alpha_reloc.c revision 1.34
1/*	$NetBSD: alpha_reloc.c,v 1.34 2010/01/13 20:17:21 christos Exp $	*/
2
3/*
4 * Copyright (c) 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed for the NetBSD Project by
20 *	Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 *    or promote products derived from this software without specific prior
23 *    written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38/*
39 * Copyright 1996, 1997, 1998, 1999 John D. Polstra.
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 *    notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 *    notice, this list of conditions and the following disclaimer in the
49 *    documentation and/or other materials provided with the distribution.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
53 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
54 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
55 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
60 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 */
62
63#include <sys/cdefs.h>
64#ifndef lint
65__RCSID("$NetBSD: alpha_reloc.c,v 1.34 2010/01/13 20:17:21 christos Exp $");
66#endif /* not lint */
67
68#include <sys/types.h>
69#include <sys/stat.h>
70#include <string.h>
71
72#include "rtld.h"
73#include "debug.h"
74
75#ifdef RTLD_DEBUG_ALPHA
76#define	adbg(x)		xprintf x
77#else
78#define	adbg(x)		/* nothing */
79#endif
80
81void _rtld_bind_start(void);
82void _rtld_bind_start_old(void);
83void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
84caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
85static inline int _rtld_relocate_plt_object(const Obj_Entry *,
86    const Elf_Rela *, Elf_Addr *);
87
88void
89_rtld_setup_pltgot(const Obj_Entry *obj)
90{
91	uint32_t word0;
92
93	/*
94	 * The PLTGOT on the Alpha looks like this:
95	 *
96	 *	PLT HEADER
97	 *	.
98	 *	. 32 bytes
99	 *	.
100	 *	PLT ENTRY #0
101	 *	.
102	 *	. 12 bytes
103	 *	.
104	 *	PLT ENTRY #1
105	 *	.
106	 *	. 12 bytes
107	 *	.
108	 *	etc.
109	 *
110	 * The old-format entries look like (displacements filled in
111	 * by the linker):
112	 *
113	 *	ldah	$28, 0($31)		# 0x279f0000
114	 *	lda	$28, 0($28)		# 0x239c0000
115	 *	br	$31, plt0		# 0xc3e00000
116	 *
117	 * The new-format entries look like:
118	 *
119	 *	br	$28, plt0		# 0xc3800000
120	 *					# 0x00000000
121	 *					# 0x00000000
122	 *
123	 * What we do is fetch the first PLT entry and check to
124	 * see the first word of it matches the first word of the
125	 * old format.  If so, we use a binding routine that can
126	 * handle the old format, otherwise we use a binding routine
127	 * that handles the new format.
128	 *
129	 * Note that this is done on a per-object basis, we can mix
130	 * and match shared objects build with both the old and new
131	 * linker.
132	 */
133	word0 = *(uint32_t *)(((char *) obj->pltgot) + 32);
134	if ((word0 & 0xffff0000) == 0x279f0000) {
135		/* Old PLT entry format. */
136		adbg(("ALPHA: object %p has old PLT format\n", obj));
137		obj->pltgot[2] = (Elf_Addr) &_rtld_bind_start_old;
138		obj->pltgot[3] = (Elf_Addr) obj;
139	} else {
140		/* New PLT entry format. */
141		adbg(("ALPHA: object %p has new PLT format\n", obj));
142		obj->pltgot[2] = (Elf_Addr) &_rtld_bind_start;
143		obj->pltgot[3] = (Elf_Addr) obj;
144	}
145
146	__asm volatile("imb");
147}
148
149/*
150 * It is possible for the compiler to emit relocations for unaligned data.
151 * We handle this situation with these inlines.
