mdreloc.c revision 1.41
1/*	$NetBSD: mdreloc.c,v 1.41 2008/07/24 04:39:25 matt Exp $	*/
2
3/*-
4 * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32#include <sys/cdefs.h>
33#ifndef lint
34__RCSID("$NetBSD: mdreloc.c,v 1.41 2008/07/24 04:39:25 matt Exp $");
35#endif /* not lint */
36
37#include <errno.h>
38#include <stdio.h>
39#include <stdlib.h>
40#include <string.h>
41#include <unistd.h>
42#include <sys/stat.h>
43
44#include "rtldenv.h"
45#include "debug.h"
46#include "rtld.h"
47
48/*
49 * The following table holds for each relocation type:
50 *	- the width in bits of the memory location the relocation
51 *	  applies to (not currently used)
52 *	- the number of bits the relocation value must be shifted to the
53 *	  right (i.e. discard least significant bits) to fit into
54 *	  the appropriate field in the instruction word.
55 *	- flags indicating whether
56 *		* the relocation involves a symbol
57 *		* the relocation is relative to the current position
58 *		* the relocation is for a GOT entry
59 *		* the relocation is relative to the load address
60 *
61 */
62#define _RF_S		0x80000000		/* Resolve symbol */
63#define _RF_A		0x40000000		/* Use addend */
64#define _RF_P		0x20000000		/* Location relative */
65#define _RF_G		0x10000000		/* GOT offset */
66#define _RF_B		0x08000000		/* Load address relative */
67#define _RF_U		0x04000000		/* Unaligned */
68#define _RF_SZ(s)	(((s) & 0xff) << 8)	/* memory target size */
69#define _RF_RS(s)	( (s) & 0xff)		/* right shift */
70static const int reloc_target_flags[] = {
71	0,							/* NONE */
72	_RF_S|_RF_A|		_RF_SZ(8)  | _RF_RS(0),		/* RELOC_8 */
73	_RF_S|_RF_A|		_RF_SZ(16) | _RF_RS(0),		/* RELOC_16 */
74	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* RELOC_32 */
75	_RF_S|_RF_A|_RF_P|	_RF_SZ(8)  | _RF_RS(0),		/* DISP_8 */
76	_RF_S|_RF_A|_RF_P|	_RF_SZ(16) | _RF_RS(0),		/* DISP_16 */
77	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* DISP_32 */
78	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_30 */
79	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_22 */
80	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HI22 */
81	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 22 */
82	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 13 */
83	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LO10 */
84	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT10 */
85	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT13 */
86	_RF_G|			_RF_SZ(32) | _RF_RS(10),	/* GOT22 */
87	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PC10 */
88	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC22 */
89	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WPLT30 */
90				_RF_SZ(32) | _RF_RS(0),		/* COPY */
91	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* GLOB_DAT */
92				_RF_SZ(32) | _RF_RS(0),		/* JMP_SLOT */
93	      _RF_A|	_RF_B|	_RF_SZ(32) | _RF_RS(0),		/* RELATIVE */
94	_RF_S|_RF_A|	_RF_U|	_RF_SZ(32) | _RF_RS(0),		/* UA_32 */
95};
96
97#ifdef RTLD_DEBUG_RELOC
98static const char *reloc_names[] = {
99	"NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
100	"DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
101	"22", "13", "LO10", "GOT10", "GOT13",
102	"GOT22", "PC10", "PC22", "WPLT30", "COPY",
103	"GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32"
104};
105#endif
106
107#define RELOC_RESOLVE_SYMBOL(t)		((reloc_target_flags[t] & _RF_S) != 0)
108#define RELOC_PC_RELATIVE(t)		((reloc_target_flags[t] & _RF_P) != 0)
109#define RELOC_BASE_RELATIVE(t)		((reloc_target_flags[t] & _RF_B) != 0)
110#define RELOC_UNALIGNED(t)		((reloc_target_flags[t] & _RF_U) != 0)
111#define RELOC_USE_ADDEND(t)		((reloc_target_flags[t] & _RF_A) != 0)
112#define RELOC_TARGET_SIZE(t)		((reloc_target_flags[t] >> 8) & 0xff)
113#define RELOC_VALUE_RIGHTSHIFT(t)	(reloc_target_flags[t] & 0xff)
114
115static const int reloc_target_bitmask[] = {
116#define _BM(x)	(~(-(1ULL << (x))))
117	0,				/* NONE */
118	_BM(8), _BM(16), _BM(32),	/* RELOC_8, _16, _32 */
119	_BM(8), _BM(16), _BM(32),	/* DISP8, DISP16, DISP32 */
120	_BM(30), _BM(22),		/* WDISP30, WDISP22 */
121	_BM(22), _BM(22),		/* HI22, _22 */
122	_BM(13), _BM(10),		/* RELOC_13, _LO10 */
123	_BM(10), _BM(13), _BM(22),	/* GOT10, GOT13, GOT22 */
124	_BM(10), _BM(22),		/* _PC10, _PC22 */
125	_BM(30), 0,			/* _WPLT30, _COPY */
126	-1, -1, -1,			/* _GLOB_DAT, JMP_SLOT, _RELATIVE */
127	_BM(32)				/* _UA32 */
128#undef _BM
129};
130#define RELOC_VALUE_BITMASK(t)	(reloc_target_bitmask[t])
131
132void _rtld_bind_start(void);
133void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
134caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
135static inline int _rtld_relocate_plt_object(const Obj_Entry *,
136    const Elf_Rela *, Elf_Addr *);
137
138void
139_rtld_setup_pltgot(const Obj_Entry *obj)
140{
141	/*
142	 * PLTGOT is the PLT on the sparc.
