1/*	$NetBSD: n_j1.c,v 1.6 2003/08/07 16:44:51 agc Exp $	*/
2/*-
3 * Copyright (c) 1992, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31#ifndef lint
32#if 0
33static char sccsid[] = "@(#)j1.c	8.2 (Berkeley) 11/30/93";
34#endif
35#endif /* not lint */
36
37/*
38 * 16 December 1992
39 * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
40 */
41
42/*
43 * ====================================================
44 * Copyright (C) 1992 by Sun Microsystems, Inc.
45 *
46 * Developed at SunPro, a Sun Microsystems, Inc. business.
47 * Permission to use, copy, modify, and distribute this
48 * software is freely granted, provided that this notice
49 * is preserved.
50 * ====================================================
51 *
52 * ******************* WARNING ********************
53 * This is an alpha version of SunPro's FDLIBM (Freely
54 * Distributable Math Library) for IEEE double precision
55 * arithmetic. FDLIBM is a basic math library written
56 * in C that runs on machines that conform to IEEE
57 * Standard 754/854. This alpha version is distributed
58 * for testing purpose. Those who use this software
59 * should report any bugs to
60 *
61 *		fdlibm-comments@sunpro.eng.sun.com
62 *
63 * -- K.C. Ng, Oct 12, 1992
64 * ************************************************
65 */
66
67/* double j1(double x), y1(double x)
68 * Bessel function of the first and second kinds of order zero.
69 * Method -- j1(x):
70 *	1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
71 *	2. Reduce x to |x| since j1(x)=-j1(-x),  and
72 *	   for x in (0,2)
73 *		j1(x) = x/2 + x*z*R0/S0,  where z = x*x;
74 *	   (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 )
75 *	   for x in (2,inf)
76 * 		j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
77 * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
78 * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
79 *	   as follows:
80 *		cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
81 *			=  1/sqrt(2) * (sin(x) - cos(x))
82 *		sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
83 *			= -1/sqrt(2) * (sin(x) + cos(x))
84 * 	   (To avoid cancellation, use
85 *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
86 * 	    to compute the worse one.)
87 *
88 *	3 Special cases
89 *		j1(nan)= nan
90 *		j1(0) = 0
91 *		j1(inf) = 0
92 *
93 * Method -- y1(x):
94 *	1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
95 *	2. For x<2.
96 *	   Since
97 *		y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
98 *	   therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
99 *	   We use the following function to approximate y1,
100 *		y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
101 *	   where for x in [0,2] (abs err less than 2**-65.89)
102 *		U(z) = u0 + u1*z + ... + u4*z^4
103 *		V(z) = 1  + v1*z + ... + v5*z^5
104 *	   Note: For tiny x, 1/x dominate y1 and hence
105 *		y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
106 *	3. For x>=2.
107 * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
108 * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
109 *	   by method mentioned above.
110 */
111
112#include "mathimpl.h"
113#include <float.h>
114#include <errno.h>
115
116#if defined(__vax__) || defined(tahoe)
117#define _IEEE	0
118#else
119#define _IEEE	1
120#define infnan(x) (0.0)
121#endif
122
123static double pone (double), qone (double);
124
125static const double
126huge    = _HUGE,
127zero    = 0.0,
128one	= 1.0,
129invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
130tpi	= 0.636619772367581343075535053490057448,
131
132	/* R0/S0 on [0,2] */
133r00 =  -6.250000000000000020842322918309200910191e-0002,
134r01 =   1.407056669551897148204830386691427791200e-0003,
135r02 =  -1.599556310840356073980727783817809847071e-0005,
136r03 =   4.967279996095844750387702652791615403527e-0008,
137s01 =   1.915375995383634614394860200531091839635e-0002,
138s02 =   1.859467855886309024045655476348872850396e-0004,
139s03 =   1.177184640426236767593432585906758230822e-0006,
140s04 =   5.046362570762170559046714468225101016915e-0009,
141s05 =   1.235422744261379203512624973117299248281e-0011;
142
143#define two_129	6.80564733841876926e+038	/* 2^129 */
144#define two_m54	5.55111512312578270e-017	/* 2^-54 */
145
146double
147j1(double x)
148{
149	double z, s,c,ss,cc,r,u,v,y;
150	y = fabs(x);
151	if (!finite(x)) {		/* Inf or NaN */
152#if _IEEE
153		if (x != x)
154			return(x);
155		else
156#endif
157			return (copysign(x, zero));
158	}
159	y = fabs(x);
160	if (y >= 2) {			/* |x| >= 2.0 */
161		s = sin(y);
162		c = cos(y);
163		ss = -s-c;
164		cc = s-c;
165		if (y < .5*DBL_MAX) {  	/* make sure y+y not overflow */
166		    z = cos(y+y);
167		    if ((s*c)<zero) cc = z/ss;
168		    else 	    ss = z/cc;
169		}
170	/*
171	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
172	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
173	 */
174#if !defined(__vax__) && !defined(tahoe)
175		if (y > two_129)	 /* x > 2^129 */
176			z = (invsqrtpi*cc)/sqrt(y);
177		else
178#endif /* defined(__vax__) || defined(tahoe) */
179		{
180		    u = pone(y); v = qone(y);
181		    z = invsqrtpi*(u*cc-v*ss)/sqrt(y);
182		}
183		if (x < 0) return -z;
184		else  	 return  z;
185	}
186	if (y < 7.450580596923828125e-009) {	/* |x|<2**-27 */
