getch.c revision 1.38
1/*	$NetBSD: getch.c,v 1.38 2002/12/23 12:11:38 jdc Exp $	*/
2
3/*
4 * Copyright (c) 1981, 1993, 1994
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by the University of
18 *	California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36#include <sys/cdefs.h>
37#ifndef lint
38#if 0
39static char sccsid[] = "@(#)getch.c	8.2 (Berkeley) 5/4/94";
40#else
41__RCSID("$NetBSD: getch.c,v 1.38 2002/12/23 12:11:38 jdc Exp $");
42#endif
43#endif					/* not lint */
44
45#include <string.h>
46#include <stdlib.h>
47#include <unistd.h>
48#include <stdio.h>
49#include "curses.h"
50#include "curses_private.h"
51
52#define DEFAULT_DELAY 3			/* default delay for timeout() */
53
54/*
55 * Keyboard input handler.  Do this by snarfing
56 * all the info we can out of the termcap entry for TERM and putting it
57 * into a set of keymaps.  A keymap is an array the size of all the possible
58 * single characters we can get, the contents of the array is a structure
59 * that contains the type of entry this character is (i.e. part/end of a
60 * multi-char sequence or a plain char) and either a pointer which will point
61 * to another keymap (in the case of a multi-char sequence) OR the data value
62 * that this key should return.
63 *
64 */
65
66/* private data structures for holding the key definitions */
67typedef struct key_entry key_entry_t;
68
69struct key_entry {
70	short   type;		/* type of key this is */
71	bool    enable;         /* true if the key is active */
72	union {
73		keymap_t *next;	/* next keymap is key is multi-key sequence */
74		wchar_t   symbol;	/* key symbol if key is a leaf entry */
75	} value;
76};
77/* Types of key structures we can have */
78#define KEYMAP_MULTI  1		/* part of a multi char sequence */
79#define KEYMAP_LEAF   2		/* key has a symbol associated with it, either
80				 * it is the end of a multi-char sequence or a
81				 * single char key that generates a symbol */
82
83/* allocate this many key_entry structs at once to speed start up must
84 * be a power of 2.
85 */
86#define KEYMAP_ALLOC_CHUNK 4
87
88/* The max number of different chars we can receive */
89#define MAX_CHAR 256
90
91/*
92 * Unused mapping flag.
93 */
94#define MAPPING_UNUSED (0 - MAX_CHAR) /* never been used */
95
96struct keymap {
97	int	count;	       /* count of number of key structs allocated */
98	short	mapping[MAX_CHAR]; /* mapping of key to allocated structs */
99	key_entry_t **key;     /* dynamic array of keys */
100};
101
102
103/* Key buffer */
104#define INBUF_SZ 16		/* size of key buffer - must be larger than
105				 * longest multi-key sequence */
106static wchar_t  inbuf[INBUF_SZ];
107static int     start, end, working; /* pointers for manipulating inbuf data */
108
109#define INC_POINTER(ptr)  do {	\
110	(ptr)++;		\
111	ptr %= INBUF_SZ;	\
