mdreloc.c revision 1.51
1/*	$NetBSD: mdreloc.c,v 1.51 2017/08/10 19:03:26 joerg Exp $	*/
2
3/*-
4 * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32#include <sys/cdefs.h>
33#ifndef lint
34__RCSID("$NetBSD: mdreloc.c,v 1.51 2017/08/10 19:03:26 joerg Exp $");
35#endif /* not lint */
36
37#include <errno.h>
38#include <stdio.h>
39#include <stdlib.h>
40#include <string.h>
41#include <unistd.h>
42
43#include "rtldenv.h"
44#include "debug.h"
45#include "rtld.h"
46
47/*
48 * The following table holds for each relocation type:
49 *	- the width in bits of the memory location the relocation
50 *	  applies to (not currently used)
51 *	- the number of bits the relocation value must be shifted to the
52 *	  right (i.e. discard least significant bits) to fit into
53 *	  the appropriate field in the instruction word.
54 *	- flags indicating whether
55 *		* the relocation involves a symbol
56 *		* the relocation is relative to the current position
57 *		* the relocation is for a GOT entry
58 *		* the relocation is relative to the load address
59 *
60 */
61#define _RF_S		0x80000000		/* Resolve symbol */
62#define _RF_A		0x40000000		/* Use addend */
63#define _RF_P		0x20000000		/* Location relative */
64#define _RF_G		0x10000000		/* GOT offset */
65#define _RF_B		0x08000000		/* Load address relative */
66#define _RF_U		0x04000000		/* Unaligned */
67#define _RF_SZ(s)	(((s) & 0xff) << 8)	/* memory target size */
68#define _RF_RS(s)	( (s) & 0xff)		/* right shift */
69static const int reloc_target_flags[R_TYPE(TLS_TPOFF64)+1] = {
70	0,							/* NONE */
71	_RF_S|_RF_A|		_RF_SZ(8)  | _RF_RS(0),		/* RELOC_8 */
72	_RF_S|_RF_A|		_RF_SZ(16) | _RF_RS(0),		/* RELOC_16 */
73	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* RELOC_32 */
74	_RF_S|_RF_A|_RF_P|	_RF_SZ(8)  | _RF_RS(0),		/* DISP_8 */
75	_RF_S|_RF_A|_RF_P|	_RF_SZ(16) | _RF_RS(0),		/* DISP_16 */
76	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* DISP_32 */
77	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_30 */
78	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_22 */
79	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HI22 */
80	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 22 */
81	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 13 */
82	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LO10 */
83	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT10 */
84	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT13 */
85	_RF_G|			_RF_SZ(32) | _RF_RS(10),	/* GOT22 */
86	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PC10 */
87	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC22 */
88	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WPLT30 */
89				_RF_SZ(32) | _RF_RS(0),		/* COPY */
90	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* GLOB_DAT */
91				_RF_SZ(32) | _RF_RS(0),		/* JMP_SLOT */
92	      _RF_A|	_RF_B|	_RF_SZ(32) | _RF_RS(0),		/* RELATIVE */
93	_RF_S|_RF_A|	_RF_U|	_RF_SZ(32) | _RF_RS(0),		/* UA_32 */
94
95	/* TLS and 64 bit relocs not listed here... */
96};
97
98#ifdef RTLD_DEBUG_RELOC
99static const char *reloc_names[] = {
100	"NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
101	"DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
102	"22", "13", "LO10", "GOT10", "GOT13",
103	"GOT22", "PC10", "PC22", "WPLT30", "COPY",
104	"GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32",
105
106	/* not used with 32bit userland, besides a few of the TLS ones */
107	"PLT32",
108	"HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
109	"10", "11", "64", "OLO10", "HH22",
110	"HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
111	"WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
112	"DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
113	"L44", "REGISTER", "UA64", "UA16",
114	"TLS_GD_HI22", "TLS_GD_LO10", "TLS_GD_ADD", "TLS_GD_CALL",
115	"TLS_LDM_HI22", "TLS_LDM_LO10", "TLS_LDM_ADD", "TLS_LDM_CALL",
