1/*	$NetBSD: btree.h,v 1.18 2022/04/19 20:32:15 rillig Exp $	*/
2
3/*-
4 * Copyright (c) 1991, 1993, 1994
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Olson.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)btree.h	8.11 (Berkeley) 8/17/94
35 */
36
37#if HAVE_NBTOOL_CONFIG_H
38#include "nbtool_config.h"
39#endif
40
41/* Macros to set/clear/test flags. */
42#define	F_SET(p, f)	(p)->flags |= (f)
43#define	F_CLR(p, f)	(p)->flags &= ~(f)
44#define	F_ISSET(p, f)	((p)->flags & (f))
45
46#include <mpool.h>
47
48#define	DEFMINKEYPAGE	(2)		/* Minimum keys per page */
49#define	MINCACHE	(5)		/* Minimum cached pages */
50#define	MINPSIZE	(512)		/* Minimum page size */
51
52/*
53 * Page 0 of a btree file contains a copy of the meta-data.  This page is also
54 * used as an out-of-band page, i.e. page pointers that point to nowhere point
55 * to page 0.  Page 1 is the root of the btree.
56 */
57#define	P_INVALID	 0		/* Invalid tree page number. */
58#define	P_META		 0		/* Tree metadata page number. */
59#define	P_ROOT		 1		/* Tree root page number. */
60
61/*
62 * There are five page layouts in the btree: btree internal pages (BINTERNAL),
63 * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
64 * (RLEAF) and overflow pages.  All five page types have a page header (PAGE).
65 * This implementation requires that values within structures NOT be padded.
66 * (ANSI C permits random padding.)  If your compiler pads randomly you'll have
67 * to do some work to get this package to run.
68 */
69typedef struct _page {
70	pgno_t	pgno;			/* this page's page number */
71	pgno_t	prevpg;			/* left sibling */
72	pgno_t	nextpg;			/* right sibling */
73
74#define	P_BINTERNAL	0x01		/* btree internal page */
75#define	P_BLEAF		0x02		/* leaf page */
76#define	P_OVERFLOW	0x04		/* overflow page */
77#define	P_RINTERNAL	0x08		/* recno internal page */
78#define	P_RLEAF		0x10		/* leaf page */
79#define P_TYPE		0x1f		/* type mask */
80#define	P_PRESERVE	0x20		/* never delete this chain of pages */
81	uint32_t flags;
82
83	indx_t	lower;			/* lower bound of free space on page */
84	indx_t	upper;			/* upper bound of free space on page */
85	indx_t	linp[1];		/* indx_t-aligned VAR. LENGTH DATA */
86} PAGE;
87
88/* First and next index. */
89#define	BTDATAOFF							\
90	(sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) +		\
91	    sizeof(uint32_t) + sizeof(indx_t) + sizeof(indx_t))
92
93#define	_NEXTINDEX(p) (((p)->lower - BTDATAOFF) / sizeof(indx_t))
94#ifdef _DIAGNOSTIC
95static __inline indx_t
96NEXTINDEX(const PAGE *p) {
97	size_t x = _NEXTINDEX(p);
98	_DBFIT(x, indx_t);
99	return (indx_t)x;
100}
101#else
102#define	NEXTINDEX(p) (indx_t)_NEXTINDEX(p)
103#endif
104
105/*
106 * For pages other than overflow pages, there is an array of offsets into the
107 * rest of the page immediately following the page header.  Each offset is to
108 * an item which is unique to the type of page.  The h_lower offset is just
109 * past the last filled-in index.  The h_upper offset is the first item on the
110 * page.  Offsets are from the beginning of the page.
111 *
112 * If an item is too big to store on a single page, a flag is set and the item
113 * is a { page, size } pair such that the page is the first page of an overflow
114 * chain with size bytes of item.  Overflow pages are simply bytes without any
115 * external structure.
116 *
117 * The page number and size fields in the items are pgno_t-aligned so they can
118 * be manipulated without copying.  (This presumes that 32 bit items can be
119 * manipulated on this system.)
120 */
121#define	BTLALIGN(n)	(((n) + sizeof(pgno_t) - 1) & ~(sizeof(pgno_t) - 1))
122#define	NOVFLSIZE	(sizeof(pgno_t) + sizeof(uint32_t))
123
124/*
125 * For the btree internal pages, the item is a key.  BINTERNALs are {key, pgno}
126 * pairs, such that the key compares less than or equal to all of the records
127 * on that page.  For a tree without duplicate keys, an internal page with two
128 * consecutive keys, a and b, will have all records greater than or equal to a
129 * and less than b stored on the page associated with a.  Duplicate keys are
130 * somewhat special and can cause duplicate internal and leaf page records and
131 * some minor modifications of the above rule.
