mdreloc.c revision 1.30
1/*	$NetBSD: mdreloc.c,v 1.30 2002/09/26 02:05:41 mycroft Exp $	*/
2
3/*-
4 * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *        This product includes software developed by the NetBSD
21 *        Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39#include <errno.h>
40#include <stdio.h>
41#include <stdlib.h>
42#include <string.h>
43#include <unistd.h>
44#include <sys/stat.h>
45
46#include "rtldenv.h"
47#include "debug.h"
48#include "rtld.h"
49
50/*
51 * The following table holds for each relocation type:
52 *	- the width in bits of the memory location the relocation
53 *	  applies to (not currently used)
54 *	- the number of bits the relocation value must be shifted to the
55 *	  right (i.e. discard least significant bits) to fit into
56 *	  the appropriate field in the instruction word.
57 *	- flags indicating whether
58 *		* the relocation involves a symbol
59 *		* the relocation is relative to the current position
60 *		* the relocation is for a GOT entry
61 *		* the relocation is relative to the load address
62 *
63 */
64#define _RF_S		0x80000000		/* Resolve symbol */
65#define _RF_A		0x40000000		/* Use addend */
66#define _RF_P		0x20000000		/* Location relative */
67#define _RF_G		0x10000000		/* GOT offset */
68#define _RF_B		0x08000000		/* Load address relative */
69#define _RF_SZ(s)	(((s) & 0xff) << 8)	/* memory target size */
70#define _RF_RS(s)	( (s) & 0xff)		/* right shift */
71static const int reloc_target_flags[] = {
72	0,							/* NONE */
73	_RF_S|_RF_A|		_RF_SZ(8)  | _RF_RS(0),		/* RELOC_8 */
74	_RF_S|_RF_A|		_RF_SZ(16) | _RF_RS(0),		/* RELOC_16 */
75	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* RELOC_32 */
76	_RF_S|_RF_A|_RF_P|	_RF_SZ(8)  | _RF_RS(0),		/* DISP_8 */
77	_RF_S|_RF_A|_RF_P|	_RF_SZ(16) | _RF_RS(0),		/* DISP_16 */
78	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* DISP_32 */
79	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_30 */
80	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_22 */
81	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HI22 */
82	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 22 */
83	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 13 */
84	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LO10 */
85	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT10 */
86	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT13 */
87	_RF_G|			_RF_SZ(32) | _RF_RS(10),	/* GOT22 */
88	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PC10 */
89	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC22 */
90	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WPLT30 */
91				_RF_SZ(32) | _RF_RS(0),		/* COPY */
92	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* GLOB_DAT */
93				_RF_SZ(32) | _RF_RS(0),		/* JMP_SLOT */
94	      _RF_A|	_RF_B|	_RF_SZ(32) | _RF_RS(0),		/* RELATIVE */
95	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* UA_32 */
96
97	/*unknown*/		_RF_SZ(32) | _RF_RS(0),		/* PLT32 */
98	/*unknown*/		_RF_SZ(32) | _RF_RS(0),		/* HIPLT22 */
99	/*unknown*/		_RF_SZ(32) | _RF_RS(0),		/* LOPLT10 */
100	/*unknown*/		_RF_SZ(32) | _RF_RS(0),		/* LOPLT10 */
101	/*unknown*/		_RF_SZ(32) | _RF_RS(0),		/* PCPLT22 */
102	/*unknown*/		_RF_SZ(32) | _RF_RS(0),		/* PCPLT32 */
103	_RF_S|_RF_A|/*unknown*/	_RF_SZ(32) | _RF_RS(0),		/* 10 */
104	_RF_S|_RF_A|/*unknown*/	_RF_SZ(32) | _RF_RS(0),		/* 11 */
105	_RF_S|_RF_A|/*unknown*/	_RF_SZ(32) | _RF_RS(0),		/* 64 */
106	_RF_S|_RF_A|/*unknown*/	_RF_SZ(32) | _RF_RS(0),		/* OLO10 */
107	_RF_S|_RF_A|/*unknown*/	_RF_SZ(32) | _RF_RS(0),		/* HH22 */
108	_RF_S|_RF_A|/*unknown*/	_RF_SZ(32) | _RF_RS(0),		/* HM10 */
109	_RF_S|_RF_A|/*unknown*/	_RF_SZ(32) | _RF_RS(0),		/* LM22 */
110	_RF_S|_RF_A|_RF_P|/*unknown*/	_RF_SZ(32) | _RF_RS(0),	/* WDISP16 */
111	_RF_S|_RF_A|_RF_P|/*unknown*/	_RF_SZ(32) | _RF_RS(0),	/* WDISP19 */
112	/*unknown*/		_RF_SZ(32) | _RF_RS(0),		/* GLOB_JMP */
113	/*unknown*/		_RF_SZ(32) | _RF_RS(0),		/* 7 */
114	/*unknown*/		_RF_SZ(32) | _RF_RS(0),		/* 5 */
115	/*unknown*/		_RF_SZ(32) | _RF_RS(0),		/* 6 */
116};
117
118#ifdef RTLD_DEBUG_RELOC
119static const char *reloc_names[] = {
120	"NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