112} while(/*CONSTCOND*/0)
113
114static short	state;		/* state of the inkey function */
115
116#define INKEY_NORM	 0	/* no key backlog to process */
117#define INKEY_ASSEMBLING 1	/* assembling a multi-key sequence */
118#define INKEY_BACKOUT	 2	/* recovering from an unrecognised key */
119#define INKEY_TIMEOUT	 3	/* multi-key sequence timeout */
120
121/* The termcap data we are interested in and the symbols they map to */
122struct tcdata {
123	const char	*name;	/* name of termcap entry */
124	wchar_t	symbol;		/* the symbol associated with it */
125};
126
127static const struct tcdata tc[] = {
128	{"!1", KEY_SSAVE},
129	{"!2", KEY_SSUSPEND},
130	{"!3", KEY_SUNDO},
131	{"#1", KEY_SHELP},
132	{"#2", KEY_SHOME},
133	{"#3", KEY_SIC},
134	{"#4", KEY_SLEFT},
135	{"%0", KEY_REDO},
136	{"%1", KEY_HELP},
137	{"%2", KEY_MARK},
138	{"%3", KEY_MESSAGE},
139	{"%4", KEY_MOVE},
140	{"%5", KEY_NEXT},
141	{"%6", KEY_OPEN},
142	{"%7", KEY_OPTIONS},
143	{"%8", KEY_PREVIOUS},
144	{"%9", KEY_PRINT},
145	{"%a", KEY_SMESSAGE},
146	{"%b", KEY_SMOVE},
147	{"%c", KEY_SNEXT},
148	{"%d", KEY_SOPTIONS},
149	{"%e", KEY_SPREVIOUS},
150	{"%f", KEY_SPRINT},
151	{"%g", KEY_SREDO},
152	{"%h", KEY_SREPLACE},
153	{"%i", KEY_SRIGHT},
154	{"%j", KEY_SRSUME},
155	{"&0", KEY_SCANCEL},
156	{"&1", KEY_REFERENCE},
157	{"&2", KEY_REFRESH},
158	{"&3", KEY_REPLACE},
159	{"&4", KEY_RESTART},
160	{"&5", KEY_RESUME},
161	{"&6", KEY_SAVE},
162	{"&7", KEY_SUSPEND},
163	{"&8", KEY_UNDO},
164	{"&9", KEY_SBEG},
165	{"*0", KEY_SFIND},
166	{"*1", KEY_SCOMMAND},
167	{"*2", KEY_SCOPY},
168	{"*3", KEY_SCREATE},
169	{"*4", KEY_SDC},
170	{"*5", KEY_SDL},
171	{"*6", KEY_SELECT},
172	{"*7", KEY_SEND},
173	{"*8", KEY_SEOL},
174	{"*9", KEY_SEXIT},
175	{"@0", KEY_FIND},
176	{"@1", KEY_BEG},
177	{"@2", KEY_CANCEL},
178	{"@3", KEY_CLOSE},
179	{"@4", KEY_COMMAND},
180	{"@5", KEY_COPY},
181	{"@6", KEY_CREATE},
182	{"@7", KEY_END},
183	{"@8", KEY_ENTER},
184	{"@9", KEY_EXIT},
185	{"F1", KEY_F(11)},
186	{"F2", KEY_F(12)},
187	{"F3", KEY_F(13)},
188	{"F4", KEY_F(14)},
189	{"F5", KEY_F(15)},
190	{"F6", KEY_F(16)},
191	{"F7", KEY_F(17)},
192	{"F8", KEY_F(18)},
193	{"F9", KEY_F(19)},
194	{"FA", KEY_F(20)},
195	{"FB", KEY_F(21)},
196	{"FC", KEY_F(22)},
197	{"FD", KEY_F(23)},
198	{"FE", KEY_F(24)},
199	{"FF", KEY_F(25)},
200	{"FG", KEY_F(26)},
201	{"FH", KEY_F(27)},
202	{"FI", KEY_F(28)},
203	{"FJ", KEY_F(29)},
204	{"FK", KEY_F(30)},
205	{"FL", KEY_F(31)},
206	{"FM", KEY_F(32)},
207	{"FN", KEY_F(33)},
208	{"FO", KEY_F(34)},
209	{"FP", KEY_F(35)},
210	{"FQ", KEY_F(36)},
211	{"FR", KEY_F(37)},
212	{"FS", KEY_F(38)},
213	{"FT", KEY_F(39)},
214	{"FU", KEY_F(40)},
215	{"FV", KEY_F(41)},
216	{"FW", KEY_F(42)},
217	{"FX", KEY_F(43)},
218	{"FY", KEY_F(44)},
219	{"FZ", KEY_F(45)},
220	{"Fa", KEY_F(46)},
221	{"Fb", KEY_F(47)},
