1193326Sed/*	$NetBSD: hash_bigkey.c,v 1.25 2015/11/18 18:22:42 christos Exp $	*/
2193326Sed
3193326Sed/*-
4193326Sed * Copyright (c) 1990, 1993, 1994
5193326Sed *	The Regents of the University of California.  All rights reserved.
6193326Sed *
7193326Sed * This code is derived from software contributed to Berkeley by
8193326Sed * Margo Seltzer.
9193326Sed *
10193326Sed * Redistribution and use in source and binary forms, with or without
11193326Sed * modification, are permitted provided that the following conditions
12193326Sed * are met:
13193326Sed * 1. Redistributions of source code must retain the above copyright
14193326Sed *    notice, this list of conditions and the following disclaimer.
15193326Sed * 2. Redistributions in binary form must reproduce the above copyright
16226633Sdim *    notice, this list of conditions and the following disclaimer in the
17193326Sed *    documentation and/or other materials provided with the distribution.
18193326Sed * 3. Neither the name of the University nor the names of its contributors
19193326Sed *    may be used to endorse or promote products derived from this software
20193326Sed *    without specific prior written permission.
21198092Srdivacky *
22226633Sdim * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23226633Sdim * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24218893Sdim * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25226633Sdim * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26218893Sdim * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27234353Sdim * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28199990Srdivacky * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29193326Sed * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30226633Sdim * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31226633Sdim * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32226633Sdim * SUCH DAMAGE.
33199990Srdivacky */
34193326Sed
35226633Sdim#if HAVE_NBTOOL_CONFIG_H
36199990Srdivacky#include "nbtool_config.h"
37193326Sed#endif
38276479Sdim
39276479Sdim#include <sys/cdefs.h>
40276479Sdim__RCSID("$NetBSD: hash_bigkey.c,v 1.25 2015/11/18 18:22:42 christos Exp $");
41226633Sdim
42226633Sdim/*
43199990Srdivacky * PACKAGE: hash
44193326Sed * DESCRIPTION:
45193326Sed *	Big key/data handling for the hashing package.
46193326Sed *
47199990Srdivacky * ROUTINES:
48226633Sdim * External
49199990Srdivacky *	__big_keydata
50199990Srdivacky *	__big_split
51276479Sdim *	__big_insert
52276479Sdim *	__big_return
53199990Srdivacky *	__big_delete
54276479Sdim *	__find_last_page
55276479Sdim * Internal
56276479Sdim *	collect_key
57276479Sdim *	collect_data
58276479Sdim */
59199990Srdivacky
60276479Sdim#include <sys/param.h>
61276479Sdim
62199990Srdivacky#include <errno.h>
63226633Sdim#include <stdio.h>
64#include <stdlib.h>
65#include <string.h>
66#include <assert.h>
67
68#include <db.h>
69#include "hash.h"
70#include "page.h"
71#include "extern.h"
72
73static int collect_key(HTAB *, BUFHEAD *, int, DBT *, int);
74static int collect_data(HTAB *, BUFHEAD *, int, int);
75
76/*
77 * Big_insert
78 *
79 * You need to do an insert and the key/data pair is too big
80 *
81 * Returns:
82 * 0 ==> OK
83 *-1 ==> ERROR
84 */
85int
86__big_insert(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
87{
88	uint16_t *p, n;
89	size_t key_size, val_size;
90	uint16_t space, move_bytes, off;
91	char *cp, *key_data, *val_data;
92	size_t temp;
93
