mdreloc.c revision 1.36
1/*	$NetBSD: mdreloc.c,v 1.36 2005/08/15 10:52:42 skrll Exp $	*/
2
3/*-
4 * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *        This product includes software developed by the NetBSD
21 *        Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39#include <errno.h>
40#include <stdio.h>
41#include <stdlib.h>
42#include <string.h>
43#include <unistd.h>
44#include <sys/stat.h>
45
46#include "rtldenv.h"
47#include "debug.h"
48#include "rtld.h"
49
50/*
51 * The following table holds for each relocation type:
52 *	- the width in bits of the memory location the relocation
53 *	  applies to (not currently used)
54 *	- the number of bits the relocation value must be shifted to the
55 *	  right (i.e. discard least significant bits) to fit into
56 *	  the appropriate field in the instruction word.
57 *	- flags indicating whether
58 *		* the relocation involves a symbol
59 *		* the relocation is relative to the current position
60 *		* the relocation is for a GOT entry
61 *		* the relocation is relative to the load address
62 *
63 */
64#define _RF_S		0x80000000		/* Resolve symbol */
65#define _RF_A		0x40000000		/* Use addend */
66#define _RF_P		0x20000000		/* Location relative */
67#define _RF_G		0x10000000		/* GOT offset */
68#define _RF_B		0x08000000		/* Load address relative */
69#define _RF_U		0x04000000		/* Unaligned */
70#define _RF_SZ(s)	(((s) & 0xff) << 8)	/* memory target size */
71#define _RF_RS(s)	( (s) & 0xff)		/* right shift */
72static const int reloc_target_flags[] = {
73	0,							/* NONE */
74	_RF_S|_RF_A|		_RF_SZ(8)  | _RF_RS(0),		/* RELOC_8 */
75	_RF_S|_RF_A|		_RF_SZ(16) | _RF_RS(0),		/* RELOC_16 */
76	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* RELOC_32 */
77	_RF_S|_RF_A|_RF_P|	_RF_SZ(8)  | _RF_RS(0),		/* DISP_8 */
78	_RF_S|_RF_A|_RF_P|	_RF_SZ(16) | _RF_RS(0),		/* DISP_16 */
79	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* DISP_32 */
80	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_30 */
81	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_22 */
82	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HI22 */
83	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 22 */
84	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 13 */
85	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LO10 */
86	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT10 */
87	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT13 */
88	_RF_G|			_RF_SZ(32) | _RF_RS(10),	/* GOT22 */
89	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PC10 */
90	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC22 */
91	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WPLT30 */
92				_RF_SZ(32) | _RF_RS(0),		/* COPY */
93	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* GLOB_DAT */
94				_RF_SZ(32) | _RF_RS(0),		/* JMP_SLOT */
95	      _RF_A|	_RF_B|	_RF_SZ(32) | _RF_RS(0),		/* RELATIVE */
96	_RF_S|_RF_A|	_RF_U|	_RF_SZ(32) | _RF_RS(0),		/* UA_32 */
97};
98
99#ifdef RTLD_DEBUG_RELOC
100static const char *reloc_names[] = {
101	"NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
102	"DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
103	"22", "13", "LO10", "GOT10", "GOT13",
104	"GOT22", "PC10", "PC22", "WPLT30", "COPY",
105	"GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32"
106};
107#endif
108
109#define RELOC_RESOLVE_SYMBOL(t)		((reloc_target_flags[t] & _RF_S) != 0)
110#define RELOC_PC_RELATIVE(t)		((reloc_target_flags[t] & _RF_P) != 0)
111#define RELOC_BASE_RELATIVE(t)		((reloc_target_flags[t] & _RF_B) != 0)
112#define RELOC_UNALIGNED(t)		((reloc_target_flags[t] & _RF_U) != 0)
113#define RELOC_USE_ADDEND(t)		((reloc_target_flags[t] & _RF_A) != 0)
114#define RELOC_TARGET_SIZE(t)		((reloc_target_flags[t] >> 8) & 0xff)
115#define RELOC_VALUE_RIGHTSHIFT(t)	(reloc_target_flags[t] & 0xff)
116
117static const int reloc_target_bitmask[] = {
118#define _BM(x)	(~(-(1ULL << (x))))
119	0,				/* NONE */
120	_BM(8), _BM(16), _BM(32),	/* RELOC_8, _16, _32 */
121	_BM(8), _BM(16), _BM(32),	/* DISP8, DISP16, DISP32 */
122	_BM(30), _BM(22),		/* WDISP30, WDISP22 */
123	_BM(22), _BM(22),		/* HI22, _22 */
124	_BM(13), _BM(10),		/* RELOC_13, _LO10 */
125	_BM(10), _BM(13), _BM(22),	/* GOT10, GOT13, GOT22 */
126	_BM(10), _BM(22),		/* _PC10, _PC22 */
127	_BM(30), 0,			/* _WPLT30, _COPY */
128	-1, -1, -1,			/* _GLOB_DAT, JMP_SLOT, _RELATIVE */
129	_BM(32)				/* _UA32 */
130#undef _BM
131};
132#define RELOC_VALUE_BITMASK(t)	(reloc_target_bitmask[t])
133
134void _rtld_bind_start(void);
135void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
136caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
137static inline int _rtld_relocate_plt_object(const Obj_Entry *,
138    const Elf_Rela *, Elf_Addr *);
139
140void
141_rtld_setup_pltgot(const Obj_Entry *obj)
142{
143	/*
144	 * PLTGOT is the PLT on the sparc.