222	{"Fc", KEY_F(48)},
223	{"Fd", KEY_F(49)},
224	{"Fe", KEY_F(50)},
225	{"Ff", KEY_F(51)},
226	{"Fg", KEY_F(52)},
227	{"Fh", KEY_F(53)},
228	{"Fi", KEY_F(54)},
229	{"Fj", KEY_F(55)},
230	{"Fk", KEY_F(56)},
231	{"Fl", KEY_F(57)},
232	{"Fm", KEY_F(58)},
233	{"Fn", KEY_F(59)},
234	{"Fo", KEY_F(60)},
235	{"Fp", KEY_F(61)},
236	{"Fq", KEY_F(62)},
237	{"Fr", KEY_F(63)},
238	{"K1", KEY_A1},
239	{"K2", KEY_B2},
240	{"K3", KEY_A3},
241	{"K4", KEY_C1},
242	{"K5", KEY_C3},
243	{"Km", KEY_MOUSE},
244	{"k0", KEY_F0},
245	{"k1", KEY_F(1)},
246	{"k2", KEY_F(2)},
247	{"k3", KEY_F(3)},
248	{"k4", KEY_F(4)},
249	{"k5", KEY_F(5)},
250	{"k6", KEY_F(6)},
251	{"k7", KEY_F(7)},
252	{"k8", KEY_F(8)},
253	{"k9", KEY_F(9)},
254	{"k;", KEY_F(10)},
255	{"kA", KEY_IL},
256	{"ka", KEY_CATAB},
257	{"kB", KEY_BTAB},
258	{"kb", KEY_BACKSPACE},
259	{"kC", KEY_CLEAR},
260	{"kD", KEY_DC},
261	{"kd", KEY_DOWN},
262	{"kE", KEY_EOL},
263	{"kF", KEY_SF},
264	{"kH", KEY_LL},
265	{"kh", KEY_HOME},
266	{"kI", KEY_IC},
267	{"kL", KEY_DL},
268	{"kl", KEY_LEFT},
269	{"kM", KEY_EIC},
270	{"kN", KEY_NPAGE},
271	{"kP", KEY_PPAGE},
272	{"kR", KEY_SR},
273	{"kr", KEY_RIGHT},
274	{"kS", KEY_EOS},
275	{"kT", KEY_STAB},
276	{"kt", KEY_CTAB},
277	{"ku", KEY_UP}
278};
279/* Number of TC entries .... */
280static const int num_tcs = (sizeof(tc) / sizeof(struct tcdata));
281
282/* prototypes for private functions */
283static void add_key_sequence(SCREEN *screen, char *sequence, int key_type);
284static key_entry_t *add_new_key(keymap_t *current, char chr, int key_type,
285				int symbol);
286static void delete_key_sequence(keymap_t *current, int key_type);
287static void do_keyok(keymap_t *current, int key_type, bool flag, int *retval);
288static keymap_t		*new_keymap(void);	/* create a new keymap */
289static key_entry_t	*new_key(void);		/* create a new key entry */
290static wchar_t		inkey(int to, int delay);
291
292/*
293 * Free the storage associated with the given keymap
294 */
295void
296_cursesi_free_keymap(keymap_t *map)
297{
298	int i;
299
300	  /* check for, and free, child keymaps */
301	for (i = 0; i < MAX_CHAR; i++) {
302		if (map->mapping[i] >= 0) {
303			if (map->key[map->mapping[i]]->type == KEYMAP_MULTI)
304				_cursesi_free_keymap(
305					map->key[map->mapping[i]]->value.next);
306		}
307	}
308
309	  /* now free any allocated keymap structs */
310	for (i = 0; i < map->count; i += KEYMAP_ALLOC_CHUNK) {
311		free(map->key[i]);
312	}
313
314	free(map->key);
315	free(map);
316}
317
318
319/*
320 * Add a new key entry to the keymap pointed to by current.  Entry
321 * contains the character to add to the keymap, type is the type of
322 * entry to add (either multikey or leaf) and symbol is the symbolic
323 * value for a leaf type entry.  The function returns a pointer to the
324 * new keymap entry.
