localtime.c revision 1.48
1/*	$NetBSD: localtime.c,v 1.48 2010/03/23 20:28:58 drochner Exp $	*/
2
3/*
4** This file is in the public domain, so clarified as of
5** 1996-06-05 by Arthur David Olson.
6*/
7
8#include <sys/cdefs.h>
9#if defined(LIBC_SCCS) && !defined(lint)
10#if 0
11static char	elsieid[] = "@(#)localtime.c	8.9";
12#else
13__RCSID("$NetBSD: localtime.c,v 1.48 2010/03/23 20:28:58 drochner Exp $");
14#endif
15#endif /* LIBC_SCCS and not lint */
16
17/*
18** Leap second handling from Bradley White.
19** POSIX-style TZ environment variable handling from Guy Harris.
20*/
21
22/*LINTLIBRARY*/
23
24#include "namespace.h"
25#include "private.h"
26#include "tzfile.h"
27#include "fcntl.h"
28#include "reentrant.h"
29
30#if defined(__weak_alias)
31__weak_alias(daylight,_daylight)
32__weak_alias(tzname,_tzname)
33#endif
34
35#include "float.h"	/* for FLT_MAX and DBL_MAX */
36
37#ifndef TZ_ABBR_MAX_LEN
38#define TZ_ABBR_MAX_LEN	16
39#endif /* !defined TZ_ABBR_MAX_LEN */
40
41#ifndef TZ_ABBR_CHAR_SET
42#define TZ_ABBR_CHAR_SET \
43	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
44#endif /* !defined TZ_ABBR_CHAR_SET */
45
46#ifndef TZ_ABBR_ERR_CHAR
47#define TZ_ABBR_ERR_CHAR	'_'
48#endif /* !defined TZ_ABBR_ERR_CHAR */
49
50/*
51** SunOS 4.1.1 headers lack O_BINARY.
52*/
53
54#ifdef O_BINARY
55#define OPEN_MODE	(O_RDONLY | O_BINARY)
56#endif /* defined O_BINARY */
57#ifndef O_BINARY
58#define OPEN_MODE	O_RDONLY
59#endif /* !defined O_BINARY */
60
61#ifndef WILDABBR
62/*
63** Someone might make incorrect use of a time zone abbreviation:
64**	1.	They might reference tzname[0] before calling tzset (explicitly
65**		or implicitly).
66**	2.	They might reference tzname[1] before calling tzset (explicitly
67**		or implicitly).
68**	3.	They might reference tzname[1] after setting to a time zone
69**		in which Daylight Saving Time is never observed.
70**	4.	They might reference tzname[0] after setting to a time zone
71**		in which Standard Time is never observed.
72**	5.	They might reference tm.TM_ZONE after calling offtime.
73** What's best to do in the above cases is open to debate;
74** for now, we just set things up so that in any of the five cases
75** WILDABBR is used. Another possibility: initialize tzname[0] to the
76** string "tzname[0] used before set", and similarly for the other cases.
77** And another: initialize tzname[0] to "ERA", with an explanation in the
78** manual page of what this "time zone abbreviation" means (doing this so
79** that tzname[0] has the "normal" length of three characters).
80*/
81#define WILDABBR	"   "
82#endif /* !defined WILDABBR */
83
84static const char	wildabbr[] = WILDABBR;
85
86static const char	gmt[] = "GMT";
87
88/*
89** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
90** We default to US rules as of 1999-08-17.
91** POSIX 1003.1 section 8.1.1 says that the default DST rules are
92** implementation dependent; for historical reasons, US rules are a
93** common default.
94*/
95#ifndef TZDEFRULESTRING
96#define TZDEFRULESTRING ",M4.1.0,M10.5.0"
97#endif /* !defined TZDEFDST */
98
99struct ttinfo {				/* time type information */
100	long		tt_gmtoff;	/* UTC offset in seconds */
101	int		tt_isdst;	/* used to set tm_isdst */
102	int		tt_abbrind;	/* abbreviation list index */
103	int		tt_ttisstd;	/* TRUE if transition is std time */
104	int		tt_ttisgmt;	/* TRUE if transition is UTC */
105};
106
107struct lsinfo {				/* leap second information */
108	time_t		ls_trans;	/* transition time */
109	long		ls_corr;	/* correction to apply */
110};
111
112#define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
113
114#ifdef TZNAME_MAX
115#define MY_TZNAME_MAX	TZNAME_MAX
116#endif /* defined TZNAME_MAX */
117#ifndef TZNAME_MAX
118#define MY_TZNAME_MAX	255
119#endif /* !defined TZNAME_MAX */
120
121struct state {
122	int		leapcnt;
123	int		timecnt;
124	int		typecnt;
125	int		charcnt;
126	int		goback;
127	int		goahead;
128	time_t		ats[TZ_MAX_TIMES];
129	unsigned char	types[TZ_MAX_TIMES];
130	struct ttinfo	ttis[TZ_MAX_TYPES];
131	char		chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
132				(2 * (MY_TZNAME_MAX + 1)))];
133	struct lsinfo	lsis[TZ_MAX_LEAPS];
134};
135
136struct rule {
137	int		r_type;		/* type of rule--see below */
138	int		r_day;		/* day number of rule */
139	int		r_week;		/* week number of rule */
140	int		r_mon;		/* month number of rule */
141	long		r_time;		/* transition time of rule */
142};
143
144#define JULIAN_DAY		0	/* Jn - Julian day */
145#define DAY_OF_YEAR		1	/* n - day of year */
146#define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
147
148/*
149** Prototypes for static functions.
150*/
151
152static long		detzcode(const char * codep);
153static time_t		detzcode64(const char * codep);
154static int		differ_by_repeat(time_t t1, time_t t0);
155static const char *	getzname(const char * strp);
156static const char *	getqzname(const char * strp, const int delim);
157static const char *	getnum(const char * strp, int * nump, int min,
158				int max);
159static const char *	getsecs(const char * strp, long * secsp);
160static const char *	getoffset(const char * strp, long * offsetp);
161static const char *	getrule(const char * strp, struct rule * rulep);
162static void		gmtload(struct state * sp);
163static struct tm *	gmtsub(const time_t * timep, long offset,
164				struct tm * tmp);
165static struct tm *	localsub(const time_t * timep, long offset,
166				struct tm * tmp);
167static int		increment_overflow(int * number, int delta);
168static int		leaps_thru_end_of(int y);
169static int		long_increment_overflow(long * number, int delta);
170static int		long_normalize_overflow(long * tensptr,
171				int * unitsptr, int base);
172static int		normalize_overflow(int * tensptr, int * unitsptr,
173				int base);
174static void		settzname(void);
175static time_t		time1(struct tm * tmp,
176				struct tm * (*funcp)(const time_t *,
177				long, struct tm *),
178				long offset);
179static time_t		time2(struct tm *tmp,
180				struct tm * (*funcp)(const time_t *,
181				long, struct tm*),
182				long offset, int * okayp);
183static time_t		time2sub(struct tm *tmp,
184				struct tm * (*funcp)(const time_t *,
185				long, struct tm*),
186				long offset, int * okayp, int do_norm_secs);
187static struct tm *	timesub(const time_t * timep, long offset,
188				const struct state * sp, struct tm * tmp);
189static int		tmcomp(const struct tm * atmp,
190				const struct tm * btmp);
191static time_t		transtime(time_t janfirst, int year,
192				const struct rule * rulep, long offset);
193static int		typesequiv(const struct state * sp, int a, int b);
194static int		tzload(const char * name, struct state * sp,
195				int doextend);
196static int		tzparse(const char * name, struct state * sp,
197				int lastditch);
198static void		tzset_unlocked(void);
199static void		tzsetwall_unlocked(void);
200static long		leapcorr(time_t * timep);
201
202#ifdef ALL_STATE
203static struct state *	lclptr;
204static struct state *	gmtptr;
205#endif /* defined ALL_STATE */
206
207#ifndef ALL_STATE
208static struct state	lclmem;
209static struct state	gmtmem;
210#define lclptr		(&lclmem)
211#define gmtptr		(&gmtmem)
212#endif /* State Farm */
213
214#ifndef TZ_STRLEN_MAX
215#define TZ_STRLEN_MAX 255
216#endif /* !defined TZ_STRLEN_MAX */
217
218static char		lcl_TZname[TZ_STRLEN_MAX + 1];
219static int		lcl_is_set;
220static int		gmt_is_set;
221
222#if !defined(__LIBC12_SOURCE__)
223
224__aconst char *		tzname[2] = {
225	(__aconst char *)__UNCONST(wildabbr),
226	(__aconst char *)__UNCONST(wildabbr)
227};
228
229#else
230
231extern __aconst char *	tzname[2];
232
233#endif
234
235#ifdef _REENTRANT
236static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
237#endif
238
239/*
240** Section 4.12.3 of X3.159-1989 requires that
241**	Except for the strftime function, these functions [asctime,
242**	ctime, gmtime, localtime] return values in one of two static
243**	objects: a broken-down time structure and an array of char.