94	cp = bufp->page;		/* Character pointer of p. */
95	p = (uint16_t *)(void *)cp;
96
97	key_data = (char *)key->data;
98	_DBFIT(key->size, int);
99	key_size = key->size;
100	val_data = (char *)val->data;
101	_DBFIT(val->size, int);
102	val_size = val->size;
103
104	/* First move the Key */
105
106	temp = FREESPACE(p) - BIGOVERHEAD;
107	_DBFIT(temp, uint16_t);
108	space = (uint16_t)temp;
109	while (key_size) {
110		size_t kspace = MIN(space, key_size);
111		_DBFIT(kspace, uint16_t);
112		move_bytes = (uint16_t)kspace;
113		off = OFFSET(p) - move_bytes;
114		memmove(cp + off, key_data, (size_t)move_bytes);
115		key_size -= move_bytes;
116		key_data += move_bytes;
117		n = p[0];
118		p[++n] = off;
119		p[0] = ++n;
120		temp = off - PAGE_META(n);
121		_DBFIT(temp, uint16_t);
122		FREESPACE(p) = (uint16_t)temp;
123		OFFSET(p) = off;
124		p[n] = PARTIAL_KEY;
125		bufp = __add_ovflpage(hashp, bufp);
126		if (!bufp)
127			return (-1);
128		n = p[0];
129		if (!key_size) {
130			space = FREESPACE(p);
131			if (space) {
132				size_t vspace = MIN(space, val_size);
133				_DBFIT(vspace, uint16_t);
134				move_bytes = (uint16_t)vspace;
135				/*
136				 * If the data would fit exactly in the
137				 * remaining space, we must overflow it to the
138				 * next page; otherwise the invariant that the
139				 * data must end on a page with FREESPACE
140				 * non-zero would fail.
141				 */
142				if (space == val_size && val_size == val->size)
143					goto toolarge;
144				off = OFFSET(p) - move_bytes;
145				memmove(cp + off, val_data, (size_t)move_bytes);
146				val_data += move_bytes;
147				val_size -= move_bytes;
148				p[n] = off;
149				p[n - 2] = FULL_KEY_DATA;
150				FREESPACE(p) = FREESPACE(p) - move_bytes;
151				OFFSET(p) = off;
152			} else {
153			toolarge:
154				p[n - 2] = FULL_KEY;
155			}
156		}
157		p = (uint16_t *)(void *)bufp->page;
158		cp = bufp->page;
159		bufp->flags |= BUF_MOD;
160		temp = FREESPACE(p) - BIGOVERHEAD;
161		_DBFIT(temp, uint16_t);
162		space = (uint16_t)temp;
163	}
164
165	/* Now move the data */
166	temp = FREESPACE(p) - BIGOVERHEAD;
167	_DBFIT(temp, uint16_t);
168	space = (uint16_t)temp;
169	while (val_size) {
170		size_t vspace = MIN(space, val_size);
171		_DBFIT(vspace, uint16_t);
172		move_bytes = (uint16_t)vspace;
173		/*
174		 * Here's the hack to make sure that if the data ends on the
175		 * same page as the key ends, FREESPACE is at least one.
176		 */
177		if (space == val_size && val_size == val->size)
178			move_bytes--;
179		off = OFFSET(p) - move_bytes;
180		memmove(cp + off, val_data, (size_t)move_bytes);
181		val_size -= move_bytes;
182		val_data += move_bytes;
183		n = p[0];
184		p[++n] = off;
185		p[0] = ++n;
186		temp = off - PAGE_META(n);
187		_DBFIT(temp, uint16_t);
188		FREESPACE(p) = (uint16_t)temp;
189		OFFSET(p) = off;
190		if (val_size) {
191			p[n] = FULL_KEY;
192			bufp = __add_ovflpage(hashp, bufp);
193			if (!bufp)
194				return (-1);
195			cp = bufp->page;
196			p = (uint16_t *)(void *)cp;
197		} else
198			p[n] = FULL_KEY_DATA;
199		bufp->flags |= BUF_MOD;
200		temp = FREESPACE(p) - BIGOVERHEAD;
201		_DBFIT(temp, uint16_t);
202		space = (uint16_t)temp;
203	}
204	return (0);
205}
206
207/*
208 * Called when bufp's page  contains a partial key (index should be 1)
209 *
210 * All pages in the big key/data pair except bufp are freed.  We cannot
211 * free bufp because the page pointing to it is lost and we can't get rid
212 * of its pointer.