325 */
326static key_entry_t *
327add_new_key(keymap_t *current, char chr, int key_type, int symbol)
328{
329	key_entry_t *the_key;
330        int i, ki;
331
332#ifdef DEBUG
333	__CTRACE("Adding character %s of type %d, symbol 0x%x\n", unctrl(chr),
334		 key_type, symbol);
335#endif
336	if (current->mapping[(unsigned char) chr] < 0) {
337		if (current->mapping[(unsigned char) chr] == MAPPING_UNUSED) {
338			  /* first time for this char */
339			current->mapping[(unsigned char) chr] =
340				current->count;	/* map new entry */
341			ki = current->count;
342
343			  /* make sure we have room in the key array first */
344			if ((current->count & (KEYMAP_ALLOC_CHUNK - 1)) == 0)
345			{
346				if ((current->key =
347				     realloc(current->key,
348					     ki * sizeof(key_entry_t *)
349					     + KEYMAP_ALLOC_CHUNK * sizeof(key_entry_t *))) == NULL) {
350					fprintf(stderr,
351					  "Could not malloc for key entry\n");
352					exit(1);
353				}
354
355				the_key = new_key();
356				for (i = 0; i < KEYMAP_ALLOC_CHUNK; i++) {
357					current->key[ki + i] = &the_key[i];
358				}
359			}
360                } else {
361			  /* the mapping was used but freed, reuse it */
362			ki = - current->mapping[(unsigned char) chr];
363			current->mapping[(unsigned char) chr] = ki;
364		}
365
366		current->count++;
367
368		  /* point at the current key array element to use */
369		the_key = current->key[ki];
370
371		the_key->type = key_type;
372
373		switch (key_type) {
374		  case KEYMAP_MULTI:
375			    /* need for next key */
376#ifdef DEBUG
377			  __CTRACE("Creating new keymap\n");
378#endif
379			  the_key->value.next = new_keymap();
380			  the_key->enable = TRUE;
381			  break;
382
383		  case KEYMAP_LEAF:
384				/* the associated symbol for the key */
385#ifdef DEBUG
386			  __CTRACE("Adding leaf key\n");
387#endif
388			  the_key->value.symbol = symbol;
389			  the_key->enable = TRUE;
390			  break;
391
392		  default:
393			  fprintf(stderr, "add_new_key: bad type passed\n");
394			  exit(1);
395		}
396	} else {
397		  /* the key is already known - just return the address. */
398#ifdef DEBUG
399		__CTRACE("Keymap already known\n");
400#endif
401		the_key = current->key[current->mapping[(unsigned char) chr]];
402	}
403
404        return the_key;
405}
406
407/*
408 * Delete the given key symbol from the key mappings for the screen.
409 *
410 */
411void
412delete_key_sequence(keymap_t *current, int key_type)
413{
414	key_entry_t *key;
415	int i;
416
417	  /*
418	   * we need to iterate over all the keys as there may be
419	   * multiple instances of the leaf symbol.
420	   */
421	for (i = 0; i < MAX_CHAR; i++) {
422		if (current->mapping[i] < 0)
423			continue; /* no mapping for the key, next! */
424
425		key = current->key[current->mapping[i]];
426
427		if (key->type == KEYMAP_MULTI) {
428			  /* have not found the leaf, recurse down */
429			delete_key_sequence(key->value.next, key_type);
430			  /* if we deleted the last key in the map, free */
431			if (key->value.next->count == 0)
432				_cursesi_free_keymap(key->value.next);
433		} else if ((key->type == KEYMAP_LEAF)
434			   && (key->value.symbol == key_type)) {
435			  /*
436			   * delete the mapping by negating the current
437			   * index - this "holds" the position in the
438			   * allocation just in case we later re-add
439			   * the key for that mapping.
440			   */
441			current->mapping[i] = - current->mapping[i];
442			current->count--;
443		}
444	}
445}
446
447/*
448 * Add the sequence of characters given in sequence as the key mapping
449 * for the given key symbol.
450 */
451void
452add_key_sequence(SCREEN *screen, char *sequence, int key_type)
453{
454	key_entry_t *tmp_key;
455	keymap_t *current;
456	int length, j, key_ent;
457
458	current = screen->base_keymap;	/* always start with
459					 * base keymap. */
460	length = (int) strlen(sequence);
461
462	for (j = 0; j < length - 1; j++) {
463		  /* add the entry to the struct */
464		tmp_key = add_new_key(current, sequence[j], KEYMAP_MULTI, 0);
465
466		  /* index into the key array - it's
467		     clearer if we stash this */
468		key_ent = current->mapping[(unsigned char) sequence[j]];
469
470		current->key[key_ent] = tmp_key;
471
472		  /* next key uses this map... */
473		current = current->key[key_ent]->value.next;
474	}
475
476	/*
477	 * This is the last key in the sequence (it may have been the
478	 * only one but that does not matter) this means it is a leaf
479	 * key and should have a symbol associated with it.