244** Thanks to Paul Eggert for noting this.
245*/
246
247static struct tm	tm;
248
249#ifdef USG_COMPAT
250#if !defined(__LIBC12_SOURCE__)
251long 			timezone = 0;
252int			daylight = 0;
253#else
254extern int		daylight;
255extern long		timezone __RENAME(__timezone13);
256#endif
257#endif /* defined USG_COMPAT */
258
259#ifdef ALTZONE
260time_t			altzone = 0;
261#endif /* defined ALTZONE */
262
263static long
264detzcode(codep)
265const char * const	codep;
266{
267	register long	result;
268	register int	i;
269
270	result = (codep[0] & 0x80) ? ~0L : 0;
271	for (i = 0; i < 4; ++i)
272		result = (result << 8) | (codep[i] & 0xff);
273	return result;
274}
275
276static time_t
277detzcode64(codep)
278const char * const	codep;
279{
280	register time_t	result;
281	register int	i;
282
283	result = (codep[0] & 0x80) ? -1 : 0;
284	for (i = 0; i < 8; ++i)
285		result = result * 256 + (codep[i] & 0xff);
286	return result;
287}
288
289static void
290settzname(void)
291{
292	register struct state * const	sp = lclptr;
293	register int			i;
294
295	tzname[0] = (__aconst char *)__UNCONST(wildabbr);
296	tzname[1] = (__aconst char *)__UNCONST(wildabbr);
297#ifdef USG_COMPAT
298	daylight = 0;
299	timezone = 0;
300#endif /* defined USG_COMPAT */
301#ifdef ALTZONE
302	altzone = 0;
303#endif /* defined ALTZONE */
304#ifdef ALL_STATE
305	if (sp == NULL) {
306		tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
307		return;
308	}
309#endif /* defined ALL_STATE */
310	for (i = 0; i < sp->typecnt; ++i) {
311		register const struct ttinfo * const	ttisp = &sp->ttis[i];
312
313		tzname[ttisp->tt_isdst] =
314			&sp->chars[ttisp->tt_abbrind];
315#ifdef USG_COMPAT
316		if (ttisp->tt_isdst)
317			daylight = 1;
318		if (i == 0 || !ttisp->tt_isdst)
319			timezone = -(ttisp->tt_gmtoff);
320#endif /* defined USG_COMPAT */
321#ifdef ALTZONE
322		if (i == 0 || ttisp->tt_isdst)
323			altzone = -(ttisp->tt_gmtoff);
324#endif /* defined ALTZONE */
325	}
326	/*
327	** And to get the latest zone names into tzname. . .
328	*/
329	for (i = 0; i < sp->timecnt; ++i) {
330		register const struct ttinfo * const	ttisp =
331							&sp->ttis[
332								sp->types[i]];
333
334		tzname[ttisp->tt_isdst] =
335			&sp->chars[ttisp->tt_abbrind];
336	}
337	/*
338	** Finally, scrub the abbreviations.
339	** First, replace bogus characters.
340	*/
341	for (i = 0; i < sp->charcnt; ++i)
342		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
343			sp->chars[i] = TZ_ABBR_ERR_CHAR;
344	/*
345	** Second, truncate long abbreviations.
346	*/
347	for (i = 0; i < sp->typecnt; ++i) {
348		register const struct ttinfo * const	ttisp = &sp->ttis[i];
349		register char *				cp = &sp->chars[ttisp->tt_abbrind];
350
351		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
352			strcmp(cp, GRANDPARENTED) != 0)
353				*(cp + TZ_ABBR_MAX_LEN) = '\0';
354	}
355}
356
357static int
358differ_by_repeat(t1, t0)
359const time_t	t1;
360const time_t	t0;
361{
362/* CONSTCOND */
363	if (TYPE_INTEGRAL(time_t) &&
364		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
365			return 0;
366	return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
367}
368
369static int
370tzload(name, sp, doextend)
371register const char *		name;
372register struct state * const	sp;
373register const int		doextend;
374{
375	register const char *		p;
376	register int			i;
377	register int			fid;
378	register int			stored;
379	register int			nread;
380	union {
381		struct tzhead	tzhead;
382		char		buf[2 * sizeof(struct tzhead) +
383					2 * sizeof *sp +
384					4 * TZ_MAX_TIMES];
385	} u;
386
387	sp->goback = sp->goahead = FALSE;
388	if (name == NULL && (name = TZDEFAULT) == NULL)
389		return -1;
390	{
391		register int	doaccess;
392		/*
393		** Section 4.9.1 of the C standard says that
394		** "FILENAME_MAX expands to an integral constant expression
395		** that is the size needed for an array of char large enough
396		** to hold the longest file name string that the implementation
397		** guarantees can be opened."
398		*/
399		char		fullname[FILENAME_MAX + 1];
400
401		if (name[0] == ':')
402			++name;
403		doaccess = name[0] == '/';
404		if (!doaccess) {
405			if ((p = TZDIR) == NULL)
406				return -1;
407			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
408				return -1;
409			(void) strcpy(fullname, p);	/* XXX strcpy is safe */
410			(void) strcat(fullname, "/");	/* XXX strcat is safe */
411			(void) strcat(fullname, name);	/* XXX strcat is safe */
412			/*
413			** Set doaccess if '.' (as in "../") shows up in name.
414			*/
415			if (strchr(name, '.') != NULL)
416				doaccess = TRUE;
417			name = fullname;
418		}
419		if (doaccess && access(name, R_OK) != 0)
420			return -1;
421		/*
422		 * XXX potential security problem here if user of a set-id
423		 * program has set TZ (which is passed in as name) here,
424		 * and uses a race condition trick to defeat the access(2)
425		 * above.
426		 */
427		if ((fid = open(name, OPEN_MODE)) == -1)
428			return -1;
429	}
430	nread = read(fid, u.buf, sizeof u.buf);
431	if (close(fid) < 0 || nread <= 0)
432		return -1;
433	for (stored = 4; stored <= 8; stored *= 2) {
434		int		ttisstdcnt;
435		int		ttisgmtcnt;
436
437		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
438		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
439		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
440		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
441		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
442		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
443		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
444		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
445			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
446			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
447			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
448			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
449			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
450				return -1;
451		if (nread - (p - u.buf) <
452			sp->timecnt * stored +		/* ats */
453			sp->timecnt +			/* types */
454			sp->typecnt * 6 +		/* ttinfos */
455			sp->charcnt +			/* chars */
456			sp->leapcnt * (stored + 4) +	/* lsinfos */
457			ttisstdcnt +			/* ttisstds */
458			ttisgmtcnt)			/* ttisgmts */
459				return -1;
460		for (i = 0; i < sp->timecnt; ++i) {
461			sp->ats[i] = (stored == 4) ?
462				detzcode(p) : detzcode64(p);
463			p += stored;
464		}
465		for (i = 0; i < sp->timecnt; ++i) {
466			sp->types[i] = (unsigned char) *p++;
467			if (sp->types[i] >= sp->typecnt)
468				return -1;
469		}
470		for (i = 0; i < sp->typecnt; ++i) {
471			register struct ttinfo *	ttisp;
472
473			ttisp = &sp->ttis[i];
474			ttisp->tt_gmtoff = detzcode(p);
475			p += 4;
476			ttisp->tt_isdst = (unsigned char) *p++;
477			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
478				return -1;
479			ttisp->tt_abbrind = (unsigned char) *p++;
480			if (ttisp->tt_abbrind < 0 ||
481				ttisp->tt_abbrind > sp->charcnt)
482					return -1;
483		}
484		for (i = 0; i < sp->charcnt; ++i)
485			sp->chars[i] = *p++;
486		sp->chars[i] = '\0';	/* ensure '\0' at end */
487		for (i = 0; i < sp->leapcnt; ++i) {
488			register struct lsinfo *	lsisp;
489
490			lsisp = &sp->lsis[i];
491			lsisp->ls_trans = (stored == 4) ?
492				detzcode(p) : detzcode64(p);
493			p += stored;
494			lsisp->ls_corr = detzcode(p);
495			p += 4;
496		}
497		for (i = 0; i < sp->typecnt; ++i) {
498			register struct ttinfo *	ttisp;
499
500			ttisp = &sp->ttis[i];
501			if (ttisstdcnt == 0)
502				ttisp->tt_ttisstd = FALSE;
503			else {
504				ttisp->tt_ttisstd = *p++;
505				if (ttisp->tt_ttisstd != TRUE &&
506					ttisp->tt_ttisstd != FALSE)
507						return -1;
508			}
509		}
510		for (i = 0; i < sp->typecnt; ++i) {
511			register struct ttinfo *	ttisp;
512
513			ttisp = &sp->ttis[i];
514			if (ttisgmtcnt == 0)
515				ttisp->tt_ttisgmt = FALSE;
516			else {
517				ttisp->tt_ttisgmt = *p++;
518				if (ttisp->tt_ttisgmt != TRUE &&
519					ttisp->tt_ttisgmt != FALSE)
520						return -1;
521			}
522		}
523		/*
524		** Out-of-sort ats should mean we're running on a
525		** signed time_t system but using a data file with
526		** unsigned values (or vice versa).
