pthread_mutex.c revision 1.28
1/*	$NetBSD: pthread_mutex.c,v 1.28 2007/03/24 18:52:00 ad Exp $	*/
2
3/*-
4 * Copyright (c) 2001, 2003, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *        This product includes software developed by the NetBSD
21 *        Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39#include <sys/cdefs.h>
40__RCSID("$NetBSD: pthread_mutex.c,v 1.28 2007/03/24 18:52:00 ad Exp $");
41
42#include <errno.h>
43#include <limits.h>
44#include <stdlib.h>
45#include <string.h>
46
47#include "pthread.h"
48#include "pthread_int.h"
49
50static int pthread_mutex_lock_slow(pthread_t, pthread_mutex_t *);
51
52__strong_alias(__libc_mutex_init,pthread_mutex_init)
53__strong_alias(__libc_mutex_lock,pthread_mutex_lock)
54__strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
55__strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
56__strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
57
58__strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
59__strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
60__strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
61
62__strong_alias(__libc_thr_once,pthread_once)
63
64struct mutex_private {
65	int	type;
66	int	recursecount;
67};
68
69static const struct mutex_private mutex_private_default = {
70	PTHREAD_MUTEX_DEFAULT,
71	0,
72};
73
74struct mutexattr_private {
75	int	type;
76};
77
78static const struct mutexattr_private mutexattr_private_default = {
79	PTHREAD_MUTEX_DEFAULT,
80};
81
82/*
83 * If the mutex does not already have private data (i.e. was statically
84 * initialized), then give it the default.
85 */
86#define	GET_MUTEX_PRIVATE(mutex, mp)					\
87do {									\
88	if (__predict_false((mp = (mutex)->ptm_private) == NULL)) {	\
89		/* LINTED cast away const */				\
90		mp = ((mutex)->ptm_private =				\
91		    (void *)&mutex_private_default);			\
92	}								\
93} while (/*CONSTCOND*/0)
94
95int
96pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
97{
98	struct mutexattr_private *map;
99	struct mutex_private *mp;
100
101	pthread__error(EINVAL, "Invalid mutex attribute",
102	    (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
103
104	if (attr != NULL && (map = attr->ptma_private) != NULL &&
105	    memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
106		mp = malloc(sizeof(*mp));
107		if (mp == NULL)
108			return ENOMEM;
109
110		mp->type = map->type;
111		mp->recursecount = 0;
112	} else {
113		/* LINTED cast away const */
114		mp = (struct mutex_private *) &mutex_private_default;
115	}
116
117	mutex->ptm_magic = _PT_MUTEX_MAGIC;
118	mutex->ptm_owner = NULL;
119	pthread_lockinit(&mutex->ptm_lock);
120	pthread_lockinit(&mutex->ptm_interlock);
121	PTQ_INIT(&mutex->ptm_blocked);
122	mutex->ptm_private = mp;
123
124	return 0;
125}
126
127
128int
129pthread_mutex_destroy(pthread_mutex_t *mutex)
130{
131
132	pthread__error(EINVAL, "Invalid mutex",
133	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
134	pthread__error(EBUSY, "Destroying locked mutex",
135	    mutex->ptm_lock == __SIMPLELOCK_UNLOCKED);
136
137	mutex->ptm_magic = _PT_MUTEX_DEAD;
138	if (mutex->ptm_private != NULL &&
139	    mutex->ptm_private != (const void *)&mutex_private_default)
140		free(mutex->ptm_private);
141
142	return 0;
143}
144
145
146/*
147 * Note regarding memory visibility: Pthreads has rules about memory
148 * visibility and mutexes. Very roughly: Memory a thread can see when
149 * it unlocks a mutex can be seen by another thread that locks the
150 * same mutex.
151 *
152 * A memory barrier after a lock and before an unlock will provide
153 * this behavior. This code relies on pthread__simple_lock_try() to issue
154 * a barrier after obtaining a lock, and on pthread__simple_unlock() to
155 * issue a barrier before releasing a lock.
156 */
157
158int
159pthread_mutex_lock(pthread_mutex_t *mutex)
160{
161	pthread_t self;
162	int error;
163
164	self = pthread__self();
165
166	PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
167
168	/*
169	 * Note that if we get the lock, we don't have to deal with any
170	 * non-default lock type handling.
