1/*	$NetBSD: lcode.c,v 1.14 2023/06/08 21:12:08 nikita Exp $	*/
2
3/*
4** Id: lcode.c
5** Code generator for Lua
6** See Copyright Notice in lua.h
7*/
8
9#define lcode_c
10#define LUA_CORE
11
12#include "lprefix.h"
13
14
15#ifndef _KERNEL
16#include <float.h>
17#include <limits.h>
18#include <math.h>
19#include <stdlib.h>
20#endif /* _KERNEL */
21
22#include "lua.h"
23
24#include "lcode.h"
25#include "ldebug.h"
26#include "ldo.h"
27#include "lgc.h"
28#include "llex.h"
29#include "lmem.h"
30#include "lobject.h"
31#include "lopcodes.h"
32#include "lparser.h"
33#include "lstring.h"
34#include "ltable.h"
35#include "lvm.h"
36
37
38/* Maximum number of registers in a Lua function (must fit in 8 bits) */
39#define MAXREGS		255
40
41
42#define hasjumps(e)	((e)->t != (e)->f)
43
44
45static int codesJ (FuncState *fs, OpCode o, int sj, int k);
46
47
48
49/* semantic error */
50l_noret luaK_semerror (LexState *ls, const char *msg) {
51  ls->t.token = 0;  /* remove "near <token>" from final message */
52  luaX_syntaxerror(ls, msg);
53}
54
55
56/*
57** If expression is a numeric constant, fills 'v' with its value
58** and returns 1. Otherwise, returns 0.
59*/
60static int tonumeral (const expdesc *e, TValue *v) {
61  if (hasjumps(e))
62    return 0;  /* not a numeral */
63  switch (e->k) {
64    case VKINT:
65      if (v) setivalue(v, e->u.ival);
66      return 1;
67#ifndef _KERNEL
68    case VKFLT:
69      if (v) setfltvalue(v, e->u.nval);
70      return 1;
71#endif /* _KERNEL */
72    default: return 0;
73  }
74}
75
76
77/*
78** Get the constant value from a constant expression
79*/
80static TValue *const2val (FuncState *fs, const expdesc *e) {
81  lua_assert(e->k == VCONST);
82  return &fs->ls->dyd->actvar.arr[e->u.info].k;
83}
84
85
86/*
87** If expression is a constant, fills 'v' with its value
88** and returns 1. Otherwise, returns 0.
89*/
90int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
91  if (hasjumps(e))
92    return 0;  /* not a constant */
93  switch (e->k) {
94    case VFALSE:
95      setbfvalue(v);
96      return 1;
97    case VTRUE:
98      setbtvalue(v);
99      return 1;
100    case VNIL:
101      setnilvalue(v);
102      return 1;
103    case VKSTR: {
104      setsvalue(fs->ls->L, v, e->u.strval);
105      return 1;
106    }
107    case VCONST: {
108      setobj(fs->ls->L, v, const2val(fs, e));
109      return 1;
110    }
111    default: return tonumeral(e, v);
112  }
113}
114
115
116/*
117** Return the previous instruction of the current code. If there
118** may be a jump target between the current instruction and the
119** previous one, return an invalid instruction (to avoid wrong
120** optimizations).
121*/
122static Instruction *previousinstruction (FuncState *fs) {
123  static const Instruction invalidinstruction = ~(Instruction)0;
124  if (fs->pc > fs->lasttarget)
125    return &fs->f->code[fs->pc - 1];  /* previous instruction */
126  else
127    return cast(Instruction*, &invalidinstruction);
128}
129
130
131/*
132** Create a OP_LOADNIL instruction, but try to optimize: if the previous
133** instruction is also OP_LOADNIL and ranges are compatible, adjust
134** range of previous instruction instead of emitting a new one. (For
135** instance, 'local a; local b' will generate a single opcode.)
136*/
137void luaK_nil (FuncState *fs, int from, int n) {
138  int l = from + n - 1;  /* last register to set nil */
139  Instruction *previous = previousinstruction(fs);
140  if (GET_OPCODE(*previous) == OP_LOADNIL) {  /* previous is LOADNIL? */
141    int pfrom = GETARG_A(*previous);  /* get previous range */
142    int pl = pfrom + GETARG_B(*previous);
143    if ((pfrom <= from && from <= pl + 1) ||
144        (from <= pfrom && pfrom <= l + 1)) {  /* can connect both? */
145      if (pfrom < from) from = pfrom;  /* from = min(from, pfrom) */
146      if (pl > l) l = pl;  /* l = max(l, pl) */
147      SETARG_A(*previous, from);
148      SETARG_B(*previous, l - from);
149      return;
150    }  /* else go through */
151  }
152  luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0);  /* else no optimization */
153}
154
155
156/*
157** Gets the destination address of a jump instruction. Used to traverse
158** a list of jumps.
159*/
160static int getjump (FuncState *fs, int pc) {
161  int offset = GETARG_sJ(fs->f->code[pc]);
162  if (offset == NO_JUMP)  /* point to itself represents end of list */
163    return NO_JUMP;  /* end of list */
164  else
165    return (pc+1)+offset;  /* turn offset into absolute position */
166}
167
168
169/*
170** Fix jump instruction at position 'pc' to jump to 'dest'.
171** (Jump addresses are relative in Lua)
172*/
173static void fixjump (FuncState *fs, int pc, int dest) {
174  Instruction *jmp = &fs->f->code[pc];
175  int offset = dest - (pc + 1);
176  lua_assert(dest != NO_JUMP);
177  if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
178    luaX_syntaxerror(fs->ls, "control structure too long");
179  lua_assert(GET_OPCODE(*jmp) == OP_JMP);
180  SETARG_sJ(*jmp, offset);
181}
182
183
184/*
185** Concatenate jump-list 'l2' into jump-list 'l1'
186*/
187void luaK_concat (FuncState *fs, int *l1, int l2) {
188  if (l2 == NO_JUMP) return;  /* nothing to concatenate? */
189  else if (*l1 == NO_JUMP)  /* no original list? */
190    *l1 = l2;  /* 'l1' points to 'l2' */
191  else {
192    int list = *l1;
193    int next;
194    while ((next = getjump(fs, list)) != NO_JUMP)  /* find last element */
195      list = next;
196    fixjump(fs, list, l2);  /* last element links to 'l2' */
197  }
198}
199
200
201/*
202** Create a jump instruction and return its position, so its destination
203** can be fixed later (with 'fixjump').
204*/
205int luaK_jump (FuncState *fs) {
206  return codesJ(fs, OP_JMP, NO_JUMP, 0);
207}
208
209
210/*
211** Code a 'return' instruction
212*/
213void luaK_ret (FuncState *fs, int first, int nret) {
214  OpCode op;
215  switch (nret) {
216    case 0: op = OP_RETURN0; break;
217    case 1: op = OP_RETURN1; break;
218    default: op = OP_RETURN; break;
219  }
220  luaK_codeABC(fs, op, first, nret + 1, 0);
221}
222
223
224/*
225** Code a "conditional jump", that is, a test or comparison opcode
226** followed by a jump. Return jump position.
227*/
228static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
229  luaK_codeABCk(fs, op, A, B, C, k);
230  return luaK_jump(fs);
231}
232
233
234/*
235** returns current 'pc' and marks it as a jump target (to avoid wrong
236** optimizations with consecutive instructions not in the same basic block).
237*/
238int luaK_getlabel (FuncState *fs) {
239  fs->lasttarget = fs->pc;
240  return fs->pc;
241}
242
243
244/*
245** Returns the position of the instruction "controlling" a given
246** jump (that is, its condition), or the jump itself if it is
247** unconditional.
248*/
249static Instruction *getjumpcontrol (FuncState *fs, int pc) {
250  Instruction *pi = &fs->f->code[pc];
251  if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
252    return pi-1;
253  else
254    return pi;
255}
256
257
258/*
259** Patch destination register for a TESTSET instruction.
260** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
261** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
262** register. Otherwise, change instruction to a simple 'TEST' (produces
263** no register value)
264*/
265static int patchtestreg (FuncState *fs, int node, int reg) {
266  Instruction *i = getjumpcontrol(fs, node);
267  if (GET_OPCODE(*i) != OP_TESTSET)
268    return 0;  /* cannot patch other instructions */
269  if (reg != NO_REG && reg != GETARG_B(*i))
270    SETARG_A(*i, reg);
271  else {
272     /* no register to put value or register already has the value;
273        change instruction to simple test */
274    *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
275  }
276  return 1;
277}
278
279
280/*
281** Traverse a list of tests ensuring no one produces a value
282*/
283static void removevalues (FuncState *fs, int list) {
284  for (; list != NO_JUMP; list = getjump(fs, list))
285      patchtestreg(fs, list, NO_REG);
286}
287
288
289/*
290** Traverse a list of tests, patching their destination address and
291** registers: tests producing values jump to 'vtarget' (and put their
292** values in 'reg'), other tests jump to 'dtarget'.
293*/
294static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
295                          int dtarget) {
296  while (list != NO_JUMP) {
297    int next = getjump(fs, list);
298    if (patchtestreg(fs, list, reg))
299      fixjump(fs, list, vtarget);
300    else
301      fixjump(fs, list, dtarget);  /* jump to default target */
302    list = next;
303  }
304}
305
306
307/*
308** Path all jumps in 'list' to jump to 'target'.
309** (The assert means that we cannot fix a jump to a forward address
310** because we only know addresses once code is generated.)
311*/
312void luaK_patchlist (FuncState *fs, int list, int target) {
313  lua_assert(target <= fs->pc);
314  patchlistaux(fs, list, target, NO_REG, target);
315}
316
317
318void luaK_patchtohere (FuncState *fs, int list) {
319  int hr = luaK_getlabel(fs);  /* mark "here" as a jump target */
320  luaK_patchlist(fs, list, hr);
321}
322
323
324/* limit for difference between lines in relative line info. */
325#define LIMLINEDIFF	0x80
326
327
328/*
329** Save line info for a new instruction. If difference from last line
330** does not fit in a byte, of after that many instructions, save a new
331** absolute line info; (in that case, the special value 'ABSLINEINFO'
332** in 'lineinfo' signals the existence of this absolute information.)
333** Otherwise, store the difference from last line in 'lineinfo'.
334*/
335static void savelineinfo (FuncState *fs, Proto *f, int line) {
336  int linedif = line - fs->previousline;
337  int pc = fs->pc - 1;  /* last instruction coded */
338  if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
339    luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
340                    f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
341    f->abslineinfo[fs->nabslineinfo].pc = pc;
342    f->abslineinfo[fs->nabslineinfo++].line = line;
343    linedif = ABSLINEINFO;  /* signal that there is absolute information */
344    fs->iwthabs = 1;  /* restart counter */
345  }
346  luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
347                  MAX_INT, "opcodes");
348  f->lineinfo[pc] = linedif;
349  fs->previousline = line;  /* last line saved */
350}
351
352
353/*
354** Remove line information from the last instruction.
355** If line information for that instruction is absolute, set 'iwthabs'
356** above its max to force the new (replacing) instruction to have
357** absolute line info, too.
358*/
359static void removelastlineinfo (FuncState *fs) {
360  Proto *f = fs->f;
361  int pc = fs->pc - 1;  /* last instruction coded */
362  if (f->lineinfo[pc] != ABSLINEINFO) {  /* relative line info? */
363    fs->previousline -= f->lineinfo[pc];  /* correct last line saved */
364    fs->iwthabs--;  /* undo previous increment */
365  }
366  else {  /* absolute line information */
367    lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
368    fs->nabslineinfo--;  /* remove it */
369    fs->iwthabs = MAXIWTHABS + 1;  /* force next line info to be absolute */
370  }
371}
372
373
374/*
375** Remove the last instruction created, correcting line information
376** accordingly.
377*/
378static void removelastinstruction (FuncState *fs) {
379  removelastlineinfo(fs);
380  fs->pc--;
381}
382
383
384/*
385** Emit instruction 'i', checking for array sizes and saving also its
386** line information. Return 'i' position.
387*/
388int luaK_code (FuncState *fs, Instruction i) {
389  Proto *f = fs->f;
390  /* put new instruction in code array */
391  luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
392                  MAX_INT, "opcodes");
393  f->code[fs->pc++] = i;
394  savelineinfo(fs, f, fs->ls->lastline);
395  return fs->pc - 1;  /* index of new instruction */
396}
397
398
399/*
400** Format and emit an 'iABC' instruction. (Assertions check consistency
401** of parameters versus opcode.)
402*/
403int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
404  lua_assert(getOpMode(o) == iABC);
405  lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
406             c <= MAXARG_C && (k & ~1) == 0);
407  return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
408}
409
410
411/*
412** Format and emit an 'iABx' instruction.
413*/
414int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
415  lua_assert(getOpMode(o) == iABx);
416  lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
417  return luaK_code(fs, CREATE_ABx(o, a, bc));
418}
419
420
421/*
422** Format and emit an 'iAsBx' instruction.
423*/
424int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
425  unsigned int b = bc + OFFSET_sBx;
426  lua_assert(getOpMode(o) == iAsBx);
427  lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
428  return luaK_code(fs, CREATE_ABx(o, a, b));
429}
430
431
432/*
433** Format and emit an 'isJ' instruction.
434*/
435static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
436  unsigned int j = sj + OFFSET_sJ;
437  lua_assert(getOpMode(o) == isJ);
438  lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
439  return luaK_code(fs, CREATE_sJ(o, j, k));
440}
441
442
443/*
444** Emit an "extra argument" instruction (format 'iAx')
445*/
446static int codeextraarg (FuncState *fs, int a) {
447  lua_assert(a <= MAXARG_Ax);
448  return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
449}
450
451
452/*
453** Emit a "load constant" instruction, using either 'OP_LOADK'
454** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
455** instruction with "extra argument".
456*/
457static int luaK_codek (FuncState *fs, int reg, int k) {
458  if (k <= MAXARG_Bx)
459    return luaK_codeABx(fs, OP_LOADK, reg, k);
460  else {
461    int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
462    codeextraarg(fs, k);
463    return p;
464  }
465}
466
467
468/*
469** Check register-stack level, keeping track of its maximum size
470** in field 'maxstacksize'
471*/
472void luaK_checkstack (FuncState *fs, int n) {
473  int newstack = fs->freereg + n;
474  if (newstack > fs->f->maxstacksize) {
475    if (newstack >= MAXREGS)
476      luaX_syntaxerror(fs->ls,
477        "function or expression needs too many registers");
478    fs->f->maxstacksize = cast_byte(newstack);
479  }
480}
481
482
483/*
484** Reserve 'n' registers in register stack
485*/
486void luaK_reserveregs (FuncState *fs, int n) {
487  luaK_checkstack(fs, n);
488  fs->freereg += n;
489}
490
491
492/*
493** Free register 'reg', if it is neither a constant index nor
494** a local variable.
495)
496*/
497static void freereg (FuncState *fs, int reg) {
498  if (reg >= luaY_nvarstack(fs)) {
499    fs->freereg--;
500    lua_assert(reg == fs->freereg);
501  }
502}
503
504
505/*
506** Free two registers in proper order
507*/
508static void freeregs (FuncState *fs, int r1, int r2) {
509  if (r1 > r2) {
510    freereg(fs, r1);
511    freereg(fs, r2);
512  }
513  else {
514    freereg(fs, r2);
515    freereg(fs, r1);
516  }
517}
518
519
520/*
521** Free register used by expression 'e' (if any)
522*/
523static void freeexp (FuncState *fs, expdesc *e) {
524  if (e->k == VNONRELOC)
525    freereg(fs, e->u.info);
526}
527
528
529/*
530** Free registers used by expressions 'e1' and 'e2' (if any) in proper
531** order.
