1/*	$NetBSD: bt_seq.c,v 1.20 2016/09/24 21:31:25 christos Exp $	*/
2
3/*-
4 * Copyright (c) 1990, 1993, 1994
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Olson.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35#if HAVE_NBTOOL_CONFIG_H
36#include "nbtool_config.h"
37#endif
38
39#include <sys/cdefs.h>
40__RCSID("$NetBSD: bt_seq.c,v 1.20 2016/09/24 21:31:25 christos Exp $");
41
42#include "namespace.h"
43#include <sys/types.h>
44
45#include <assert.h>
46#include <errno.h>
47#include <stddef.h>
48#include <stdio.h>
49#include <stdlib.h>
50
51#include <db.h>
52#include "btree.h"
53
54static int __bt_first(BTREE *, const DBT *, EPG *, int *);
55static int __bt_seqadv(BTREE *, EPG *, int);
56static int __bt_seqset(BTREE *, EPG *, DBT *, int);
57static int __bt_rseq_next(BTREE *, EPG *);
58static int __bt_rseq_prev(BTREE *, EPG *);
59
60/*
61 * Sequential scan support.
62 *
63 * The tree can be scanned sequentially, starting from either end of the
64 * tree or from any specific key.  A scan request before any scanning is
65 * done is initialized as starting from the least node.
66 */
67
68/*
69 * __bt_seq --
70 *	Btree sequential scan interface.
71 *
72 * Parameters:
73 *	dbp:	pointer to access method
74 *	key:	key for positioning and return value
75 *	data:	data return value
76 *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV, R_RNEXT, R_RPREV.
77 *
78 * Returns:
79 *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
80 */
81int
82__bt_seq(const DB *dbp, DBT *key, DBT *data, u_int flags)
83{
84	BTREE *t;
85	EPG e;
86	int status;
87
88	t = dbp->internal;
89
90	/* Toss any page pinned across calls. */
91	if (t->bt_pinned != NULL) {
92		mpool_put(t->bt_mp, t->bt_pinned, 0);
93		t->bt_pinned = NULL;
94	}
95
96	/*
97	 * If scan uninitialized as yet, or starting at a specific record, set
98	 * the scan to a specific key.  Both __bt_seqset and __bt_seqadv pin
99	 * the page the cursor references if they're successful.
100	 */
101	switch (flags) {
102	case R_NEXT:
103	case R_PREV:
104	case R_RNEXT:
105	case R_RPREV:
106		if (F_ISSET(&t->bt_cursor, CURS_INIT)) {
107			status = __bt_seqadv(t, &e, (int)flags);
108			break;
109		}
110		/* FALLTHROUGH */
111	case R_FIRST:
112	case R_LAST:
113	case R_CURSOR:
114		status = __bt_seqset(t, &e, key, (int)flags);
115		break;
116	default:
117		errno = EINVAL;
118		return (RET_ERROR);
119	}
120
121	if (status == RET_SUCCESS) {
122		__bt_setcur(t, e.page->pgno, (u_int)e.index);
123
124		status =
125		    __bt_ret(t, &e, key, &t->bt_rkey, data, &t->bt_rdata, 0);
126
127		/*
128		 * If the user is doing concurrent access, we copied the
129		 * key/data, toss the page.
130		 */
131		if (F_ISSET(t, B_DB_LOCK))
132			mpool_put(t->bt_mp, e.page, 0);
133		else
134			t->bt_pinned = e.page;
135	}
136	return (status);
137}
138
139/*
140 * __bt_seqset --
141 *	Set the sequential scan to a specific key.
142 *
143 * Parameters:
144 *	t:	tree
145 *	ep:	storage for returned key
146 *	key:	key for initial scan position
147 *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV, R_RNEXT, R_RPREV.
148 *
149 * Side effects:
150 *	Pins the page the cursor references.
151 *
152 * Returns:
153 *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
154 */
155static int
156__bt_seqset(BTREE *t, EPG *ep, DBT *key, int flags)
157{
158	PAGE *h;
159	pgno_t pg;
160	int exact;
161
162	/*
163	 * Find the first, last or specific key in the tree and point the
164	 * cursor at it.  The cursor may not be moved until a new key has
165	 * been found.
166	 */
167	switch (flags) {
168	case R_CURSOR:				/* Keyed scan. */
169		/*
170		 * Find the first instance of the key or the smallest key
171		 * which is greater than or equal to the specified key.
