	devvp->v_fd = devfd;
466	devvp->v_strategy_op = raw_vop_strategy;
467	devvp->v_bwrite_op = raw_vop_bwrite;
468	devvp->v_bmap_op = raw_vop_bmap;
469
470	tryalt = 0;
471	if (sblkno == 0) {
472		sblkno = btodb(LFS_LABELPAD);
473		tryalt = 1;
474	} else if (debug) {
475		printf("No -b flag given, not attempting to verify checkpoint\n");
476	}
477	error = bread(devvp, sblkno, LFS_SBPAD, NOCRED, &bp);
478	fs = (struct lfs *) malloc(sizeof(*fs));
479	*fs = *((struct lfs *) bp->b_data);
480	fs->lfs_unlockvp = devvp;
481	bp->b_flags |= B_INVAL;
482	brelse(bp);
483
484	if (tryalt) {
485		error = bread(devvp, fsbtodb(fs, fs->lfs_sboffs[1]),
486		    LFS_SBPAD, NOCRED, &bp);
487		altfs = (struct lfs *) malloc(sizeof(*fs));
488		*altfs = *((struct lfs *) bp->b_data);
489		altfs->lfs_unlockvp = devvp;
490		bp->b_flags |= B_INVAL;
491		brelse(bp);
492
493		if (check_sb(fs)) {
494			if (debug)
495				printf("Primary superblock is no good, using first alternate\n");
496			free(fs);
497			fs = altfs;
498		} else {
499			/* If both superblocks check out, try verification */
500			if (check_sb(altfs)) {
501				if (debug)
502					printf("First alternate superblock is no good, using primary\n");
503				free(altfs);
504			} else {
505				if (lfs_verify(fs, altfs, devvp, debug) == fs) {
506					free(altfs);
507				} else {
508					free(fs);
509					fs = altfs;
510				}
511			}
512		}
513	}
514	if (check_sb(fs)) {
515		free(fs);
516		return NULL;
517	}
518	/* Compatibility */
519	if (fs->lfs_version < 2) {
520		fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
521		fs->lfs_ibsize = fs->lfs_bsize;
522		fs->lfs_start = fs->lfs_sboffs[0];
523		fs->lfs_tstamp = fs->lfs_otstamp;
524		fs->lfs_fsbtodb = 0;
525	}
526	fs->lfs_suflags = (u_int32_t **) malloc(2 * sizeof(u_int32_t *));
527	fs->lfs_suflags[0] = (u_int32_t *) malloc(fs->lfs_nseg * sizeof(u_int32_t));
528	fs->lfs_suflags[1] = (u_int32_t *) malloc(fs->lfs_nseg * sizeof(u_int32_t));
529
530	if (idaddr == 0)
531		idaddr = fs->lfs_idaddr;
532	fs->lfs_ivnode = lfs_raw_vget(fs, fs->lfs_ifile, devvp->v_fd, idaddr);
533
534	register_vget((void *)fs, lfs_vget);
535
536	return fs;
537}
538
539/*
540 * Check partial segment validity between fs->lfs_offset and the given goal.
541 * If goal == 0, just keep on going until the segments stop making sense.
542 * Return the address of the first partial segment that failed.
543 */
544ufs_daddr_t
545try_verify(struct lfs *osb, struct uvnode *devvp, ufs_daddr_t goal, int debug)
546{
547	ufs_daddr_t daddr, odaddr;
548	SEGSUM *sp;
549	int bc, flag;
550	struct ubuf *bp;
551	ufs_daddr_t nodirop_daddr;
552	u_int64_t serial;
553
554	daddr = osb->lfs_offset;
555	nodirop_daddr = daddr;
556	serial = osb->lfs_serial;
557	while (daddr != goal) {
558		flag = 0;
559oncemore:
560		/* Read in summary block */
561		bread(devvp, fsbtodb(osb, daddr), osb->lfs_sumsize, NULL, &bp);
562		sp = (SEGSUM *)bp->b_data;
563
564		/*
565		 * Could be a superblock instead of a segment summary.
