1/* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a copy
4 * of this software and associated documentation files (the "Software"), to
5 * deal in the Software without restriction, including without limitation the
6 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
7 * sell copies of the Software, and to permit persons to whom the Software is
8 * furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice shall be included in
11 * all copies or substantial portions of the Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
18 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
19 * IN THE SOFTWARE.
20 */
21
22#include "uv.h"
23#include "task.h"
24
25#include <stdio.h>
26#include <string.h>
27
28/* See test-ipc.c */
29void spawn_helper(uv_pipe_t* channel,
30                  uv_process_t* process,
31                  const char* helper);
32
33void ipc_send_recv_helper_threadproc(void* arg);
34
35union handles {
36  uv_handle_t handle;
37  uv_stream_t stream;
38  uv_pipe_t pipe;
39  uv_tcp_t tcp;
40  uv_tty_t tty;
41};
42
43struct test_ctx {
44  uv_pipe_t channel;
45  uv_connect_t connect_req;
46  uv_write_t write_req;
47  uv_write_t write_req2;
48  uv_handle_type expected_type;
49  union handles send;
50  union handles send2;
51  union handles recv;
52  union handles recv2;
53};
54
55struct echo_ctx {
56  uv_pipe_t listen;
57  uv_pipe_t channel;
58  uv_write_t write_req;
59  uv_write_t write_req2;
60  uv_handle_type expected_type;
61  union handles recv;
62  union handles recv2;
63};
64
65static struct test_ctx ctx;
66static struct echo_ctx ctx2;
67
68/* Used in write2_cb to decide if we need to cleanup or not */
69static int is_child_process;
70static int is_in_process;
71static int read_cb_count;
72static int recv_cb_count;
73static int write2_cb_called;
74
75
76static void alloc_cb(uv_handle_t* handle,
77                     size_t suggested_size,
78                     uv_buf_t* buf) {
79  /* we're not actually reading anything so a small buffer is okay */
80  static char slab[8];
81  buf->base = slab;
82  buf->len = sizeof(slab);
83}
84
85
86static void recv_cb(uv_stream_t* handle,
87                    ssize_t nread,
88                    const uv_buf_t* buf) {
89  uv_handle_type pending;
90  uv_pipe_t* pipe;
91  int r;
92  union handles* recv;
93
94  pipe = (uv_pipe_t*) handle;
95  ASSERT(pipe == &ctx.channel);
96
97  do {
98    if (++recv_cb_count == 1) {
99      recv = &ctx.recv;
100    } else {
101      recv = &ctx.recv2;
102    }
103
104    /* Depending on the OS, the final recv_cb can be called after
105     * the child process has terminated which can result in nread
106     * being UV_EOF instead of the number of bytes read.  Since
107     * the other end of the pipe has closed this UV_EOF is an
108     * acceptable value. */
109    if (nread == UV_EOF) {
110      /* UV_EOF is only acceptable for the final recv_cb call */
111      ASSERT(recv_cb_count == 2);
112    } else {
113      ASSERT(nread >= 0);
114      ASSERT(uv_pipe_pending_count(pipe) > 0);
115
116      pending = uv_pipe_pending_type(pipe);
117      ASSERT(pending == ctx.expected_type);
118
119      if (pending == UV_NAMED_PIPE)
120        r = uv_pipe_init(ctx.channel.loop, &recv->pipe, 0);
121      else if (pending == UV_TCP)
122        r = uv_tcp_init(ctx.channel.loop, &recv->tcp);
123      else
124        abort();
125      ASSERT(r == 0);
126
127      r = uv_accept(handle, &recv->stream);
128      ASSERT(r == 0);
129    }
130  } while (uv_pipe_pending_count(pipe) > 0);
131
132  /* Close after two writes received */
133  if (recv_cb_count == 2) {
134    uv_close((uv_handle_t*)&ctx.channel, NULL);
135  }
136}
137
138static void connect_cb(uv_connect_t* req, int status) {
139  int r;