172		 */
173		if (key->data == NULL || key->size == 0) {
174			errno = EINVAL;
175			return (RET_ERROR);
176		}
177		return (__bt_first(t, key, ep, &exact));
178	case R_FIRST:				/* First record. */
179	case R_NEXT:
180	case R_RNEXT:
181		BT_CLR(t);
182		/* Walk down the left-hand side of the tree. */
183		for (pg = P_ROOT;;) {
184			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
185				return (RET_ERROR);
186
187			/* Check for an empty tree. */
188			if (NEXTINDEX(h) == 0) {
189				mpool_put(t->bt_mp, h, 0);
190				return (RET_SPECIAL);
191			}
192
193			if (h->flags & (P_BLEAF | P_RLEAF))
194				break;
195			pg = GETBINTERNAL(h, 0)->pgno;
196			BT_PUSH(t, h->pgno, 0);
197			mpool_put(t->bt_mp, h, 0);
198		}
199		ep->page = h;
200		ep->index = 0;
201		break;
202	case R_LAST:				/* Last record. */
203	case R_PREV:
204	case R_RPREV:
205		BT_CLR(t);
206		/* Walk down the right-hand side of the tree. */
207		for (pg = P_ROOT;;) {
208			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
209				return (RET_ERROR);
210
211			/* Check for an empty tree. */
212			if (NEXTINDEX(h) == 0) {
213				mpool_put(t->bt_mp, h, 0);
214				return (RET_SPECIAL);
215			}
216
217			if (h->flags & (P_BLEAF | P_RLEAF))
218				break;
219			pg = GETBINTERNAL(h, NEXTINDEX(h) - 1)->pgno;
220			BT_PUSH(t, h->pgno, NEXTINDEX(h) - 1);
221			mpool_put(t->bt_mp, h, 0);
222		}
223
224		ep->page = h;
225		ep->index = NEXTINDEX(h) - 1;
226		break;
227	}
228	return (RET_SUCCESS);
229}
230
231/*
232 * __bt_seqadvance --
233 *	Advance the sequential scan.
234 *
235 * Parameters:
236 *	t:	tree
237 *	flags:	R_NEXT, R_PREV, R_RNEXT, R_RPREV
238 *
239 * Side effects:
240 *	Pins the page the new key/data record is on.
241 *
242 * Returns:
243 *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
244 */
245static int
246__bt_seqadv(BTREE *t, EPG *ep, int flags)
247{
248	CURSOR *c;
249	PAGE *h;
250	indx_t idx = 0;	/* pacify gcc */
251	pgno_t pg;
252	int exact, rval;
253
254	/*
255	 * There are a couple of states that we can be in.  The cursor has
256	 * been initialized by the time we get here, but that's all we know.
257	 */
258	c = &t->bt_cursor;
259
260	/*
261	 * The cursor was deleted and there weren't any duplicate records,
262	 * so the cursor's key was saved.  Find out where that key would
263	 * be in the current tree.  If the returned key is an exact match,
264	 * it means that a key/data pair was inserted into the tree after
265	 * the delete.  We could reasonably return the key, but the problem
266	 * is that this is the access pattern we'll see if the user is
267	 * doing seq(..., R_NEXT)/put(..., 0) pairs, i.e. the put deletes
268	 * the cursor record and then replaces it, so the cursor was saved,
269	 * and we'll simply return the same "new" record until the user
270	 * notices and doesn't do a put() of it.  Since the key is an exact
271	 * match, we could as easily put the new record before the cursor,
272	 * and we've made no guarantee to return it.  So, move forward or
273	 * back a record if it's an exact match.
274	 *
275	 * XXX
276	 * In the current implementation, put's to the cursor are done with
277	 * delete/add pairs.  This has two consequences.  First, it means
278	 * that seq(..., R_NEXT)/put(..., R_CURSOR) pairs are going to exhibit
279	 * the same behavior as above.  Second, you can return the same key
280	 * twice if you have duplicate records.  The scenario is that the
281	 * cursor record is deleted, moving the cursor forward or backward
282	 * to a duplicate.  The add then inserts the new record at a location
283	 * ahead of the cursor because duplicates aren't sorted in any way,
284	 * and the new record is later returned.  This has to be fixed at some
285	 * point.
286	 */
287	if (F_ISSET(c, CURS_ACQUIRE)) {
288		if ((rval = __bt_first(t, &c->key, ep, &exact)) == RET_ERROR)
289			return RET_ERROR;
290		if (!exact)
291			return rval;
292		/*
293		 * XXX
294		 * Kluge -- get, release, get the page.