480	 */
481	tmp_key = add_new_key(current, sequence[length - 1], KEYMAP_LEAF,
482			      key_type);
483	current->key[current->mapping[(int)sequence[length - 1]]] = tmp_key;
484}
485
486/*
487 * Init_getch - initialise all the pointers & structures needed to make
488 * getch work in keypad mode.
489 *
490 */
491void
492__init_getch(SCREEN *screen)
493{
494	char entry[1024], *p;
495	int     i;
496	size_t limit;
497#ifdef DEBUG
498	int k, length;
499#endif
500
501	/* init the inkey state variable */
502	state = INKEY_NORM;
503
504	/* init the base keymap */
505	screen->base_keymap = new_keymap();
506
507	/* key input buffer pointers */
508	start = end = working = 0;
509
510	/* now do the termcap snarfing ... */
511
512	for (i = 0; i < num_tcs; i++) {
513		p = entry;
514		limit = 1023;
515		if (t_getstr(screen->cursesi_genbuf, tc[i].name,
516			     &p, &limit) != NULL) {
517#ifdef DEBUG
518			__CTRACE("Processing termcap entry %s, sequence ",
519				 tc[i].name);
520			length = (int) strlen(entry);
521			for (k = 0; k <= length -1; k++)
522				__CTRACE("%s", unctrl(entry[k]));
523			__CTRACE("\n");
524#endif
525			add_key_sequence(screen, entry, tc[i].symbol);
526		}
527
528	}
529}
530
531
532/*
533 * new_keymap - allocates & initialises a new keymap structure.  This
534 * function returns a pointer to the new keymap.
535 *
536 */
537static keymap_t *
538new_keymap(void)
539{
540	int     i;
541	keymap_t *new_map;
542
543	if ((new_map = malloc(sizeof(keymap_t))) == NULL) {
544		perror("Inkey: Cannot allocate new keymap");
545		exit(2);
546	}
547
548	/* Initialise the new map */
549	new_map->count = 0;
550	for (i = 0; i < MAX_CHAR; i++) {
551		new_map->mapping[i] = MAPPING_UNUSED; /* no mapping for char */
552	}
553
554	/* key array will be allocated when first key is added */
555	new_map->key = NULL;
556
557	return new_map;
558}
559
560/*
561 * new_key - allocates & initialises a new key entry.  This function returns
562 * a pointer to the newly allocated key entry.
563 *
564 */
565static key_entry_t *
566new_key(void)
567{
568	key_entry_t *new_one;
569	int i;
570
571	if ((new_one = malloc(KEYMAP_ALLOC_CHUNK * sizeof(key_entry_t)))
572	    == NULL) {
573		perror("inkey: Cannot allocate new key entry chunk");
574		exit(2);
575	}
576
577	for (i = 0; i < KEYMAP_ALLOC_CHUNK; i++) {
578		new_one[i].type = 0;
579		new_one[i].value.next = NULL;
580	}
581
582	return new_one;
583}
584
585/*
586 * inkey - do the work to process keyboard input, check for multi-key
587 * sequences and return the appropriate symbol if we get a match.