532*/
533static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
534  int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
535  int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
536  freeregs(fs, r1, r2);
537}
538
539
540/*
541** Add constant 'v' to prototype's list of constants (field 'k').
542** Use scanner's table to cache position of constants in constant list
543** and try to reuse constants. Because some values should not be used
544** as keys (nil cannot be a key, integer keys can collapse with float
545** keys), the caller must provide a useful 'key' for indexing the cache.
546** Note that all functions share the same table, so entering or exiting
547** a function can make some indices wrong.
548*/
549static int addk (FuncState *fs, TValue *key, TValue *v) {
550  TValue val;
551  lua_State *L = fs->ls->L;
552  Proto *f = fs->f;
553  const TValue *idx = luaH_get(fs->ls->h, key);  /* query scanner table */
554  int k, oldsize;
555  if (ttisinteger(idx)) {  /* is there an index there? */
556    k = cast_int(ivalue(idx));
557    /* correct value? (warning: must distinguish floats from integers!) */
558    if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
559                      luaV_rawequalobj(&f->k[k], v))
560      return k;  /* reuse index */
561  }
562  /* constant not found; create a new entry */
563  oldsize = f->sizek;
564  k = fs->nk;
565  /* numerical value does not need GC barrier;
566     table has no metatable, so it does not need to invalidate cache */
567  setivalue(&val, k);
568  luaH_finishset(L, fs->ls->h, key, idx, &val);
569  luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
570  while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
571  setobj(L, &f->k[k], v);
572  fs->nk++;
573  luaC_barrier(L, f, v);
574  return k;
575}
576
577
578/*
579** Add a string to list of constants and return its index.
580*/
581static int stringK (FuncState *fs, TString *s) {
582  TValue o;
583  setsvalue(fs->ls->L, &o, s);
584  return addk(fs, &o, &o);  /* use string itself as key */
585}
586
587
588/*
589** Add an integer to list of constants and return its index.
590*/
591static int luaK_intK (FuncState *fs, lua_Integer n) {
592  TValue o;
593  setivalue(&o, n);
594  return addk(fs, &o, &o);  /* use integer itself as key */
595}
596
597
598#ifndef _KERNEL
599/*
600** Add a float to list of constants and return its index. Floats
601** with integral values need a different key, to avoid collision
602** with actual integers. To that, we add to the number its smaller
603** power-of-two fraction that is still significant in its scale.
604** For doubles, that would be 1/2^52.
605** (This method is not bulletproof: there may be another float
606** with that value, and for floats larger than 2^53 the result is
607** still an integer. At worst, this only wastes an entry with
608** a duplicate.)
609*/
610static int luaK_numberK (FuncState *fs, lua_Number r) {
611  TValue o;
612  lua_Integer ik;
613  setfltvalue(&o, r);
614  if (!luaV_flttointeger(r, &ik, F2Ieq))  /* not an integral value? */
615    return addk(fs, &o, &o);  /* use number itself as key */
616  else {  /* must build an alternative key */
617    const int nbm = l_floatatt(MANT_DIG);
618    const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1);
619    const lua_Number k = (ik == 0) ? q : r + r*q;  /* new key */
620    TValue kv;
621    setfltvalue(&kv, k);
622    /* result is not an integral value, unless value is too large */
623    lua_assert(!luaV_flttointeger(k, &ik, F2Ieq) ||
624                l_mathop(fabs)(r) >= l_mathop(1e6));
625    return addk(fs, &kv, &o);
626  }
627}
628#endif /* _KERNEL */
629
630
631/*
632** Add a false to list of constants and return its index.
633*/
634static int boolF (FuncState *fs) {
635  TValue o;
636  setbfvalue(&o);
637  return addk(fs, &o, &o);  /* use boolean itself as key */
638}
639
640
641/*
642** Add a true to list of constants and return its index.
643*/
644static int boolT (FuncState *fs) {
645  TValue o;
646  setbtvalue(&o);
647  return addk(fs, &o, &o);  /* use boolean itself as key */
648}
649
650
651/*
652** Add nil to list of constants and return its index.
653*/
654static int nilK (FuncState *fs) {
655  TValue k, v;
656  setnilvalue(&v);
657  /* cannot use nil as key; instead use table itself to represent nil */
658  sethvalue(fs->ls->L, &k, fs->ls->h);
659  return addk(fs, &k, &v);
660}
661
662
663/*
664** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
665** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
666** overflows in the hidden addition inside 'int2sC'.
667*/
668static int fitsC (lua_Integer i) {
669  return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
670}
671
672
673/*
674** Check whether 'i' can be stored in an 'sBx' operand.
675*/
676static int fitsBx (lua_Integer i) {
677  return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
678}
679
680
681void luaK_int (FuncState *fs, int reg, lua_Integer i) {
682  if (fitsBx(i))
683    luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i));
684  else
685    luaK_codek(fs, reg, luaK_intK(fs, i));
686}
687
688
689#ifndef _KERNEL
690static void luaK_float (FuncState *fs, int reg, lua_Number f) {
691  lua_Integer fi;
692  if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
693    luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
694  else
695    luaK_codek(fs, reg, luaK_numberK(fs, f));
696}
697#endif /* _KERNEL */
698
699
700/*
701** Convert a constant in 'v' into an expression description 'e'
702*/
703static void const2exp (TValue *v, expdesc *e) {
704  switch (ttypetag(v)) {
705    case LUA_VNUMINT:
706      e->k = VKINT; e->u.ival = ivalue(v);
707      break;
708#ifndef _KERNEL
709    case LUA_VNUMFLT:
710      e->k = VKFLT; e->u.nval = fltvalue(v);
711      break;
712#endif /* _KERNEL */
713    case LUA_VFALSE:
714      e->k = VFALSE;
715      break;
716    case LUA_VTRUE:
717      e->k = VTRUE;
718      break;
719    case LUA_VNIL:
720      e->k = VNIL;
721      break;
722    case LUA_VSHRSTR:  case LUA_VLNGSTR:
723      e->k = VKSTR; e->u.strval = tsvalue(v);
724      break;
725    default: lua_assert(0);
726  }
727}
728
729
730/*
731** Fix an expression to return the number of results 'nresults'.
732** 'e' must be a multi-ret expression (function call or vararg).
733*/
734void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
735  Instruction *pc = &getinstruction(fs, e);
736  if (e->k == VCALL)  /* expression is an open function call? */
737    SETARG_C(*pc, nresults + 1);
738  else {
739    lua_assert(e->k == VVARARG);
740    SETARG_C(*pc, nresults + 1);
741    SETARG_A(*pc, fs->freereg);
742    luaK_reserveregs(fs, 1);
743  }
744}
745
746
747/*
748** Convert a VKSTR to a VK
749*/
750static void str2K (FuncState *fs, expdesc *e) {
751  lua_assert(e->k == VKSTR);
752  e->u.info = stringK(fs, e->u.strval);
753  e->k = VK;
754}
755
756
757/*
758** Fix an expression to return one result.
759** If expression is not a multi-ret expression (function call or
760** vararg), it already returns one result, so nothing needs to be done.
761** Function calls become VNONRELOC expressions (as its result comes
762** fixed in the base register of the call), while vararg expressions
763** become VRELOC (as OP_VARARG puts its results where it wants).
764** (Calls are created returning one result, so that does not need
765** to be fixed.)
766*/
767void luaK_setoneret (FuncState *fs, expdesc *e) {
768  if (e->k == VCALL) {  /* expression is an open function call? */
769    /* already returns 1 value */
770    lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
771    e->k = VNONRELOC;  /* result has fixed position */
772    e->u.info = GETARG_A(getinstruction(fs, e));
773  }
774  else if (e->k == VVARARG) {
775    SETARG_C(getinstruction(fs, e), 2);
776    e->k = VRELOC;  /* can relocate its simple result */
777  }
778}
779
780
781/*
782** Ensure that expression 'e' is not a variable (nor a <const>).