152 */
153#define	RELOC_ALIGNED_P(x) \
154	(((uintptr_t)(x) & (sizeof(void *) - 1)) == 0)
155
156static inline Elf_Addr
157load_ptr(void *where)
158{
159	Elf_Addr res;
160
161	memcpy(&res, where, sizeof(res));
162
163	return (res);
164}
165
166static inline void
167store_ptr(void *where, Elf_Addr val)
168{
169
170	memcpy(where, &val, sizeof(val));
171}
172
173void
174_rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
175{
176	const Elf_Rela *rela = 0, *relalim;
177	Elf_Addr relasz = 0;
178	Elf_Addr *where;
179
180	for (; dynp->d_tag != DT_NULL; dynp++) {
181		switch (dynp->d_tag) {
182		case DT_RELA:
183			rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
184			break;
185		case DT_RELASZ:
186			relasz = dynp->d_un.d_val;
187			break;
188		}
189	}
190	relalim = (const Elf_Rela *)((const uint8_t *)rela + relasz);
191	for (; rela < relalim; rela++) {
192		where = (Elf_Addr *)(relocbase + rela->r_offset);
193		/* XXX For some reason I see a few GLOB_DAT relocs here. */
194		*where += (Elf_Addr)relocbase;
195	}
196}
197
198int
199_rtld_relocate_nonplt_objects(const Obj_Entry *obj)
200{
201	const Elf_Rela *rela;
202	Elf_Addr target = -1;
203
204	for (rela = obj->rela; rela < obj->relalim; rela++) {
205		Elf_Addr        *where;
206		const Elf_Sym   *def;
207		const Obj_Entry *defobj;
208		Elf_Addr         tmp;
209		unsigned long	 symnum;
210
211		where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
212		symnum = ELF_R_SYM(rela->r_info);
213
214		switch (ELF_R_TYPE(rela->r_info)) {
215		case R_TYPE(NONE):
216			break;
217
218		case R_TYPE(REFQUAD):
219		case R_TYPE(GLOB_DAT):
220			def = _rtld_find_symdef(symnum, obj, &defobj, false);
221			if (def == NULL)
222				return -1;
223			target = (Elf_Addr)(defobj->relocbase +
224			    def->st_value);
225
226			tmp = target + rela->r_addend;
227			if (__predict_true(RELOC_ALIGNED_P(where))) {
228				if (*where != tmp)
229					*where = tmp;
230			} else {
231				if (load_ptr(where) != tmp)
232					store_ptr(where, tmp);
233			}
234			rdbg(("REFQUAD/GLOB_DAT %s in %s --> %p in %s",
235			    obj->strtab + obj->symtab[symnum].st_name,
236			    obj->path, (void *)tmp, defobj->path));
237			break;
238
239		case R_TYPE(RELATIVE):
240			if (__predict_true(RELOC_ALIGNED_P(where)))
241				*where += (Elf_Addr)obj->relocbase;
242			else
243				store_ptr(where,
244				    load_ptr(where) + (Elf_Addr)obj->relocbase);
245			rdbg(("RELATIVE in %s --> %p", obj->path,
246			    (void *)*where));
247			break;
248
249		case R_TYPE(COPY):
250			/*
251			 * These are deferred until all other relocations have
252			 * been done.  All we do here is make sure that the
253			 * COPY relocation is not in a shared library.  They
254			 * are allowed only in executable files.
