alpha_reloc.c revision 1.23
1/*	$NetBSD: alpha_reloc.c,v 1.23 2002/10/03 20:39:22 mycroft Exp $	*/
2
3/*
4 * Copyright (c) 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed for the NetBSD Project by
20 *	Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 *    or promote products derived from this software without specific prior
23 *    written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38/*
39 * Copyright 1996, 1997, 1998, 1999 John D. Polstra.
40 * All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 *    notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 *    notice, this list of conditions and the following disclaimer in the
49 *    documentation and/or other materials provided with the distribution.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
53 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
54 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
55 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
60 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 */
62
63#include <sys/types.h>
64#include <sys/stat.h>
65#include <string.h>
66
67#include "rtld.h"
68#include "debug.h"
69
70#ifdef RTLD_DEBUG_ALPHA
71#define	adbg(x)		xprintf x
72#else
73#define	adbg(x)		/* nothing */
74#endif
75
76void _rtld_bind_start(void);
77void _rtld_bind_start_old(void);
78void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
79caddr_t _rtld_bind __P((const Obj_Entry *, Elf_Word));
80
81void
82_rtld_setup_pltgot(const Obj_Entry *obj)
83{
84	uint32_t word0;
85
86	/*
87	 * The PLTGOT on the Alpha looks like this:
88	 *
89	 *	PLT HEADER
90	 *	.
91	 *	. 32 bytes
92	 *	.
93	 *	PLT ENTRY #0
94	 *	.
95	 *	. 12 bytes
96	 *	.
97	 *	PLT ENTRY #1
98	 *	.
99	 *	. 12 bytes
100	 *	.
101	 *	etc.
102	 *
103	 * The old-format entries look like (displacements filled in
104	 * by the linker):
105	 *
106	 *	ldah	$28, 0($31)		# 0x279f0000
107	 *	lda	$28, 0($28)		# 0x239c0000
108	 *	br	$31, plt0		# 0xc3e00000
109	 *
110	 * The new-format entries look like:
111	 *
112	 *	br	$28, plt0		# 0xc3800000
113	 *					# 0x00000000
114	 *					# 0x00000000
115	 *
116	 * What we do is fetch the first PLT entry and check to
117	 * see the first word of it matches the first word of the
118	 * old format.  If so, we use a binding routine that can
119	 * handle the old format, otherwise we use a binding routine
120	 * that handles the new format.
121	 *
122	 * Note that this is done on a per-object basis, we can mix
123	 * and match shared objects build with both the old and new
124	 * linker.
125	 */
126	word0 = *(uint32_t *)(((char *) obj->pltgot) + 32);
127	if ((word0 & 0xffff0000) == 0x279f0000) {
128		/* Old PLT entry format. */
129		adbg(("ALPHA: object %p has old PLT format\n", obj));
130		obj->pltgot[2] = (Elf_Addr) &_rtld_bind_start_old;
131		obj->pltgot[3] = (Elf_Addr) obj;
132	} else {
133		/* New PLT entry format. */
134		adbg(("ALPHA: object %p has new PLT format\n", obj));
135		obj->pltgot[2] = (Elf_Addr) &_rtld_bind_start;
136		obj->pltgot[3] = (Elf_Addr) obj;
137	}
138
139	__asm __volatile("imb");
140}
141
142/*
143 * It is possible for the compiler to emit relocations for unaligned data.
144 * We handle this situation with these inlines.