145	 * The first entry holds the call the dynamic linker.
146	 * We construct a `call' sequence that transfers
147	 * to `_rtld_bind_start()'.
148	 * The second entry holds the object identification.
149	 * Note: each PLT entry is three words long.
150	 */
151#define SAVE	0x9de3bfa0	/* i.e. `save %sp,-96,%sp' */
152#define CALL	0x40000000
153#define NOP	0x01000000
154	obj->pltgot[0] = SAVE;
155	obj->pltgot[1] = CALL |
156	    ((Elf_Addr) &_rtld_bind_start - (Elf_Addr) &obj->pltgot[1]) >> 2;
157	obj->pltgot[2] = NOP;
158	obj->pltgot[3] = (Elf_Addr) obj;
159}
160
161void
162_rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
163{
164	const Elf_Rela *rela = 0, *relalim;
165	Elf_Addr relasz = 0;
166	Elf_Addr *where;
167
168	for (; dynp->d_tag != DT_NULL; dynp++) {
169		switch (dynp->d_tag) {
170		case DT_RELA:
171			rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
172			break;
173		case DT_RELASZ:
174			relasz = dynp->d_un.d_val;
175			break;
176		}
177	}
178	relalim = (const Elf_Rela *)((caddr_t)rela + relasz);
179	for (; rela < relalim; rela++) {
180		where = (Elf_Addr *)(relocbase + rela->r_offset);
181		*where += (Elf_Addr)(relocbase + rela->r_addend);
182	}
183}
184
185int
186_rtld_relocate_nonplt_objects(const Obj_Entry *obj)
187{
188	const Elf_Rela *rela;
189
190	for (rela = obj->rela; rela < obj->relalim; rela++) {
191		Elf_Addr *where;
192		Elf_Word type, value, mask;
193		const Elf_Sym *def = NULL;
194		const Obj_Entry *defobj = NULL;
195		unsigned long	 symnum;
196
197		where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
198		symnum = ELF_R_SYM(rela->r_info);
199
200		type = ELF_R_TYPE(rela->r_info);
201		if (type == R_TYPE(NONE))
202			continue;
203
204		/* We do JMP_SLOTs in _rtld_bind() below */
205		if (type == R_TYPE(JMP_SLOT))
206			continue;
207
208		/* COPY relocs are also handled elsewhere */
209		if (type == R_TYPE(COPY))
210			continue;
211
212		/*
213		 * We use the fact that relocation types are an `enum'
214		 * Note: R_SPARC_6 is currently numerically largest.
215		 */
216		if (type > R_TYPE(6))
217			return (-1);
218
219		value = rela->r_addend;
220
221		/*
222		 * Handle relative relocs here, as an optimization.
223		 */
224		if (type == R_TYPE(RELATIVE)) {
225			*where += (Elf_Addr)(obj->relocbase + value);
226			rdbg(("RELATIVE in %s --> %p", obj->path,
227			    (void *)*where));
228			continue;
229		}
230
231		if (RELOC_RESOLVE_SYMBOL(type)) {
232
233			/* Find the symbol */
234			def = _rtld_find_symdef(symnum, obj, &defobj, false);
235			if (def == NULL)
236				return (-1);
237
238			/* Add in the symbol's absolute address */
239			value += (Elf_Word)(defobj->relocbase + def->st_value);
240		}
241
242		if (RELOC_PC_RELATIVE(type)) {
243			value -= (Elf_Word)where;
244		}
245
246		if (RELOC_BASE_RELATIVE(type)) {
247			/*
248			 * Note that even though sparcs use `Elf_rela'
249			 * exclusively we still need the implicit memory addend
250			 * in relocations referring to GOT entries.