143	 * The first entry holds the call the dynamic linker.
144	 * We construct a `call' sequence that transfers
145	 * to `_rtld_bind_start()'.
146	 * The second entry holds the object identification.
147	 * Note: each PLT entry is three words long.
148	 */
149#define SAVE	0x9de3bfa0	/* i.e. `save %sp,-96,%sp' */
150#define CALL	0x40000000
151#define NOP	0x01000000
152	obj->pltgot[0] = SAVE;
153	obj->pltgot[1] = CALL |
154	    ((Elf_Addr) &_rtld_bind_start - (Elf_Addr) &obj->pltgot[1]) >> 2;
155	obj->pltgot[2] = NOP;
156	obj->pltgot[3] = (Elf_Addr) obj;
157}
158
159void
160_rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
161{
162	const Elf_Rela *rela = 0, *relalim;
163	Elf_Addr relasz = 0;
164	Elf_Addr *where;
165
166	for (; dynp->d_tag != DT_NULL; dynp++) {
167		switch (dynp->d_tag) {
168		case DT_RELA:
169			rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
170			break;
171		case DT_RELASZ:
172			relasz = dynp->d_un.d_val;
173			break;
174		}
175	}
176	relalim = (const Elf_Rela *)((caddr_t)rela + relasz);
177	for (; rela < relalim; rela++) {
178		where = (Elf_Addr *)(relocbase + rela->r_offset);
179		*where += (Elf_Addr)(relocbase + rela->r_addend);
180	}
181}
182
183int
184_rtld_relocate_nonplt_objects(const Obj_Entry *obj)
185{
186	const Elf_Rela *rela;
187
188	for (rela = obj->rela; rela < obj->relalim; rela++) {
189		Elf_Addr *where;
190		Elf_Word type, value, mask;
191		const Elf_Sym *def = NULL;
192		const Obj_Entry *defobj = NULL;
193		unsigned long	 symnum;
194
195		where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
196		symnum = ELF_R_SYM(rela->r_info);
197
198		type = ELF_R_TYPE(rela->r_info);
199		if (type == R_TYPE(NONE))
200			continue;
201
202		/* We do JMP_SLOTs in _rtld_bind() below */
203		if (type == R_TYPE(JMP_SLOT))
204			continue;
205
206		/* COPY relocs are also handled elsewhere */
207		if (type == R_TYPE(COPY))
208			continue;
209
210		/*
211		 * We use the fact that relocation types are an `enum'
212		 * Note: R_SPARC_6 is currently numerically largest.
213		 */
214		if (type > R_TYPE(6))
215			return (-1);
216
217		value = rela->r_addend;
218
219		/*
220		 * Handle relative relocs here, as an optimization.
221		 */
222		if (type == R_TYPE(RELATIVE)) {
223			*where += (Elf_Addr)(obj->relocbase + value);
224			rdbg(("RELATIVE in %s --> %p", obj->path,
225			    (void *)*where));
226			continue;
227		}
228
229		if (RELOC_RESOLVE_SYMBOL(type)) {
230
231			/* Find the symbol */
232			def = _rtld_find_symdef(symnum, obj, &defobj, false);
233			if (def == NULL)
234				return (-1);
235
236			/* Add in the symbol's absolute address */
237			value += (Elf_Word)(defobj->relocbase + def->st_value);
238		}
239
240		if (RELOC_PC_RELATIVE(type)) {
241			value -= (Elf_Word)where;
242		}
243
244		if (RELOC_BASE_RELATIVE(type)) {
245			/*
246			 * Note that even though sparcs use `Elf_rela'
247			 * exclusively we still need the implicit memory addend
248			 * in relocations referring to GOT entries.