588 *
589 */
590
591wchar_t
592inkey(int to, int delay)
593{
594	wchar_t		 k;
595	int              c, mapping;
596	keymap_t	*current = _cursesi_screen->base_keymap;
597	FILE            *infd = _cursesi_screen->infd;
598
599	k = 0;		/* XXX gcc -Wuninitialized */
600
601	for (;;) {		/* loop until we get a complete key sequence */
602reread:
603		if (state == INKEY_NORM) {
604			if (delay && __timeout(delay) == ERR)
605				return ERR;
606			if ((c = getchar()) == EOF) {
607				clearerr(infd);
608				return ERR;
609			}
610
611			if (delay && (__notimeout() == ERR))
612				return ERR;
613
614			k = (wchar_t) c;
615#ifdef DEBUG
616			__CTRACE("inkey (state normal) got '%s'\n", unctrl(k));
617#endif
618
619			working = start;
620			inbuf[working] = k;
621			INC_POINTER(working);
622			end = working;
623			state = INKEY_ASSEMBLING;	/* go to the assembling
624							 * state now */
625		} else if (state == INKEY_BACKOUT) {
626			k = inbuf[working];
627			INC_POINTER(working);
628			if (working == end) {	/* see if we have run
629						 * out of keys in the
630						 * backlog */
631
632				/* if we have then switch to
633				   assembling */
634				state = INKEY_ASSEMBLING;
635			}
636		} else if (state == INKEY_ASSEMBLING) {
637			/* assembling a key sequence */
638			if (delay) {
639				if (__timeout(to ? DEFAULT_DELAY : delay) == ERR)
640						return ERR;
641			} else {
642				if (to && (__timeout(DEFAULT_DELAY) == ERR))
643					return ERR;
644			}
645
646			c = getchar();
647			if (ferror(infd)) {
648				clearerr(infd);
649				return ERR;
650			}
651
652			if ((to || delay) && (__notimeout() == ERR))
653					return ERR;
654
655			k = (wchar_t) c;
656#ifdef DEBUG
657			__CTRACE("inkey (state assembling) got '%s'\n", unctrl(k));
658#endif
659			if (feof(infd)) {	/* inter-char timeout,
660						 * start backing out */
661				clearerr(infd);
662				if (start == end)
663					/* no chars in the buffer, restart */
664					goto reread;
665
666				k = inbuf[start];
667				state = INKEY_TIMEOUT;
668			} else {
669				inbuf[working] = k;
670				INC_POINTER(working);
671				end = working;
672			}
673		} else {
674			fprintf(stderr, "Inkey state screwed - exiting!!!");
675			exit(2);
676		}
677
678		  /*
679		   * Check key has no special meaning and we have not
680		   * timed out and the key has not been disabled
681		   */
682		mapping = current->mapping[k];
683		if (((state == INKEY_TIMEOUT) || (mapping < 0))
684			|| ((current->key[mapping]->type == KEYMAP_LEAF)
685			    && (current->key[mapping]->enable == FALSE))) {
686			/* return the first key we know about */
687			k = inbuf[start];
688
689			INC_POINTER(start);
690			working = start;
691
692			if (start == end) {	/* only one char processed */
693				state = INKEY_NORM;
694			} else {/* otherwise we must have more than one char
695				 * to backout */
696				state = INKEY_BACKOUT;
697			}
698			return k;
699		} else {	/* must be part of a multikey sequence */
700			/* check for completed key sequence */
701			if (current->key[current->mapping[k]]->type == KEYMAP_LEAF) {
702				start = working;	/* eat the key sequence
703							 * in inbuf */
704
705				/* check if inbuf empty now */
706				if (start == end) {
707					/* if it is go back to normal */
708					state = INKEY_NORM;
709				} else {
710					/* otherwise go to backout state */
711					state = INKEY_BACKOUT;
712				}
713
714				/* return the symbol */
715				return current->key[current->mapping[k]]->value.symbol;
716
717			} else {
718				/*
719				 * Step on to next part of the multi-key
720				 * sequence.
721				 */
722				current = current->key[current->mapping[k]]->value.next;
723			}
724		}
725	}
726}
727
728#ifndef _CURSES_USE_MACROS
729/*
730 * getch --
731 *	Read in a character from stdscr.
732 */
733int
734getch(void)
735{
736	return wgetch(stdscr);
737}
738
739/*
740 * mvgetch --
741 *      Read in a character from stdscr at the given location.
742 */
743int
744mvgetch(int y, int x)
745{
746	return mvwgetch(stdscr, y, x);
747}
748
749/*
750 * mvwgetch --
751 *      Read in a character from stdscr at the given location in the
752 *      given window.
753 */
754int
755mvwgetch(WINDOW *win, int y, int x)
756{
757	if (wmove(win, y, x) == ERR)
758		return ERR;
759
760	return wgetch(win);
761}
762
763#endif
764
765/*
766 * keyok --
767 *      Set the enable flag for a keysym, if the flag is false then
768 * getch will not return this keysym even if the matching key sequence
769 * is seen.
770 */
771int
772keyok(int key_type, bool flag)
773{
774	int result = ERR;
775
776	do_keyok(_cursesi_screen->base_keymap, key_type, flag, &result);
777	return result;
778}
779
780/*
781 * do_keyok --
782 *       Does the actual work for keyok, we need to recurse through the
783 * keymaps finding the passed key symbol.