145 */
146#define	RELOC_ALIGNED_P(x) \
147	(((uintptr_t)(x) & (sizeof(void *) - 1)) == 0)
148
149static __inline Elf_Addr
150load_ptr(void *where)
151{
152	Elf_Addr res;
153
154	memcpy(&res, where, sizeof(res));
155
156	return (res);
157}
158
159static __inline void
160store_ptr(void *where, Elf_Addr val)
161{
162
163	memcpy(where, &val, sizeof(val));
164}
165
166void
167_rtld_relocate_nonplt_self(dynp, relocbase)
168	Elf_Dyn *dynp;
169	Elf_Addr relocbase;
170{
171	const Elf_Rela *rela = 0, *relalim;
172	Elf_Addr relasz = 0;
173	Elf_Addr *where;
174
175	for (; dynp->d_tag != DT_NULL; dynp++) {
176		switch (dynp->d_tag) {
177		case DT_RELA:
178			rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
179			break;
180		case DT_RELASZ:
181			relasz = dynp->d_un.d_val;
182			break;
183		}
184	}
185	relalim = (const Elf_Rela *)((caddr_t)rela + relasz);
186	for (; rela < relalim; rela++) {
187		where = (Elf_Addr *)(relocbase + rela->r_offset);
188		/* XXX For some reason I see a few GLOB_DAT relocs here. */
189		*where += (Elf_Addr)relocbase;
190	}
191}
192
193int
194_rtld_relocate_nonplt_objects(obj)
195	const Obj_Entry *obj;
196{
197	const Elf_Rela *rela;
198#define COMBRELOC
199#ifdef COMBRELOC
200	unsigned long lastsym = -1;
201#endif
202	Elf_Addr target;
203
204	for (rela = obj->rela; rela < obj->relalim; rela++) {
205		Elf_Addr        *where;
206		const Elf_Sym   *def;
207		const Obj_Entry *defobj;
208		Elf_Addr         tmp;
209		unsigned long	 symnum;
210
211		where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
212		symnum = ELF_R_SYM(rela->r_info);
213
214		switch (ELF_R_TYPE(rela->r_info)) {
215		case R_TYPE(NONE):
216			break;
217
218		case R_TYPE(REFQUAD):
219		case R_TYPE(GLOB_DAT):
220#ifdef COMBRELOC
221			if (symnum != lastsym) {
222#endif
223				def = _rtld_find_symdef(symnum, obj, &defobj,
224				    false);
225				if (def == NULL)
226					return -1;
227				target = (Elf_Addr)(defobj->relocbase +
228				    def->st_value);
229#ifdef COMBRELOC
230				lastsym = symnum;
231			}
232#endif
233
234			tmp = target + rela->r_addend;
235			if (__predict_true(RELOC_ALIGNED_P(where))) {
236				if (*where != tmp)
237					*where = tmp;
238			} else {
239				if (load_ptr(where) != tmp)
240					store_ptr(where, tmp);
241			}
242			rdbg(("REFQUAD/GLOB_DAT %s in %s --> %p in %s",
243			    obj->strtab + obj->symtab[symnum].st_name,
244			    obj->path, (void *)tmp, defobj->path));
245			break;
246
247		case R_TYPE(RELATIVE):
248			if (__predict_true(RELOC_ALIGNED_P(where)))
249				*where += (Elf_Addr)obj->relocbase;
250			else
251				store_ptr(where,
252				    load_ptr(where) + (Elf_Addr)obj->relocbase);
253			rdbg(("RELATIVE in %s --> %p", obj->path,
254			    (void *)*where));
255			break;
256
257		case R_TYPE(COPY):
258			/*
259			 * These are deferred until all other relocations have
260			 * been done.  All we do here is make sure that the
261			 * COPY relocation is not in a shared library.  They
262			 * are allowed only in executable files.