783** (Expression still may have jump lists.)
784*/
785void luaK_dischargevars (FuncState *fs, expdesc *e) {
786  switch (e->k) {
787    case VCONST: {
788      const2exp(const2val(fs, e), e);
789      break;
790    }
791    case VLOCAL: {  /* already in a register */
792      e->u.info = e->u.var.ridx;
793      e->k = VNONRELOC;  /* becomes a non-relocatable value */
794      break;
795    }
796    case VUPVAL: {  /* move value to some (pending) register */
797      e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
798      e->k = VRELOC;
799      break;
800    }
801    case VINDEXUP: {
802      e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
803      e->k = VRELOC;
804      break;
805    }
806    case VINDEXI: {
807      freereg(fs, e->u.ind.t);
808      e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
809      e->k = VRELOC;
810      break;
811    }
812    case VINDEXSTR: {
813      freereg(fs, e->u.ind.t);
814      e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
815      e->k = VRELOC;
816      break;
817    }
818    case VINDEXED: {
819      freeregs(fs, e->u.ind.t, e->u.ind.idx);
820      e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
821      e->k = VRELOC;
822      break;
823    }
824    case VVARARG: case VCALL: {
825      luaK_setoneret(fs, e);
826      break;
827    }
828    default: break;  /* there is one value available (somewhere) */
829  }
830}
831
832
833/*
834** Ensure expression value is in register 'reg', making 'e' a
835** non-relocatable expression.
836** (Expression still may have jump lists.)
837*/
838static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
839  luaK_dischargevars(fs, e);
840  switch (e->k) {
841    case VNIL: {
842      luaK_nil(fs, reg, 1);
843      break;
844    }
845    case VFALSE: {
846      luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
847      break;
848    }
849    case VTRUE: {
850      luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
851      break;
852    }
853    case VKSTR: {
854      str2K(fs, e);
855    }  /* FALLTHROUGH */
856    case VK: {
857      luaK_codek(fs, reg, e->u.info);
858      break;
859    }
860#ifndef _KERNEL
861    case VKFLT: {
862      luaK_float(fs, reg, e->u.nval);
863      break;
864    }
865#endif /* _KERNEL */
866    case VKINT: {
867      luaK_int(fs, reg, e->u.ival);
868      break;
869    }
870    case VRELOC: {
871      Instruction *pc = &getinstruction(fs, e);
872      SETARG_A(*pc, reg);  /* instruction will put result in 'reg' */
873      break;
874    }
875    case VNONRELOC: {
876      if (reg != e->u.info)
877        luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
878      break;
879    }
880    default: {
881      lua_assert(e->k == VJMP);
882      return;  /* nothing to do... */
883    }
884  }
885  e->u.info = reg;
886  e->k = VNONRELOC;
887}
888
889
890/*
891** Ensure expression value is in a register, making 'e' a
892** non-relocatable expression.
893** (Expression still may have jump lists.)
894*/
895static void discharge2anyreg (FuncState *fs, expdesc *e) {
896  if (e->k != VNONRELOC) {  /* no fixed register yet? */
897    luaK_reserveregs(fs, 1);  /* get a register */
898    discharge2reg(fs, e, fs->freereg-1);  /* put value there */
899  }
900}
901
902
903static int code_loadbool (FuncState *fs, int A, OpCode op) {
904  luaK_getlabel(fs);  /* those instructions may be jump targets */
905  return luaK_codeABC(fs, op, A, 0, 0);
906}
907
908
909/*
910** check whether list has any jump that do not produce a value
911** or produce an inverted value
912*/
913static int need_value (FuncState *fs, int list) {
914  for (; list != NO_JUMP; list = getjump(fs, list)) {
915    Instruction i = *getjumpcontrol(fs, list);
916    if (GET_OPCODE(i) != OP_TESTSET) return 1;
917  }
918  return 0;  /* not found */
919}
920
921
922/*
923** Ensures final expression result (which includes results from its
924** jump lists) is in register 'reg'.
925** If expression has jumps, need to patch these jumps either to
926** its final position or to "load" instructions (for those tests
927** that do not produce values).
928*/
929static void exp2reg (FuncState *fs, expdesc *e, int reg) {
930  discharge2reg(fs, e, reg);
931  if (e->k == VJMP)  /* expression itself is a test? */
932    luaK_concat(fs, &e->t, e->u.info);  /* put this jump in 't' list */
933  if (hasjumps(e)) {
934    int final;  /* position after whole expression */
935    int p_f = NO_JUMP;  /* position of an eventual LOAD false */
936    int p_t = NO_JUMP;  /* position of an eventual LOAD true */
937    if (need_value(fs, e->t) || need_value(fs, e->f)) {
938      int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
939      p_f = code_loadbool(fs, reg, OP_LFALSESKIP);  /* skip next inst. */
940      p_t = code_loadbool(fs, reg, OP_LOADTRUE);
941      /* jump around these booleans if 'e' is not a test */
942      luaK_patchtohere(fs, fj);
943    }
944    final = luaK_getlabel(fs);
945    patchlistaux(fs, e->f, final, reg, p_f);
946    patchlistaux(fs, e->t, final, reg, p_t);
947  }
948  e->f = e->t = NO_JUMP;
949  e->u.info = reg;
950  e->k = VNONRELOC;
951}
952
953
954/*
955** Ensures final expression result is in next available register.
956*/
957void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
958  luaK_dischargevars(fs, e);
959  freeexp(fs, e);
960  luaK_reserveregs(fs, 1);
961  exp2reg(fs, e, fs->freereg - 1);
962}
963
964
965/*
966** Ensures final expression result is in some (any) register
967** and return that register.
968*/
969int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
970  luaK_dischargevars(fs, e);
971  if (e->k == VNONRELOC) {  /* expression already has a register? */
972    if (!hasjumps(e))  /* no jumps? */
973      return e->u.info;  /* result is already in a register */
974    if (e->u.info >= luaY_nvarstack(fs)) {  /* reg. is not a local? */
975      exp2reg(fs, e, e->u.info);  /* put final result in it */
976      return e->u.info;
977    }
978    /* else expression has jumps and cannot change its register
979       to hold the jump values, because it is a local variable.
980       Go through to the default case. */
981  }
982  luaK_exp2nextreg(fs, e);  /* default: use next available register */
983  return e->u.info;
984}
985
986
987/*
988** Ensures final expression result is either in a register
989** or in an upvalue.
990*/
991void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
992  if (e->k != VUPVAL || hasjumps(e))
993    luaK_exp2anyreg(fs, e);
994}
995
996
997/*
998** Ensures final expression result is either in a register
999** or it is a constant.
1000*/
1001void luaK_exp2val (FuncState *fs, expdesc *e) {
1002  if (hasjumps(e))
1003    luaK_exp2anyreg(fs, e);
1004  else
1005    luaK_dischargevars(fs, e);
1006}
1007
1008
1009/*
1010** Try to make 'e' a K expression with an index in the range of R/K
1011** indices. Return true iff succeeded.
1012*/
1013static int luaK_exp2K (FuncState *fs, expdesc *e) {
1014  if (!hasjumps(e)) {
1015    int info;
1016    switch (e->k) {  /* move constants to 'k' */
1017      case VTRUE: info = boolT(fs); break;
1018      case VFALSE: info = boolF(fs); break;
1019      case VNIL: info = nilK(fs); break;
1020      case VKINT: info = luaK_intK(fs, e->u.ival); break;
1021#ifndef _KERNEL
1022      case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
1023#endif /* _KERNEL */
1024      case VKSTR: info = stringK(fs, e->u.strval); break;
1025      case VK: info = e->u.info; break;
1026      default: return 0;  /* not a constant */
1027    }
1028    if (info <= MAXINDEXRK) {  /* does constant fit in 'argC'? */
1029      e->k = VK;  /* make expression a 'K' expression */
1030      e->u.info = info;
1031      return 1;
1032    }
1033  }
1034  /* else, expression doesn't fit; leave it unchanged */
1035  return 0;
1036}
1037
1038
1039/*
1040** Ensures final expression result is in a valid R/K index
1041** (that is, it is either in a register or in 'k' with an index
1042** in the range of R/K indices).
