pthread_mutex.c revision 1.39
1/*	$NetBSD: pthread_mutex.c,v 1.39 2007/12/24 14:46:29 ad Exp $	*/
2
3/*-
4 * Copyright (c) 2001, 2003, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *        This product includes software developed by the NetBSD
21 *        Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39#include <sys/cdefs.h>
40__RCSID("$NetBSD: pthread_mutex.c,v 1.39 2007/12/24 14:46:29 ad Exp $");
41
42#include <errno.h>
43#include <limits.h>
44#include <stdlib.h>
45#include <string.h>
46
47#include <sys/types.h>
48#include <sys/lock.h>
49
50#include "pthread.h"
51#include "pthread_int.h"
52
53#ifndef	PTHREAD__HAVE_ATOMIC
54
55static int pthread_mutex_lock_slow(pthread_t, pthread_mutex_t *);
56
57int		_pthread_mutex_held_np(pthread_mutex_t *);
58pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
59
60__weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
61__weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
62
63__strong_alias(__libc_mutex_init,pthread_mutex_init)
64__strong_alias(__libc_mutex_lock,pthread_mutex_lock)
65__strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
66__strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
67__strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
68
69__strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
70__strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
71__strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
72
73__strong_alias(__libc_thr_once,pthread_once)
74
75struct mutex_private {
76	int	type;
77	int	recursecount;
78};
79
80static const struct mutex_private mutex_private_default = {
81	PTHREAD_MUTEX_DEFAULT,
82	0,
83};
84
85struct mutexattr_private {
86	int	type;
87};
88
89static const struct mutexattr_private mutexattr_private_default = {
90	PTHREAD_MUTEX_DEFAULT,
91};
92
93int
94pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
95{
96	struct mutexattr_private *map;
97	struct mutex_private *mp;
98
99	pthread__error(EINVAL, "Invalid mutex attribute",
100	    (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
101
102	if (attr != NULL && (map = attr->ptma_private) != NULL &&
103	    memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
104		mp = malloc(sizeof(*mp));
105		if (mp == NULL)
106			return ENOMEM;
107
108		mp->type = map->type;
109		mp->recursecount = 0;
110	} else {
111		/* LINTED cast away const */
112		mp = (struct mutex_private *) &mutex_private_default;
113	}
114
115	mutex->ptm_magic = _PT_MUTEX_MAGIC;
116	mutex->ptm_owner = NULL;
117	pthread_lockinit(&mutex->ptm_lock);
118	pthread_lockinit(&mutex->ptm_interlock);
119	PTQ_INIT(&mutex->ptm_blocked);
120	mutex->ptm_private = mp;
121
122	return 0;
123}
124
125
126int
127pthread_mutex_destroy(pthread_mutex_t *mutex)
128{
129
130	pthread__error(EINVAL, "Invalid mutex",
131	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
132	pthread__error(EBUSY, "Destroying locked mutex",
133	    __SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock));
134
135	mutex->ptm_magic = _PT_MUTEX_DEAD;
136	if (mutex->ptm_private != NULL &&
137	    mutex->ptm_private != (const void *)&mutex_private_default)
138		free(mutex->ptm_private);
139
140	return 0;
141}
142
143
144/*
145 * Note regarding memory visibility: Pthreads has rules about memory
146 * visibility and mutexes. Very roughly: Memory a thread can see when
147 * it unlocks a mutex can be seen by another thread that locks the
148 * same mutex.
149 *
150 * A memory barrier after a lock and before an unlock will provide
151 * this behavior. This code relies on pthread__spintrylock() to issue
152 * a barrier after obtaining a lock, and on pthread__spinunlock() to
153 * issue a barrier before releasing a lock.
154 */
155
156int
157pthread_mutex_lock(pthread_mutex_t *mutex)
158{
159	pthread_t self;
160	int error;
161
162	self = pthread__self();
163
164	/*
165	 * Note that if we get the lock, we don't have to deal with any
166	 * non-default lock type handling.
167	 */
168	if (__predict_false(pthread__spintrylock(self, &mutex->ptm_lock) == 0)) {
169		error = pthread_mutex_lock_slow(self, mutex);
170		if (error)
171			return error;
172	}
173
174	/*
175	 * We have the lock!