295		 */
296		c->pg.pgno = ep->page->pgno;
297		c->pg.index = ep->index;
298		mpool_put(t->bt_mp, ep->page, 0);
299	}
300
301	/* Get the page referenced by the cursor. */
302	if ((h = mpool_get(t->bt_mp, c->pg.pgno, 0)) == NULL)
303		return (RET_ERROR);
304
305	/*
306 	 * Find the next/previous record in the tree and point the cursor at
307	 * it.  The cursor may not be moved until a new key has been found.
308	 */
309	switch (flags) {
310	case R_NEXT:			/* Next record. */
311	case R_RNEXT:
312		/*
313		 * The cursor was deleted in duplicate records, and moved
314		 * forward to a record that has yet to be returned.  Clear
315		 * that flag, and return the record.
316		 */
317		if (F_ISSET(c, CURS_AFTER))
318			goto usecurrent;
319		idx = c->pg.index;
320		if (++idx == NEXTINDEX(h)) {
321			if (flags == R_RNEXT) {
322				ep->page = h;
323				ep->index = idx;
324				return __bt_rseq_next(t, ep);
325			}
326			pg = h->nextpg;
327			mpool_put(t->bt_mp, h, 0);
328			if (pg == P_INVALID)
329				return RET_SPECIAL;
330			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
331				return RET_ERROR;
332			idx = 0;
333		}
334		break;
335	case R_PREV:			/* Previous record. */
336	case R_RPREV:
337		/*
338		 * The cursor was deleted in duplicate records, and moved
339		 * backward to a record that has yet to be returned.  Clear
340		 * that flag, and return the record.
341		 */
342		if (F_ISSET(c, CURS_BEFORE)) {
343usecurrent:		F_CLR(c, CURS_AFTER | CURS_BEFORE);
344			ep->page = h;
345			ep->index = c->pg.index;
346			return (RET_SUCCESS);
347		}
348		idx = c->pg.index;
349		if (idx == 0) {
350			if (flags == R_RPREV) {
351				ep->page = h;
352				ep->index = idx;
353				return __bt_rseq_prev(t, ep);
354			}
355			pg = h->prevpg;
356			mpool_put(t->bt_mp, h, 0);
357			if (pg == P_INVALID)
358				return RET_SPECIAL;
359			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
360				return RET_ERROR;
361			idx = NEXTINDEX(h) - 1;
362		} else
363			--idx;
364		break;
365	}
366
367	ep->page = h;
368	ep->index = idx;
369	return (RET_SUCCESS);
370}
371/*
372 * Get the first item on the next page, but by going up and down the tree.
373 */
374static int
375__bt_rseq_next(BTREE *t, EPG *ep)
376{
377	PAGE *h;
378	indx_t idx;
379	EPGNO *up;
380	pgno_t pg;
381
382	h = ep->page;
383	idx = ep->index;
384	do {
385		/* Move up the tree. */
386		up = BT_POP(t);
387		mpool_put(t->bt_mp, h, 0);
388		/* Did we hit the right edge of the root? */
389		if (up == NULL)
390			return RET_SPECIAL;
391		if ((h = mpool_get(t->bt_mp, up->pgno, 0)) == NULL)
392			return RET_ERROR;
393		idx = up->index;
394	} while (++idx == NEXTINDEX(h));
395
396	while (!(h->flags & (P_BLEAF | P_RLEAF))) {
397		/* Move back down the tree. */
398		BT_PUSH(t, h->pgno, idx);
399		pg = GETBINTERNAL(h, idx)->pgno;
400		mpool_put(t->bt_mp, h, 0);
401		if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
402			return RET_ERROR;
403		idx = 0;
404	}
405	ep->page = h;
406	ep->index = idx;
407	return RET_SUCCESS;
408}
409
410/*
411 * Get the last item on the previous page, but by going up and down the tree.
412 */
413static int
414__bt_rseq_prev(BTREE *t, EPG *ep)
415{
416	PAGE *h;
417	indx_t idx;
418	EPGNO *up;
419	pgno_t pg;
420
421	h = ep->page;
422	idx = ep->index;
423	do {
424		/* Move up the tree. */
425		up = BT_POP(t);
426		mpool_put(t->bt_mp, h, 0);
427		/* Did we hit the left edge of the root? */
428		if (up == NULL)
429			return RET_SPECIAL;
430		if ((h = mpool_get(t->bt_mp, up->pgno, 0)) == NULL)
431			return RET_ERROR;
432		idx = up->index;
433	} while (idx == 0);
434	--idx;
435	while (!(h->flags & (P_BLEAF | P_RLEAF))) {
436		/* Move back down the tree. */
437		BT_PUSH(t, h->pgno, idx);
438		pg = GETBINTERNAL(h, idx)->pgno;
439		mpool_put(t->bt_mp, h, 0);
440		if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
441			return RET_ERROR;
442		idx = NEXTINDEX(h) - 1;
443	}
444	ep->page = h;
445	ep->index = idx;
446	return RET_SUCCESS;
447}
448
449/*
450 * __bt_first --
451 *	Find the first entry.