784 */
785void
786do_keyok(keymap_t *current, int key_type, bool flag, int *retval)
787{
788	key_entry_t *key;
789	int i;
790
791	  /*
792	   * we need to iterate over all the keys as there may be
793	   * multiple instances of the leaf symbol.
794	   */
795	for (i = 0; i < MAX_CHAR; i++) {
796		if (current->mapping[i] < 0)
797			continue; /* no mapping for the key, next! */
798
799		key = current->key[current->mapping[i]];
800
801		if (key->type == KEYMAP_MULTI)
802			do_keyok(key->value.next, key_type, flag, retval);
803		else if ((key->type == KEYMAP_LEAF)
804			 && (key->value.symbol == key_type)) {
805			key->enable = flag;
806			*retval = OK; /* we found at least one instance, ok */
807		}
808	}
809}
810
811/*
812 * define_key --
813 *      Add a custom mapping of a key sequence to key symbol.
814 *
815 */
816int
817define_key(char *sequence, int symbol)
818{
819
820	if (symbol <= 0)
821		return ERR;
822
823	if (sequence == NULL)
824		delete_key_sequence(_cursesi_screen->base_keymap, symbol);
825	else
826		add_key_sequence(_cursesi_screen, sequence, symbol);
827
828	return OK;
829}
830
831/*
832 * wgetch --
833 *	Read in a character from the window.
834 */
835int
836wgetch(WINDOW *win)
837{
838	int inp, weset;
839	int c;
840	FILE *infd = _cursesi_screen->infd;
841
842	if (!(win->flags & __SCROLLOK) && (win->flags & __FULLWIN)
843	    && win->curx == win->maxx - 1 && win->cury == win->maxy - 1
844	    && __echoit)
845		return (ERR);
846
847	if (is_wintouched(win))
848		wrefresh(win);
849#ifdef DEBUG
850	__CTRACE("wgetch: __echoit = %d, __rawmode = %d, flags = %0.2o\n",
851	    __echoit, __rawmode, win->flags);
852#endif
853	if (__echoit && !__rawmode) {
854		cbreak();
855		weset = 1;
856	} else
857		weset = 0;
858
859	__save_termios();
860
861	if (win->flags & __KEYPAD) {
862		switch (win->delay)
863		{
864		case -1:
865			inp = inkey (win->flags & __NOTIMEOUT ? 0 : 1, 0);
866			break;
867		case 0:
868			if (__nodelay() == ERR) {
869				__restore_termios();
870				return ERR;
871			}
872			inp = inkey(0, 0);
873			break;
874		default:
875			inp = inkey(win->flags & __NOTIMEOUT ? 0 : 1, win->delay);
876			break;
877		}
878	} else {
879		switch (win->delay)
880		{
881		case -1:
882			break;
883		case 0:
884			if (__nodelay() == ERR) {
885				__restore_termios();
886				return ERR;
887			}
888			break;
889		default:
890			if (__timeout(win->delay) == ERR) {
891				__restore_termios();
892				return ERR;
893			}
894			break;
895		}
896
897		c = getchar();
898		if (feof(infd)) {
899			clearerr(infd);
900			__restore_termios();
901			return ERR;	/* we have timed out */
902		}
903
904		if (ferror(infd)) {
905			clearerr(infd);
906			inp = ERR;
907		} else {
908			inp = c;
909		}
910	}
911#ifdef DEBUG
912	if (inp > 255)
913		  /* we have a key symbol - treat it differently */
914		  /* XXXX perhaps __unctrl should be expanded to include
915		   * XXXX the keysyms in the table....
916		   */
917		__CTRACE("wgetch assembled keysym 0x%x\n", inp);
918	else
919		__CTRACE("wgetch got '%s'\n", unctrl(inp));
920#endif
921	if (win->delay > -1) {
922		if (__delay() == ERR) {
923			__restore_termios();
924			return ERR;
925		}
926	}
927
928	__restore_termios();
929
930	if (__echoit)
931		waddch(win, (chtype) inp);
932
933	if (weset)
934		nocbreak();
935
936	return ((inp < 0) || (inp == ERR) ? ERR : inp);
937}
938
939/*
940 * ungetch --
941 *     Put the character back into the input queue.
942 */
943int
944ungetch(int c)
945{
946	return ((ungetc(c, _cursesi_screen->infd) == EOF) ? ERR : OK);
947}
948