1043** Returns 1 iff expression is K.
1044*/
1045int luaK_exp2RK (FuncState *fs, expdesc *e) {
1046  if (luaK_exp2K(fs, e))
1047    return 1;
1048  else {  /* not a constant in the right range: put it in a register */
1049    luaK_exp2anyreg(fs, e);
1050    return 0;
1051  }
1052}
1053
1054
1055static void codeABRK (FuncState *fs, OpCode o, int a, int b,
1056                      expdesc *ec) {
1057  int k = luaK_exp2RK(fs, ec);
1058  luaK_codeABCk(fs, o, a, b, ec->u.info, k);
1059}
1060
1061
1062/*
1063** Generate code to store result of expression 'ex' into variable 'var'.
1064*/
1065void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
1066  switch (var->k) {
1067    case VLOCAL: {
1068      freeexp(fs, ex);
1069      exp2reg(fs, ex, var->u.var.ridx);  /* compute 'ex' into proper place */
1070      return;
1071    }
1072    case VUPVAL: {
1073      int e = luaK_exp2anyreg(fs, ex);
1074      luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
1075      break;
1076    }
1077    case VINDEXUP: {
1078      codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
1079      break;
1080    }
1081    case VINDEXI: {
1082      codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
1083      break;
1084    }
1085    case VINDEXSTR: {
1086      codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
1087      break;
1088    }
1089    case VINDEXED: {
1090      codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
1091      break;
1092    }
1093    default: lua_assert(0);  /* invalid var kind to store */
1094  }
1095  freeexp(fs, ex);
1096}
1097
1098
1099/*
1100** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
1101*/
1102void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
1103  int ereg;
1104  luaK_exp2anyreg(fs, e);
1105  ereg = e->u.info;  /* register where 'e' was placed */
1106  freeexp(fs, e);
1107  e->u.info = fs->freereg;  /* base register for op_self */
1108  e->k = VNONRELOC;  /* self expression has a fixed register */
1109  luaK_reserveregs(fs, 2);  /* function and 'self' produced by op_self */
1110  codeABRK(fs, OP_SELF, e->u.info, ereg, key);
1111  freeexp(fs, key);
1112}
1113
1114
1115/*
1116** Negate condition 'e' (where 'e' is a comparison).
1117*/
1118static void negatecondition (FuncState *fs, expdesc *e) {
1119  Instruction *pc = getjumpcontrol(fs, e->u.info);
1120  lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
1121                                           GET_OPCODE(*pc) != OP_TEST);
1122  SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
1123}
1124
1125
1126/*
1127** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
1128** is true, code will jump if 'e' is true.) Return jump position.
1129** Optimize when 'e' is 'not' something, inverting the condition
1130** and removing the 'not'.
1131*/
1132static int jumponcond (FuncState *fs, expdesc *e, int cond) {
1133  if (e->k == VRELOC) {
1134    Instruction ie = getinstruction(fs, e);
1135    if (GET_OPCODE(ie) == OP_NOT) {
1136      removelastinstruction(fs);  /* remove previous OP_NOT */
1137      return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
1138    }
1139    /* else go through */
1140  }
1141  discharge2anyreg(fs, e);
1142  freeexp(fs, e);
1143  return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
1144}
1145
1146
1147/*
1148** Emit code to go through if 'e' is true, jump otherwise.
1149*/
1150void luaK_goiftrue (FuncState *fs, expdesc *e) {
1151  int pc;  /* pc of new jump */
1152  luaK_dischargevars(fs, e);
1153  switch (e->k) {
1154    case VJMP: {  /* condition? */
1155      negatecondition(fs, e);  /* jump when it is false */
1156      pc = e->u.info;  /* save jump position */
1157      break;
1158    }
1159#ifndef _KERNEL
1160    case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1161#else /* _KERNEL */
1162    case VK: case VKINT: case VKSTR: case VTRUE: {
1163#endif /* _KERNEL */
1164      pc = NO_JUMP;  /* always true; do nothing */
1165      break;
1166    }
1167    default: {
1168      pc = jumponcond(fs, e, 0);  /* jump when false */
1169      break;
1170    }
1171  }
1172  luaK_concat(fs, &e->f, pc);  /* insert new jump in false list */
1173  luaK_patchtohere(fs, e->t);  /* true list jumps to here (to go through) */
1174  e->t = NO_JUMP;
1175}
1176
1177
1178/*
1179** Emit code to go through if 'e' is false, jump otherwise.
1180*/
1181void luaK_goiffalse (FuncState *fs, expdesc *e) {
1182  int pc;  /* pc of new jump */
1183  luaK_dischargevars(fs, e);
1184  switch (e->k) {
1185    case VJMP: {
1186      pc = e->u.info;  /* already jump if true */
1187      break;
1188    }
1189    case VNIL: case VFALSE: {
1190      pc = NO_JUMP;  /* always false; do nothing */
1191      break;
1192    }
1193    default: {
1194      pc = jumponcond(fs, e, 1);  /* jump if true */
1195      break;
1196    }
1197  }
1198  luaK_concat(fs, &e->t, pc);  /* insert new jump in 't' list */
1199  luaK_patchtohere(fs, e->f);  /* false list jumps to here (to go through) */
1200  e->f = NO_JUMP;
1201}
1202
1203
1204/*
1205** Code 'not e', doing constant folding.
1206*/
1207static void codenot (FuncState *fs, expdesc *e) {
1208  switch (e->k) {
1209    case VNIL: case VFALSE: {
1210      e->k = VTRUE;  /* true == not nil == not false */
1211      break;
1212    }
1213#ifndef _KERNEL
1214    case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1215#else /* _KERNEL */
1216    case VK: case VKINT: case VKSTR: case VTRUE: {
1217#endif /* _KERNEL */
1218      e->k = VFALSE;  /* false == not "x" == not 0.5 == not 1 == not true */
1219      break;
1220    }
1221    case VJMP: {
1222      negatecondition(fs, e);
1223      break;
1224    }
1225    case VRELOC:
1226    case VNONRELOC: {
1227      discharge2anyreg(fs, e);
1228      freeexp(fs, e);
1229      e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
1230      e->k = VRELOC;
1231      break;
1232    }
1233    default: lua_assert(0);  /* cannot happen */
1234  }
1235  /* interchange true and false lists */
1236  { int temp = e->f; e->f = e->t; e->t = temp; }
1237  removevalues(fs, e->f);  /* values are useless when negated */
1238  removevalues(fs, e->t);
1239}
1240
1241
1242/*
1243** Check whether expression 'e' is a small literal string
1244*/
1245static int isKstr (FuncState *fs, expdesc *e) {
1246  return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
1247          ttisshrstring(&fs->f->k[e->u.info]));
1248}
1249
1250/*
1251** Check whether expression 'e' is a literal integer.
1252*/
1253int luaK_isKint (expdesc *e) {
1254  return (e->k == VKINT && !hasjumps(e));
1255}
1256
1257
1258/*
1259** Check whether expression 'e' is a literal integer in
1260** proper range to fit in register C
1261*/
1262static int isCint (expdesc *e) {
1263  return luaK_isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
1264}
1265
1266
1267/*
1268** Check whether expression 'e' is a literal integer in
1269** proper range to fit in register sC
1270*/
1271static int isSCint (expdesc *e) {
1272  return luaK_isKint(e) && fitsC(e->u.ival);
1273}
1274
1275
1276/*
1277** Check whether expression 'e' is a literal integer or float in
1278** proper range to fit in a register (sB or sC).