213 *
214 * Returns:
215 * 0 => OK
216 *-1 => ERROR
217 */
218int
219__big_delete(HTAB *hashp, BUFHEAD *bufp)
220{
221	BUFHEAD *last_bfp, *rbufp;
222	uint16_t *bp, pageno;
223	int key_done, n;
224	size_t temp;
225
226	rbufp = bufp;
227	last_bfp = NULL;
228	bp = (uint16_t *)(void *)bufp->page;
229	pageno = 0;
230	key_done = 0;
231
232	while (!key_done || (bp[2] != FULL_KEY_DATA)) {
233		if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
234			key_done = 1;
235
236		/*
237		 * If there is freespace left on a FULL_KEY_DATA page, then
238		 * the data is short and fits entirely on this page, and this
239		 * is the last page.
240		 */
241		if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
242			break;
243		pageno = bp[bp[0] - 1];
244		rbufp->flags |= BUF_MOD;
245		rbufp = __get_buf(hashp, (uint32_t)pageno, rbufp, 0);
246		if (last_bfp)
247			__free_ovflpage(hashp, last_bfp);
248		last_bfp = rbufp;
249		if (!rbufp)
250			return (-1);		/* Error. */
251		bp = (uint16_t *)(void *)rbufp->page;
252	}
253
254	/*
255	 * If we get here then rbufp points to the last page of the big
256	 * key/data pair.  Bufp points to the first one -- it should now be
257	 * empty pointing to the next page after this pair.  Can't free it
258	 * because we don't have the page pointing to it.
259	 */
260
261	/* This is information from the last page of the pair. */
262	n = bp[0];
263	pageno = bp[n - 1];
264
265	/* Now, bp is the first page of the pair. */
266	bp = (uint16_t *)(void *)bufp->page;
267	if (n > 2) {
268		/* There is an overflow page. */
269		bp[1] = pageno;
270		bp[2] = OVFLPAGE;
271		bufp->ovfl = rbufp->ovfl;
272	} else
273		/* This is the last page. */
274		bufp->ovfl = NULL;
275	n -= 2;
276	bp[0] = n;
277	temp = HASH_BSIZE(hashp) - PAGE_META(n);
278	_DBFIT(temp, uint16_t);
279	FREESPACE(bp) = (uint16_t)temp;
280	OFFSET(bp) = HASH_BSIZE(hashp);
281
282	bufp->flags |= BUF_MOD;
283	if (rbufp)
284		__free_ovflpage(hashp, rbufp);
285	if (last_bfp && last_bfp != rbufp)
286		__free_ovflpage(hashp, last_bfp);
287
288	hashp->NKEYS--;
289	return (0);
290}
291/*
292 * Returns:
293 *  0 = key not found
294 * -1 = get next overflow page
295 * -2 means key not found and this is big key/data
296 * -3 error
297 */
298int
299__find_bigpair(HTAB *hashp, BUFHEAD *bufp, int ndx, char *key, int size)
300{
301	uint16_t *bp;
302	char *p;
303	int ksize;
304	uint16_t bytes;
305	char *kkey;
306
307	bp = (uint16_t *)(void *)bufp->page;
308	p = bufp->page;
309	ksize = size;
310	kkey = key;
311
312	for (bytes = HASH_BSIZE(hashp) - bp[ndx];
313	    bytes <= size && bp[ndx + 1] == PARTIAL_KEY;
314	    bytes = HASH_BSIZE(hashp) - bp[ndx]) {
315		if (memcmp(p + bp[ndx], kkey, (size_t)bytes))
316			return (-2);
317		kkey += bytes;
318		ksize -= bytes;
319		bufp = __get_buf(hashp, (uint32_t)bp[ndx + 2], bufp, 0);
320		if (!bufp)
321			return (-3);
322		p = bufp->page;
323		bp = (uint16_t *)(void *)p;
324		ndx = 1;
325	}
326
327	if (bytes != ksize || memcmp(p + bp[ndx], kkey, (size_t)bytes)) {
328#ifdef HASH_STATISTICS
329		++hash_collisions;
330#endif
331		return (-2);
332	} else
333		return (ndx);
334}
335
336/*
337 * Given the buffer pointer of the first overflow page of a big pair,
338 * find the end of the big pair
339 *
340 * This will set bpp to the buffer header of the last page of the big pair.