140  uv_buf_t buf;
141
142  ASSERT(req == &ctx.connect_req);
143  ASSERT(status == 0);
144
145  buf = uv_buf_init(".", 1);
146  r = uv_write2(&ctx.write_req,
147                (uv_stream_t*)&ctx.channel,
148                &buf, 1,
149                &ctx.send.stream,
150                NULL);
151  ASSERT(r == 0);
152
153  /* Perform two writes to the same pipe to make sure that on Windows we are
154   * not running into issue 505:
155   *   https://github.com/libuv/libuv/issues/505 */
156  buf = uv_buf_init(".", 1);
157  r = uv_write2(&ctx.write_req2,
158                (uv_stream_t*)&ctx.channel,
159                &buf, 1,
160                &ctx.send2.stream,
161                NULL);
162  ASSERT(r == 0);
163
164  r = uv_read_start((uv_stream_t*)&ctx.channel, alloc_cb, recv_cb);
165  ASSERT(r == 0);
166}
167
168static int run_test(int inprocess) {
169  uv_process_t process;
170  uv_thread_t tid;
171  int r;
172
173  if (inprocess) {
174    r = uv_thread_create(&tid, ipc_send_recv_helper_threadproc, (void *) 42);
175    ASSERT(r == 0);
176
177    uv_sleep(1000);
178
179    r = uv_pipe_init(uv_default_loop(), &ctx.channel, 1);
180    ASSERT(r == 0);
181
182    uv_pipe_connect(&ctx.connect_req, &ctx.channel, TEST_PIPENAME_3, connect_cb);
183  } else {
184    spawn_helper(&ctx.channel, &process, "ipc_send_recv_helper");
185
186    connect_cb(&ctx.connect_req, 0);
187  }
188
189  r = uv_run(uv_default_loop(), UV_RUN_DEFAULT);
190  ASSERT(r == 0);
191
192  ASSERT(recv_cb_count == 2);
193
194  if (inprocess) {
195    r = uv_thread_join(&tid);
196    ASSERT(r == 0);
197  }
198
199  return 0;
200}
201
202static int run_ipc_send_recv_pipe(int inprocess) {
203  int r;
204
205  ctx.expected_type = UV_NAMED_PIPE;
206
207  r = uv_pipe_init(uv_default_loop(), &ctx.send.pipe, 1);
208  ASSERT(r == 0);
209
210  r = uv_pipe_bind(&ctx.send.pipe, TEST_PIPENAME);
211  ASSERT(r == 0);
212
213  r = uv_pipe_init(uv_default_loop(), &ctx.send2.pipe, 1);
214  ASSERT(r == 0);
215
216  r = uv_pipe_bind(&ctx.send2.pipe, TEST_PIPENAME_2);
217  ASSERT(r == 0);
218
219  r = run_test(inprocess);
220  ASSERT(r == 0);
221
222  MAKE_VALGRIND_HAPPY();
223  return 0;
224}
225
226TEST_IMPL(ipc_send_recv_pipe) {
227#if defined(NO_SEND_HANDLE_ON_PIPE)
228  RETURN_SKIP(NO_SEND_HANDLE_ON_PIPE);
229#endif
230  return run_ipc_send_recv_pipe(0);
231}
232
233TEST_IMPL(ipc_send_recv_pipe_inprocess) {
234#if defined(NO_SEND_HANDLE_ON_PIPE)
235  RETURN_SKIP(NO_SEND_HANDLE_ON_PIPE);
236#endif
237  return run_ipc_send_recv_pipe(1);
238}
239
240static int run_ipc_send_recv_tcp(int inprocess) {
241  struct sockaddr_in addr;
242  int r;
243
244  ASSERT(0 == uv_ip4_addr("127.0.0.1", TEST_PORT, &addr));
245
246  ctx.expected_type = UV_TCP;
247
248  r = uv_tcp_init(uv_default_loop(), &ctx.send.tcp);
249  ASSERT(r == 0);
250
251  r = uv_tcp_init(uv_default_loop(), &ctx.send2.tcp);
252  ASSERT(r == 0);
253
254  r = uv_tcp_bind(&ctx.send.tcp, (const struct sockaddr*) &addr, 0);
255  ASSERT(r == 0);
256
257  r = uv_tcp_bind(&ctx.send2.tcp, (const struct sockaddr*) &addr, 0);
258  ASSERT(r == 0);
259
260  r = run_test(inprocess);
261  ASSERT(r == 0);
262
263  MAKE_VALGRIND_HAPPY();
264  return 0;
265}
266
267TEST_IMPL(ipc_send_recv_tcp) {
268#if defined(NO_SEND_HANDLE_ON_PIPE)
269  RETURN_SKIP(NO_SEND_HANDLE_ON_PIPE);
270#endif
271  return run_ipc_send_recv_tcp(0);
272}
273
274TEST_IMPL(ipc_send_recv_tcp_inprocess) {
275#if defined(NO_SEND_HANDLE_ON_PIPE)
276  RETURN_SKIP(NO_SEND_HANDLE_ON_PIPE);
277#endif
278  return run_ipc_send_recv_tcp(1);
279}
280
281
282/* Everything here runs in a child process or second thread. */
283
284static void write2_cb(uv_write_t* req, int status) {
285  ASSERT(status == 0);
286