255			 */
256			if (obj->isdynamic) {
257				_rtld_error(
258			"%s: Unexpected R_COPY relocation in shared library",
259				    obj->path);
260				return -1;
261			}
262			rdbg(("COPY (avoid in main)"));
263			break;
264
265		default:
266			rdbg(("sym = %lu, type = %lu, offset = %p, "
267			    "addend = %p, contents = %p, symbol = %s",
268			    symnum, (u_long)ELF_R_TYPE(rela->r_info),
269			    (void *)rela->r_offset, (void *)rela->r_addend,
270			    (void *)load_ptr(where),
271			    obj->strtab + obj->symtab[symnum].st_name));
272			_rtld_error("%s: Unsupported relocation type %ld "
273			    "in non-PLT relocations",
274			    obj->path, (u_long) ELF_R_TYPE(rela->r_info));
275			return -1;
276		}
277	}
278	return 0;
279}
280
281int
282_rtld_relocate_plt_lazy(const Obj_Entry *obj)
283{
284	const Elf_Rela *rela;
285
286	if (!obj->relocbase)
287		return 0;
288
289	for (rela = obj->pltrela; rela < obj->pltrelalim; rela++) {
290		Elf_Addr *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
291
292		assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
293
294		/* Just relocate the GOT slots pointing into the PLT */
295		*where += (Elf_Addr)obj->relocbase;
296		rdbg(("fixup !main in %s --> %p", obj->path, (void *)*where));
297	}
298
299	return 0;
300}
301
302static inline int
303_rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela, Elf_Addr *tp)
304{
305	Elf_Addr *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
306	Elf_Addr new_value;
307	const Elf_Sym *def;
308	const Obj_Entry *defobj;
309	Elf_Addr stubaddr;
310	unsigned long info = rela->r_info;
311
312	assert(ELF_R_TYPE(info) == R_TYPE(JMP_SLOT));
313
314	def = _rtld_find_plt_symdef(ELF_R_SYM(info), obj, &defobj, tp != NULL);
315	if (__predict_false(def == NULL))
316		return -1;
317	if (__predict_false(def == &_rtld_sym_zero))
318		return 0;
319
320	new_value = (Elf_Addr)(defobj->relocbase + def->st_value);
321	rdbg(("bind now/fixup in %s --> old=%p new=%p",
322	    defobj->strtab + def->st_name, (void *)*where, (void *)new_value));
323
324	if ((stubaddr = *where) != new_value) {
325		int64_t delta, idisp;
326		uint32_t insn[3], *stubptr;
327		int insncnt;
328		Elf_Addr pc;
329
330		/* Point this GOT entry at the target. */
331		*where = new_value;
332
333		/*
334		 * Alpha shared objects may have multiple GOTs, each
335		 * of which may point to this entry in the PLT.  But,
336		 * we only have a reference to the first GOT entry which
337		 * points to this PLT entry.  In order to avoid having to
338		 * re-bind this call every time a non-first GOT entry is
339		 * used, we will attempt to patch up the PLT entry to
340		 * reference the target, rather than the binder.
341		 *
342		 * When the PLT stub gets control, PV contains the address
343		 * of the PLT entry.  Each PLT entry has room for 3 insns.
344		 * If the displacement of the target from PV fits in a signed
345		 * 32-bit integer, we can simply add it to PV.  Otherwise,
346		 * we must load the GOT entry itself into PV.
347		 *
348		 * Note if the shared object uses the old PLT format, then
349		 * we cannot patch up the PLT safely, and so we skip it
350		 * in that case[*].
351		 *
352		 * [*] Actually, if we're not doing lazy-binding, then
353		 * we *can* (and do) patch up this PLT entry; the PLTGOT
354		 * thunk won't yet point to any binder entry point, and
355		 * so this test will fail as it would for the new PLT
356		 * entry format.
357		 */
358		if (obj->pltgot[2] == (Elf_Addr) &_rtld_bind_start_old) {
359			rdbg(("  old PLT format"));
360			goto out;
361		}
362
363		delta = new_value - stubaddr;
364		rdbg(("  stubaddr=%p, where-stubaddr=%ld, delta=%ld",
365		    (void *)stubaddr, (long)where - (long)stubaddr,
366		    (long)delta));
367		insncnt = 0;
368		if ((int32_t)delta == delta) {
369			/*
370			 * We can adjust PV with an LDA, LDAH sequence.
371			 *
372			 * First, build an LDA insn to adjust the low 16
373			 * bits.
374			 */
375			insn[insncnt++] = 0x08 << 26 | 27 << 21 | 27 << 16 |
376			    (delta & 0xffff);
377			rdbg(("  LDA  $27,%d($27)", (int16_t)delta));
378			/*
379			 * Adjust the delta to account for the effects of
380			 * the LDA, including sign-extension.
381			 */
382			delta -= (int16_t)delta;
383			if (delta != 0) {
384				/*
385				 * Build an LDAH instruction to adjust the
386				 * high 16 bits.