1279*/
1280static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
1281  lua_Integer i;
1282  if (e->k == VKINT)
1283    i = e->u.ival;
1284#ifndef _KERNEL
1285  else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
1286    *isfloat = 1;
1287#endif /* _KERNEL */
1288  else
1289    return 0;  /* not a number */
1290  if (!hasjumps(e) && fitsC(i)) {
1291    *pi = int2sC(cast_int(i));
1292    return 1;
1293  }
1294  else
1295    return 0;
1296}
1297
1298
1299/*
1300** Create expression 't[k]'. 't' must have its final result already in a
1301** register or upvalue. Upvalues can only be indexed by literal strings.
1302** Keys can be literal strings in the constant table or arbitrary
1303** values in registers.
1304*/
1305void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
1306  if (k->k == VKSTR)
1307    str2K(fs, k);
1308  lua_assert(!hasjumps(t) &&
1309             (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
1310  if (t->k == VUPVAL && !isKstr(fs, k))  /* upvalue indexed by non 'Kstr'? */
1311    luaK_exp2anyreg(fs, t);  /* put it in a register */
1312  if (t->k == VUPVAL) {
1313    t->u.ind.t = t->u.info;  /* upvalue index */
1314    t->u.ind.idx = k->u.info;  /* literal string */
1315    t->k = VINDEXUP;
1316  }
1317  else {
1318    /* register index of the table */
1319    t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info;
1320    if (isKstr(fs, k)) {
1321      t->u.ind.idx = k->u.info;  /* literal string */
1322      t->k = VINDEXSTR;
1323    }
1324    else if (isCint(k)) {
1325      t->u.ind.idx = cast_int(k->u.ival);  /* int. constant in proper range */
1326      t->k = VINDEXI;
1327    }
1328    else {
1329      t->u.ind.idx = luaK_exp2anyreg(fs, k);  /* register */
1330      t->k = VINDEXED;
1331    }
1332  }
1333}
1334
1335
1336/*
1337** Return false if folding can raise an error.
1338** Bitwise operations need operands convertible to integers; division
1339** operations cannot have 0 as divisor.
1340*/
1341static int validop (int op, TValue *v1, TValue *v2) {
1342  switch (op) {
1343    case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
1344    case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: {  /* conversion errors */
1345      lua_Integer i;
1346      return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
1347              luaV_tointegerns(v2, &i, LUA_FLOORN2I));
1348    }
1349#ifndef _KERNEL
1350    case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD:  /* division by 0 */
1351#else /* _KERNEL */
1352    case LUA_OPIDIV: case LUA_OPMOD:  /* division by 0 */
1353#endif /* _KERNEL */
1354      return (nvalue(v2) != 0);
1355    default: return 1;  /* everything else is valid */
1356  }
1357}
1358
1359
1360/*
1361** Try to "constant-fold" an operation; return 1 iff successful.
1362** (In this case, 'e1' has the final result.)
1363*/
1364static int constfolding (FuncState *fs, int op, expdesc *e1,
1365                                        const expdesc *e2) {
1366  TValue v1, v2, res;
1367  if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
1368    return 0;  /* non-numeric operands or not safe to fold */
1369  luaO_rawarith(fs->ls->L, op, &v1, &v2, &res);  /* does operation */
1370  if (ttisinteger(&res)) {
1371    e1->k = VKINT;
1372    e1->u.ival = ivalue(&res);
1373  }
1374  else {  /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
1375#ifndef _KERNEL
1376    lua_Number n = fltvalue(&res);
1377    if (luai_numisnan(n) || n == 0)
1378      return 0;
1379    e1->k = VKFLT;
1380    e1->u.nval = n;
1381#else /* _KERNEL */
1382    return 0;  /* if it is not integer, we must fail */
1383#endif /* _KERNEL */
1384  }
1385  return 1;
1386}
1387
1388
1389/*
1390** Convert a BinOpr to an OpCode  (ORDER OPR - ORDER OP)
1391*/
1392l_sinline OpCode binopr2op (BinOpr opr, BinOpr baser, OpCode base) {
1393  lua_assert(baser <= opr &&
1394            ((baser == OPR_ADD && opr <= OPR_SHR) ||
1395             (baser == OPR_LT && opr <= OPR_LE)));
1396  return cast(OpCode, (cast_int(opr) - cast_int(baser)) + cast_int(base));
1397}
1398
1399
1400/*
1401** Convert a UnOpr to an OpCode  (ORDER OPR - ORDER OP)
1402*/
1403l_sinline OpCode unopr2op (UnOpr opr) {
1404  return cast(OpCode, (cast_int(opr) - cast_int(OPR_MINUS)) +
1405                                       cast_int(OP_UNM));
1406}
1407
1408
1409/*
1410** Convert a BinOpr to a tag method  (ORDER OPR - ORDER TM)
1411*/
1412l_sinline TMS binopr2TM (BinOpr opr) {
1413  lua_assert(OPR_ADD <= opr && opr <= OPR_SHR);
1414  return cast(TMS, (cast_int(opr) - cast_int(OPR_ADD)) + cast_int(TM_ADD));
1415}
1416
1417
1418/*
1419** Emit code for unary expressions that "produce values"
1420** (everything but 'not').
1421** Expression to produce final result will be encoded in 'e'.
1422*/
1423static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
1424  int r = luaK_exp2anyreg(fs, e);  /* opcodes operate only on registers */
1425  freeexp(fs, e);
1426  e->u.info = luaK_codeABC(fs, op, 0, r, 0);  /* generate opcode */
1427  e->k = VRELOC;  /* all those operations are relocatable */
1428  luaK_fixline(fs, line);
1429}
1430
1431
1432/*
1433** Emit code for binary expressions that "produce values"
1434** (everything but logical operators 'and'/'or' and comparison
1435** operators).
1436** Expression to produce final result will be encoded in 'e1'.
1437*/
1438static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
1439                             OpCode op, int v2, int flip, int line,
1440                             OpCode mmop, TMS event) {
1441  int v1 = luaK_exp2anyreg(fs, e1);
1442  int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
1443  freeexps(fs, e1, e2);
1444  e1->u.info = pc;
1445  e1->k = VRELOC;  /* all those operations are relocatable */
1446  luaK_fixline(fs, line);
1447  luaK_codeABCk(fs, mmop, v1, v2, event, flip);  /* to call metamethod */
1448  luaK_fixline(fs, line);
1449}
1450
1451
1452/*
1453** Emit code for binary expressions that "produce values" over
1454** two registers.
1455*/
1456static void codebinexpval (FuncState *fs, BinOpr opr,
1457                           expdesc *e1, expdesc *e2, int line) {
1458  OpCode op = binopr2op(opr, OPR_ADD, OP_ADD);
1459  int v2 = luaK_exp2anyreg(fs, e2);  /* make sure 'e2' is in a register */
1460  /* 'e1' must be already in a register or it is a constant */
1461  lua_assert((VNIL <= e1->k && e1->k <= VKSTR) ||
1462             e1->k == VNONRELOC || e1->k == VRELOC);
1463  lua_assert(OP_ADD <= op && op <= OP_SHR);
1464  finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, binopr2TM(opr));
1465}
1466
1467
1468/*
1469** Code binary operators with immediate operands.
1470*/
1471static void codebini (FuncState *fs, OpCode op,
1472                       expdesc *e1, expdesc *e2, int flip, int line,
1473                       TMS event) {
1474  int v2 = int2sC(cast_int(e2->u.ival));  /* immediate operand */
1475  lua_assert(e2->k == VKINT);
1476  finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
1477}
1478
1479
1480/*
1481** Code binary operators with K operand.
