pthread_mutex.c revision 1.34
1/*	$NetBSD: pthread_mutex.c,v 1.34 2007/09/10 11:34:05 skrll Exp $	*/
2
3/*-
4 * Copyright (c) 2001, 2003, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *        This product includes software developed by the NetBSD
21 *        Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39#include <sys/cdefs.h>
40__RCSID("$NetBSD: pthread_mutex.c,v 1.34 2007/09/10 11:34:05 skrll Exp $");
41
42#include <errno.h>
43#include <limits.h>
44#include <stdlib.h>
45#include <string.h>
46
47#include <sys/types.h>
48#include <sys/lock.h>
49
50#include "pthread.h"
51#include "pthread_int.h"
52
53#ifndef	PTHREAD__HAVE_ATOMIC
54
55static int pthread_mutex_lock_slow(pthread_t, pthread_mutex_t *);
56
57__strong_alias(__libc_mutex_init,pthread_mutex_init)
58__strong_alias(__libc_mutex_lock,pthread_mutex_lock)
59__strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
60__strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
61__strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
62
63__strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
64__strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
65__strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
66
67__strong_alias(__libc_thr_once,pthread_once)
68
69struct mutex_private {
70	int	type;
71	int	recursecount;
72};
73
74static const struct mutex_private mutex_private_default = {
75	PTHREAD_MUTEX_DEFAULT,
76	0,
77};
78
79struct mutexattr_private {
80	int	type;
81};
82
83static const struct mutexattr_private mutexattr_private_default = {
84	PTHREAD_MUTEX_DEFAULT,
85};
86
87int
88pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
89{
90	struct mutexattr_private *map;
91	struct mutex_private *mp;
92
93	pthread__error(EINVAL, "Invalid mutex attribute",
94	    (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
95
96	if (attr != NULL && (map = attr->ptma_private) != NULL &&
97	    memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
98		mp = malloc(sizeof(*mp));
99		if (mp == NULL)
100			return ENOMEM;
101
102		mp->type = map->type;
103		mp->recursecount = 0;
104	} else {
105		/* LINTED cast away const */
106		mp = (struct mutex_private *) &mutex_private_default;
107	}
108
109	mutex->ptm_magic = _PT_MUTEX_MAGIC;
110	mutex->ptm_owner = NULL;
111	pthread_lockinit(&mutex->ptm_lock);
112	pthread_lockinit(&mutex->ptm_interlock);
113	PTQ_INIT(&mutex->ptm_blocked);
114	mutex->ptm_private = mp;
115
116	return 0;
117}
118
119
120int
121pthread_mutex_destroy(pthread_mutex_t *mutex)
122{
123
124	pthread__error(EINVAL, "Invalid mutex",
125	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
126	pthread__error(EBUSY, "Destroying locked mutex",
127	    __SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock));
128
129	mutex->ptm_magic = _PT_MUTEX_DEAD;
130	if (mutex->ptm_private != NULL &&
131	    mutex->ptm_private != (const void *)&mutex_private_default)
132		free(mutex->ptm_private);
133
134	return 0;
135}
136
137
138/*
139 * Note regarding memory visibility: Pthreads has rules about memory
140 * visibility and mutexes. Very roughly: Memory a thread can see when
141 * it unlocks a mutex can be seen by another thread that locks the
142 * same mutex.
143 *
144 * A memory barrier after a lock and before an unlock will provide
145 * this behavior. This code relies on pthread__simple_lock_try() to issue
146 * a barrier after obtaining a lock, and on pthread__simple_unlock() to
147 * issue a barrier before releasing a lock.
148 */
149
150int
151pthread_mutex_lock(pthread_mutex_t *mutex)
152{
153	pthread_t self;
154	int error;
155
156	self = pthread__self();
157
158	PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
159
160	/*
161	 * Note that if we get the lock, we don't have to deal with any
162	 * non-default lock type handling.
163	 */
164	if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
165		error = pthread_mutex_lock_slow(self, mutex);
166		if (error)
167			return error;
168	}
169
170	/*
171	 * We have the lock!