527		*/
528		for (i = 0; i < sp->timecnt - 2; ++i)
529			if (sp->ats[i] > sp->ats[i + 1]) {
530				++i;
531/* CONSTCOND */
532				if (TYPE_SIGNED(time_t)) {
533					/*
534					** Ignore the end (easy).
535					*/
536					sp->timecnt = i;
537				} else {
538					/*
539					** Ignore the beginning (harder).
540					*/
541					register int	j;
542
543					for (j = 0; j + i < sp->timecnt; ++j) {
544						sp->ats[j] = sp->ats[j + i];
545						sp->types[j] = sp->types[j + i];
546					}
547					sp->timecnt = j;
548				}
549				break;
550			}
551		/*
552		** If this is an old file, we're done.
553		*/
554		if (u.tzhead.tzh_version[0] == '\0')
555			break;
556		nread -= p - u.buf;
557		for (i = 0; i < nread; ++i)
558			u.buf[i] = p[i];
559		/*
560		** If this is a narrow integer time_t system, we're done.
561		*/
562		if (stored >= (int) sizeof(time_t)
563/* CONSTCOND */
564				&& TYPE_INTEGRAL(time_t))
565			break;
566	}
567	if (doextend && nread > 2 &&
568		u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
569		sp->typecnt + 2 <= TZ_MAX_TYPES) {
570			struct state	ts;
571			register int	result;
572
573			u.buf[nread - 1] = '\0';
574			result = tzparse(&u.buf[1], &ts, FALSE);
575			if (result == 0 && ts.typecnt == 2 &&
576				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
577					for (i = 0; i < 2; ++i)
578						ts.ttis[i].tt_abbrind +=
579							sp->charcnt;
580					for (i = 0; i < ts.charcnt; ++i)
581						sp->chars[sp->charcnt++] =
582							ts.chars[i];
583					i = 0;
584					while (i < ts.timecnt &&
585						ts.ats[i] <=
586						sp->ats[sp->timecnt - 1])
587							++i;
588					while (i < ts.timecnt &&
589					    sp->timecnt < TZ_MAX_TIMES) {
590						sp->ats[sp->timecnt] =
591							ts.ats[i];
592						sp->types[sp->timecnt] =
593							sp->typecnt +
594							ts.types[i];
595						++sp->timecnt;
596						++i;
597					}
598					sp->ttis[sp->typecnt++] = ts.ttis[0];
599					sp->ttis[sp->typecnt++] = ts.ttis[1];
600			}
601	}
602	if (sp->timecnt > 1) {
603		for (i = 1; i < sp->timecnt; ++i)
604			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
605				differ_by_repeat(sp->ats[i], sp->ats[0])) {
606					sp->goback = TRUE;
607					break;
608				}
609		for (i = sp->timecnt - 2; i >= 0; --i)
610			if (typesequiv(sp, sp->types[sp->timecnt - 1],
611				sp->types[i]) &&
612				differ_by_repeat(sp->ats[sp->timecnt - 1],
613				sp->ats[i])) {
614					sp->goahead = TRUE;
615					break;
616		}
617	}
618	return 0;
619}
620
621static int
622typesequiv(sp, a, b)
623const struct state * const	sp;
624const int			a;
625const int			b;
626{
627	register int	result;
628
629	if (sp == NULL ||
630		a < 0 || a >= sp->typecnt ||
631		b < 0 || b >= sp->typecnt)
632			result = FALSE;
633	else {
634		register const struct ttinfo *	ap = &sp->ttis[a];
635		register const struct ttinfo *	bp = &sp->ttis[b];
636		result = ap->tt_gmtoff == bp->tt_gmtoff &&
637			ap->tt_isdst == bp->tt_isdst &&
638			ap->tt_ttisstd == bp->tt_ttisstd &&
639			ap->tt_ttisgmt == bp->tt_ttisgmt &&
640			strcmp(&sp->chars[ap->tt_abbrind],
641			&sp->chars[bp->tt_abbrind]) == 0;
642	}
643	return result;
644}
645
646static const int	mon_lengths[2][MONSPERYEAR] = {
647	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
648	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
649};
650
651static const int	year_lengths[2] = {
652	DAYSPERNYEAR, DAYSPERLYEAR
653};
654
655/*
656** Given a pointer into a time zone string, scan until a character that is not
657** a valid character in a zone name is found. Return a pointer to that
658** character.
659*/
660
661static const char *
662getzname(strp)
663register const char *	strp;
664{
665	register char	c;
666
667	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
668		c != '+')
669			++strp;
670	return strp;
671}
672
673/*
674** Given a pointer into an extended time zone string, scan until the ending
675** delimiter of the zone name is located. Return a pointer to the delimiter.
676**
677** As with getzname above, the legal character set is actually quite
678** restricted, with other characters producing undefined results.
679** We don't do any checking here; checking is done later in common-case code.
680*/
681
682static const char *
683getqzname(register const char *strp, const int delim)
684{
685	register int	c;
686
687	while ((c = *strp) != '\0' && c != delim)
688		++strp;
689	return strp;
690}
691
692/*
693** Given a pointer into a time zone string, extract a number from that string.
694** Check that the number is within a specified range; if it is not, return
695** NULL.
696** Otherwise, return a pointer to the first character not part of the number.
697*/
698
699static const char *
700getnum(strp, nump, min, max)
701register const char *	strp;
702int * const		nump;
703const int		min;
704const int		max;
705{
706	register char	c;
707	register int	num;
708
709	if (strp == NULL || !is_digit(c = *strp)) {
710		errno = EINVAL;
711		return NULL;
712	}
713	num = 0;
714	do {
715		num = num * 10 + (c - '0');
716		if (num > max) {
717			errno = EOVERFLOW;
718			return NULL;	/* illegal value */
719		}
720		c = *++strp;
721	} while (is_digit(c));
722	if (num < min) {
723		errno = EINVAL;
724		return NULL;		/* illegal value */
725	}
726	*nump = num;
727	return strp;
728}
729
730/*
731** Given a pointer into a time zone string, extract a number of seconds,
732** in hh[:mm[:ss]] form, from the string.
733** If any error occurs, return NULL.
734** Otherwise, return a pointer to the first character not part of the number
735** of seconds.
736*/
737
738static const char *
739getsecs(strp, secsp)
740register const char *	strp;
741long * const		secsp;
742{
743	int	num;
744
745	/*
746	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
747	** "M10.4.6/26", which does not conform to Posix,
748	** but which specifies the equivalent of
749	** ``02:00 on the first Sunday on or after 23 Oct''.
750	*/
751	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
752	if (strp == NULL)
753		return NULL;
754	*secsp = num * (long) SECSPERHOUR;
755	if (*strp == ':') {
756		++strp;
757		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
758		if (strp == NULL)
759			return NULL;
760		*secsp += num * SECSPERMIN;
761		if (*strp == ':') {
762			++strp;
763			/* `SECSPERMIN' allows for leap seconds. */
764			strp = getnum(strp, &num, 0, SECSPERMIN);
765			if (strp == NULL)
766				return NULL;
767			*secsp += num;
768		}
769	}
770	return strp;
771}
772
773/*
774** Given a pointer into a time zone string, extract an offset, in
775** [+-]hh[:mm[:ss]] form, from the string.
776** If any error occurs, return NULL.
777** Otherwise, return a pointer to the first character not part of the time.
778*/
779
780static const char *
781getoffset(strp, offsetp)
782register const char *	strp;
783long * const		offsetp;
784{
785	register int	neg = 0;
786
787	if (*strp == '-') {
788		neg = 1;
789		++strp;
790	} else if (*strp == '+')
791		++strp;
792	strp = getsecs(strp, offsetp);
793	if (strp == NULL)
794		return NULL;		/* illegal time */
795	if (neg)
796		*offsetp = -*offsetp;
797	return strp;
798}
799
800/*
801** Given a pointer into a time zone string, extract a rule in the form
802** date[/time]. See POSIX section 8 for the format of "date" and "time".
803** If a valid rule is not found, return NULL.
804** Otherwise, return a pointer to the first character not part of the rule.
805*/
806
807static const char *
808getrule(strp, rulep)
809const char *			strp;
810register struct rule * const	rulep;
811{
812	if (*strp == 'J') {
813		/*
814		** Julian day.