1482*/
1483static void codebinK (FuncState *fs, BinOpr opr,
1484                      expdesc *e1, expdesc *e2, int flip, int line) {
1485  TMS event = binopr2TM(opr);
1486  int v2 = e2->u.info;  /* K index */
1487  OpCode op = binopr2op(opr, OPR_ADD, OP_ADDK);
1488  finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
1489}
1490
1491
1492/* Try to code a binary operator negating its second operand.
1493** For the metamethod, 2nd operand must keep its original value.
1494*/
1495static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
1496                             OpCode op, int line, TMS event) {
1497  if (!luaK_isKint(e2))
1498    return 0;  /* not an integer constant */
1499  else {
1500    lua_Integer i2 = e2->u.ival;
1501    if (!(fitsC(i2) && fitsC(-i2)))
1502      return 0;  /* not in the proper range */
1503    else {  /* operating a small integer constant */
1504      int v2 = cast_int(i2);
1505      finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
1506      /* correct metamethod argument */
1507      SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
1508      return 1;  /* successfully coded */
1509    }
1510  }
1511}
1512
1513
1514static void swapexps (expdesc *e1, expdesc *e2) {
1515  expdesc temp = *e1; *e1 = *e2; *e2 = temp;  /* swap 'e1' and 'e2' */
1516}
1517
1518
1519/*
1520** Code binary operators with no constant operand.
1521*/
1522static void codebinNoK (FuncState *fs, BinOpr opr,
1523                        expdesc *e1, expdesc *e2, int flip, int line) {
1524  if (flip)
1525    swapexps(e1, e2);  /* back to original order */
1526  codebinexpval(fs, opr, e1, e2, line);  /* use standard operators */
1527}
1528
1529
1530/*
1531** Code arithmetic operators ('+', '-', ...). If second operand is a
1532** constant in the proper range, use variant opcodes with K operands.
1533*/
1534static void codearith (FuncState *fs, BinOpr opr,
1535                       expdesc *e1, expdesc *e2, int flip, int line) {
1536  if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2))  /* K operand? */
1537    codebinK(fs, opr, e1, e2, flip, line);
1538  else  /* 'e2' is neither an immediate nor a K operand */
1539    codebinNoK(fs, opr, e1, e2, flip, line);
1540}
1541
1542
1543/*
1544** Code commutative operators ('+', '*'). If first operand is a
1545** numeric constant, change order of operands to try to use an
1546** immediate or K operator.
1547*/
1548static void codecommutative (FuncState *fs, BinOpr op,
1549                             expdesc *e1, expdesc *e2, int line) {
1550  int flip = 0;
1551  if (tonumeral(e1, NULL)) {  /* is first operand a numeric constant? */
1552    swapexps(e1, e2);  /* change order */
1553    flip = 1;
1554  }
1555  if (op == OPR_ADD && isSCint(e2))  /* immediate operand? */
1556    codebini(fs, OP_ADDI, e1, e2, flip, line, TM_ADD);
1557  else
1558    codearith(fs, op, e1, e2, flip, line);
1559}
1560
1561
1562/*
1563** Code bitwise operations; they are all commutative, so the function
1564** tries to put an integer constant as the 2nd operand (a K operand).
1565*/
1566static void codebitwise (FuncState *fs, BinOpr opr,
1567                         expdesc *e1, expdesc *e2, int line) {
1568  int flip = 0;
1569  if (e1->k == VKINT) {
1570    swapexps(e1, e2);  /* 'e2' will be the constant operand */
1571    flip = 1;
1572  }
1573  if (e2->k == VKINT && luaK_exp2K(fs, e2))  /* K operand? */
1574    codebinK(fs, opr, e1, e2, flip, line);
1575  else  /* no constants */
1576    codebinNoK(fs, opr, e1, e2, flip, line);
1577}
1578
1579
1580/*
1581** Emit code for order comparisons. When using an immediate operand,
1582** 'isfloat' tells whether the original value was a float.
1583*/
1584static void codeorder (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1585  int r1, r2;
1586  int im;
1587  int isfloat = 0;
1588  OpCode op;
1589  if (isSCnumber(e2, &im, &isfloat)) {
1590    /* use immediate operand */
1591    r1 = luaK_exp2anyreg(fs, e1);
1592    r2 = im;
1593    op = binopr2op(opr, OPR_LT, OP_LTI);
1594  }
1595  else if (isSCnumber(e1, &im, &isfloat)) {
1596    /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
1597    r1 = luaK_exp2anyreg(fs, e2);
1598    r2 = im;
1599    op = binopr2op(opr, OPR_LT, OP_GTI);
1600  }
1601  else {  /* regular case, compare two registers */
1602    r1 = luaK_exp2anyreg(fs, e1);
1603    r2 = luaK_exp2anyreg(fs, e2);
1604    op = binopr2op(opr, OPR_LT, OP_LT);
1605  }
1606  freeexps(fs, e1, e2);
1607  e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
1608  e1->k = VJMP;
1609}
1610
1611
1612/*
1613** Emit code for equality comparisons ('==', '~=').
1614** 'e1' was already put as RK by 'luaK_infix'.
1615*/
1616static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1617  int r1, r2;
1618  int im;
1619  int isfloat = 0;  /* not needed here, but kept for symmetry */
1620  OpCode op;
1621  if (e1->k != VNONRELOC) {
1622    lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
1623    swapexps(e1, e2);
1624  }
1625  r1 = luaK_exp2anyreg(fs, e1);  /* 1st expression must be in register */
1626  if (isSCnumber(e2, &im, &isfloat)) {
1627    op = OP_EQI;
1628    r2 = im;  /* immediate operand */
1629  }
1630  else if (luaK_exp2RK(fs, e2)) {  /* 2nd expression is constant? */
1631    op = OP_EQK;
1632    r2 = e2->u.info;  /* constant index */
1633  }
1634  else {
1635    op = OP_EQ;  /* will compare two registers */
1636    r2 = luaK_exp2anyreg(fs, e2);
1637  }
1638  freeexps(fs, e1, e2);
1639  e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
1640  e1->k = VJMP;
1641}
1642
1643
1644/*
1645** Apply prefix operation 'op' to expression 'e'.
1646*/
1647void luaK_prefix (FuncState *fs, UnOpr opr, expdesc *e, int line) {
1648  static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
1649  luaK_dischargevars(fs, e);
1650  switch (opr) {
1651    case OPR_MINUS: case OPR_BNOT:  /* use 'ef' as fake 2nd operand */
1652      if (constfolding(fs, opr + LUA_OPUNM, e, &ef))
1653        break;
1654      /* else */ /* FALLTHROUGH */
1655    case OPR_LEN:
1656      codeunexpval(fs, unopr2op(opr), e, line);
1657      break;
1658    case OPR_NOT: codenot(fs, e); break;
1659    default: lua_assert(0);
1660  }
1661}
1662
1663
1664/*
1665** Process 1st operand 'v' of binary operation 'op' before reading
1666** 2nd operand.
1667*/
1668void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
1669  luaK_dischargevars(fs, v);
1670  switch (op) {
1671    case OPR_AND: {
1672      luaK_goiftrue(fs, v);  /* go ahead only if 'v' is true */
1673      break;
1674    }
1675    case OPR_OR: {
1676      luaK_goiffalse(fs, v);  /* go ahead only if 'v' is false */
1677      break;
1678    }
1679    case OPR_CONCAT: {
1680      luaK_exp2nextreg(fs, v);  /* operand must be on the stack */
1681      break;
1682    }
1683    case OPR_ADD: case OPR_SUB:
1684#ifndef _KERNEL
1685    case OPR_MUL: case OPR_DIV: case OPR_IDIV:
1686    case OPR_MOD: case OPR_POW:
1687#else /* _KERNEL */
1688    case OPR_MUL: case OPR_IDIV:
1689    case OPR_MOD:
1690#endif /* _KERNEL */
1691    case OPR_BAND: case OPR_BOR: case OPR_BXOR:
1692    case OPR_SHL: case OPR_SHR: {
1693      if (!tonumeral(v, NULL))
1694        luaK_exp2anyreg(fs, v);
1695      /* else keep numeral, which may be folded or used as an immediate
1696         operand */
1697      break;
1698    }
1699    case OPR_EQ: case OPR_NE: {
1700      if (!tonumeral(v, NULL))
1701        luaK_exp2RK(fs, v);
1702      /* else keep numeral, which may be an immediate operand */
1703      break;
1704    }
1705    case OPR_LT: case OPR_LE:
1706    case OPR_GT: case OPR_GE: {
1707      int dummy, dummy2;
1708      if (!isSCnumber(v, &dummy, &dummy2))
1709        luaK_exp2anyreg(fs, v);
1710      /* else keep numeral, which may be an immediate operand */
1711      break;
1712    }
1713    default: lua_assert(0);
1714  }
1715}
1716
1717/*
1718** Create code for '(e1 .. e2)'.