172	 */
173	mutex->ptm_owner = self;
174
175	return 0;
176}
177
178
179static int
180pthread_mutex_lock_slow(pthread_t self, pthread_mutex_t *mutex)
181{
182	extern int pthread__started;
183	struct mutex_private *mp;
184	sigset_t ss;
185	int count;
186
187	pthread__error(EINVAL, "Invalid mutex",
188	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
189
190	PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
191	for (;;) {
192		/* Spin for a while. */
193		count = pthread__nspins;
194		while (__SIMPLELOCK_LOCKED_P(&mutex->ptm_lock)  && --count > 0)
195			pthread__smt_pause();
196		if (count > 0) {
197			if (pthread__simple_lock_try(&mutex->ptm_lock) != 0)
198				break;
199			continue;
200		}
201
202		/* Okay, didn't look free. Get the interlock... */
203		pthread_spinlock(&mutex->ptm_interlock);
204
205		/*
206		 * The mutex_unlock routine will get the interlock
207		 * before looking at the list of sleepers, so if the
208		 * lock is held we can safely put ourselves on the
209		 * sleep queue. If it's not held, we can try taking it
210		 * again.
211		 */
212		PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
213		if (__SIMPLELOCK_LOCKED_P(&mutex->ptm_lock)) {
214			PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
215			pthread_spinunlock(&mutex->ptm_interlock);
216			continue;
217		}
218
219		mp = mutex->ptm_private;
220		if (mutex->ptm_owner == self && mp != NULL) {
221			switch (mp->type) {
222			case PTHREAD_MUTEX_ERRORCHECK:
223				PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
224				pthread_spinunlock(&mutex->ptm_interlock);
225				return EDEADLK;
226
227			case PTHREAD_MUTEX_RECURSIVE:
228				/*
229				 * It's safe to do this without
230				 * holding the interlock, because
231				 * we only modify it if we know we
232				 * own the mutex.
233				 */
234				PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
235				pthread_spinunlock(&mutex->ptm_interlock);
236				if (mp->recursecount == INT_MAX)
237					return EAGAIN;
238				mp->recursecount++;
239				return 0;
240			}
241		}
242
243		if (pthread__started == 0) {
244			/* The spec says we must deadlock, so... */
245			pthread__assert(mp->type == PTHREAD_MUTEX_NORMAL);
246			(void) sigprocmask(SIG_SETMASK, NULL, &ss);
247			for (;;) {
248				sigsuspend(&ss);
249			}
250			/*NOTREACHED*/
251		}
252
253		/*
254		 * Locking a mutex is not a cancellation
255		 * point, so we don't need to do the
256		 * test-cancellation dance. We may get woken
257		 * up spuriously by pthread_cancel or signals,
258		 * but it's okay since we're just going to
259		 * retry.
260		 */
261		self->pt_sleeponq = 1;
262		self->pt_sleepobj = &mutex->ptm_blocked;
263		pthread_spinunlock(&mutex->ptm_interlock);
264		(void)pthread__park(self, &mutex->ptm_interlock,
265		    &mutex->ptm_blocked, NULL, 0, &mutex->ptm_blocked);
266	}
267
268	return 0;
269}
270
271
272int
273pthread_mutex_trylock(pthread_mutex_t *mutex)
274{
275	struct mutex_private *mp;
276	pthread_t self;
277
278	pthread__error(EINVAL, "Invalid mutex",
279	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
280
281	self = pthread__self();
282
283	PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
284	if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
285		/*
286		 * These tests can be performed without holding the
287		 * interlock because these fields are only modified
288		 * if we know we own the mutex.
289		 */
290		mp = mutex->ptm_private;
291		if (mp != NULL && mp->type == PTHREAD_MUTEX_RECURSIVE &&
292		    mutex->ptm_owner == self) {
293			if (mp->recursecount == INT_MAX)
294				return EAGAIN;
295			mp->recursecount++;
296			return 0;
297		}
298
299		return EBUSY;
300	}
301
302	mutex->ptm_owner = self;
303
304	return 0;
305}
306
307
308int
309pthread_mutex_unlock(pthread_mutex_t *mutex)
310{
311	struct mutex_private *mp;
312	pthread_t self;
313	int weown;
314
315	pthread__error(EINVAL, "Invalid mutex",
316	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
317
318	PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
319
320	/*
321	 * These tests can be performed without holding the
322	 * interlock because these fields are only modified
323	 * if we know we own the mutex.