249			 * Undoubtedly, someone f*cked this up in the distant
250			 * past, and now we're stuck with it in the name of
251			 * compatibility for all eternity..
252			 *
253			 * In any case, the implicit and explicit should be
254			 * mutually exclusive. We provide a check for that
255			 * here.
256			 */
257#define DIAGNOSTIC
258#ifdef DIAGNOSTIC
259			if (value != 0 && *where != 0) {
260				xprintf("BASE_REL(%s): where=%p, *where 0x%x, "
261					"addend=0x%x, base %p\n",
262					obj->path, where, *where,
263					rela->r_addend, obj->relocbase);
264			}
265#endif
266			value += (Elf_Word)(obj->relocbase + *where);
267		}
268
269		mask = RELOC_VALUE_BITMASK(type);
270		value >>= RELOC_VALUE_RIGHTSHIFT(type);
271		value &= mask;
272
273		if (RELOC_UNALIGNED(type)) {
274			/* Handle unaligned relocations. */
275			Elf_Addr tmp = 0;
276			char *ptr = (char *)where;
277			int i, size = RELOC_TARGET_SIZE(type)/8;
278
279			/* Read it in one byte at a time. */
280			for (i=0; i<size; i++)
281				tmp = (tmp << 8) | ptr[i];
282
283			tmp &= ~mask;
284			tmp |= value;
285
286			/* Write it back out. */
287			for (i=0; i<size; i++)
288				ptr[i] = ((tmp >> (8*i)) & 0xff);
289#ifdef RTLD_DEBUG_RELOC
290			value = (Elf_Word)tmp;
291#endif
292
293		} else {
294			*where &= ~mask;
295			*where |= value;
296#ifdef RTLD_DEBUG_RELOC
297			value = (Elf_Word)*where;
298#endif
299		}
300#ifdef RTLD_DEBUG_RELOC
301		if (RELOC_RESOLVE_SYMBOL(type)) {
302			rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
303			    obj->strtab + obj->symtab[symnum].st_name,
304			    obj->path, (void *)value, defobj->path));
305		} else {
306			rdbg(("%s in %s --> %p", reloc_names[type],
307			    obj->path, (void *)value));
308		}
309#endif
310	}
311	return (0);
312}
313
314int
315_rtld_relocate_plt_lazy(const Obj_Entry *obj)
316{
317	return (0);
318}
319
320caddr_t
321_rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
322{
323	const Elf_Rela *rela = (const Elf_Rela *)((caddr_t)obj->pltrela + reloff);
324	Elf_Addr value;
325	int err;
326
327	value = 0;	/* XXX gcc */
328
329	err = _rtld_relocate_plt_object(obj, rela, &value);
330	if (err || value == 0)
331		_rtld_die();
332
333	return (caddr_t)value;
334}
335
336int
337_rtld_relocate_plt_objects(const Obj_Entry *obj)
338{
339	const Elf_Rela *rela = obj->pltrela;
340
341	for (; rela < obj->pltrelalim; rela++)
342		if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
343			return -1;
344
345	return 0;
346}
347
348static inline int
349_rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela, Elf_Addr *tp)
350{
351	const Elf_Sym *def;
352	const Obj_Entry *defobj;
353	Elf_Word *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
354	Elf_Addr value;
355
356	/* Fully resolve procedure addresses now */
357
358	assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
359
360	def = _rtld_find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, true);
361	if (def == NULL)
362		return -1;
363
364	value = (Elf_Addr)(defobj->relocbase + def->st_value);
365	rdbg(("bind now/fixup in %s --> new=%p",
366	    defobj->strtab + def->st_name, (void *)value));
367
368	/*
369	 * At the PLT entry pointed at by `where', we now construct
370	 * a direct transfer to the now fully resolved function
371	 * address.  The resulting code in the jump slot is:
372	 *
373	 *	sethi	%hi(roffset), %g1
374	 *	sethi	%hi(addr), %g1
375	 *	jmp	%g1+%lo(addr)
376	 *
377	 * We write the third instruction first, since that leaves the
378	 * previous `b,a' at the second word in place. Hence the whole
379	 * PLT slot can be atomically change to the new sequence by
380	 * writing the `sethi' instruction at word 2.
381	 */
382#define SETHI	0x03000000
383#define JMP	0x81c06000
384#define NOP	0x01000000
385	where[2] = JMP   | (value & 0x000003ff);
386	where[1] = SETHI | ((value >> 10) & 0x003fffff);
387	__asm volatile("iflush %0+8" : : "r" (where));
388	__asm volatile("iflush %0+4" : : "r" (where));
389
390	if (tp)
391		*tp = value;
392
393	return 0;
394}
395