171	 */
172	if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
173		error = pthread_mutex_lock_slow(self, mutex);
174		if (error)
175			return error;
176	}
177
178	/*
179	 * We have the lock!
180	 */
181	self->pt_mutexhint = mutex;
182	mutex->ptm_owner = self;
183
184	return 0;
185}
186
187
188static int
189pthread_mutex_lock_slow(pthread_t self, pthread_mutex_t *mutex)
190{
191	extern int pthread__started;
192
193	pthread__error(EINVAL, "Invalid mutex",
194	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
195
196	PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
197	while (/*CONSTCOND*/1) {
198		if (pthread__simple_lock_try(&mutex->ptm_lock))
199			break; /* got it! */
200
201		/* Okay, didn't look free. Get the interlock... */
202		pthread_spinlock(self, &mutex->ptm_interlock);
203
204		/*
205		 * The mutex_unlock routine will get the interlock
206		 * before looking at the list of sleepers, so if the
207		 * lock is held we can safely put ourselves on the
208		 * sleep queue. If it's not held, we can try taking it
209		 * again.
210		 */
211		PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
212		if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
213			struct mutex_private *mp;
214
215			GET_MUTEX_PRIVATE(mutex, mp);
216
217			if (mutex->ptm_owner == self) {
218				switch (mp->type) {
219				case PTHREAD_MUTEX_ERRORCHECK:
220					PTQ_REMOVE(&mutex->ptm_blocked, self,
221					    pt_sleep);
222					pthread_spinunlock(self,
223					    &mutex->ptm_interlock);
224					return EDEADLK;
225
226				case PTHREAD_MUTEX_RECURSIVE:
227					/*
228					 * It's safe to do this without
229					 * holding the interlock, because
230					 * we only modify it if we know we
231					 * own the mutex.
232					 */
233					PTQ_REMOVE(&mutex->ptm_blocked, self,
234					    pt_sleep);
235					pthread_spinunlock(self,
236					    &mutex->ptm_interlock);
237					if (mp->recursecount == INT_MAX)
238						return EAGAIN;
239					mp->recursecount++;
240					return 0;
241				}
242			}
243
244			if (pthread__started == 0) {
245				sigset_t ss;
246
247				/*
248				 * The spec says we must deadlock, so...
249				 */
250				pthread__assert(mp->type ==
251						PTHREAD_MUTEX_NORMAL);
252				(void) sigprocmask(SIG_SETMASK, NULL, &ss);
253				for (;;) {
254					sigsuspend(&ss);
255				}
256				/*NOTREACHED*/
257			}
258
259			/*
260			 * Locking a mutex is not a cancellation
261			 * point, so we don't need to do the
262			 * test-cancellation dance. We may get woken
263			 * up spuriously by pthread_cancel or signals,
264			 * but it's okay since we're just going to
265			 * retry.
266			 */
267			self->pt_sleeponq = 1;
268			self->pt_sleepobj = &mutex->ptm_blocked;
269			(void)pthread__park(self, &mutex->ptm_interlock,
270			    &mutex->ptm_blocked, NULL, 0, &mutex->ptm_blocked);
271			pthread_spinunlock(self, &mutex->ptm_interlock);
272		} else {
273			PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
274			pthread_spinunlock(self, &mutex->ptm_interlock);
275		}
276		/* Go around for another try. */
277	}
278
279	return 0;
280}
281
282
283int
284pthread_mutex_trylock(pthread_mutex_t *mutex)
285{
286	struct mutex_private *mp;
287	pthread_t self;
288
289	pthread__error(EINVAL, "Invalid mutex",
290	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
291
292	self = pthread__self();
293
294	PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
295	if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
296		/*
297		 * These tests can be performed without holding the
298		 * interlock because these fields are only modified
299		 * if we know we own the mutex.