116	"TLS_LDO_HIX22", "TLS_LDO_LOX10", "TLS_LDO_ADD", "TLS_IE_HI22",
117	"TLS_IE_LO10", "TLS_IE_LD", "TLS_IE_LDX", "TLS_IE_ADD", "TLS_LE_HIX22",
118	"TLS_LE_LOX10", "TLS_DTPMOD32", "TLS_DTPMOD64", "TLS_DTPOFF32",
119	"TLS_DTPOFF64", "TLS_TPOFF32", "TLS_TPOFF64",
120};
121#endif
122
123#define RELOC_RESOLVE_SYMBOL(t)		((reloc_target_flags[t] & _RF_S) != 0)
124#define RELOC_PC_RELATIVE(t)		((reloc_target_flags[t] & _RF_P) != 0)
125#define RELOC_BASE_RELATIVE(t)		((reloc_target_flags[t] & _RF_B) != 0)
126#define RELOC_UNALIGNED(t)		((reloc_target_flags[t] & _RF_U) != 0)
127#define RELOC_USE_ADDEND(t)		((reloc_target_flags[t] & _RF_A) != 0)
128#define RELOC_TARGET_SIZE(t)		((reloc_target_flags[t] >> 8) & 0xff)
129#define RELOC_VALUE_RIGHTSHIFT(t)	(reloc_target_flags[t] & 0xff)
130#define RELOC_TLS(t)			(t >= R_TYPE(TLS_GD_HI22))
131
132static const int reloc_target_bitmask[] = {
133#define _BM(x)	(~(-(1ULL << (x))))
134	0,				/* NONE */
135	_BM(8), _BM(16), _BM(32),	/* RELOC_8, _16, _32 */
136	_BM(8), _BM(16), _BM(32),	/* DISP8, DISP16, DISP32 */
137	_BM(30), _BM(22),		/* WDISP30, WDISP22 */
138	_BM(22), _BM(22),		/* HI22, _22 */
139	_BM(13), _BM(10),		/* RELOC_13, _LO10 */
140	_BM(10), _BM(13), _BM(22),	/* GOT10, GOT13, GOT22 */
141	_BM(10), _BM(22),		/* _PC10, _PC22 */
142	_BM(30), 0,			/* _WPLT30, _COPY */
143	-1, -1, -1,			/* _GLOB_DAT, JMP_SLOT, _RELATIVE */
144	_BM(32)				/* _UA32 */
145#undef _BM
146};
147#define RELOC_VALUE_BITMASK(t)	(reloc_target_bitmask[t])
148
149void _rtld_bind_start(void);
150void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
151caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
152static inline int _rtld_relocate_plt_object(const Obj_Entry *,
153    const Elf_Rela *, Elf_Addr *);
154
155void
156_rtld_setup_pltgot(const Obj_Entry *obj)
157{
158	/*
159	 * PLTGOT is the PLT on the sparc.
160	 * The first entry holds the call the dynamic linker.
161	 * We construct a `call' sequence that transfers
162	 * to `_rtld_bind_start()'.
163	 * The second entry holds the object identification.
164	 * Note: each PLT entry is three words long.
165	 */
166#define SAVE	0x9de3bfa0	/* i.e. `save %sp,-96,%sp' */
167#define CALL	0x40000000
168#define NOP	0x01000000
169	obj->pltgot[0] = SAVE;
170	obj->pltgot[1] = CALL |
171	    ((Elf_Addr) &_rtld_bind_start - (Elf_Addr) &obj->pltgot[1]) >> 2;
172	obj->pltgot[2] = NOP;
173	obj->pltgot[3] = (Elf_Addr) obj;
174}
175
176void
177_rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
178{
179	const Elf_Rela *rela = 0, *relalim;
180	Elf_Addr relasz = 0;
181	Elf_Addr *where;
182
183	for (; dynp->d_tag != DT_NULL; dynp++) {
184		switch (dynp->d_tag) {
185		case DT_RELA:
186			rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
187			break;
188		case DT_RELASZ:
189			relasz = dynp->d_un.d_val;
190			break;
191		}
192	}
193	relalim = (const Elf_Rela *)((const uint8_t *)rela + relasz);
194	for (; rela < relalim; rela++) {
195		where = (Elf_Addr *)(relocbase + rela->r_offset);
196		*where += (Elf_Addr)(relocbase + rela->r_addend);
197	}
198}
199
200int
201_rtld_relocate_nonplt_objects(Obj_Entry *obj)
202{
203	const Elf_Rela *rela;
204	const Elf_Sym *def = NULL;
205	const Obj_Entry *defobj = NULL;
206	unsigned long last_symnum = ULONG_MAX;
207
208	for (rela = obj->rela; rela < obj->relalim; rela++) {
209		Elf_Addr *where;
210		Elf_Word type, value, mask;
211		unsigned long	 symnum;
212
213		where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
214
215		type = ELF_R_TYPE(rela->r_info);
216		if (type == R_TYPE(NONE))
217			continue;
218
219		/* We do JMP_SLOTs in _rtld_bind() below */
220		if (type == R_TYPE(JMP_SLOT))
221			continue;
222
223		/* COPY relocs are also handled elsewhere */
224		if (type == R_TYPE(COPY))
225			continue;
226
227		/*
228		 * We use the fact that relocation types are an `enum'
229		 * Note: R_SPARC_TLS_TPOFF64 is currently numerically largest.