132 */
133typedef struct _binternal {
134	uint32_t ksize;			/* key size */
135	pgno_t	pgno;			/* page number stored on */
136#define	P_BIGDATA	0x01		/* overflow data */
137#define	P_BIGKEY	0x02		/* overflow key */
138	uint8_t	flags;
139	char	bytes[1];		/* data */
140} BINTERNAL;
141
142/* Get the page's BINTERNAL structure at index indx. */
143#define	GETBINTERNAL(pg, indx)						\
144	((BINTERNAL *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
145
146/* Get the number of bytes in the entry. */
147#define _NBINTERNAL(len)						\
148    BTLALIGN(sizeof(uint32_t) + sizeof(pgno_t) + sizeof(uint8_t) + (len))
149#ifdef _DIAGNOSTIC
150static __inline uint32_t
151NBINTERNAL(uint32_t len) {
152	size_t x = _NBINTERNAL(len);
153	_DBFIT(x, uint32_t);
154	return (uint32_t)x;
155}
156#else
157#define NBINTERNAL(len)	(uint32_t)_NBINTERNAL(len)
158#endif
159
160/* Copy a BINTERNAL entry to the page. */
161#define	WR_BINTERNAL(p, size, pgno, flags) do {				\
162	_DBFIT(size, uint32_t);						\
163	*(uint32_t *)(void *)p = (uint32_t)size;			\
164	p += sizeof(uint32_t);						\
165	*(pgno_t *)(void *)p = pgno;					\
166	p += sizeof(pgno_t);						\
167	*(uint8_t *)(void *)p = flags;					\
168	p += sizeof(uint8_t);						\
169} while (0)
170
171/*
172 * For the recno internal pages, the item is a page number with the number of
173 * keys found on that page and below.
174 */
175typedef struct _rinternal {
176	recno_t	nrecs;			/* number of records */
177	pgno_t	pgno;			/* page number stored below */
178} RINTERNAL;
179
180/* Get the page's RINTERNAL structure at index indx. */
181#define	GETRINTERNAL(pg, indx)						\
182	((RINTERNAL *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
183
184/* Get the number of bytes in the entry. */
185#define NRINTERNAL							\
186	BTLALIGN(sizeof(recno_t) + sizeof(pgno_t))
187
188/* Copy a RINTERNAL entry to the page. */
189#define	WR_RINTERNAL(p, nrecs, pgno) do {				\
190	*(recno_t *)(void *)p = nrecs;					\
191	p += sizeof(recno_t);						\
192	*(pgno_t *)(void *)p = pgno;					\
193} while (0)
194
195/* For the btree leaf pages, the item is a key and data pair. */
196typedef struct _bleaf {
197	uint32_t	ksize;		/* size of key */
198	uint32_t	dsize;		/* size of data */
199	uint8_t	flags;			/* P_BIGDATA, P_BIGKEY */
200	char	bytes[1];		/* data */
201} BLEAF;
202
203/* Get the page's BLEAF structure at index indx. */
204#define	GETBLEAF(pg, indx)						\
205	((BLEAF *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
206
207
208/* Get the number of bytes in the user's key/data pair. */
209#define _NBLEAFDBT(ksize, dsize)					\
210    BTLALIGN(sizeof(uint32_t) + sizeof(uint32_t) + sizeof(uint8_t) +	\
211	    (ksize) + (dsize))
212#ifdef _DIAGNOSTIC
213static __inline uint32_t
214NBLEAFDBT(size_t k, size_t d) {
215	size_t x = _NBLEAFDBT(k, d);
216	_DBFIT(x, uint32_t);
217	return (uint32_t)x;
218}
219#else
220#define NBLEAFDBT(p, q)	(uint32_t)_NBLEAFDBT(p, q)
221#endif
222
223/* Get the number of bytes in the entry. */
224#define NBLEAF(p)	NBLEAFDBT((p)->ksize, (p)->dsize)
225
226/* Copy a BLEAF entry to the page. */
227#define	WR_BLEAF(p, key, data, flags) do {				\
228	_DBFIT(key->size, uint32_t);					\
229	*(uint32_t *)(void *)p = (uint32_t)key->size;			\
230	p += sizeof(uint32_t);						\
231	_DBFIT(data->size, uint32_t);					\
232	*(uint32_t *)(void *)p = (uint32_t)data->size;			\
233	p += sizeof(uint32_t);						\
234	*(uint8_t *)(void *)p = flags;					\
235	p += sizeof(uint8_t);						\
236	(void)memmove(p, key->data, key->size);				\
237	p += key->size;							\
238	(void)memmove(p, data->data, data->size);			\
239} while (0)
240
241/* For the recno leaf pages, the item is a data entry. */
242typedef struct _rleaf {
243	uint32_t	dsize;		/* size of data */