387				 */
388				insn[insncnt++] = 0x09 << 26 | 27 << 21 |
389				    27 << 16 | ((delta >> 16) & 0xffff);
390				rdbg(("  LDAH $27,%d($27)",
391				    (int16_t)(delta >> 16)));
392			}
393		} else {
394			int64_t dhigh;
395
396			/* We must load the GOT entry. */
397			delta = (Elf_Addr)where - stubaddr;
398
399			/*
400			 * If the GOT entry is too far away from the PLT
401			 * entry, then we can't patch up the PLT entry.
402			 * This PLT entry will have to be bound for each
403			 * GOT entry except for the first one.  This program
404			 * will still run, albeit very slowly.  It is very
405			 * unlikely that this case will ever happen in
406			 * practice.
407			 */
408			if ((int32_t)delta != delta) {
409				rdbg(("  PLT stub too far from GOT to relocate"));
410				goto out;
411			}
412			dhigh = delta - (int16_t)delta;
413			if (dhigh != 0) {
414				/*
415				 * Build an LDAH instruction to adjust the
416				 * high 16 bits.
417				 */
418				insn[insncnt++] = 0x09 << 26 | 27 << 21 |
419				    27 << 16 | ((dhigh >> 16) & 0xffff);
420				rdbg(("  LDAH $27,%d($27)",
421				    (int16_t)(dhigh >> 16)));
422			}
423			/* Build an LDQ to load the GOT entry. */
424			insn[insncnt++] = 0x29 << 26 | 27 << 21 |
425			    27 << 16 | (delta & 0xffff);
426			rdbg(("  LDQ  $27,%d($27)",
427			    (int16_t)delta));
428		}
429
430		/*
431		 * Now, build a JMP or BR insn to jump to the target.  If
432		 * the displacement fits in a sign-extended 21-bit field,
433		 * we can use the more efficient BR insn.  Otherwise, we
434		 * have to jump indirect through PV.
435		 */
436		pc = stubaddr + (4 * (insncnt + 1));
437		idisp = (int64_t)(new_value - pc) >> 2;
438		if (-0x100000 <= idisp && idisp < 0x100000) {
439			insn[insncnt++] = 0x30 << 26 | 31 << 21 |
440			    (idisp & 0x1fffff);
441			rdbg(("  BR   $31,%p", (void *)new_value));
442		} else {
443			insn[insncnt++] = 0x1a << 26 | 31 << 21 |
444			    27 << 16 | (idisp & 0x3fff);
445			rdbg(("  JMP  $31,($27),%d",
446			    (int)(idisp & 0x3fff)));
447		}
448
449		/*
450		 * Fill in the tail of the PLT entry first, for reentrancy.
451		 * Until we have overwritten the first insn (an unconditional
452		 * branch), the remaining insns have no effect.
453		 */
454		stubptr = (uint32_t *)stubaddr;
455		while (insncnt > 1) {
456			insncnt--;
457			stubptr[insncnt] = insn[insncnt];
458		}
459		/*
460		 * Commit the tail of the insn sequence to memory
461		 * before overwriting the first insn.
462		 */
463		__asm volatile("wmb" ::: "memory");
464		stubptr[0] = insn[0];
465		/*
466		 * I-stream will be sync'd when we either return from
467		 * the binder (lazy bind case) or when the PLTGOT thunk
468		 * is patched up (bind-now case).
469		 */
470	}
471out:
472	if (tp)
473		*tp = new_value;
474
475	return 0;
476}
477
478caddr_t
479_rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
480{
481	const Elf_Rela *rela =
482	    (const Elf_Rela *)((const uint8_t *)obj->pltrela + reloff);
483	Elf_Addr result;
484	int err;
485
486	err = _rtld_relocate_plt_object(obj, rela, &result);
487	if (err)
488		_rtld_die();
489
490	return (caddr_t)result;
491}
492
493int
494_rtld_relocate_plt_objects(const Obj_Entry *obj)
495{
496	const Elf_Rela *rela;
497
498	for (rela = obj->pltrela; rela < obj->pltrelalim; rela++)
499		if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
500			return -1;
501
502	return 0;
503}
504