230		 */
231		if (type > R_TYPE(TLS_TPOFF64))
232			return (-1);
233
234		value = rela->r_addend;
235
236		if (RELOC_RESOLVE_SYMBOL(type) || RELOC_TLS(type)) {
237			symnum = ELF_R_SYM(rela->r_info);
238			if (last_symnum != symnum) {
239				last_symnum = symnum;
240				def = _rtld_find_symdef(symnum, obj, &defobj,
241				    false);
242				if (def == NULL)
243					return -1;
244			}
245		}
246
247		/*
248		 * Handle TLS relocations here, they are different.
249		 */
250		if (RELOC_TLS(type)) {
251			switch (type) {
252			case R_TYPE(TLS_DTPMOD32):
253				*where = (Elf_Addr)defobj->tlsindex;
254
255				rdbg(("TLS_DTPMOD32 %s in %s --> %p",
256				    obj->strtab +
257				    obj->symtab[symnum].st_name,
258				    obj->path, (void *)*where));
259
260				break;
261
262			case R_TYPE(TLS_DTPOFF32):
263				*where = (Elf_Addr)(def->st_value
264				    + rela->r_addend);
265
266				rdbg(("TLS_DTPOFF32 %s in %s --> %p",
267				    obj->strtab +
268				        obj->symtab[symnum].st_name,
269				    obj->path, (void *)*where));
270
271				break;
272
273			case R_TYPE(TLS_TPOFF32):
274				if (!defobj->tls_done &&
275					_rtld_tls_offset_allocate(obj))
276					     return -1;
277
278				*where = (Elf_Addr)(def->st_value -
279				    defobj->tlsoffset + rela->r_addend);
280
281				rdbg(("TLS_TPOFF32 %s in %s --> %p",
282				    obj->strtab +
283				    obj->symtab[symnum].st_name,
284				    obj->path, (void *)*where));
285
286				break;
287			}
288			continue;
289		}
290
291		/*
292		 * If it is no TLS relocation (handled above), we can not
293		 * deal with it if it is beyound R_SPARC_6.
294		 */
295		if (type > R_TYPE(6))
296			return (-1);
297
298		/*
299		 * Handle relative relocs here, as an optimization.
300		 */
301		if (type == R_TYPE(RELATIVE)) {
302			*where += (Elf_Addr)(obj->relocbase + value);
303			rdbg(("RELATIVE in %s --> %p", obj->path,
304			    (void *)*where));
305			continue;
306		}
307
308		if (RELOC_RESOLVE_SYMBOL(type)) {
309			/* Add in the symbol's absolute address */
310			value += (Elf_Word)(defobj->relocbase + def->st_value);
311		}
312
313		if (RELOC_PC_RELATIVE(type)) {
314			value -= (Elf_Word)where;
315		}
316
317		if (RELOC_BASE_RELATIVE(type)) {
318			/*
319			 * Note that even though sparcs use `Elf_rela'
320			 * exclusively we still need the implicit memory addend
321			 * in relocations referring to GOT entries.
322			 * Undoubtedly, someone f*cked this up in the distant
323			 * past, and now we're stuck with it in the name of
324			 * compatibility for all eternity..
325			 *
326			 * In any case, the implicit and explicit should be
327			 * mutually exclusive. We provide a check for that
328			 * here.