176	 */
177	mutex->ptm_owner = self;
178
179	return 0;
180}
181
182
183static int
184pthread_mutex_lock_slow(pthread_t self, pthread_mutex_t *mutex)
185{
186	extern int pthread__started;
187	struct mutex_private *mp;
188	sigset_t ss;
189	int count;
190
191	pthread__error(EINVAL, "Invalid mutex",
192	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
193
194	for (;;) {
195		/* Spin for a while. */
196		count = pthread__nspins;
197		while (__SIMPLELOCK_LOCKED_P(&mutex->ptm_lock)  && --count > 0)
198			pthread__smt_pause();
199		if (count > 0) {
200			if (pthread__spintrylock(self, &mutex->ptm_lock) != 0)
201				break;
202			continue;
203		}
204
205		/* Okay, didn't look free. Get the interlock... */
206		pthread__spinlock(self, &mutex->ptm_interlock);
207
208		/*
209		 * The mutex_unlock routine will get the interlock
210		 * before looking at the list of sleepers, so if the
211		 * lock is held we can safely put ourselves on the
212		 * sleep queue. If it's not held, we can try taking it
213		 * again.
214		 */
215		PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
216		if (__SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock)) {
217			PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
218			pthread__spinunlock(self, &mutex->ptm_interlock);
219			continue;
220		}
221
222		mp = mutex->ptm_private;
223		if (mutex->ptm_owner == self && mp != NULL) {
224			switch (mp->type) {
225			case PTHREAD_MUTEX_ERRORCHECK:
226				PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
227				pthread__spinunlock(self, &mutex->ptm_interlock);
228				return EDEADLK;
229
230			case PTHREAD_MUTEX_RECURSIVE:
231				/*
232				 * It's safe to do this without
233				 * holding the interlock, because
234				 * we only modify it if we know we
235				 * own the mutex.
236				 */
237				PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
238				pthread__spinunlock(self, &mutex->ptm_interlock);
239				if (mp->recursecount == INT_MAX)
240					return EAGAIN;
241				mp->recursecount++;
242				return 0;
243			}
244		}
245
246		if (pthread__started == 0) {
247			/* The spec says we must deadlock, so... */
248			pthread__assert(mp->type == PTHREAD_MUTEX_NORMAL);
249			(void) sigprocmask(SIG_SETMASK, NULL, &ss);
250			for (;;) {
251				sigsuspend(&ss);
252			}
253			/*NOTREACHED*/
254		}
255
256		/*
257		 * Locking a mutex is not a cancellation
258		 * point, so we don't need to do the
259		 * test-cancellation dance. We may get woken
260		 * up spuriously by pthread_cancel or signals,
261		 * but it's okay since we're just going to
262		 * retry.
263		 */
264		self->pt_sleeponq = 1;
265		self->pt_sleepobj = &mutex->ptm_blocked;
266		pthread__spinunlock(self, &mutex->ptm_interlock);
267		(void)pthread__park(self, &mutex->ptm_interlock,
268		    &mutex->ptm_blocked, NULL, 0, &mutex->ptm_blocked);
269	}
270
271	return 0;
272}
273
274
275int
276pthread_mutex_trylock(pthread_mutex_t *mutex)
277{
278	struct mutex_private *mp;
279	pthread_t self;
280
281	pthread__error(EINVAL, "Invalid mutex",
282	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
283
284	self = pthread__self();
285
286	if (pthread__spintrylock(self, &mutex->ptm_lock) == 0) {
287		/*
288		 * These tests can be performed without holding the
289		 * interlock because these fields are only modified
290		 * if we know we own the mutex.
291		 */
292		mp = mutex->ptm_private;
293		if (mp != NULL && mp->type == PTHREAD_MUTEX_RECURSIVE &&
294		    mutex->ptm_owner == self) {
295			if (mp->recursecount == INT_MAX)
296				return EAGAIN;
297			mp->recursecount++;
298			return 0;
299		}
300
301		return EBUSY;
302	}
303
304	mutex->ptm_owner = self;
305
306	return 0;
307}
308
309
310int
311pthread_mutex_unlock(pthread_mutex_t *mutex)
312{
313	struct mutex_private *mp;
314	pthread_t self;
315	int weown;
316
317	pthread__error(EINVAL, "Invalid mutex",
318	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
319
320	/*
321	 * These tests can be performed without holding the
322	 * interlock because these fields are only modified
323	 * if we know we own the mutex.