251			 * Undoubtedly, someone f*cked this up in the distant
252			 * past, and now we're stuck with it in the name of
253			 * compatibility for all eternity..
254			 *
255			 * In any case, the implicit and explicit should be
256			 * mutually exclusive. We provide a check for that
257			 * here.
258			 */
259#define DIAGNOSTIC
260#ifdef DIAGNOSTIC
261			if (value != 0 && *where != 0) {
262				xprintf("BASE_REL(%s): where=%p, *where 0x%x, "
263					"addend=0x%x, base %p\n",
264					obj->path, where, *where,
265					rela->r_addend, obj->relocbase);
266			}
267#endif
268			value += (Elf_Word)(obj->relocbase + *where);
269		}
270
271		mask = RELOC_VALUE_BITMASK(type);
272		value >>= RELOC_VALUE_RIGHTSHIFT(type);
273		value &= mask;
274
275		if (RELOC_UNALIGNED(type)) {
276			/* Handle unaligned relocations. */
277			Elf_Addr tmp = 0;
278			char *ptr = (char *)where;
279			int i, size = RELOC_TARGET_SIZE(type)/8;
280
281			/* Read it in one byte at a time. */
282			for (i=0; i<size; i++)
283				tmp = (tmp << 8) | ptr[i];
284
285			tmp &= ~mask;
286			tmp |= value;
287
288			/* Write it back out. */
289			for (i=0; i<size; i++)
290				ptr[i] = ((tmp >> (8*i)) & 0xff);
291#ifdef RTLD_DEBUG_RELOC
292			value = (Elf_Word)tmp;
293#endif
294
295		} else {
296			*where &= ~mask;
297			*where |= value;
298#ifdef RTLD_DEBUG_RELOC
299			value = (Elf_Word)*where;
300#endif
301		}
302#ifdef RTLD_DEBUG_RELOC
303		if (RELOC_RESOLVE_SYMBOL(type)) {
304			rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
305			    obj->strtab + obj->symtab[symnum].st_name,
306			    obj->path, (void *)value, defobj->path));
307		} else {
308			rdbg(("%s in %s --> %p", reloc_names[type],
309			    obj->path, (void *)value));
310		}
311#endif
312	}
313	return (0);
314}
315
316int
317_rtld_relocate_plt_lazy(const Obj_Entry *obj)
318{
319	return (0);
320}
321
322caddr_t
323_rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
324{
325	const Elf_Rela *rela = (const Elf_Rela *)((caddr_t)obj->pltrela + reloff);
326	Elf_Addr value;
327	int err;
328
329	err = _rtld_relocate_plt_object(obj, rela, &value);
330	if (err)
331		_rtld_die();
332
333	return (caddr_t)value;
334}
335
336int
337_rtld_relocate_plt_objects(const Obj_Entry *obj)
338{
339	const Elf_Rela *rela = obj->pltrela;
340
341	for (; rela < obj->pltrelalim; rela++)
342		if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
343			return -1;
344
345	return 0;
346}
347
348static inline int
349_rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela, Elf_Addr *tp)
350{
351	const Elf_Sym *def;
352	const Obj_Entry *defobj;
353	Elf_Word *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
354	Elf_Addr value;
355
356	/* Fully resolve procedure addresses now */
357
358	assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
359
360	def = _rtld_find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, true);
361	if (def == NULL)
362		return -1;
363
364	value = (Elf_Addr)(defobj->relocbase + def->st_value);
365	rdbg(("bind now/fixup in %s --> new=%p",
366	    defobj->strtab + def->st_name, (void *)value));
367
368	/*
369	 * At the PLT entry pointed at by `where', we now construct
370	 * a direct transfer to the now fully resolved function
371	 * address.  The resulting code in the jump slot is:
372	 *
373	 *	sethi	%hi(roffset), %g1
374	 *	sethi	%hi(addr), %g1
375	 *	jmp	%g1+%lo(addr)
376	 *
377	 * We write the third instruction first, since that leaves the
378	 * previous `b,a' at the second word in place. Hence the whole
379	 * PLT slot can be atomically change to the new sequence by
380	 * writing the `sethi' instruction at word 2.
381	 */
382#define SETHI	0x03000000
383#define JMP	0x81c06000
384#define NOP	0x01000000
385	where[2] = JMP   | (value & 0x000003ff);
386	where[1] = SETHI | ((value >> 10) & 0x003fffff);
387	__asm __volatile("iflush %0+8" : : "r" (where));
388	__asm __volatile("iflush %0+4" : : "r" (where));
389
390	if (tp)
391		*tp = value;
392
393	return 0;
394}
395