815		*/
816		rulep->r_type = JULIAN_DAY;
817		++strp;
818		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
819	} else if (*strp == 'M') {
820		/*
821		** Month, week, day.
822		*/
823		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
824		++strp;
825		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
826		if (strp == NULL)
827			return NULL;
828		if (*strp++ != '.')
829			return NULL;
830		strp = getnum(strp, &rulep->r_week, 1, 5);
831		if (strp == NULL)
832			return NULL;
833		if (*strp++ != '.')
834			return NULL;
835		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
836	} else if (is_digit(*strp)) {
837		/*
838		** Day of year.
839		*/
840		rulep->r_type = DAY_OF_YEAR;
841		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
842	} else	return NULL;		/* invalid format */
843	if (strp == NULL)
844		return NULL;
845	if (*strp == '/') {
846		/*
847		** Time specified.
848		*/
849		++strp;
850		strp = getsecs(strp, &rulep->r_time);
851	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
852	return strp;
853}
854
855/*
856** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
857** year, a rule, and the offset from UTC at the time that rule takes effect,
858** calculate the Epoch-relative time that rule takes effect.
859*/
860
861static time_t
862transtime(janfirst, year, rulep, offset)
863const time_t				janfirst;
864const int				year;
865register const struct rule * const	rulep;
866const long				offset;
867{
868	register int	leapyear;
869	register time_t	value;
870	register int	i;
871	int		d, m1, yy0, yy1, yy2, dow;
872
873	INITIALIZE(value);
874	leapyear = isleap(year);
875	switch (rulep->r_type) {
876
877	case JULIAN_DAY:
878		/*
879		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
880		** years.
881		** In non-leap years, or if the day number is 59 or less, just
882		** add SECSPERDAY times the day number-1 to the time of
883		** January 1, midnight, to get the day.
884		*/
885		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
886		if (leapyear && rulep->r_day >= 60)
887			value += SECSPERDAY;
888		break;
889
890	case DAY_OF_YEAR:
891		/*
892		** n - day of year.
893		** Just add SECSPERDAY times the day number to the time of
894		** January 1, midnight, to get the day.
895		*/
896		value = janfirst + rulep->r_day * SECSPERDAY;
897		break;
898
899	case MONTH_NTH_DAY_OF_WEEK:
900		/*
901		** Mm.n.d - nth "dth day" of month m.
902		*/
903		value = janfirst;
904		for (i = 0; i < rulep->r_mon - 1; ++i)
905			value += mon_lengths[leapyear][i] * SECSPERDAY;
906
907		/*
908		** Use Zeller's Congruence to get day-of-week of first day of
909		** month.
910		*/
911		m1 = (rulep->r_mon + 9) % 12 + 1;
912		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
913		yy1 = yy0 / 100;
914		yy2 = yy0 % 100;
915		dow = ((26 * m1 - 2) / 10 +
916			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
917		if (dow < 0)
918			dow += DAYSPERWEEK;
919
920		/*
921		** "dow" is the day-of-week of the first day of the month. Get
922		** the day-of-month (zero-origin) of the first "dow" day of the
923		** month.
924		*/
925		d = rulep->r_day - dow;
926		if (d < 0)
927			d += DAYSPERWEEK;
928		for (i = 1; i < rulep->r_week; ++i) {
929			if (d + DAYSPERWEEK >=
930				mon_lengths[leapyear][rulep->r_mon - 1])
931					break;
932			d += DAYSPERWEEK;
933		}
934
935		/*
936		** "d" is the day-of-month (zero-origin) of the day we want.
937		*/
938		value += d * SECSPERDAY;
939		break;
940	}
941
942	/*
943	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
944	** question. To get the Epoch-relative time of the specified local
945	** time on that day, add the transition time and the current offset
946	** from UTC.
947	*/
948	return value + rulep->r_time + offset;
949}
950
951/*
952** Given a POSIX section 8-style TZ string, fill in the rule tables as
953** appropriate.
954*/
955
956static int
957tzparse(name, sp, lastditch)
958const char *			name;
959register struct state * const	sp;
960const int			lastditch;
961{
962	const char *			stdname;
963	const char *			dstname;
964	size_t				stdlen;
965	size_t				dstlen;
966	long				stdoffset;
967	long				dstoffset;
968	register time_t *		atp;
969	register unsigned char *	typep;
970	register char *			cp;
971	register int			load_result;
972
973	INITIALIZE(dstname);
974	stdname = name;
975	if (lastditch) {
976		stdlen = strlen(name);	/* length of standard zone name */
977		name += stdlen;
978		if (stdlen >= sizeof sp->chars)
979			stdlen = (sizeof sp->chars) - 1;
980		stdoffset = 0;
981	} else {
982		if (*name == '<') {
983			name++;
984			stdname = name;
985			name = getqzname(name, '>');
986			if (*name != '>')
987				return (-1);
988			stdlen = name - stdname;
989			name++;
990		} else {
991			name = getzname(name);
992			stdlen = name - stdname;
993		}
994		if (*name == '\0')
995			return -1;
996		name = getoffset(name, &stdoffset);
997		if (name == NULL)
998			return -1;
999	}
1000	load_result = tzload(TZDEFRULES, sp, FALSE);
1001	if (load_result != 0)
1002		sp->leapcnt = 0;		/* so, we're off a little */
1003	if (*name != '\0') {
1004		if (*name == '<') {
1005			dstname = ++name;
1006			name = getqzname(name, '>');
1007			if (*name != '>')
1008				return -1;
1009			dstlen = name - dstname;
1010			name++;
1011		} else {
1012			dstname = name;
1013			name = getzname(name);
1014			dstlen = name - dstname; /* length of DST zone name */
1015		}
1016		if (*name != '\0' && *name != ',' && *name != ';') {
1017			name = getoffset(name, &dstoffset);
1018			if (name == NULL)
1019				return -1;
1020		} else	dstoffset = stdoffset - SECSPERHOUR;
1021		if (*name == '\0' && load_result != 0)
1022			name = TZDEFRULESTRING;
1023		if (*name == ',' || *name == ';') {
1024			struct rule	start;
1025			struct rule	end;
1026			register int	year;
1027			register time_t	janfirst;
1028			time_t		starttime;
1029			time_t		endtime;
1030
1031			++name;
1032			if ((name = getrule(name, &start)) == NULL)
1033				return -1;
1034			if (*name++ != ',')
1035				return -1;
1036			if ((name = getrule(name, &end)) == NULL)
1037				return -1;
1038			if (*name != '\0')
1039				return -1;
1040			sp->typecnt = 2;	/* standard time and DST */
1041			/*
1042			** Two transitions per year, from EPOCH_YEAR forward.
1043			*/
1044			sp->ttis[0].tt_gmtoff = -dstoffset;
1045			sp->ttis[0].tt_isdst = 1;
1046			sp->ttis[0].tt_abbrind = stdlen + 1;
1047			sp->ttis[1].tt_gmtoff = -stdoffset;
1048			sp->ttis[1].tt_isdst = 0;
1049			sp->ttis[1].tt_abbrind = 0;
1050			atp = sp->ats;
1051			typep = sp->types;
1052			janfirst = 0;
1053			sp->timecnt = 0;
1054			for (year = EPOCH_YEAR;
1055			    sp->timecnt + 2 <= TZ_MAX_TIMES;
1056			    ++year) {
1057			    	time_t	newfirst;
1058
1059				starttime = transtime(janfirst, year, &start,
1060					stdoffset);
1061				endtime = transtime(janfirst, year, &end,
1062					dstoffset);
1063				if (starttime > endtime) {
1064					*atp++ = endtime;
1065					*typep++ = 1;	/* DST ends */
1066					*atp++ = starttime;
1067					*typep++ = 0;	/* DST begins */
1068				} else {
1069					*atp++ = starttime;
1070					*typep++ = 0;	/* DST begins */
1071					*atp++ = endtime;
1072					*typep++ = 1;	/* DST ends */
1073				}
1074				sp->timecnt += 2;
1075				newfirst = janfirst;
1076				newfirst += year_lengths[isleap(year)] *
1077					SECSPERDAY;
1078				if (newfirst <= janfirst)
1079					break;
1080				janfirst = newfirst;
1081			}
1082		} else {
1083			register long	theirstdoffset;
1084			register long	theirdstoffset;
1085			register long	theiroffset;
1086			register int	isdst;
1087			register int	i;
1088			register int	j;
1089
1090			if (*name != '\0')
1091				return -1;
1092			/*
1093			** Initial values of theirstdoffset
1094			*/
1095			theirstdoffset = 0;
1096			for (i = 0; i < sp->timecnt; ++i) {
1097				j = sp->types[i];
1098				if (!sp->ttis[j].tt_isdst) {
1099					theirstdoffset =
1100						-sp->ttis[j].tt_gmtoff;
1101					break;
1102				}
1103			}
1104			theirdstoffset = 0;
1105			for (i = 0; i < sp->timecnt; ++i) {
1106				j = sp->types[i];
1107				if (sp->ttis[j].tt_isdst) {
1108					theirdstoffset =
1109						-sp->ttis[j].tt_gmtoff;
1110					break;
1111				}
1112			}
1113			/*
1114			** Initially we're assumed to be in standard time.