324	 */
325	self = pthread__self();
326	weown = (mutex->ptm_owner == self);
327	mp = mutex->ptm_private;
328
329	if (mp == NULL) {
330		if (__predict_false(!weown)) {
331			pthread__error(EPERM, "Unlocking unlocked mutex",
332			    (mutex->ptm_owner != 0));
333			pthread__error(EPERM,
334			    "Unlocking mutex owned by another thread", weown);
335		}
336	} else if (mp->type == PTHREAD_MUTEX_RECURSIVE) {
337		if (!weown)
338			return EPERM;
339		if (mp->recursecount != 0) {
340			mp->recursecount--;
341			return 0;
342		}
343	} else if (mp->type == PTHREAD_MUTEX_ERRORCHECK) {
344		if (!weown)
345			return EPERM;
346		if (__predict_false(!weown)) {
347			pthread__error(EPERM, "Unlocking unlocked mutex",
348			    (mutex->ptm_owner != 0));
349			pthread__error(EPERM,
350			    "Unlocking mutex owned by another thread", weown);
351		}
352	}
353
354	mutex->ptm_owner = NULL;
355	pthread__spinunlock(self, &mutex->ptm_lock);
356
357	/*
358	 * Do a double-checked locking dance to see if there are any
359	 * waiters.  If we don't see any waiters, we can exit, because
360	 * we've already released the lock. If we do see waiters, they
361	 * were probably waiting on us... there's a slight chance that
362	 * they are waiting on a different thread's ownership of the
363	 * lock that happened between the unlock above and this
364	 * examination of the queue; if so, no harm is done, as the
365	 * waiter will loop and see that the mutex is still locked.
366	 */
367	pthread__spinlock(self, &mutex->ptm_interlock);
368	pthread__unpark_all(self, &mutex->ptm_interlock, &mutex->ptm_blocked);
369	return 0;
370}
371
372int
373pthread_mutexattr_init(pthread_mutexattr_t *attr)
374{
375	struct mutexattr_private *map;
376
377	map = malloc(sizeof(*map));
378	if (map == NULL)
379		return ENOMEM;
380
381	*map = mutexattr_private_default;
382
383	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
384	attr->ptma_private = map;
385
386	return 0;
387}
388
389
390int
391pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
392{
393
394	pthread__error(EINVAL, "Invalid mutex attribute",
395	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
396
397	attr->ptma_magic = _PT_MUTEXATTR_DEAD;
398	if (attr->ptma_private != NULL)
399		free(attr->ptma_private);
400
401	return 0;
402}
403
404
405int
406pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
407{
408	struct mutexattr_private *map;
409
410	pthread__error(EINVAL, "Invalid mutex attribute",
411	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
412
413	map = attr->ptma_private;
414
415	*typep = map->type;
416
417	return 0;
418}
419
420
421int
422pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
423{
424	struct mutexattr_private *map;
425
426	pthread__error(EINVAL, "Invalid mutex attribute",
427	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
428
429	map = attr->ptma_private;
430
431	switch (type) {
432	case PTHREAD_MUTEX_NORMAL:
433	case PTHREAD_MUTEX_ERRORCHECK:
434	case PTHREAD_MUTEX_RECURSIVE:
435		map->type = type;
436		break;
437
438	default:
439		return EINVAL;
440	}
441
442	return 0;
443}
444
445
446static void
447once_cleanup(void *closure)
448{
449
450       pthread_mutex_unlock((pthread_mutex_t *)closure);
451}
452
453
454int
455pthread_once(pthread_once_t *once_control, void (*routine)(void))
456{
457
458	if (once_control->pto_done == 0) {
459		pthread_mutex_lock(&once_control->pto_mutex);
460		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
461		if (once_control->pto_done == 0) {
462			routine();
463			once_control->pto_done = 1;
464		}
465		pthread_cleanup_pop(1);
466	}
467
468	return 0;
469}
470
471int
472pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *mutex)
473{
474
475	return mutex->ptm_owner == thread;
476}
477
478int
479_pthread_mutex_held_np(pthread_mutex_t *mutex)
480{
481
482	return mutex->ptm_owner == pthread__self();
483}
484
485pthread_t
486_pthread_mutex_owner_np(pthread_mutex_t *mutex)
487{
488
489	return (pthread_t)mutex->ptm_owner;
490}
491
492#endif	/* !PTHREAD__HAVE_ATOMIC */
493