324	 */
325	self = pthread_self();
326	weown = (mutex->ptm_owner == self);
327	mp = mutex->ptm_private;
328
329	if (mp == NULL) {
330		if (__predict_false(!weown)) {
331			pthread__error(EPERM, "Unlocking unlocked mutex",
332			    (mutex->ptm_owner != 0));
333			pthread__error(EPERM,
334			    "Unlocking mutex owned by another thread", weown);
335		}
336	} else if (mp->type == PTHREAD_MUTEX_RECURSIVE) {
337		if (!weown)
338			return EPERM;
339		if (mp->recursecount != 0) {
340			mp->recursecount--;
341			return 0;
342		}
343	} else if (mp->type == PTHREAD_MUTEX_ERRORCHECK) {
344		if (!weown)
345			return EPERM;
346		if (__predict_false(!weown)) {
347			pthread__error(EPERM, "Unlocking unlocked mutex",
348			    (mutex->ptm_owner != 0));
349			pthread__error(EPERM,
350			    "Unlocking mutex owned by another thread", weown);
351		}
352	}
353
354	mutex->ptm_owner = NULL;
355	pthread__simple_unlock(&mutex->ptm_lock);
356
357	/*
358	 * Do a double-checked locking dance to see if there are any
359	 * waiters.  If we don't see any waiters, we can exit, because
360	 * we've already released the lock. If we do see waiters, they
361	 * were probably waiting on us... there's a slight chance that
362	 * they are waiting on a different thread's ownership of the
363	 * lock that happened between the unlock above and this
364	 * examination of the queue; if so, no harm is done, as the
365	 * waiter will loop and see that the mutex is still locked.
366	 */
367	pthread_spinlock(&mutex->ptm_interlock);
368	pthread__unpark_all(self, &mutex->ptm_interlock, &mutex->ptm_blocked);
369	return 0;
370}
371
372int
373pthread_mutexattr_init(pthread_mutexattr_t *attr)
374{
375	struct mutexattr_private *map;
376
377	map = malloc(sizeof(*map));
378	if (map == NULL)
379		return ENOMEM;
380
381	*map = mutexattr_private_default;
382
383	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
384	attr->ptma_private = map;
385
386	return 0;
387}
388
389
390int
391pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
392{
393
394	pthread__error(EINVAL, "Invalid mutex attribute",
395	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
396
397	attr->ptma_magic = _PT_MUTEXATTR_DEAD;
398	if (attr->ptma_private != NULL)
399		free(attr->ptma_private);
400
401	return 0;
402}
403
404
405int
406pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
407{
408	struct mutexattr_private *map;
409
410	pthread__error(EINVAL, "Invalid mutex attribute",
411	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
412
413	map = attr->ptma_private;
414
415	*typep = map->type;
416
417	return 0;
418}
419
420
421int
422pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
423{
424	struct mutexattr_private *map;
425
426	pthread__error(EINVAL, "Invalid mutex attribute",
427	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
428
429	map = attr->ptma_private;
430
431	switch (type) {
432	case PTHREAD_MUTEX_NORMAL:
433	case PTHREAD_MUTEX_ERRORCHECK:
434	case PTHREAD_MUTEX_RECURSIVE:
435		map->type = type;
436		break;
437
438	default:
439		return EINVAL;
440	}
441
442	return 0;
443}
444
445
446static void
447once_cleanup(void *closure)
448{
449
450       pthread_mutex_unlock((pthread_mutex_t *)closure);
451}
452
453
454int
455pthread_once(pthread_once_t *once_control, void (*routine)(void))
456{
457
458	if (once_control->pto_done == 0) {
459		pthread_mutex_lock(&once_control->pto_mutex);
460		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
461		if (once_control->pto_done == 0) {
462			routine();
463			once_control->pto_done = 1;
464		}
465		pthread_cleanup_pop(1);
466	}
467
468	return 0;
469}
470
471int
472pthread__mutex_owned(pthread_t thread, pthread_mutex_t *mutex)
473{
474
475	return mutex->ptm_owner == thread;
476}
477
478#endif	/* !PTHREAD__HAVE_ATOMIC */
479