263			 */
264			if (obj->isdynamic) {
265				_rtld_error(
266			"%s: Unexpected R_COPY relocation in shared library",
267				    obj->path);
268				return -1;
269			}
270			rdbg(("COPY (avoid in main)"));
271			break;
272
273		default:
274			rdbg(("sym = %lu, type = %lu, offset = %p, "
275			    "addend = %p, contents = %p, symbol = %s",
276			    symnum, (u_long)ELF_R_TYPE(rela->r_info),
277			    (void *)rela->r_offset, (void *)rela->r_addend,
278			    (void *)load_ptr(where),
279			    obj->strtab + obj->symtab[symnum].st_name));
280			_rtld_error("%s: Unsupported relocation type %ld "
281			    "in non-PLT relocations\n",
282			    obj->path, (u_long) ELF_R_TYPE(rela->r_info));
283			return -1;
284		}
285	}
286	return 0;
287}
288
289int
290_rtld_relocate_plt_lazy(obj)
291	const Obj_Entry *obj;
292{
293	const Elf_Rela *rela;
294
295	if (!obj->relocbase)
296		return 0;
297
298	for (rela = obj->pltrela; rela < obj->pltrelalim; rela++) {
299		Elf_Addr *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
300
301		assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
302
303		/* Just relocate the GOT slots pointing into the PLT */
304		*where += (Elf_Addr)obj->relocbase;
305		rdbg(("fixup !main in %s --> %p", obj->path, (void *)*where));
306	}
307
308	return 0;
309}
310
311caddr_t
312_rtld_bind(obj, reloff)
313	const Obj_Entry *obj;
314	Elf_Word reloff;
315{
316	const Elf_Rela *rela = (const Elf_Rela *)((caddr_t)obj->pltrela + reloff);
317	Elf_Addr *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
318	Elf_Addr new_value;
319	const Elf_Sym  *def;
320	const Obj_Entry *defobj;
321	Elf_Addr stubaddr;
322
323	assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
324
325	def = _rtld_find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, true);
326	if (def == NULL)
327		_rtld_die();
328
329	new_value = (Elf_Addr)(defobj->relocbase + def->st_value);
330	rdbg(("bind now/fixup in %s --> old=%p new=%p",
331	    defobj->strtab + def->st_name, (void *)*where, (void *)new_value));
332
333	if ((stubaddr = *where) != new_value) {
334		int64_t delta, idisp;
335		uint32_t insn[3], *stubptr;
336		int insncnt;
337		Elf_Addr pc;
338
339		/* Point this GOT entry at the target. */
340		*where = new_value;
341
342		/*
343		 * Alpha shared objects may have multiple GOTs, each
344		 * of which may point to this entry in the PLT.  But,
345		 * we only have a reference to the first GOT entry which
346		 * points to this PLT entry.  In order to avoid having to
347		 * re-bind this call every time a non-first GOT entry is
348		 * used, we will attempt to patch up the PLT entry to
349		 * reference the target, rather than the binder.
350		 *
351		 * When the PLT stub gets control, PV contains the address
352		 * of the PLT entry.  Each PLT entry has room for 3 insns.
353		 * If the displacement of the target from PV fits in a signed
354		 * 32-bit integer, we can simply add it to PV.  Otherwise,
355		 * we must load the GOT entry itself into PV.
356		 *
357		 * Note if the shared object uses the old PLT format, then
358		 * we cannot patch up the PLT safely, and so we skip it
359		 * in that case[*].
360		 *
361		 * [*] Actually, if we're not doing lazy-binding, then
362		 * we *can* (and do) patch up this PLT entry; the PLTGOT
363		 * thunk won't yet point to any binder entry point, and
364		 * so this test will fail as it would for the new PLT
365		 * entry format.
366		 */
367		if (obj->pltgot[2] == (Elf_Addr) &_rtld_bind_start_old) {
368			rdbg(("  old PLT format"));
369			goto out;
370		}
371
372		delta = new_value - stubaddr;
373		rdbg(("  stubaddr=%p, where-stubaddr=%ld, delta=%ld",
374		    (void *)stubaddr, (long)where - (long)stubaddr,
375		    (long)delta));
376		insncnt = 0;
377		if ((int32_t)delta == delta) {
378			/*
379			 * We can adjust PV with an LDA, LDAH sequence.
380			 *
381			 * First, build an LDA insn to adjust the low 16
382			 * bits.