287  /* After two successful writes in the child process, allow the child
288   * process to be closed. */
289  if (++write2_cb_called == 2 && (is_child_process || is_in_process)) {
290    uv_close(&ctx2.recv.handle, NULL);
291    uv_close(&ctx2.recv2.handle, NULL);
292    uv_close((uv_handle_t*)&ctx2.channel, NULL);
293    uv_close((uv_handle_t*)&ctx2.listen, NULL);
294  }
295}
296
297static void read_cb(uv_stream_t* handle,
298                    ssize_t nread,
299                    const uv_buf_t* rdbuf) {
300  uv_buf_t wrbuf;
301  uv_pipe_t* pipe;
302  uv_handle_type pending;
303  int r;
304  union handles* recv;
305  uv_write_t* write_req;
306
307  if (nread == UV_EOF || nread == UV_ECONNABORTED) {
308    return;
309  }
310
311  ASSERT_GE(nread, 0);
312
313  pipe = (uv_pipe_t*) handle;
314  ASSERT_EQ(pipe, &ctx2.channel);
315
316  while (uv_pipe_pending_count(pipe) > 0) {
317    if (++read_cb_count == 2) {
318      recv = &ctx2.recv;
319      write_req = &ctx2.write_req;
320    } else {
321      recv = &ctx2.recv2;
322      write_req = &ctx2.write_req2;
323    }
324
325    pending = uv_pipe_pending_type(pipe);
326    ASSERT(pending == UV_NAMED_PIPE || pending == UV_TCP);
327
328    if (pending == UV_NAMED_PIPE)
329      r = uv_pipe_init(ctx2.channel.loop, &recv->pipe, 0);
330    else if (pending == UV_TCP)
331      r = uv_tcp_init(ctx2.channel.loop, &recv->tcp);
332    else
333      abort();
334    ASSERT(r == 0);
335
336    r = uv_accept(handle, &recv->stream);
337    ASSERT(r == 0);
338
339    wrbuf = uv_buf_init(".", 1);
340    r = uv_write2(write_req,
341                  (uv_stream_t*)&ctx2.channel,
342                  &wrbuf,
343                  1,
344                  &recv->stream,
345                  write2_cb);
346    ASSERT(r == 0);
347  }
348}
349
350static void send_recv_start(void) {
351  int r;
352  ASSERT(1 == uv_is_readable((uv_stream_t*)&ctx2.channel));
353  ASSERT(1 == uv_is_writable((uv_stream_t*)&ctx2.channel));
354  ASSERT(0 == uv_is_closing((uv_handle_t*)&ctx2.channel));
355
356  r = uv_read_start((uv_stream_t*)&ctx2.channel, alloc_cb, read_cb);
357  ASSERT(r == 0);
358}
359
360static void listen_cb(uv_stream_t* handle, int status) {
361  int r;
362  ASSERT(handle == (uv_stream_t*)&ctx2.listen);
363  ASSERT(status == 0);
364
365  r = uv_accept((uv_stream_t*)&ctx2.listen, (uv_stream_t*)&ctx2.channel);
366  ASSERT(r == 0);
367
368  send_recv_start();
369}
370
371int run_ipc_send_recv_helper(uv_loop_t* loop, int inprocess) {
372  int r;
373
374  is_in_process = inprocess;
375
376  memset(&ctx2, 0, sizeof(ctx2));
377
378  r = uv_pipe_init(loop, &ctx2.listen, 0);
379  ASSERT(r == 0);
380
381  r = uv_pipe_init(loop, &ctx2.channel, 1);
382  ASSERT(r == 0);
383
384  if (inprocess) {
385    r = uv_pipe_bind(&ctx2.listen, TEST_PIPENAME_3);
386    ASSERT(r == 0);
387
388    r = uv_listen((uv_stream_t*)&ctx2.listen, SOMAXCONN, listen_cb);
389    ASSERT(r == 0);
390  } else {
391    r = uv_pipe_open(&ctx2.channel, 0);
392    ASSERT(r == 0);
393
394    send_recv_start();
395  }
396
397  notify_parent_process();
398  r = uv_run(loop, UV_RUN_DEFAULT);
399  ASSERT(r == 0);
400
401  return 0;
402}
403
404/* stdin is a duplex channel over which a handle is sent.
405 * We receive it and send it back where it came from.
406 */
407int ipc_send_recv_helper(void) {
408  int r;
409
410  r = run_ipc_send_recv_helper(uv_default_loop(), 0);
411  ASSERT(r == 0);
412
413  MAKE_VALGRIND_HAPPY();
414  return 0;
415}
416
417void ipc_send_recv_helper_threadproc(void* arg) {
418  int r;
419  uv_loop_t loop;
420
421  r = uv_loop_init(&loop);
422  ASSERT(r == 0);
423
424  r = run_ipc_send_recv_helper(&loop, 1);
425  ASSERT(r == 0);
426
427  r = uv_loop_close(&loop);
428  ASSERT(r == 0);
429}
430