1115			*/
1116			isdst = FALSE;
1117			theiroffset = theirstdoffset;
1118			/*
1119			** Now juggle transition times and types
1120			** tracking offsets as you do.
1121			*/
1122			for (i = 0; i < sp->timecnt; ++i) {
1123				j = sp->types[i];
1124				sp->types[i] = sp->ttis[j].tt_isdst;
1125				if (sp->ttis[j].tt_ttisgmt) {
1126					/* No adjustment to transition time */
1127				} else {
1128					/*
1129					** If summer time is in effect, and the
1130					** transition time was not specified as
1131					** standard time, add the summer time
1132					** offset to the transition time;
1133					** otherwise, add the standard time
1134					** offset to the transition time.
1135					*/
1136					/*
1137					** Transitions from DST to DDST
1138					** will effectively disappear since
1139					** POSIX provides for only one DST
1140					** offset.
1141					*/
1142					if (isdst && !sp->ttis[j].tt_ttisstd) {
1143						sp->ats[i] += dstoffset -
1144							theirdstoffset;
1145					} else {
1146						sp->ats[i] += stdoffset -
1147							theirstdoffset;
1148					}
1149				}
1150				theiroffset = -sp->ttis[j].tt_gmtoff;
1151				if (!sp->ttis[j].tt_isdst)
1152					theirstdoffset = theiroffset;
1153				else	theirdstoffset = theiroffset;
1154			}
1155			/*
1156			** Finally, fill in ttis.
1157			** ttisstd and ttisgmt need not be handled.
1158			*/
1159			sp->ttis[0].tt_gmtoff = -stdoffset;
1160			sp->ttis[0].tt_isdst = FALSE;
1161			sp->ttis[0].tt_abbrind = 0;
1162			sp->ttis[1].tt_gmtoff = -dstoffset;
1163			sp->ttis[1].tt_isdst = TRUE;
1164			sp->ttis[1].tt_abbrind = stdlen + 1;
1165			sp->typecnt = 2;
1166		}
1167	} else {
1168		dstlen = 0;
1169		sp->typecnt = 1;		/* only standard time */
1170		sp->timecnt = 0;
1171		sp->ttis[0].tt_gmtoff = -stdoffset;
1172		sp->ttis[0].tt_isdst = 0;
1173		sp->ttis[0].tt_abbrind = 0;
1174	}
1175	sp->charcnt = stdlen + 1;
1176	if (dstlen != 0)
1177		sp->charcnt += dstlen + 1;
1178	if ((size_t) sp->charcnt > sizeof sp->chars)
1179		return -1;
1180	cp = sp->chars;
1181	(void) strncpy(cp, stdname, stdlen);
1182	cp += stdlen;
1183	*cp++ = '\0';
1184	if (dstlen != 0) {
1185		(void) strncpy(cp, dstname, dstlen);
1186		*(cp + dstlen) = '\0';
1187	}
1188	return 0;
1189}
1190
1191static void
1192gmtload(sp)
1193struct state * const	sp;
1194{
1195	if (tzload(gmt, sp, TRUE) != 0)
1196		(void) tzparse(gmt, sp, TRUE);
1197}
1198
1199static void
1200tzsetwall_unlocked(void)
1201{
1202	if (lcl_is_set < 0)
1203		return;
1204	lcl_is_set = -1;
1205
1206#ifdef ALL_STATE
1207	if (lclptr == NULL) {
1208		int saveerrno = errno;
1209		lclptr = calloc(1, sizeof *lclptr);
1210		errno = saveerrno;
1211		if (lclptr == NULL) {
1212			settzname();	/* all we can do */
1213			return;
1214		}
1215	}
1216#endif /* defined ALL_STATE */
1217	if (tzload((char *) NULL, lclptr, TRUE) != 0)
1218		gmtload(lclptr);
1219	settzname();
1220}
1221
1222#ifndef STD_INSPIRED
1223/*
1224** A non-static declaration of tzsetwall in a system header file
1225** may cause a warning about this upcoming static declaration...
1226*/
1227static
1228#endif /* !defined STD_INSPIRED */
1229void
1230tzsetwall(void)
1231{
1232	rwlock_wrlock(&lcl_lock);
1233	tzsetwall_unlocked();
1234	rwlock_unlock(&lcl_lock);
1235}
1236
1237#ifndef STD_INSPIRED
1238/*
1239** A non-static declaration of tzsetwall in a system header file
1240** may cause a warning about this upcoming static declaration...
1241*/
1242static
1243#endif /* !defined STD_INSPIRED */
1244void
1245tzset_unlocked(void)
1246{
1247	register const char *	name;
1248	int saveerrno;
1249
1250	saveerrno = errno;
1251	name = getenv("TZ");
1252	errno = saveerrno;
1253	if (name == NULL) {
1254		tzsetwall_unlocked();
1255		return;
1256	}
1257
1258	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1259		return;
1260	lcl_is_set = strlen(name) < sizeof lcl_TZname;
1261	if (lcl_is_set)
1262		(void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
1263
1264#ifdef ALL_STATE
1265	if (lclptr == NULL) {
1266		saveerrno = errno;
1267		lclptr = calloc(1, sizeof *lclptr);
1268		errno = saveerrno;
1269		if (lclptr == NULL) {
1270			settzname();	/* all we can do */
1271			return;
1272		}
1273	}
1274#endif /* defined ALL_STATE */
1275	if (*name == '\0') {
1276		/*
1277		** User wants it fast rather than right.
1278		*/
1279		lclptr->leapcnt = 0;		/* so, we're off a little */
1280		lclptr->timecnt = 0;
1281		lclptr->typecnt = 0;
1282		lclptr->ttis[0].tt_isdst = 0;
1283		lclptr->ttis[0].tt_gmtoff = 0;
1284		lclptr->ttis[0].tt_abbrind = 0;
1285		(void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
1286	} else if (tzload(name, lclptr, TRUE) != 0)
1287		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1288			(void) gmtload(lclptr);
1289	settzname();
1290}
1291
1292void
1293tzset(void)
1294{
1295	rwlock_wrlock(&lcl_lock);
1296	tzset_unlocked();
1297	rwlock_unlock(&lcl_lock);
1298}
1299
1300/*
1301** The easy way to behave "as if no library function calls" localtime
1302** is to not call it--so we drop its guts into "localsub", which can be
1303** freely called. (And no, the PANS doesn't require the above behavior--
1304** but it *is* desirable.)
1305**
1306** The unused offset argument is for the benefit of mktime variants.
1307*/
1308
1309/*ARGSUSED*/
1310static struct tm *
1311localsub(timep, offset, tmp)
1312const time_t * const	timep;
1313const long		offset;
1314struct tm * const	tmp;
1315{
1316	register struct state *		sp;
1317	register const struct ttinfo *	ttisp;
1318	register int			i;
1319	register struct tm *		result;
1320	const time_t			t = *timep;
1321
1322	sp = lclptr;
1323#ifdef ALL_STATE
1324	if (sp == NULL)
1325		return gmtsub(timep, offset, tmp);
1326#endif /* defined ALL_STATE */
1327	if ((sp->goback && t < sp->ats[0]) ||
1328		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1329			time_t			newt = t;
1330			register time_t		seconds;
1331			register time_t		tcycles;
1332			register int_fast64_t	icycles;
1333
1334			if (t < sp->ats[0])
1335				seconds = sp->ats[0] - t;
1336			else	seconds = t - sp->ats[sp->timecnt - 1];
1337			--seconds;
1338			tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1339			++tcycles;
1340			icycles = tcycles;
1341			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1342				return NULL;
1343			seconds = (time_t) icycles;
1344			seconds *= YEARSPERREPEAT;
1345			seconds *= AVGSECSPERYEAR;
1346			if (t < sp->ats[0])
1347				newt += seconds;
1348			else	newt -= seconds;
1349			if (newt < sp->ats[0] ||
1350				newt > sp->ats[sp->timecnt - 1]) {
1351					errno = EOVERFLOW;
1352					return NULL;	/* "cannot happen" */
1353			}
1354			result = localsub(&newt, offset, tmp);
1355			if (result == tmp) {
1356				register time_t	newy;
1357
1358				newy = tmp->tm_year;
1359				if (t < sp->ats[0])
1360					newy -= (time_t)icycles * YEARSPERREPEAT;
1361				else	newy += (time_t)icycles * YEARSPERREPEAT;
1362				tmp->tm_year = (int)newy;
1363				if (tmp->tm_year != newy) {
1364					errno = EOVERFLOW;
1365					return NULL;
1366				}
1367			}
1368			return result;
1369	}
1370	if (sp->timecnt == 0 || t < sp->ats[0]) {
1371		i = 0;
1372		while (sp->ttis[i].tt_isdst)
1373			if (++i >= sp->typecnt) {
1374				i = 0;
1375				break;
1376			}
1377	} else {
1378		register int	lo = 1;
1379		register int	hi = sp->timecnt;
1380
1381		while (lo < hi) {
1382			register int	mid = (lo + hi) / 2;
1383
1384			if (t < sp->ats[mid])
1385				hi = mid;
1386			else	lo = mid + 1;
1387		}
1388		i = (int) sp->types[lo - 1];
1389	}
1390	ttisp = &sp->ttis[i];
1391	/*
1392	** To get (wrong) behavior that's compatible with System V Release 2.0
1393	** you'd replace the statement below with
1394	**	t += ttisp->tt_gmtoff;
1395	**	timesub(&t, 0L, sp, tmp);
1396	*/
1397	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1398	tmp->tm_isdst = ttisp->tt_isdst;
1399	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1400#ifdef TM_ZONE
1401	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1402#endif /* defined TM_ZONE */
1403	return result;
1404}
1405
1406struct tm *
1407localtime(timep)
1408const time_t * const	timep;
1409{
1410	struct tm *result;
1411
1412	rwlock_wrlock(&lcl_lock);
1413	tzset_unlocked();
1414	result = localsub(timep, 0L, &tm);
1415	rwlock_unlock(&lcl_lock);
1416	return result;
1417}
1418
1419/*
1420** Re-entrant version of localtime.