566		 * XXX should use gseguse, but right now we need to do more
567		 * setup before we can...fix this
568		 */
569		if (sp->ss_magic != SS_MAGIC ||
570		    sp->ss_ident != osb->lfs_ident ||
571		    sp->ss_serial < serial ||
572		    sp->ss_sumsum != cksum(&sp->ss_datasum, osb->lfs_sumsize -
573			sizeof(sp->ss_sumsum))) {
574			brelse(bp);
575			if (flag == 0) {
576				flag = 1;
577				daddr += btofsb(osb, LFS_SBPAD);
578				goto oncemore;
579			}
580			break;
581		}
582		++serial;
583		bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
584		if (bc == 0) {
585			brelse(bp);
586			break;
587		}
588		assert (bc > 0);
589		odaddr = daddr;
590		daddr += btofsb(osb, osb->lfs_sumsize + bc);
591		if (dtosn(osb, odaddr) != dtosn(osb, daddr) ||
592		    dtosn(osb, daddr) != dtosn(osb, daddr +
593			btofsb(osb, osb->lfs_sumsize + osb->lfs_bsize))) {
594			daddr = sp->ss_next;
595		}
596		if (!(sp->ss_flags & SS_CONT))
597			nodirop_daddr = daddr;
598		brelse(bp);
599	}
600
601	if (goal == 0)
602		return nodirop_daddr;
603	else
604		return daddr;
605}
606
607/* Use try_verify to check whether the newer superblock is valid. */
608struct lfs *
609lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
610{
611	ufs_daddr_t daddr;
612	struct lfs *osb, *nsb;
613
614	/*
615	 * Verify the checkpoint of the newer superblock,
616	 * if the timestamp/serial number of the two superblocks is
617	 * different.
618	 */
619
620	if (debug)
621		printf("sb0 %lld, sb1 %lld\n", (long long) sb0->lfs_serial,
622		    (long long) sb1->lfs_serial);
623
624	if ((sb0->lfs_version == 1 &&
625		sb0->lfs_otstamp != sb1->lfs_otstamp) ||
626	    (sb0->lfs_version > 1 &&
627		sb0->lfs_serial != sb1->lfs_serial)) {
628		if (sb0->lfs_version == 1) {
629			if (sb0->lfs_otstamp > sb1->lfs_otstamp) {
630				osb = sb1;
631				nsb = sb0;
632			} else {
633				osb = sb0;
634				nsb = sb1;
635			}
636		} else {
637			if (sb0->lfs_serial > sb1->lfs_serial) {
638				osb = sb1;
639				nsb = sb0;
640			} else {
641				osb = sb0;
642				nsb = sb1;
643			}
644		}
645		if (debug) {
646			printf("Attempting to verify newer checkpoint...");
647			fflush(stdout);
648		}
649		daddr = try_verify(osb, devvp, nsb->lfs_offset, debug);
650
651		if (debug)
652			printf("done.\n");
653		if (daddr == nsb->lfs_offset) {
654			warnx("** Newer checkpoint verified, recovered %lld seconds of data\n",
655			    (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
656			sbdirty();
657		} else {
658			warnx("** Newer checkpoint invalid, lost %lld seconds of data\n", (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
659		}
660		return (daddr == nsb->lfs_offset ? nsb : osb);
661	}
662	/* Nothing to check */
663	return osb;
664}
665
666/* Verify a partial-segment summary; return the number of bytes on disk. */
667int
668check_summary(struct lfs *fs, SEGSUM *sp, ufs_daddr_t pseg_addr, int debug,
669	      struct uvnode *devvp, void (func(ufs_daddr_t, FINFO *)))
670{
671	FINFO *fp;
672	int bc;			/* Bytes in partial segment */
673	int nblocks;
674	ufs_daddr_t seg_addr, daddr;