341 * It will return the pageno of the overflow page following the last page
342 * of the pair; 0 if there isn't any (i.e. big pair is the last key in the
343 * bucket)
344 */
345uint16_t
346__find_last_page(HTAB *hashp, BUFHEAD **bpp)
347{
348	BUFHEAD *bufp;
349	uint16_t *bp, pageno;
350	int n;
351
352	bufp = *bpp;
353	bp = (uint16_t *)(void *)bufp->page;
354	for (;;) {
355		n = bp[0];
356
357		/*
358		 * This is the last page if: the tag is FULL_KEY_DATA and
359		 * either only 2 entries OVFLPAGE marker is explicit there
360		 * is freespace on the page.
361		 */
362		if (bp[2] == FULL_KEY_DATA &&
363		    ((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp))))
364			break;
365
366		pageno = bp[n - 1];
367		bufp = __get_buf(hashp, (uint32_t)pageno, bufp, 0);
368		if (!bufp)
369			return (0);	/* Need to indicate an error! */
370		bp = (uint16_t *)(void *)bufp->page;
371	}
372
373	*bpp = bufp;
374	if (bp[0] > 2)
375		return (bp[3]);
376	else
377		return (0);
378}
379
380/*
381 * Return the data for the key/data pair that begins on this page at this
382 * index (index should always be 1).
383 */
384int
385__big_return(HTAB *hashp, BUFHEAD *bufp, int ndx, DBT *val, int set_current)
386{
387	BUFHEAD *save_p;
388	uint16_t *bp, len, off, save_addr;
389	char *tp;
390
391	bp = (uint16_t *)(void *)bufp->page;
392	while (bp[ndx + 1] == PARTIAL_KEY) {
393		bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
394		if (!bufp)
395			return (-1);
396		bp = (uint16_t *)(void *)bufp->page;
397		ndx = 1;
398	}
399
400	if (bp[ndx + 1] == FULL_KEY) {
401		bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
402		if (!bufp)
403			return (-1);
404		bp = (uint16_t *)(void *)bufp->page;
405		save_p = bufp;
406		save_addr = save_p->addr;
407		off = bp[1];
408		len = 0;
409	} else
410		if (!FREESPACE(bp)) {
411			/*
412			 * This is a hack.  We can't distinguish between
413			 * FULL_KEY_DATA that contains complete data or
414			 * incomplete data, so we require that if the data
415			 * is complete, there is at least 1 byte of free
416			 * space left.
417			 */
418			off = bp[bp[0]];
419			len = bp[1] - off;
420			save_p = bufp;
421			save_addr = bufp->addr;
422			bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp,
423			    0);
424			if (!bufp)
425				return (-1);
426			bp = (uint16_t *)(void *)bufp->page;
427		} else {
428			/* The data is all on one page. */
429			tp = (char *)(void *)bp;
430			off = bp[bp[0]];
431			val->data = (uint8_t *)tp + off;
432			val->size = bp[1] - off;
433			if (set_current) {
434				if (bp[0] == 2) {	/* No more buckets in
435							 * chain */
436					hashp->cpage = NULL;
437					hashp->cbucket++;
438					hashp->cndx = 1;
439				} else {
440					hashp->cpage = __get_buf(hashp,
441					    (uint32_t)bp[bp[0] - 1], bufp, 0);
442					if (!hashp->cpage)
443						return (-1);
444					hashp->cndx = 1;
445					if (!((uint16_t *)(void *)
446					    hashp->cpage->page)[0]) {
447						hashp->cbucket++;
448						hashp->cpage = NULL;
449					}
450				}
451			}
452			return (0);
453		}
454
455	val->size = collect_data(hashp, bufp, (int)len, set_current);
456	if (val->size == (size_t)-1)
457		return (-1);
458	if (save_p->addr != save_addr) {
459		/* We are pretty short on buffers. */
460		errno = EINVAL;			/* OUT OF BUFFERS */
461		return (-1);
462	}
463	memmove(hashp->tmp_buf, (save_p->page) + off, (size_t)len);
464	val->data = (uint8_t *)hashp->tmp_buf;
465	return (0);
466}
467/*
468 * Count how big the total datasize is by recursing through the pages.  Then
469 * allocate a buffer and copy the data as you recurse up.