1421*/
1422
1423struct tm *
1424localtime_r(timep, tmp)
1425const time_t * const	timep;
1426struct tm *		tmp;
1427{
1428	struct tm *result;
1429
1430	rwlock_rdlock(&lcl_lock);
1431	tzset_unlocked();
1432	result = localsub(timep, 0L, tmp);
1433	rwlock_unlock(&lcl_lock);
1434	return result;
1435}
1436
1437/*
1438** gmtsub is to gmtime as localsub is to localtime.
1439*/
1440
1441static struct tm *
1442gmtsub(timep, offset, tmp)
1443const time_t * const	timep;
1444const long		offset;
1445struct tm * const	tmp;
1446{
1447	register struct tm *	result;
1448#ifdef _REENTRANT
1449	static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1450#endif
1451
1452	mutex_lock(&gmt_mutex);
1453	if (!gmt_is_set) {
1454#ifdef ALL_STATE
1455		int saveerrno;
1456#endif
1457		gmt_is_set = TRUE;
1458#ifdef ALL_STATE
1459		saveerrno = errno;
1460		gmtptr = calloc(1, sizeof *gmtptr);
1461		errno = saveerrno;
1462		if (gmtptr != NULL)
1463#endif /* defined ALL_STATE */
1464			gmtload(gmtptr);
1465	}
1466	mutex_unlock(&gmt_mutex);
1467	result = timesub(timep, offset, gmtptr, tmp);
1468#ifdef TM_ZONE
1469	/*
1470	** Could get fancy here and deliver something such as
1471	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1472	** but this is no time for a treasure hunt.
1473	*/
1474	if (offset != 0)
1475		tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
1476	else {
1477#ifdef ALL_STATE
1478		if (gmtptr == NULL)
1479			tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
1480		else	tmp->TM_ZONE = gmtptr->chars;
1481#endif /* defined ALL_STATE */
1482#ifndef ALL_STATE
1483		tmp->TM_ZONE = gmtptr->chars;
1484#endif /* State Farm */
1485	}
1486#endif /* defined TM_ZONE */
1487	return result;
1488}
1489
1490struct tm *
1491gmtime(timep)
1492const time_t * const	timep;
1493{
1494	return gmtsub(timep, 0L, &tm);
1495}
1496
1497/*
1498** Re-entrant version of gmtime.
1499*/
1500
1501struct tm *
1502gmtime_r(timep, tmp)
1503const time_t * const	timep;
1504struct tm *		tmp;
1505{
1506	return gmtsub(timep, 0L, tmp);
1507}
1508
1509#ifdef STD_INSPIRED
1510
1511struct tm *
1512offtime(timep, offset)
1513const time_t * const	timep;
1514const long		offset;
1515{
1516	return gmtsub(timep, offset, &tm);
1517}
1518
1519#endif /* defined STD_INSPIRED */
1520
1521/*
1522** Return the number of leap years through the end of the given year
1523** where, to make the math easy, the answer for year zero is defined as zero.
1524*/
1525
1526static int
1527leaps_thru_end_of(y)
1528register const int	y;
1529{
1530	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1531		-(leaps_thru_end_of(-(y + 1)) + 1);
1532}
1533
1534static struct tm *
1535timesub(timep, offset, sp, tmp)
1536const time_t * const			timep;
1537const long				offset;
1538register const struct state * const	sp;
1539register struct tm * const		tmp;
1540{
1541	register const struct lsinfo *	lp;
1542	register time_t			tdays;
1543	register int			idays;	/* unsigned would be so 2003 */
1544	register long			rem;
1545	int				y;
1546	register const int *		ip;
1547	register long			corr;
1548	register int			hit;
1549	register int			i;
1550
1551	corr = 0;
1552	hit = 0;
1553#ifdef ALL_STATE
1554	i = (sp == NULL) ? 0 : sp->leapcnt;
1555#endif /* defined ALL_STATE */
1556#ifndef ALL_STATE
1557	i = sp->leapcnt;
1558#endif /* State Farm */
1559	while (--i >= 0) {
1560		lp = &sp->lsis[i];
1561		if (*timep >= lp->ls_trans) {
1562			if (*timep == lp->ls_trans) {
1563				hit = ((i == 0 && lp->ls_corr > 0) ||
1564					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1565				if (hit)
1566					while (i > 0 &&
1567						sp->lsis[i].ls_trans ==
1568						sp->lsis[i - 1].ls_trans + 1 &&
1569						sp->lsis[i].ls_corr ==
1570						sp->lsis[i - 1].ls_corr + 1) {
1571							++hit;
1572							--i;
1573					}
1574			}
1575			corr = lp->ls_corr;
1576			break;
1577		}
1578	}
1579	y = EPOCH_YEAR;
1580	tdays = *timep / SECSPERDAY;
1581	rem = (long) (*timep - tdays * SECSPERDAY);
1582	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1583		int		newy;
1584		register time_t	tdelta;
1585		register int	idelta;
1586		register int	leapdays;
1587
1588		tdelta = tdays / DAYSPERLYEAR;
1589		idelta = (int) tdelta;
1590		if (tdelta - idelta >= 1 || idelta - tdelta >= 1) {
1591			errno = EOVERFLOW;
1592			return NULL;
1593		}
1594		if (idelta == 0)
1595			idelta = (tdays < 0) ? -1 : 1;
1596		newy = y;
1597		if (increment_overflow(&newy, idelta)) {
1598			errno = EOVERFLOW;
1599			return NULL;
1600		}
1601		leapdays = leaps_thru_end_of(newy - 1) -
1602			leaps_thru_end_of(y - 1);
1603		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1604		tdays -= leapdays;
1605		y = newy;
1606	}
1607	{
1608		register long	seconds;
1609
1610		seconds = tdays * SECSPERDAY + 0.5;
1611		tdays = seconds / SECSPERDAY;
1612		rem += (long) (seconds - tdays * SECSPERDAY);
1613	}
1614	/*
1615	** Given the range, we can now fearlessly cast...
1616	*/
1617	idays = (int) tdays;
1618	rem += offset - corr;
1619	while (rem < 0) {
1620		rem += SECSPERDAY;
1621		--idays;
1622	}
1623	while (rem >= SECSPERDAY) {
1624		rem -= SECSPERDAY;
1625		++idays;
1626	}
1627	while (idays < 0) {
1628		if (increment_overflow(&y, -1)) {
1629			errno = EOVERFLOW;
1630			return NULL;
1631		}
1632		idays += year_lengths[isleap(y)];
1633	}
1634	while (idays >= year_lengths[isleap(y)]) {
1635		idays -= year_lengths[isleap(y)];
1636		if (increment_overflow(&y, 1)) {
1637			errno = EOVERFLOW;
1638			return NULL;
1639		}
1640	}
1641	tmp->tm_year = y;
1642	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) {
1643		errno = EOVERFLOW;
1644		return NULL;
1645	}
1646	tmp->tm_yday = idays;
1647	/*
1648	** The "extra" mods below avoid overflow problems.