1719** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
1720** because concatenation is right associative), merge both CONCATs.
1721*/
1722static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
1723  Instruction *ie2 = previousinstruction(fs);
1724  if (GET_OPCODE(*ie2) == OP_CONCAT) {  /* is 'e2' a concatenation? */
1725    int n = GETARG_B(*ie2);  /* # of elements concatenated in 'e2' */
1726    lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
1727    freeexp(fs, e2);
1728    SETARG_A(*ie2, e1->u.info);  /* correct first element ('e1') */
1729    SETARG_B(*ie2, n + 1);  /* will concatenate one more element */
1730  }
1731  else {  /* 'e2' is not a concatenation */
1732    luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0);  /* new concat opcode */
1733    freeexp(fs, e2);
1734    luaK_fixline(fs, line);
1735  }
1736}
1737
1738
1739/*
1740** Finalize code for binary operation, after reading 2nd operand.
1741*/
1742void luaK_posfix (FuncState *fs, BinOpr opr,
1743                  expdesc *e1, expdesc *e2, int line) {
1744  luaK_dischargevars(fs, e2);
1745  if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
1746    return;  /* done by folding */
1747  switch (opr) {
1748    case OPR_AND: {
1749      lua_assert(e1->t == NO_JUMP);  /* list closed by 'luaK_infix' */
1750      luaK_concat(fs, &e2->f, e1->f);
1751      *e1 = *e2;
1752      break;
1753    }
1754    case OPR_OR: {
1755      lua_assert(e1->f == NO_JUMP);  /* list closed by 'luaK_infix' */
1756      luaK_concat(fs, &e2->t, e1->t);
1757      *e1 = *e2;
1758      break;
1759    }
1760    case OPR_CONCAT: {  /* e1 .. e2 */
1761      luaK_exp2nextreg(fs, e2);
1762      codeconcat(fs, e1, e2, line);
1763      break;
1764    }
1765    case OPR_ADD: case OPR_MUL: {
1766      codecommutative(fs, opr, e1, e2, line);
1767      break;
1768    }
1769    case OPR_SUB: {
1770      if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
1771        break; /* coded as (r1 + -I) */
1772      /* ELSE */
1773    }  /* FALLTHROUGH */
1774#ifndef _KERNEL
1775    case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
1776#else /* _KERNEL */
1777    case OPR_IDIV: case OPR_MOD: {
1778#endif
1779      codearith(fs, opr, e1, e2, 0, line);
1780      break;
1781    }
1782    case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
1783      codebitwise(fs, opr, e1, e2, line);
1784      break;
1785    }
1786    case OPR_SHL: {
1787      if (isSCint(e1)) {
1788        swapexps(e1, e2);
1789        codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL);  /* I << r2 */
1790      }
1791      else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
1792        /* coded as (r1 >> -I) */;
1793      }
1794      else  /* regular case (two registers) */
1795       codebinexpval(fs, opr, e1, e2, line);
1796      break;
1797    }
1798    case OPR_SHR: {
1799      if (isSCint(e2))
1800        codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR);  /* r1 >> I */
1801      else  /* regular case (two registers) */
1802        codebinexpval(fs, opr, e1, e2, line);
1803      break;
1804    }
1805    case OPR_EQ: case OPR_NE: {
1806      codeeq(fs, opr, e1, e2);
1807      break;
1808    }
1809    case OPR_GT: case OPR_GE: {
1810      /* '(a > b)' <=> '(b < a)';  '(a >= b)' <=> '(b <= a)' */
1811      swapexps(e1, e2);
1812      opr = cast(BinOpr, (opr - OPR_GT) + OPR_LT);
1813    }  /* FALLTHROUGH */
1814    case OPR_LT: case OPR_LE: {
1815      codeorder(fs, opr, e1, e2);
1816      break;
1817    }
1818    default: lua_assert(0);
1819  }
1820}
1821
1822
1823/*
1824** Change line information associated with current position, by removing
1825** previous info and adding it again with new line.
1826*/
1827void luaK_fixline (FuncState *fs, int line) {
1828  removelastlineinfo(fs);
1829  savelineinfo(fs, fs->f, line);
1830}
1831
1832
1833void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
1834  Instruction *inst = &fs->f->code[pc];
1835  int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0;  /* hash size */
1836  int extra = asize / (MAXARG_C + 1);  /* higher bits of array size */
1837  int rc = asize % (MAXARG_C + 1);  /* lower bits of array size */
1838  int k = (extra > 0);  /* true iff needs extra argument */
1839  *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
1840  *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
1841}
1842
1843
1844/*
1845** Emit a SETLIST instruction.
1846** 'base' is register that keeps table;
1847** 'nelems' is #table plus those to be stored now;
1848** 'tostore' is number of values (in registers 'base + 1',...) to add to
1849** table (or LUA_MULTRET to add up to stack top).
1850*/
1851void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
1852  lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
1853  if (tostore == LUA_MULTRET)
1854    tostore = 0;
1855  if (nelems <= MAXARG_C)
1856    luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
1857  else {
1858    int extra = nelems / (MAXARG_C + 1);
1859    nelems %= (MAXARG_C + 1);
1860    luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
1861    codeextraarg(fs, extra);
1862  }
1863  fs->freereg = base + 1;  /* free registers with list values */
1864}
1865
1866
1867/*
1868** return the final target of a jump (skipping jumps to jumps)
1869*/
1870static int finaltarget (Instruction *code, int i) {
1871  int count;
1872  for (count = 0; count < 100; count++) {  /* avoid infinite loops */
1873    Instruction pc = code[i];
1874    if (GET_OPCODE(pc) != OP_JMP)
1875      break;
1876     else
1877       i += GETARG_sJ(pc) + 1;
1878  }
1879  return i;
1880}
1881
1882
1883/*
1884** Do a final pass over the code of a function, doing small peephole
1885** optimizations and adjustments.
1886*/
1887void luaK_finish (FuncState *fs) {
1888  int i;
1889  Proto *p = fs->f;
1890  for (i = 0; i < fs->pc; i++) {
1891    Instruction *pc = &p->code[i];
1892    lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
1893    switch (GET_OPCODE(*pc)) {
1894      case OP_RETURN0: case OP_RETURN1: {
1895        if (!(fs->needclose || p->is_vararg))
1896          break;  /* no extra work */
1897        /* else use OP_RETURN to do the extra work */
1898        SET_OPCODE(*pc, OP_RETURN);
1899      }  /* FALLTHROUGH */
1900      case OP_RETURN: case OP_TAILCALL: {
1901        if (fs->needclose)
1902          SETARG_k(*pc, 1);  /* signal that it needs to close */
1903        if (p->is_vararg)
1904          SETARG_C(*pc, p->numparams + 1);  /* signal that it is vararg */
1905        break;
1906      }
1907      case OP_JMP: {
1908        int target = finaltarget(p->code, i);
1909        fixjump(fs, i, target);
1910        break;
1911      }
1912      default: break;
1913    }
1914  }
1915}
1916