470 */
471static int
472collect_data(HTAB *hashp, BUFHEAD *bufp, int len, int set)
473{
474	uint16_t *bp;
475	char *p;
476	BUFHEAD *xbp;
477	uint16_t save_addr;
478	int mylen, totlen;
479
480	p = bufp->page;
481	bp = (uint16_t *)(void *)p;
482	mylen = HASH_BSIZE(hashp) - bp[1];
483	save_addr = bufp->addr;
484
485	if (bp[2] == FULL_KEY_DATA) {		/* End of Data */
486		totlen = len + mylen;
487		if (hashp->tmp_buf)
488			free(hashp->tmp_buf);
489		if ((hashp->tmp_buf = calloc(1, (size_t)totlen)) == NULL)
490			return (-1);
491		if (set) {
492			hashp->cndx = 1;
493			if (bp[0] == 2) {	/* No more buckets in chain */
494				hashp->cpage = NULL;
495				hashp->cbucket++;
496			} else {
497				hashp->cpage =
498				    __get_buf(hashp, (uint32_t)bp[bp[0] - 1],
499				    bufp, 0);
500				if (!hashp->cpage)
501					return (-1);
502				else if (!((uint16_t *)(void *)hashp->cpage->page)[0]) {
503					hashp->cbucket++;
504					hashp->cpage = NULL;
505				}
506			}
507		}
508	} else {
509		xbp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
510		if (!xbp || ((totlen =
511		    collect_data(hashp, xbp, len + mylen, set)) < 1))
512			return (-1);
513	}
514	if (bufp->addr != save_addr) {
515		errno = EINVAL;			/* Out of buffers. */
516		return (-1);
517	}
518	memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], (size_t)mylen);
519	return (totlen);
520}
521
522/*
523 * Fill in the key and data for this big pair.
524 */
525int
526__big_keydata(HTAB *hashp, BUFHEAD *bufp, DBT *key, DBT *val, int set)
527{
528	key->size = collect_key(hashp, bufp, 0, val, set);
529	if (key->size == (size_t)-1)
530		return (-1);
531	key->data = (uint8_t *)hashp->tmp_key;
532	return (0);
533}
534
535/*
536 * Count how big the total key size is by recursing through the pages.  Then
537 * collect the data, allocate a buffer and copy the key as you recurse up.