244	uint8_t	flags;			/* P_BIGDATA */
245	char	bytes[1];
246} RLEAF;
247
248/* Get the page's RLEAF structure at index indx. */
249#define	GETRLEAF(pg, indx)						\
250	((RLEAF *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
251
252#define	_NRLEAFDBT(dsize)						\
253	BTLALIGN(sizeof(uint32_t) + sizeof(uint8_t) + (dsize))
254
255#ifdef _DIAGNOSTIC
256static __inline uint32_t
257NRLEAFDBT(size_t d) {
258	size_t x = _NRLEAFDBT(d);
259	_DBFIT(x, uint32_t);
260	return (uint32_t)x;
261}
262#else
263#define NRLEAFDBT(d)	(uint32_t)_NRLEAFDBT(d)
264#endif
265
266/* Get the number of bytes in the entry. */
267#define NRLEAF(p)	NRLEAFDBT((p)->dsize)
268
269/* Get the number of bytes from the user's data. */
270
271/* Copy a RLEAF entry to the page. */
272#define	WR_RLEAF(p, data, flags) do {					\
273	_DBFIT(data->size, uint32_t);					\
274	*(uint32_t *)(void *)p = (uint32_t)data->size;			\
275	p += sizeof(uint32_t);						\
276	*(uint8_t *)(void *)p = flags;					\
277	p += sizeof(uint8_t);						\
278	memmove(p, data->data, data->size);				\
279} while (0)
280
281/*
282 * A record in the tree is either a pointer to a page and an index in the page
283 * or a page number and an index.  These structures are used as a cursor, stack
284 * entry and search returns as well as to pass records to other routines.
285 *
286 * One comment about searches.  Internal page searches must find the largest
287 * record less than key in the tree so that descents work.  Leaf page searches
288 * must find the smallest record greater than key so that the returned index
289 * is the record's correct position for insertion.
290 */
291typedef struct _epgno {
292	pgno_t	pgno;			/* the page number */
293	indx_t	index;			/* the index on the page */
294} EPGNO;
295
296typedef struct _epg {
297	PAGE	*page;			/* the (pinned) page */
298	indx_t	 index;			/* the index on the page */
299} EPG;
300
301/*
302 * About cursors.  The cursor (and the page that contained the key/data pair
303 * that it referenced) can be deleted, which makes things a bit tricky.  If
304 * there are no duplicates of the cursor key in the tree (i.e. B_NODUPS is set
305 * or there simply aren't any duplicates of the key) we copy the key that it
306 * referenced when it's deleted, and reacquire a new cursor key if the cursor
307 * is used again.  If there are duplicates keys, we move to the next/previous
308 * key, and set a flag so that we know what happened.  NOTE: if duplicate (to
309 * the cursor) keys are added to the tree during this process, it is undefined
310 * if they will be returned or not in a cursor scan.
311 *
312 * The flags determine the possible states of the cursor:
313 *
314 * CURS_INIT	The cursor references *something*.
315 * CURS_ACQUIRE	The cursor was deleted, and a key has been saved so that
316 *		we can reacquire the right position in the tree.
317 * CURS_AFTER, CURS_BEFORE
318 *		The cursor was deleted, and now references a key/data pair
319 *		that has not yet been returned, either before or after the
320 *		deleted key/data pair.
321 * XXX
322 * This structure is broken out so that we can eventually offer multiple
323 * cursors as part of the DB interface.
324 */
325typedef struct _cursor {
326	EPGNO	 pg;			/* B: Saved tree reference. */
327	DBT	 key;			/* B: Saved key, or key.data == NULL. */
328	recno_t	 rcursor;		/* R: recno cursor (1-based) */
329
330#define	CURS_ACQUIRE	0x01		/*  B: Cursor needs to be reacquired. */
331#define	CURS_AFTER	0x02		/*  B: Unreturned cursor after key. */
332#define	CURS_BEFORE	0x04		/*  B: Unreturned cursor before key. */
333#define	CURS_INIT	0x08		/* RB: Cursor initialized. */
334	uint8_t flags;
335} CURSOR;
336
337/*
338 * The metadata of the tree.  The nrecs field is used only by the RECNO code.