675	ufs_daddr_t *dp, *idp;
676	struct ubuf *bp;
677	int i, j, k, datac, len;
678	long sn;
679	u_int32_t *datap;
680	u_int32_t ccksum;
681
682	sn = dtosn(fs, pseg_addr);
683	seg_addr = sntod(fs, sn);
684
685	/* We've already checked the sumsum, just do the data bounds and sum */
686
687	/* Count the blocks. */
688	nblocks = howmany(sp->ss_ninos, INOPB(fs));
689	bc = nblocks << (fs->lfs_version > 1 ? fs->lfs_ffshift : fs->lfs_bshift);
690	assert(bc >= 0);
691
692	fp = (FINFO *) (sp + 1);
693	for (i = 0; i < sp->ss_nfinfo; i++) {
694		nblocks += fp->fi_nblocks;
695		bc += fp->fi_lastlength + ((fp->fi_nblocks - 1)
696					   << fs->lfs_bshift);
697		assert(bc >= 0);
698		fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
699	}
700	datap = (u_int32_t *) malloc(nblocks * sizeof(*datap));
701	datac = 0;
702
703	dp = (ufs_daddr_t *) sp;
704	dp += fs->lfs_sumsize / sizeof(ufs_daddr_t);
705	dp--;
706
707	idp = dp;
708	daddr = pseg_addr + btofsb(fs, fs->lfs_sumsize);
709	fp = (FINFO *) (sp + 1);
710	for (i = 0, j = 0;
711	     i < sp->ss_nfinfo || j < howmany(sp->ss_ninos, INOPB(fs)); i++) {
712		if (i >= sp->ss_nfinfo && *idp != daddr) {
713			warnx("Not enough inode blocks in pseg at 0x%" PRIx32
714			      ": found %d, wanted %d\n",
715			      pseg_addr, j, howmany(sp->ss_ninos, INOPB(fs)));
716			if (debug)
717				warnx("*idp=%x, daddr=%" PRIx32 "\n", *idp,
718				      daddr);
719			break;
720		}
721		while (j < howmany(sp->ss_ninos, INOPB(fs)) && *idp == daddr) {
722			bread(devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NOCRED, &bp);
723			datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
724			brelse(bp);
725
726			++j;
727			daddr += btofsb(fs, fs->lfs_ibsize);
728			--idp;
729		}
730		if (i < sp->ss_nfinfo) {
731			if (func)
732				func(daddr, fp);
733			for (k = 0; k < fp->fi_nblocks; k++) {
734				len = (k == fp->fi_nblocks - 1 ?
735				       fp->fi_lastlength
736				       : fs->lfs_bsize);
737				bread(devvp, fsbtodb(fs, daddr), len, NOCRED, &bp);
738				datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
739				brelse(bp);
740				daddr += btofsb(fs, len);
741			}
742			fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
743		}
744	}
745
746	if (datac != nblocks) {
747		warnx("Partial segment at 0x%llx expected %d blocks counted %d\n",
748		    (long long) pseg_addr, nblocks, datac);
749	}
750	ccksum = cksum(datap, nblocks * sizeof(u_int32_t));
751	/* Check the data checksum */
752	if (ccksum != sp->ss_datasum) {
753		warnx("Partial segment at 0x%" PRIx32 " data checksum"
754		      " mismatch: given 0x%x, computed 0x%x\n",
755		      pseg_addr, sp->ss_datasum, ccksum);
756		free(datap);
757		return 0;
758	}
759	free(datap);
760	assert(bc >= 0);
761	return bc;
762}
763
764/* print message and exit */
765void
766my_vpanic(int fatal, const char *fmt, va_list ap)
767{
768        (void) vprintf(fmt, ap);
769	exit(8);
770}
771
772void
773call_panic(const char *fmt, ...)
774{
775	va_list ap;
776
777	va_start(ap, fmt);
778        panic_func(1, fmt, ap);
779	va_end(ap);
780}
781