538 */
539static int
540collect_key(HTAB *hashp, BUFHEAD *bufp, int len, DBT *val, int set)
541{
542	BUFHEAD *xbp;
543	char *p;
544	int mylen, totlen;
545	uint16_t *bp, save_addr;
546
547	p = bufp->page;
548	bp = (uint16_t *)(void *)p;
549	mylen = HASH_BSIZE(hashp) - bp[1];
550
551	save_addr = bufp->addr;
552	totlen = len + mylen;
553	if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) {    /* End of Key. */
554		if (hashp->tmp_key != NULL)
555			free(hashp->tmp_key);
556		if ((hashp->tmp_key = calloc(1, (size_t)totlen)) == NULL)
557			return (-1);
558		if (__big_return(hashp, bufp, 1, val, set))
559			return (-1);
560	} else {
561		xbp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
562		if (!xbp || ((totlen =
563		    collect_key(hashp, xbp, totlen, val, set)) < 1))
564			return (-1);
565	}
566	if (bufp->addr != save_addr) {
567		errno = EINVAL;		/* MIS -- OUT OF BUFFERS */
568		return (-1);
569	}
570	memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], (size_t)mylen);
571	return (totlen);
572}
573
574/*
575 * Returns:
576 *  0 => OK
577 * -1 => error
578 */
579int
580__big_split(
581	HTAB *hashp,
582	BUFHEAD *op,	/* Pointer to where to put keys that go in old bucket */
583	BUFHEAD *np,	/* Pointer to new bucket page */
584			/* Pointer to first page containing the big key/data */
585	BUFHEAD *big_keyp,
586	int addr,	/* Address of big_keyp */
587	uint32_t   obucket,/* Old Bucket */
588	SPLIT_RETURN *ret
589)
590{
591	BUFHEAD *tmpp;
592	uint16_t *tp;
593	BUFHEAD *bp;
594	DBT key, val;
595	uint32_t change;
596	uint16_t free_space, n, off;
597	size_t temp;
598
599	bp = big_keyp;
600
601	/* Now figure out where the big key/data goes */
602	if (__big_keydata(hashp, big_keyp, &key, &val, 0))
603		return (-1);
604	change = (__call_hash(hashp, key.data, (int)key.size) != obucket);
605
606	if ((ret->next_addr = __find_last_page(hashp, &big_keyp)) != 0) {
607		if (!(ret->nextp =
608		    __get_buf(hashp, (uint32_t)ret->next_addr, big_keyp, 0)))
609			return (-1);
610	} else
611		ret->nextp = NULL;
612
613	/* Now make one of np/op point to the big key/data pair */
614	_DIAGASSERT(np->ovfl == NULL);
615	if (change)
616		tmpp = np;
617	else
618		tmpp = op;
619
620	tmpp->flags |= BUF_MOD;
621#ifdef DEBUG1
622	(void)fprintf(stderr,
623	    "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr,
624	    (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0));
625#endif
626	tmpp->ovfl = bp;	/* one of op/np point to big_keyp */
627	tp = (uint16_t *)(void *)tmpp->page;
628	_DIAGASSERT(FREESPACE(tp) >= OVFLSIZE);
629	n = tp[0];
630	off = OFFSET(tp);
631	free_space = FREESPACE(tp);
632	tp[++n] = (uint16_t)addr;
633	tp[++n] = OVFLPAGE;
634	tp[0] = n;
635	OFFSET(tp) = off;
636	temp = free_space - OVFLSIZE;
637	_DBFIT(temp, uint16_t);
638	FREESPACE(tp) = (uint16_t)temp;
639
640	/*
641	 * Finally, set the new and old return values. BIG_KEYP contains a
642	 * pointer to the last page of the big key_data pair. Make sure that
643	 * big_keyp has no following page (2 elements) or create an empty
644	 * following page.
645	 */
646
647	ret->newp = np;
648	ret->oldp = op;
649
650	tp = (uint16_t *)(void *)big_keyp->page;
651	big_keyp->flags |= BUF_MOD;
652	if (tp[0] > 2) {
653		/*
654		 * There may be either one or two offsets on this page.  If
655		 * there is one, then the overflow page is linked on normally
656		 * and tp[4] is OVFLPAGE.  If there are two, tp[4] contains
657		 * the second offset and needs to get stuffed in after the
658		 * next overflow page is added.
659		 */
660		n = tp[4];
661		free_space = FREESPACE(tp);
662		off = OFFSET(tp);
663		tp[0] -= 2;
664		temp = free_space + OVFLSIZE;
665		_DBFIT(temp, uint16_t);
666		FREESPACE(tp) = (uint16_t)temp;
667		OFFSET(tp) = off;
668		tmpp = __add_ovflpage(hashp, big_keyp);
669		if (!tmpp)
670			return (-1);
671		tp[4] = n;
672	} else
673		tmpp = big_keyp;
674
675	if (change)
676		ret->newp = tmpp;
677	else
678		ret->oldp = tmpp;
679	return (0);
680}
681