339 * This is because the btree doesn't really need it and it requires that every
340 * put or delete call modify the metadata.
341 */
342typedef struct _btmeta {
343	uint32_t	magic;		/* magic number */
344	uint32_t	version;	/* version */
345	uint32_t	psize;		/* page size */
346	uint32_t	free;		/* page number of first free page */
347	uint32_t	nrecs;		/* R: number of records */
348
349#define	SAVEMETA	(B_NODUPS | R_RECNO)
350	uint32_t	flags;		/* bt_flags & SAVEMETA */
351} BTMETA;
352
353/* The in-memory btree/recno data structure. */
354typedef struct _btree {
355	MPOOL	 *bt_mp;		/* memory pool cookie */
356
357	DB	 *bt_dbp;		/* pointer to enclosing DB */
358
359	EPG	  bt_cur;		/* current (pinned) page */
360	PAGE	 *bt_pinned;		/* page pinned across calls */
361
362	CURSOR	  bt_cursor;		/* cursor */
363
364#define	BT_PUSH(t, p, i) {						\
365	t->bt_sp->pgno = p; 						\
366	t->bt_sp->index = i; 						\
367	++t->bt_sp;							\
368}
369#define	BT_POP(t)	(t->bt_sp == t->bt_stack ? NULL : --t->bt_sp)
370#define	BT_CLR(t)	(t->bt_sp = t->bt_stack)
371	EPGNO	  bt_stack[50];		/* stack of parent pages */
372	EPGNO	 *bt_sp;		/* current stack pointer */
373
374	DBT	  bt_rkey;		/* returned key */
375	DBT	  bt_rdata;		/* returned data */
376
377	int	  bt_fd;		/* tree file descriptor */
378
379	pgno_t	  bt_free;		/* next free page */
380	uint32_t bt_psize;		/* page size */
381	indx_t	  bt_ovflsize;		/* cut-off for key/data overflow */
382	int	  bt_lorder;		/* byte order */
383					/* sorted order */
384	enum { NOT, BACK, FORWARD } bt_order;
385	EPGNO	  bt_last;		/* last insert */
386
387					/* B: key comparison function */
388	int	(*bt_cmp)(const DBT *, const DBT *);
389					/* B: prefix comparison function */
390	size_t	(*bt_pfx)(const DBT *, const DBT *);
391					/* R: recno input function */
392	int	(*bt_irec)(struct _btree *, recno_t);
393
394	FILE	 *bt_rfp;		/* R: record FILE pointer */
395	int	  bt_rfd;		/* R: record file descriptor */
396
397	caddr_t	  bt_cmap;		/* R: current point in mapped space */
398	caddr_t	  bt_smap;		/* R: start of mapped space */
399	caddr_t   bt_emap;		/* R: end of mapped space */
400	size_t	  bt_msize;		/* R: size of mapped region. */
401
402	recno_t	  bt_nrecs;		/* R: number of records */
403	size_t	  bt_reclen;		/* R: fixed record length */
404	uint8_t	  bt_bval;		/* R: delimiting byte/pad character */
405
406/*
407 * NB:
408 * B_NODUPS and R_RECNO are stored on disk, and may not be changed.
409 */
410#define	B_INMEM		0x00001		/* in-memory tree */
411#define	B_METADIRTY	0x00002		/* need to write metadata */
412#define	B_MODIFIED	0x00004		/* tree modified */
413#define	B_NEEDSWAP	0x00008		/* if byte order requires swapping */
414#define	B_RDONLY	0x00010		/* read-only tree */
415
416#define	B_NODUPS	0x00020		/* no duplicate keys permitted */
417#define	R_RECNO		0x00080		/* record oriented tree */
418
419#define	R_CLOSEFP	0x00040		/* opened a file pointer */
420#define	R_EOF		0x00100		/* end of input file reached. */
421#define	R_FIXLEN	0x00200		/* fixed length records */
422#define	R_MEMMAPPED	0x00400		/* memory mapped file. */
423#define	R_INMEM		0x00800		/* in-memory file */
424#define	R_MODIFIED	0x01000		/* modified file */
425#define	R_RDONLY	0x02000		/* read-only file */
426
427#define	B_DB_LOCK	0x04000		/* DB_LOCK specified. */
428#define	B_DB_SHMEM	0x08000		/* DB_SHMEM specified. */
429#define	B_DB_TXN	0x10000		/* DB_TXN specified. */
430	uint32_t flags;
431} BTREE;
432
433#include "extern.h"
434