121	"DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
122	"22", "13", "LO10", "GOT10", "GOT13",
123	"GOT22", "PC10", "PC22", "WPLT30", "COPY",
124	"GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
125	"HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
126	"10", "11", "64", "OLO10", "HH22",
127	"HM10", "LM22", "WDISP16", "WDISP19", "GLOB_JMP",
128	"7", "5", "6"
129};
130#endif
131
132#define RELOC_RESOLVE_SYMBOL(t)		((reloc_target_flags[t] & _RF_S) != 0)
133#define RELOC_PC_RELATIVE(t)		((reloc_target_flags[t] & _RF_P) != 0)
134#define RELOC_BASE_RELATIVE(t)		((reloc_target_flags[t] & _RF_B) != 0)
135#define RELOC_TARGET_SIZE(t)		((reloc_target_flags[t] >> 8) & 0xff)
136#define RELOC_VALUE_RIGHTSHIFT(t)	(reloc_target_flags[t] & 0xff)
137
138static const int reloc_target_bitmask[] = {
139#define _BM(x)	(~(-(1ULL << (x))))
140	0,				/* NONE */
141	_BM(8), _BM(16), _BM(32),	/* RELOC_8, _16, _32 */
142	_BM(8), _BM(16), _BM(32),	/* DISP8, DISP16, DISP32 */
143	_BM(30), _BM(22),		/* WDISP30, WDISP22 */
144	_BM(22), _BM(22),		/* HI22, _22 */
145	_BM(13), _BM(10),		/* RELOC_13, _LO10 */
146	_BM(10), _BM(13), _BM(22),	/* GOT10, GOT13, GOT22 */
147	_BM(10), _BM(22),		/* _PC10, _PC22 */
148	_BM(30), 0,			/* _WPLT30, _COPY */
149	-1, -1, -1,			/* _GLOB_DAT, JMP_SLOT, _RELATIVE */
150	_BM(32), _BM(32),		/* _UA32, PLT32 */
151	_BM(22), _BM(10),		/* _HIPLT22, LOPLT10 */
152	_BM(32), _BM(22), _BM(10),	/* _PCPLT32, _PCPLT22, _PCPLT10 */
153	_BM(10), _BM(11), -1,		/* _10, _11, _64 */
154	_BM(10), _BM(22),		/* _OLO10, _HH22 */
155	_BM(10), _BM(22),		/* _HM10, _LM22 */
156	_BM(16), _BM(19),		/* _WDISP16, _WDISP19 */
157	-1,				/* GLOB_JMP */
158	_BM(7), _BM(5), _BM(6)		/* _7, _5, _6 */
159#undef _BM
160};
161#define RELOC_VALUE_BITMASK(t)	(reloc_target_bitmask[t])
162
163void _rtld_bind_start(void);
164void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
165caddr_t _rtld_bind __P((const Obj_Entry *, Elf_Word));
166
167void
168_rtld_setup_pltgot(const Obj_Entry *obj)
169{
170	/*
171	 * PLTGOT is the PLT on the sparc.
172	 * The first entry holds the call the dynamic linker.
173	 * We construct a `call' sequence that transfers
174	 * to `_rtld_bind_start()'.
175	 * The second entry holds the object identification.
176	 * Note: each PLT entry is three words long.
177	 */
178#define SAVE	0x9de3bfa0	/* i.e. `save %sp,-96,%sp' */
179#define CALL	0x40000000
180#define NOP	0x01000000
181	obj->pltgot[0] = SAVE;
182	obj->pltgot[1] = CALL |
183	    ((Elf_Addr) &_rtld_bind_start - (Elf_Addr) &obj->pltgot[1]) >> 2;
184	obj->pltgot[2] = NOP;
185	obj->pltgot[3] = (Elf_Addr) obj;
186}
187
188void
189_rtld_relocate_nonplt_self(dynp, relocbase)
190	Elf_Dyn *dynp;
191	Elf_Addr relocbase;
192{
193	const Elf_Rela *rela = 0, *relalim;
194	Elf_Addr relasz = 0;
195	Elf_Addr *where;
196
197	for (; dynp->d_tag != DT_NULL; dynp++) {
198		switch (dynp->d_tag) {
199		case DT_RELA:
200			rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
201			break;
202		case DT_RELASZ:
203			relasz = dynp->d_un.d_val;
204			break;
205		}
206	}
207	relalim = (const Elf_Rela *)((caddr_t)rela + relasz);
208	for (; rela < relalim; rela++) {
209		where = (Elf_Addr *)(relocbase + rela->r_offset);
210		*where += (Elf_Addr)(relocbase + rela->r_addend);
211	}
212}
213
214int
215_rtld_relocate_nonplt_objects(obj, self)
216	const Obj_Entry *obj;
217	bool self;
218{
219	const Elf_Rela *rela;
220
221	if (self)
222		return (0);
223
224	for (rela = obj->rela; rela < obj->relalim; rela++) {
225		Elf_Addr *where;
226		Elf_Word type, value, mask;
227		const Elf_Sym *def = NULL;
228		const Obj_Entry *defobj = NULL;
229		unsigned long	 symnum;
230
231		where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
232		symnum = ELF_R_SYM(rela->r_info);
233
234		type = ELF_R_TYPE(rela->r_info);
235		if (type == R_TYPE(NONE))
236			continue;
237
238		/* We do JMP_SLOTs in _rtld_bind() below */
239		if (type == R_TYPE(JMP_SLOT))
240			continue;
241
242		/* COPY relocs are also handled elsewhere */
243		if (type == R_TYPE(COPY))
244			continue;
245
246		/*
247		 * We use the fact that relocation types are an `enum'
248		 * Note: R_SPARC_6 is currently numerically largest.