187	    if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
188	}
189	z = x*x;
190	r =  z*(r00+z*(r01+z*(r02+z*r03)));
191	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
192	r *= x;
193	return (x*0.5+r/s);
194}
195
196static const double u0[5] = {
197  -1.960570906462389484206891092512047539632e-0001,
198   5.044387166398112572026169863174882070274e-0002,
199  -1.912568958757635383926261729464141209569e-0003,
200   2.352526005616105109577368905595045204577e-0005,
201   -9.190991580398788465315411784276789663849e-0008,
202};
203static const double v0[5] = {
204   1.991673182366499064031901734535479833387e-0002,
205   2.025525810251351806268483867032781294682e-0004,
206   1.356088010975162198085369545564475416398e-0006,
207   6.227414523646214811803898435084697863445e-0009,
208   1.665592462079920695971450872592458916421e-0011,
209};
210
211double
212y1(double x)
213{
214	double z, s, c, ss, cc, u, v;
215    /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
216	if (!finite(x)) {
217#if _IEEE
218		if (x < 0)
219			return(zero/zero);
220		else if (x > 0)
221			return (0);
222		else
223			return(x);
224#else
225		return (infnan(EDOM));
226#endif
227	}
228	if (x <= 0) {
229#if _IEEE
230		if (x == 0) return -one/zero;
231#endif
232		if(x == 0) return(infnan(-ERANGE));
233#if _IEEE
234		return (zero/zero);
235#else
236		return(infnan(EDOM));
237#endif
238	}
239        if (x >= 2) {			 /* |x| >= 2.0 */
240                s = sin(x);
241                c = cos(x);
242                ss = -s-c;
243                cc = s-c;
244		if (x < .5 * DBL_MAX) {	/* make sure x+x not overflow */
245                    z = cos(x+x);
246                    if ((s*c)>zero) cc = z/ss;
247                    else            ss = z/cc;
248                }
249        /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
250         * where x0 = x-3pi/4
251         *      Better formula:
252         *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
253         *                      =  1/sqrt(2) * (sin(x) - cos(x))
254         *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
255         *                      = -1/sqrt(2) * (cos(x) + sin(x))
256         * To avoid cancellation, use
257         *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
258         * to compute the worse one.
259         */
260#if _IEEE
261                if (x>two_129) {
262			z = (invsqrtpi*ss)/sqrt(x);
263                } else
264#endif
265		{
266                    u = pone(x); v = qone(x);
267                    z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
268                }
269                return z;
270        }
271        if (x <= two_m54) {    /* x < 2**-54 */
272            return (-tpi/x);
273        }
274        z = x*x;
275        u = u0[0]+z*(u0[1]+z*(u0[2]+z*(u0[3]+z*u0[4])));
276        v = one+z*(v0[0]+z*(v0[1]+z*(v0[2]+z*(v0[3]+z*v0[4]))));
277        return (x*(u/v) + tpi*(j1(x)*log(x)-one/x));
278}
279
280/* For x >= 8, the asymptotic expansions of pone is
281 *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
282 * We approximate pone by
283 * 	pone(x) = 1 + (R/S)
284 * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
285 * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
286 * and
287 *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
288 */
289
290static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
291   0.0,
292   1.171874999999886486643746274751925399540e-0001,
293   1.323948065930735690925827997575471527252e+0001,
294   4.120518543073785433325860184116512799375e+0002,
295   3.874745389139605254931106878336700275601e+0003,
296   7.914479540318917214253998253147871806507e+0003,
297};
298static const double ps8[5] = {
299   1.142073703756784104235066368252692471887e+0002,
300   3.650930834208534511135396060708677099382e+0003,
301   3.695620602690334708579444954937638371808e+0004,
302   9.760279359349508334916300080109196824151e+0004,
303   3.080427206278887984185421142572315054499e+0004,
304};
305
306static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
307   1.319905195562435287967533851581013807103e-0011,
308   1.171874931906140985709584817065144884218e-0001,
309   6.802751278684328781830052995333841452280e+0000,
310   1.083081829901891089952869437126160568246e+0002,
311   5.176361395331997166796512844100442096318e+0002,
312   5.287152013633375676874794230748055786553e+0002,
313};
314static const double ps5[5] = {
315   5.928059872211313557747989128353699746120e+0001,
316   9.914014187336144114070148769222018425781e+0002,
317   5.353266952914879348427003712029704477451e+0003,
318   7.844690317495512717451367787640014588422e+0003,
319   1.504046888103610723953792002716816255382e+0003,
320};
321
322static const double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
323   3.025039161373736032825049903408701962756e-0009,
324   1.171868655672535980750284752227495879921e-0001,
325   3.932977500333156527232725812363183251138e+0000,
326   3.511940355916369600741054592597098912682e+0001,
327   9.105501107507812029367749771053045219094e+0001,
328   4.855906851973649494139275085628195457113e+0001,
329};
330static const double ps3[5] = {
331   3.479130950012515114598605916318694946754e+0001,
332   3.367624587478257581844639171605788622549e+0002,