1649	*/
1650	tmp->tm_wday = EPOCH_WDAY +
1651		((y - EPOCH_YEAR) % DAYSPERWEEK) *
1652		(DAYSPERNYEAR % DAYSPERWEEK) +
1653		leaps_thru_end_of(y - 1) -
1654		leaps_thru_end_of(EPOCH_YEAR - 1) +
1655		idays;
1656	tmp->tm_wday %= DAYSPERWEEK;
1657	if (tmp->tm_wday < 0)
1658		tmp->tm_wday += DAYSPERWEEK;
1659	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1660	rem %= SECSPERHOUR;
1661	tmp->tm_min = (int) (rem / SECSPERMIN);
1662	/*
1663	** A positive leap second requires a special
1664	** representation. This uses "... ??:59:60" et seq.
1665	*/
1666	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1667	ip = mon_lengths[isleap(y)];
1668	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1669		idays -= ip[tmp->tm_mon];
1670	tmp->tm_mday = (int) (idays + 1);
1671	tmp->tm_isdst = 0;
1672#ifdef TM_GMTOFF
1673	tmp->TM_GMTOFF = offset;
1674#endif /* defined TM_GMTOFF */
1675	return tmp;
1676}
1677
1678char *
1679ctime(timep)
1680const time_t * const	timep;
1681{
1682/*
1683** Section 4.12.3.2 of X3.159-1989 requires that
1684**	The ctime function converts the calendar time pointed to by timer
1685**	to local time in the form of a string. It is equivalent to
1686**		asctime(localtime(timer))
1687*/
1688	struct tm *rtm = localtime(timep);
1689	if (rtm == NULL)
1690		return NULL;
1691	return asctime(rtm);
1692}
1693
1694char *
1695ctime_r(timep, buf)
1696const time_t * const	timep;
1697char *			buf;
1698{
1699	struct tm	mytm, *rtm;
1700
1701	rtm = localtime_r(timep, &mytm);
1702	if (rtm == NULL)
1703		return NULL;
1704	return asctime_r(rtm, buf);
1705}
1706
1707/*
1708** Adapted from code provided by Robert Elz, who writes:
1709**	The "best" way to do mktime I think is based on an idea of Bob
1710**	Kridle's (so its said...) from a long time ago.
1711**	It does a binary search of the time_t space. Since time_t's are
1712**	just 32 bits, its a max of 32 iterations (even at 64 bits it
1713**	would still be very reasonable).
1714*/
1715
1716#ifndef WRONG
1717#define WRONG	(-1)
1718#endif /* !defined WRONG */
1719
1720/*
1721** Simplified normalize logic courtesy Paul Eggert.
1722*/
1723
1724static int
1725increment_overflow(number, delta)
1726int *	number;
1727int	delta;
1728{
1729	int	number0;
1730
1731	number0 = *number;
1732	*number += delta;
1733	return (*number < number0) != (delta < 0);
1734}
1735
1736static int
1737long_increment_overflow(number, delta)
1738long *	number;
1739int	delta;
1740{
1741	long	number0;
1742
1743	number0 = *number;
1744	*number += delta;
1745	return (*number < number0) != (delta < 0);
1746}
1747
1748static int
1749normalize_overflow(tensptr, unitsptr, base)
1750int * const	tensptr;
1751int * const	unitsptr;
1752const int	base;
1753{
1754	register int	tensdelta;
1755
1756	tensdelta = (*unitsptr >= 0) ?
1757		(*unitsptr / base) :
1758		(-1 - (-1 - *unitsptr) / base);
1759	*unitsptr -= tensdelta * base;
1760	return increment_overflow(tensptr, tensdelta);
1761}
1762
1763static int
1764long_normalize_overflow(tensptr, unitsptr, base)
1765long * const	tensptr;
1766int * const	unitsptr;
1767const int	base;
1768{
1769	register int	tensdelta;
1770
1771	tensdelta = (*unitsptr >= 0) ?
1772		(*unitsptr / base) :
1773		(-1 - (-1 - *unitsptr) / base);
1774	*unitsptr -= tensdelta * base;
1775	return long_increment_overflow(tensptr, tensdelta);
1776}
1777
1778static int
1779tmcomp(atmp, btmp)
1780register const struct tm * const atmp;
1781register const struct tm * const btmp;
1782{
1783	register int	result;
1784
1785	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1786		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1787		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1788		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1789		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1790			result = atmp->tm_sec - btmp->tm_sec;
1791	return result;
1792}
1793
1794static time_t
1795time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1796struct tm * const	tmp;
1797struct tm * (* const	funcp)(const time_t*, long, struct tm*);
1798const long		offset;
1799int * const		okayp;
1800const int		do_norm_secs;
1801{
1802	register const struct state *	sp;
1803	register int			dir;
1804	register int			i, j;
1805	register int			saved_seconds;
1806	register long			li;
1807	register time_t			lo;
1808	register time_t			hi;
1809	long				y;
1810	time_t				newt;
1811	time_t				t;
1812	struct tm			yourtm, mytm;
1813
1814	*okayp = FALSE;
1815	yourtm = *tmp;
1816	if (do_norm_secs) {
1817		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1818			SECSPERMIN))
1819				return WRONG;
1820	}
1821	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1822		return WRONG;
1823	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1824		return WRONG;
1825	y = yourtm.tm_year;
1826	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1827		return WRONG;
1828	/*
1829	** Turn y into an actual year number for now.
1830	** It is converted back to an offset from TM_YEAR_BASE later.
1831	*/
1832	if (long_increment_overflow(&y, TM_YEAR_BASE))
1833		return WRONG;
1834	while (yourtm.tm_mday <= 0) {
1835		if (long_increment_overflow(&y, -1))
1836			return WRONG;
1837		li = y + (1 < yourtm.tm_mon);
1838		yourtm.tm_mday += year_lengths[isleap(li)];
1839	}
1840	while (yourtm.tm_mday > DAYSPERLYEAR) {
1841		li = y + (1 < yourtm.tm_mon);
1842		yourtm.tm_mday -= year_lengths[isleap(li)];
1843		if (long_increment_overflow(&y, 1))
1844			return WRONG;
1845	}
1846	for ( ; ; ) {
1847		i = mon_lengths[isleap(y)][yourtm.tm_mon];
1848		if (yourtm.tm_mday <= i)
1849			break;
1850		yourtm.tm_mday -= i;
1851		if (++yourtm.tm_mon >= MONSPERYEAR) {
1852			yourtm.tm_mon = 0;
1853			if (long_increment_overflow(&y, 1))
1854				return WRONG;
1855		}
1856	}
1857	if (long_increment_overflow(&y, -TM_YEAR_BASE))
1858		return WRONG;
1859	yourtm.tm_year = y;
1860	if (yourtm.tm_year != y)
1861		return WRONG;
1862	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1863		saved_seconds = 0;
1864	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1865		/*
1866		** We can't set tm_sec to 0, because that might push the
1867		** time below the minimum representable time.
1868		** Set tm_sec to 59 instead.
1869		** This assumes that the minimum representable time is
1870		** not in the same minute that a leap second was deleted from,
1871		** which is a safer assumption than using 58 would be.
1872		*/
1873		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1874			return WRONG;
1875		saved_seconds = yourtm.tm_sec;
1876		yourtm.tm_sec = SECSPERMIN - 1;
1877	} else {
1878		saved_seconds = yourtm.tm_sec;
1879		yourtm.tm_sec = 0;
1880	}
1881	/*
1882	** Do a binary search (this works whatever time_t's type is).
1883	*/
1884/* LINTED constant */
1885	if (!TYPE_SIGNED(time_t)) {
1886		lo = 0;
1887		hi = lo - 1;
1888/* LINTED constant */
1889	} else if (!TYPE_INTEGRAL(time_t)) {
1890/* CONSTCOND */
1891		if (sizeof(time_t) > sizeof(float))
1892/* LINTED assumed double */
1893			hi = (time_t) DBL_MAX;
1894/* LINTED assumed float */
1895		else	hi = (time_t) FLT_MAX;
1896		lo = -hi;
1897	} else {
1898		lo = 1;
1899		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1900			lo *= 2;
1901		hi = -(lo + 1);
1902	}
1903	for ( ; ; ) {
1904		t = lo / 2 + hi / 2;
1905		if (t < lo)
1906			t = lo;
1907		else if (t > hi)
1908			t = hi;
1909		if ((*funcp)(&t, offset, &mytm) == NULL) {
1910			/*
1911			** Assume that t is too extreme to be represented in
1912			** a struct tm; arrange things so that it is less
1913			** extreme on the next pass.