300		 */
301		GET_MUTEX_PRIVATE(mutex, mp);
302		if (mp->type == PTHREAD_MUTEX_RECURSIVE &&
303		    mutex->ptm_owner == self) {
304			if (mp->recursecount == INT_MAX)
305				return EAGAIN;
306			mp->recursecount++;
307			return 0;
308		}
309
310		return EBUSY;
311	}
312
313	mutex->ptm_owner = self;
314	self->pt_mutexhint = mutex;
315
316	return 0;
317}
318
319
320int
321pthread_mutex_unlock(pthread_mutex_t *mutex)
322{
323	struct mutex_private *mp;
324	pthread_t self;
325	int weown;
326
327	pthread__error(EINVAL, "Invalid mutex",
328	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
329
330	PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
331
332	GET_MUTEX_PRIVATE(mutex, mp);
333
334	self = pthread_self();
335	/*
336	 * These tests can be performed without holding the
337	 * interlock because these fields are only modified
338	 * if we know we own the mutex.
339	 */
340	weown = (mutex->ptm_owner == self);
341	switch (mp->type) {
342	case PTHREAD_MUTEX_RECURSIVE:
343		if (!weown)
344			return EPERM;
345		if (mp->recursecount != 0) {
346			mp->recursecount--;
347			return 0;
348		}
349		break;
350	case PTHREAD_MUTEX_ERRORCHECK:
351		if (!weown)
352			return EPERM;
353		/*FALLTHROUGH*/
354	default:
355		if (__predict_false(!weown)) {
356			pthread__error(EPERM, "Unlocking unlocked mutex",
357			    (mutex->ptm_owner != 0));
358			pthread__error(EPERM,
359			    "Unlocking mutex owned by another thread", weown);
360		}
361		break;
362	}
363
364	mutex->ptm_owner = NULL;
365	pthread__simple_unlock(&mutex->ptm_lock);
366
367	/*
368	 * Do a double-checked locking dance to see if there are any
369	 * waiters.  If we don't see any waiters, we can exit, because
370	 * we've already released the lock. If we do see waiters, they
371	 * were probably waiting on us... there's a slight chance that
372	 * they are waiting on a different thread's ownership of the
373	 * lock that happened between the unlock above and this
374	 * examination of the queue; if so, no harm is done, as the
375	 * waiter will loop and see that the mutex is still locked.
376	 *
377	 * Note that waiters may have been transferred here from a
378	 * condition variable.
379	 */
380	if (self->pt_mutexhint == mutex)
381		self->pt_mutexhint = NULL;
382
383	pthread_spinlock(self, &mutex->ptm_interlock);
384	pthread__unpark_all(self, &mutex->ptm_interlock, &mutex->ptm_blocked);
385
386	return 0;
387}
388
389int
390pthread_mutexattr_init(pthread_mutexattr_t *attr)
391{
392	struct mutexattr_private *map;
393
394	map = malloc(sizeof(*map));
395	if (map == NULL)
396		return ENOMEM;
397
398	*map = mutexattr_private_default;
399
400	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
401	attr->ptma_private = map;
402
403	return 0;
404}
405
406
407int
408pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
409{
410
411	pthread__error(EINVAL, "Invalid mutex attribute",
412	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
413
414	attr->ptma_magic = _PT_MUTEXATTR_DEAD;
415	if (attr->ptma_private != NULL)
416		free(attr->ptma_private);
417
418	return 0;
419}
420
421
422int
423pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
424{
425	struct mutexattr_private *map;
426
427	pthread__error(EINVAL, "Invalid mutex attribute",
428	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
429
430	map = attr->ptma_private;
431
432	*typep = map->type;
433
434	return 0;
435}
436
437
438int
439pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
440{
441	struct mutexattr_private *map;
442
443	pthread__error(EINVAL, "Invalid mutex attribute",
444	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
445
446	map = attr->ptma_private;
447
448	switch (type) {
449	case PTHREAD_MUTEX_NORMAL:
450	case PTHREAD_MUTEX_ERRORCHECK:
451	case PTHREAD_MUTEX_RECURSIVE:
452		map->type = type;
453		break;
454
455	default:
456		return EINVAL;
457	}
458
459	return 0;
460}
461
462
463static void
464once_cleanup(void *closure)
465{
466
467       pthread_mutex_unlock((pthread_mutex_t *)closure);
468}
469
470
471int
472pthread_once(pthread_once_t *once_control, void (*routine)(void))
473{
474
475	if (once_control->pto_done == 0) {
476		pthread_mutex_lock(&once_control->pto_mutex);
477		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
478		if (once_control->pto_done == 0) {
479			routine();
480			once_control->pto_done = 1;
481		}
482		pthread_cleanup_pop(1);
483	}
484
485	return 0;
486}
487