329			 */
330#define DIAGNOSTIC
331#ifdef DIAGNOSTIC
332			if (value != 0 && *where != 0) {
333				xprintf("BASE_REL(%s): where=%p, *where 0x%x, "
334					"addend=0x%x, base %p\n",
335					obj->path, where, *where,
336					rela->r_addend, obj->relocbase);
337			}
338#endif
339			value += (Elf_Word)(obj->relocbase + *where);
340		}
341
342		mask = RELOC_VALUE_BITMASK(type);
343		value >>= RELOC_VALUE_RIGHTSHIFT(type);
344		value &= mask;
345
346		if (RELOC_UNALIGNED(type)) {
347			/* Handle unaligned relocations. */
348			Elf_Addr tmp = 0;
349			char *ptr = (char *)where;
350			int i, size = RELOC_TARGET_SIZE(type)/8;
351
352			/* Read it in one byte at a time. */
353			for (i=0; i<size; i++)
354				tmp = (tmp << 8) | ptr[i];
355
356			tmp &= ~mask;
357			tmp |= value;
358
359			/* Write it back out. */
360			for (i=0; i<size; i++)
361				ptr[i] = ((tmp >> (8*i)) & 0xff);
362#ifdef RTLD_DEBUG_RELOC
363			value = (Elf_Word)tmp;
364#endif
365
366		} else {
367			*where &= ~mask;
368			*where |= value;
369#ifdef RTLD_DEBUG_RELOC
370			value = (Elf_Word)*where;
371#endif
372		}
373#ifdef RTLD_DEBUG_RELOC
374		if (RELOC_RESOLVE_SYMBOL(type)) {
375			rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
376			    obj->strtab + obj->symtab[symnum].st_name,
377			    obj->path, (void *)value, defobj->path));
378		} else {
379			rdbg(("%s in %s --> %p", reloc_names[type],
380			    obj->path, (void *)value));
381		}
382#endif
383	}
384	return (0);
385}
386
387int
388_rtld_relocate_plt_lazy(Obj_Entry *obj)
389{
390	return (0);
391}
392
393caddr_t
394_rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
395{
396	const Elf_Rela *rela = (const Elf_Rela *)((const uint8_t *)obj->pltrela + reloff);
397	Elf_Addr value;
398	int err;
399
400	value = 0;	/* XXX gcc */
401
402	_rtld_shared_enter();
403	err = _rtld_relocate_plt_object(obj, rela, &value);
404	if (err)
405		_rtld_die();
406	_rtld_shared_exit();
407
408	return (caddr_t)value;
409}
410
411int
412_rtld_relocate_plt_objects(const Obj_Entry *obj)
413{
414	const Elf_Rela *rela = obj->pltrela;
415
416	for (; rela < obj->pltrelalim; rela++)
417		if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
418			return -1;
419
420	return 0;
421}
422
423static inline int
424_rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela, Elf_Addr *tp)
425{
426	const Elf_Sym *def;
427	const Obj_Entry *defobj;
428	Elf_Word *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
429	Elf_Addr value;
430	unsigned long info = rela->r_info;
431
432	assert(ELF_R_TYPE(info) == R_TYPE(JMP_SLOT));
433
434	def = _rtld_find_plt_symdef(ELF_R_SYM(info), obj, &defobj, tp != NULL);
435	if (__predict_false(def == NULL))
436		return -1;
437	if (__predict_false(def == &_rtld_sym_zero))
438		return 0;
439
440	if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) {
441		if (tp == NULL)
442			return 0;
443		value = _rtld_resolve_ifunc(defobj, def);
444	} else {
445		value = (Elf_Addr)(defobj->relocbase + def->st_value);
446	}
447	rdbg(("bind now/fixup in %s --> new=%p",
448	    defobj->strtab + def->st_name, (void *)value));
449
450	/*
451	 * At the PLT entry pointed at by `where', we now construct
452	 * a direct transfer to the now fully resolved function
453	 * address.  The resulting code in the jump slot is:
454	 *
455	 *	sethi	%hi(roffset), %g1
456	 *	sethi	%hi(addr), %g1
457	 *	jmp	%g1+%lo(addr)
458	 *
459	 * We write the third instruction first, since that leaves the
460	 * previous `b,a' at the second word in place. Hence the whole
461	 * PLT slot can be atomically change to the new sequence by
462	 * writing the `sethi' instruction at word 2.
463	 */
464#define SETHI	0x03000000
465#define JMP	0x81c06000
466#define NOP	0x01000000
467	where[2] = JMP   | (value & 0x000003ff);
468	where[1] = SETHI | ((value >> 10) & 0x003fffff);
469	__asm volatile("iflush %0+8" : : "r" (where));
470	__asm volatile("iflush %0+4" : : "r" (where));
471
472	if (tp)
473		*tp = value;
474
475	return 0;
476}
477