452 *
453 * Parameters:
454 *	t:	the tree
455 *    key:	the key
456 *  erval:	return EPG
457 * exactp:	pointer to exact match flag
458 *
459 * Returns:
460 *	The first entry in the tree greater than or equal to key,
461 *	or RET_SPECIAL if no such key exists.
462 */
463static int
464__bt_first(BTREE *t, const DBT *key, EPG *erval, int *exactp)
465{
466	PAGE *h, *hprev;
467	EPG *ep, save;
468	pgno_t pg;
469
470	/*
471	 * Find any matching record; __bt_search pins the page.
472	 *
473	 * If it's an exact match and duplicates are possible, walk backwards
474	 * in the tree until we find the first one.  Otherwise, make sure it's
475	 * a valid key (__bt_search may return an index just past the end of a
476	 * page) and return it.
477	 */
478	if ((ep = __bt_search(t, key, exactp)) == NULL)
479		return RET_SPECIAL;
480	if (*exactp) {
481		if (F_ISSET(t, B_NODUPS)) {
482			*erval = *ep;
483			return (RET_SUCCESS);
484		}
485
486		/*
487		 * Walk backwards, as long as the entry matches and there are
488		 * keys left in the tree.  Save a copy of each match in case
489		 * we go too far.
490		 */
491		save = *ep;
492		h = ep->page;
493		do {
494			if (save.page->pgno != ep->page->pgno) {
495				mpool_put(t->bt_mp, save.page, 0);
496				save = *ep;
497			} else
498				save.index = ep->index;
499
500			/*
501			 * Don't unpin the page the last (or original) match
502			 * was on, but make sure it's unpinned if an error
503			 * occurs.
504			 */
505			if (ep->index == 0) {
506				if (h->prevpg == P_INVALID)
507					break;
508				if (h->pgno != save.page->pgno)
509					mpool_put(t->bt_mp, h, 0);
510				if ((hprev = mpool_get(t->bt_mp,
511				    h->prevpg, 0)) == NULL) {
512					if (h->pgno == save.page->pgno)
513						mpool_put(t->bt_mp,
514						    save.page, 0);
515 					return RET_ERROR;
516				}
517				ep->page = h = hprev;
518				ep->index = NEXTINDEX(h);
519			}
520			--ep->index;
521		} while (__bt_cmp(t, key, ep) == 0);
522
523		/*
524		 * Reach here with the last page that was looked at pinned,
525		 * which may or may not be the same as the last (or original)
526		 * match page.  If it's not useful, release it.
527		 */
528		if (h->pgno != save.page->pgno)
529			mpool_put(t->bt_mp, h, 0);
530
531		*erval = save;
532		return (RET_SUCCESS);
533	}
534
535	/* If at the end of a page, find the next entry. */
536	if (ep->index == NEXTINDEX(ep->page)) {
537		h = ep->page;
538		pg = h->nextpg;
539		mpool_put(t->bt_mp, h, 0);
540		if (pg == P_INVALID)
541			return (RET_SPECIAL);
542		if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
543			return (RET_ERROR);
544		ep->index = 0;
545		ep->page = h;
546	}
547	*erval = *ep;
548	return (RET_SUCCESS);
549}
550
551/*
552 * __bt_setcur --
553 *	Set the cursor to an entry in the tree.
554 *
555 * Parameters:
556 *	t:	the tree
557 *   pgno:	page number
558 *    idx:	page index
559 */
560void
561__bt_setcur(BTREE *t, pgno_t pgno, u_int idx)
562{
563	/* Lose any already deleted key. */
564	if (t->bt_cursor.key.data != NULL) {
565		free(t->bt_cursor.key.data);
566		t->bt_cursor.key.size = 0;
567		t->bt_cursor.key.data = NULL;
568	}
569	F_CLR(&t->bt_cursor, CURS_ACQUIRE | CURS_AFTER | CURS_BEFORE);
570
571	/* Update the cursor. */
572	t->bt_cursor.pg.pgno = pgno;
573	t->bt_cursor.pg.index = idx;
574	F_SET(&t->bt_cursor, CURS_INIT);
575}
576