333   1.046871399757751279180649307467612538415e+0003,
334   8.908113463982564638443204408234739237639e+0002,
335   1.037879324396392739952487012284401031859e+0002,
336};
337
338static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
339   1.077108301068737449490056513753865482831e-0007,
340   1.171762194626833490512746348050035171545e-0001,
341   2.368514966676087902251125130227221462134e+0000,
342   1.224261091482612280835153832574115951447e+0001,
343   1.769397112716877301904532320376586509782e+0001,
344   5.073523125888185399030700509321145995160e+0000,
345};
346static const double ps2[5] = {
347   2.143648593638214170243114358933327983793e+0001,
348   1.252902271684027493309211410842525120355e+0002,
349   2.322764690571628159027850677565128301361e+0002,
350   1.176793732871470939654351793502076106651e+0002,
351   8.364638933716182492500902115164881195742e+0000,
352};
353
354static double
355pone(double x)
356{
357	const double *p,*q;
358	double z,r,s;
359	if (x >= 8.0) 			   {p = pr8; q= ps8;}
360	else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
361	else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
362	else /* if (x >= 2.0) */	   {p = pr2; q= ps2;}
363	z = one/(x*x);
364	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
365	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
366	return (one + r/s);
367}
368
369
370/* For x >= 8, the asymptotic expansions of qone is
371 *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
372 * We approximate pone by
373 * 	qone(x) = s*(0.375 + (R/S))
374 * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
375 * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
376 * and
377 *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
378 */
379
380static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
381   0.0,
382  -1.025390624999927207385863635575804210817e-0001,
383  -1.627175345445899724355852152103771510209e+0001,
384  -7.596017225139501519843072766973047217159e+0002,
385  -1.184980667024295901645301570813228628541e+0004,
386  -4.843851242857503225866761992518949647041e+0004,
387};
388static const double qs8[6] = {
389   1.613953697007229231029079421446916397904e+0002,
390   7.825385999233484705298782500926834217525e+0003,
391   1.338753362872495800748094112937868089032e+0005,
392   7.196577236832409151461363171617204036929e+0005,
393   6.666012326177764020898162762642290294625e+0005,
394  -2.944902643038346618211973470809456636830e+0005,
395};
396
397static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
398  -2.089799311417640889742251585097264715678e-0011,
399  -1.025390502413754195402736294609692303708e-0001,
400  -8.056448281239359746193011295417408828404e+0000,
401  -1.836696074748883785606784430098756513222e+0002,
402  -1.373193760655081612991329358017247355921e+0003,
403  -2.612444404532156676659706427295870995743e+0003,
404};
405static const double qs5[6] = {
406   8.127655013843357670881559763225310973118e+0001,
407   1.991798734604859732508048816860471197220e+0003,
408   1.746848519249089131627491835267411777366e+0004,
409   4.985142709103522808438758919150738000353e+0004,
410   2.794807516389181249227113445299675335543e+0004,
411  -4.719183547951285076111596613593553911065e+0003,
412};
413
414static const double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
415  -5.078312264617665927595954813341838734288e-0009,
416  -1.025378298208370901410560259001035577681e-0001,
417  -4.610115811394734131557983832055607679242e+0000,
418  -5.784722165627836421815348508816936196402e+0001,
419  -2.282445407376317023842545937526967035712e+0002,
420  -2.192101284789093123936441805496580237676e+0002,
421};
422static const double qs3[6] = {
423   4.766515503237295155392317984171640809318e+0001,
424   6.738651126766996691330687210949984203167e+0002,
425   3.380152866795263466426219644231687474174e+0003,
426   5.547729097207227642358288160210745890345e+0003,
427   1.903119193388108072238947732674639066045e+0003,
428  -1.352011914443073322978097159157678748982e+0002,
429};
430
431static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
432  -1.783817275109588656126772316921194887979e-0007,
433  -1.025170426079855506812435356168903694433e-0001,
434  -2.752205682781874520495702498875020485552e+0000,
435  -1.966361626437037351076756351268110418862e+0001,
436  -4.232531333728305108194363846333841480336e+0001,
437  -2.137192117037040574661406572497288723430e+0001,
438};
439static const double qs2[6] = {
440   2.953336290605238495019307530224241335502e+0001,
441   2.529815499821905343698811319455305266409e+0002,
442   7.575028348686454070022561120722815892346e+0002,
443   7.393932053204672479746835719678434981599e+0002,
444   1.559490033366661142496448853793707126179e+0002,
445  -4.959498988226281813825263003231704397158e+0000,
446};
447
448static double
449qone(double x)
450{
451	const double *p,*q;
452	double s,r,z;
453	if (x >= 8.0)			   {p = qr8; q= qs8;}
454	else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
455	else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
456	else /* if (x >= 2.0) */	   {p = qr2; q= qs2;}
457	z = one/(x*x);
458	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
459	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
460	return (.375 + r/s)/x;
461}
462