383			 */
384			insn[insncnt++] = 0x08 << 26 | 27 << 21 | 27 << 16 |
385			    (delta & 0xffff);
386			rdbg(("  LDA  $27,%d($27)", (int16_t)delta));
387			/*
388			 * Adjust the delta to account for the effects of
389			 * the LDA, including sign-extension.
390			 */
391			delta -= (int16_t)delta;
392			if (delta != 0) {
393				/*
394				 * Build an LDAH instruction to adjust the
395				 * high 16 bits.
396				 */
397				insn[insncnt++] = 0x09 << 26 | 27 << 21 |
398				    27 << 16 | ((delta >> 16) & 0xffff);
399				rdbg(("  LDAH $27,%d($27)",
400				    (int16_t)(delta >> 16)));
401			}
402		} else {
403			int64_t dhigh;
404
405			/* We must load the GOT entry. */
406			delta = (Elf_Addr)where - stubaddr;
407
408			/*
409			 * If the GOT entry is too far away from the PLT
410			 * entry, then we can't patch up the PLT entry.
411			 * This PLT entry will have to be bound for each
412			 * GOT entry except for the first one.  This program
413			 * will still run, albeit very slowly.  It is very
414			 * unlikely that this case will ever happen in
415			 * practice.
416			 */
417			if ((int32_t)delta != delta) {
418				rdbg(("  PLT stub too far from GOT to relocate"));
419				goto out;
420			}
421			dhigh = delta - (int16_t)delta;
422			if (dhigh != 0) {
423				/*
424				 * Build an LDAH instruction to adjust the
425				 * high 16 bits.
426				 */
427				insn[insncnt++] = 0x09 << 26 | 27 << 21 |
428				    27 << 16 | ((dhigh >> 16) & 0xffff);
429				rdbg(("  LDAH $27,%d($27)",
430				    (int16_t)(dhigh >> 16)));
431			}
432			/* Build an LDQ to load the GOT entry. */
433			insn[insncnt++] = 0x29 << 26 | 27 << 21 |
434			    27 << 16 | (delta & 0xffff);
435			rdbg(("  LDQ  $27,%d($27)",
436			    (int16_t)delta));
437		}
438
439		/*
440		 * Now, build a JMP or BR insn to jump to the target.  If
441		 * the displacement fits in a sign-extended 21-bit field,
442		 * we can use the more efficient BR insn.  Otherwise, we
443		 * have to jump indirect through PV.
444		 */
445		pc = stubaddr + (4 * (insncnt + 1));
446		idisp = (int64_t)(new_value - pc) >> 2;
447		if (-0x100000 <= idisp && idisp < 0x100000) {
448			insn[insncnt++] = 0x30 << 26 | 31 << 21 |
449			    (idisp & 0x1fffff);
450			rdbg(("  BR   $31,%p", (void *)new_value));
451		} else {
452			insn[insncnt++] = 0x1a << 26 | 31 << 21 |
453			    27 << 16 | (idisp & 0x3fff);
454			rdbg(("  JMP  $31,($27),%d",
455			    (int)(idisp & 0x3fff)));
456		}
457
458		/*
459		 * Fill in the tail of the PLT entry first, for reentrancy.
460		 * Until we have overwritten the first insn (an unconditional
461		 * branch), the remaining insns have no effect.
462		 */
463		stubptr = (uint32_t *)stubaddr;
464		while (insncnt > 1) {
465			insncnt--;
466			stubptr[insncnt] = insn[insncnt];
467		}
468		/*
469		 * Commit the tail of the insn sequence to memory
470		 * before overwriting the first insn.
471		 */
472		__asm __volatile("wmb" ::: "memory");
473		stubptr[0] = insn[0];
474		/*
475		 * I-stream will be sync'd when we either return from
476		 * the binder (lazy bind case) or when the PLTGOT thunk
477		 * is patched up (bind-now case).
478		 */
479	}
480
481 out:
482	return (caddr_t)new_value;
483}
484