249		 */
250		if (type > R_TYPE(6))
251			return (-1);
252
253		value = rela->r_addend;
254
255		/*
256		 * Handle relative relocs here, as an optimization.
257		 */
258		if (type == R_TYPE(RELATIVE)) {
259			*where += (Elf_Addr)(obj->relocbase + value);
260			rdbg(("RELATIVE in %s --> %p", obj->path,
261			    (void *)*where));
262			continue;
263		}
264
265		if (RELOC_RESOLVE_SYMBOL(type)) {
266
267			/* Find the symbol */
268			def = _rtld_find_symdef(symnum, obj, &defobj, false);
269			if (def == NULL)
270				return (-1);
271
272			/* Add in the symbol's absolute address */
273			value += (Elf_Word)(defobj->relocbase + def->st_value);
274		}
275
276		if (RELOC_PC_RELATIVE(type)) {
277			value -= (Elf_Word)where;
278		}
279
280		if (RELOC_BASE_RELATIVE(type)) {
281			/*
282			 * Note that even though sparcs use `Elf_rela'
283			 * exclusively we still need the implicit memory addend
284			 * in relocations referring to GOT entries.
285			 * Undoubtedly, someone f*cked this up in the distant
286			 * past, and now we're stuck with it in the name of
287			 * compatibility for all eternity..
288			 *
289			 * In any case, the implicit and explicit should be
290			 * mutually exclusive. We provide a check for that
291			 * here.
292			 */
293#define DIAGNOSTIC
294#ifdef DIAGNOSTIC
295			if (value != 0 && *where != 0) {
296				xprintf("BASE_REL(%s): where=%p, *where 0x%x, "
297					"addend=0x%x, base %p\n",
298					obj->path, where, *where,
299					rela->r_addend, obj->relocbase);
300			}
301#endif
302			value += (Elf_Word)(obj->relocbase + *where);
303		}
304
305		mask = RELOC_VALUE_BITMASK(type);
306		value >>= RELOC_VALUE_RIGHTSHIFT(type);
307		value &= mask;
308
309		/* We ignore alignment restrictions here */
310		*where &= ~mask;
311		*where |= value;
312#ifdef RTLD_DEBUG_RELOC
313		if (RELOC_RESOLVE_SYMBOL(type)) {
314			rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
315			    obj->strtab + obj->symtab[symnum].st_name,
316			    obj->path, (void *)*where, defobj->path));
317		} else {
318			rdbg(("%s in %s --> %p", reloc_names[type],
319			    obj->path, (void *)*where));
320		}
321#endif
322	}
323	return (0);
324}
325
326int
327_rtld_relocate_plt_lazy(obj)
328	const Obj_Entry *obj;
329{
330	return (0);
331}
332
333caddr_t
334_rtld_bind(obj, reloff)
335	const Obj_Entry *obj;
336	Elf_Word reloff;
337{
338	const Elf_Rela *rela = (const Elf_Rela *)((caddr_t)obj->pltrela + reloff);
339	const Elf_Sym *def;
340	const Obj_Entry *defobj;
341	Elf_Word *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
342	Elf_Addr value;
343
344	/* Fully resolve procedure addresses now */
345
346	assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
347
348	def = _rtld_find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, true);
349	if (def == NULL)
350		_rtld_die();
351
352	value = (Elf_Addr)(defobj->relocbase + def->st_value);
353	rdbg(("bind now/fixup in %s --> old=%p new=%p",
354	    defobj->strtab + def->st_name, (void *)*where, (void *)value));
355
356	/*
357	 * At the PLT entry pointed at by `where', we now construct
358	 * a direct transfer to the now fully resolved function
359	 * address.  The resulting code in the jump slot is:
360	 *
361	 *	sethi	%hi(roffset), %g1
362	 *	sethi	%hi(addr), %g1
363	 *	jmp	%g1+%lo(addr)
364	 *
365	 * We write the third instruction first, since that leaves the
366	 * previous `b,a' at the second word in place. Hence the whole
367	 * PLT slot can be atomically change to the new sequence by
368	 * writing the `sethi' instruction at word 2.
369	 */
370#define SETHI	0x03000000
371#define JMP	0x81c06000
372#define NOP	0x01000000
373	where[2] = JMP   | (value & 0x000003ff);
374	where[1] = SETHI | ((value >> 10) & 0x003fffff);
375	__asm __volatile("iflush %0+8" : : "r" (where));
376	__asm __volatile("iflush %0+4" : : "r" (where));
377
378	return (caddr_t)value;
379}
380