1914			*/
1915			dir = (t > 0) ? 1 : -1;
1916		} else	dir = tmcomp(&mytm, &yourtm);
1917		if (dir != 0) {
1918			if (t == lo) {
1919				++t;
1920				if (t <= lo)
1921					return WRONG;
1922				++lo;
1923			} else if (t == hi) {
1924				--t;
1925				if (t >= hi)
1926					return WRONG;
1927				--hi;
1928			}
1929			if (lo > hi)
1930				return WRONG;
1931			if (dir > 0)
1932				hi = t;
1933			else	lo = t;
1934			continue;
1935		}
1936		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1937			break;
1938		/*
1939		** Right time, wrong type.
1940		** Hunt for right time, right type.
1941		** It's okay to guess wrong since the guess
1942		** gets checked.
1943		*/
1944		sp = (const struct state *)
1945			((funcp == localsub) ? lclptr : gmtptr);
1946#ifdef ALL_STATE
1947		if (sp == NULL)
1948			return WRONG;
1949#endif /* defined ALL_STATE */
1950		for (i = sp->typecnt - 1; i >= 0; --i) {
1951			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1952				continue;
1953			for (j = sp->typecnt - 1; j >= 0; --j) {
1954				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1955					continue;
1956				newt = t + sp->ttis[j].tt_gmtoff -
1957					sp->ttis[i].tt_gmtoff;
1958				if ((*funcp)(&newt, offset, &mytm) == NULL)
1959					continue;
1960				if (tmcomp(&mytm, &yourtm) != 0)
1961					continue;
1962				if (mytm.tm_isdst != yourtm.tm_isdst)
1963					continue;
1964				/*
1965				** We have a match.
1966				*/
1967				t = newt;
1968				goto label;
1969			}
1970		}
1971		return WRONG;
1972	}
1973label:
1974	newt = t + saved_seconds;
1975	if ((newt < t) != (saved_seconds < 0))
1976		return WRONG;
1977	t = newt;
1978	if ((*funcp)(&t, offset, tmp))
1979		*okayp = TRUE;
1980	return t;
1981}
1982
1983static time_t
1984time2(tmp, funcp, offset, okayp)
1985struct tm * const	tmp;
1986struct tm * (* const	funcp)(const time_t*, long, struct tm*);
1987const long		offset;
1988int * const		okayp;
1989{
1990	time_t	t;
1991
1992	/*
1993	** First try without normalization of seconds
1994	** (in case tm_sec contains a value associated with a leap second).
1995	** If that fails, try with normalization of seconds.
1996	*/
1997	t = time2sub(tmp, funcp, offset, okayp, FALSE);
1998	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1999}
2000
2001static time_t
2002time1(tmp, funcp, offset)
2003struct tm * const	tmp;
2004struct tm * (* const	funcp)(const time_t *, long, struct tm *);
2005const long		offset;
2006{
2007	register time_t			t;
2008	register const struct state *	sp;
2009	register int			samei, otheri;
2010	register int			sameind, otherind;
2011	register int			i;
2012	register int			nseen;
2013	int				seen[TZ_MAX_TYPES];
2014	int				types[TZ_MAX_TYPES];
2015	int				okay;
2016
2017	if (tmp->tm_isdst > 1)
2018		tmp->tm_isdst = 1;
2019	t = time2(tmp, funcp, offset, &okay);
2020#ifdef PCTS
2021	/*
2022	** PCTS code courtesy Grant Sullivan.
2023	*/
2024	if (okay)
2025		return t;
2026	if (tmp->tm_isdst < 0)
2027		tmp->tm_isdst = 0;	/* reset to std and try again */
2028#endif /* defined PCTS */
2029#ifndef PCTS
2030	if (okay || tmp->tm_isdst < 0)
2031		return t;
2032#endif /* !defined PCTS */
2033	/*
2034	** We're supposed to assume that somebody took a time of one type
2035	** and did some math on it that yielded a "struct tm" that's bad.
2036	** We try to divine the type they started from and adjust to the
2037	** type they need.
2038	*/
2039	sp = (const struct state *) ((funcp == localsub) ?  lclptr : gmtptr);
2040#ifdef ALL_STATE
2041	if (sp == NULL)
2042		return WRONG;
2043#endif /* defined ALL_STATE */
2044	for (i = 0; i < sp->typecnt; ++i)
2045		seen[i] = FALSE;
2046	nseen = 0;
2047	for (i = sp->timecnt - 1; i >= 0; --i)
2048		if (!seen[sp->types[i]]) {
2049			seen[sp->types[i]] = TRUE;
2050			types[nseen++] = sp->types[i];
2051		}
2052	for (sameind = 0; sameind < nseen; ++sameind) {
2053		samei = types[sameind];
2054		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2055			continue;
2056		for (otherind = 0; otherind < nseen; ++otherind) {
2057			otheri = types[otherind];
2058			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2059				continue;
2060			tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2061					sp->ttis[samei].tt_gmtoff);
2062			tmp->tm_isdst = !tmp->tm_isdst;
2063			t = time2(tmp, funcp, offset, &okay);
2064			if (okay)
2065				return t;
2066			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2067					sp->ttis[samei].tt_gmtoff);
2068			tmp->tm_isdst = !tmp->tm_isdst;
2069		}
2070	}
2071	return WRONG;
2072}
2073
2074time_t
2075mktime(tmp)
2076struct tm * const	tmp;
2077{
2078	time_t result;
2079
2080	rwlock_wrlock(&lcl_lock);
2081	tzset_unlocked();
2082	result = time1(tmp, localsub, 0L);
2083	rwlock_unlock(&lcl_lock);
2084	return (result);
2085}
2086
2087#ifdef STD_INSPIRED
2088
2089time_t
2090timelocal(tmp)
2091struct tm * const	tmp;
2092{
2093	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
2094	return mktime(tmp);
2095}
2096
2097time_t
2098timegm(tmp)
2099struct tm * const	tmp;
2100{
2101	tmp->tm_isdst = 0;
2102	return time1(tmp, gmtsub, 0L);
2103}
2104
2105time_t
2106timeoff(tmp, offset)
2107struct tm * const	tmp;
2108const long		offset;
2109{
2110	tmp->tm_isdst = 0;
2111	return time1(tmp, gmtsub, offset);
2112}
2113
2114#endif /* defined STD_INSPIRED */
2115
2116#ifdef CMUCS
2117
2118/*
2119** The following is supplied for compatibility with
2120** previous versions of the CMUCS runtime library.
2121*/
2122
2123long
2124gtime(tmp)
2125struct tm * const	tmp;
2126{
2127	const time_t	t = mktime(tmp);
2128
2129	if (t == WRONG)
2130		return -1;
2131	return t;
2132}
2133
2134#endif /* defined CMUCS */
2135
2136/*
2137** XXX--is the below the right way to conditionalize??
2138*/
2139
2140#ifdef STD_INSPIRED
2141
2142/*
2143** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2144** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2145** is not the case if we are accounting for leap seconds.
2146** So, we provide the following conversion routines for use
2147** when exchanging timestamps with POSIX conforming systems.
2148*/
2149
2150static long
2151leapcorr(timep)
2152time_t *	timep;
2153{
2154	register struct state *		sp;
2155	register struct lsinfo *	lp;
2156	register int			i;
2157
2158	sp = lclptr;
2159	i = sp->leapcnt;
2160	while (--i >= 0) {
2161		lp = &sp->lsis[i];
2162		if (*timep >= lp->ls_trans)
2163			return lp->ls_corr;
2164	}
2165	return 0;
2166}
2167
2168time_t
2169time2posix(t)
2170time_t	t;
2171{
2172	time_t result;
2173
2174	rwlock_wrlock(&lcl_lock);
2175	tzset_unlocked();
2176	result = t - leapcorr(&t);
2177	rwlock_unlock(&lcl_lock);
2178	return (result);
2179}
2180
2181time_t
2182posix2time(t)
2183time_t	t;
2184{
2185	time_t	x;
2186	time_t	y;
2187
2188	rwlock_wrlock(&lcl_lock);
2189	tzset_unlocked();
2190	/*
2191	** For a positive leap second hit, the result
2192	** is not unique. For a negative leap second
2193	** hit, the corresponding time doesn't exist,
2194	** so we return an adjacent second.
2195	*/
2196	x = t + leapcorr(&t);
2197	y = x - leapcorr(&x);
2198	if (y < t) {
2199		do {
2200			x++;
2201			y = x - leapcorr(&x);
2202		} while (y < t);
2203		if (t != y) {
2204			rwlock_unlock(&lcl_lock);
2205			return x - 1;
2206		}
2207	} else if (y > t) {
2208		do {
2209			--x;
2210			y = x - leapcorr(&x);
2211		} while (y > t);
2212		if (t != y) {
2213			rwlock_unlock(&lcl_lock);
2214			return x + 1;
2215		}
2216	}
2217	rwlock_unlock(&lcl_lock);
2218	return x;
2219}
2220
2221#endif /* defined STD_INSPIRED */
2222