bernoulli.c revision 1.1.1.5
1/* bernoulli -- internal function to compute Bernoulli numbers.
2
3Copyright 2005-2023 Free Software Foundation, Inc.
4Contributed by the AriC and Caramba projects, INRIA.
5
6This file is part of the GNU MPFR Library.
7
8The GNU MPFR Library is free software; you can redistribute it and/or modify
9it under the terms of the GNU Lesser General Public License as published by
10the Free Software Foundation; either version 3 of the License, or (at your
11option) any later version.
12
13The GNU MPFR Library is distributed in the hope that it will be useful, but
14WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
16License for more details.
17
18You should have received a copy of the GNU Lesser General Public License
19along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
20https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
2151 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
22
23#include "mpfr-impl.h"
24
25/* assume p >= 5 and is odd */
26static int
27is_prime (unsigned long p)
28{
29  unsigned long q;
30
31  MPFR_ASSERTD (p >= 5 && (p & 1) != 0);
32  for (q = 3; q * q <= p; q += 2)
33    if ((p % q) == 0)
34      return 0;
35  return 1;
36}
37
38/* Computes and stores B[2n]*(2n+1)! in b[n]
39   using Von Staudt���Clausen theorem, which says that the denominator of B[n]
40   divides the product of all primes p such that p-1 divides n.
41   Since B[n] = zeta(n) * 2*n!/(2pi)^n, we compute an approximation of
42   (2n+1)! * zeta(n) * 2*n!/(2pi)^n and round it to the nearest integer. */
43static void
44mpfr_bernoulli_internal (mpz_t *b, unsigned long n)
45{
46  unsigned long p, err, zn;
47  mpz_t s, t, u, den;
48  mpz_ptr num;
49  mpfr_t y, z;
50  int ok;
51  /* Prec[n/2] is minimal precision so that result is correct for B[n] */
52  mpfr_prec_t prec;
53  mpfr_prec_t Prec[] = {0, 5, 5, 6, 6, 9, 16, 10, 19, 23, 25, 27, 35, 31,
54                        42, 51, 51, 50, 73, 60, 76, 79, 83, 87, 101, 97,
55                        108, 113, 119, 125, 149, 133, 146};
56
57  mpz_init (b[n]);
58
59  if (n == 0)
60    {
61      mpz_set_ui (b[0], 1);
62      return;
63    }
64
65  /* compute denominator */
66  num = b[n];
67  n = 2 * n;
68  mpz_init_set_ui (den, 6);
69  for (p = 5; p <= n+1; p += 2)
70    {
71      if ((n % (p-1)) == 0 && is_prime (p))
72        mpz_mul_ui (den, den, p);
73    }
74  if (n <= 64)
75    prec = Prec[n >> 1];
76  else
77    {
78      /* evaluate the needed precision: zeta(n)*2*den*n!/(2*pi)^n <=
79         3.3*den*(n/e/2/pi)^n*sqrt(2*pi*n) */
80      prec = __gmpfr_ceil_log2 (7.0 * (double) n); /* bound 2*pi by 7 */
81      prec = (prec + 1) >> 1; /* sqrt(2*pi*n) <= 2^prec */
82      mpfr_init2 (z, 53);
83      mpfr_set_ui_2exp (z, 251469612, -32, MPFR_RNDU); /* 1/e/2/pi <= z */
84      mpfr_mul_ui (z, z, n, MPFR_RNDU);
85      mpfr_log2 (z, z, MPFR_RNDU);
86      mpfr_mul_ui (z, z, n, MPFR_RNDU);
87      p = mpfr_get_ui (z, MPFR_RNDU); /* (n/e/2/pi)^n <= 2^p */
88      mpfr_clear (z);
89      MPFR_INC_PREC (prec, p + mpz_sizeinbase (den, 2));
90      /* the +2 term ensures no rounding failure up to n=10000 */
91      MPFR_INC_PREC (prec, __gmpfr_ceil_log2 (prec) + 2);
92    }
93
94 try_again:
95  mpz_init (s);
96  mpz_init (t);
97  mpz_init (u);
98  mpz_set_ui (u, 1);
99  mpz_mul_2exp (u, u, prec); /* u = 2^prec */
100  mpz_ui_pow_ui (t, 3, n);
101  mpz_fdiv_q (s, u, t); /* multiply all terms by 2^prec */
102  /* we compute a lower bound of the series, thus the final result cannot
103     be too large */
104  for (p = 4; mpz_cmp_ui (t, 0) > 0; p++)
105    {
106      mpz_ui_pow_ui (t, p, n);
107      mpz_fdiv_q (t, u, t);
108      /* 2^prec/p^n-1 < t <= 2^prec/p^n */
109      mpz_add (s, s, t);
110    }
111  /* sum(2^prec/q^n-1, q=3..p) < t <= sum(2^prec/q^n, q=3..p)
112     thus the error on the truncated series is at most p-2.
113     The neglected part of the series is R = sum(1/x^n, x=p+1..infinity)
114     with int(1/x^n, x=p+1..infinity) <= R <= int(1/x^n, x=p..infinity)
115     thus 1/(n-1)/(p+1)^(n-1) <= R <= 1/(n-1)/p^(n-1). The difference between
116     the lower and upper bound is bounded by p^(-n), which is bounded by
117     2^(-prec) since t=0 in the above loop */
118  mpz_ui_pow_ui (t, p, n - 1);
119  mpz_mul_ui (t, t, n - 1);
120  mpz_cdiv_q (t, u, t);
121  mpz_add (s, s, t);
122  /* now 2^prec * (zeta(n)-1-1/2^n) - p < s <= 2^prec * (zeta(n)-1-1/2^n) */
123  /* add 1 which is 2^prec */
124  mpz_add (s, s, u);
125  /* add 1/2^n which is 2^(prec-n) */
126  mpz_cdiv_q_2exp (u, u, n);
127  mpz_add (s, s, u);
128  /* now 2^prec * zeta(n) - p < s <= 2^prec * zeta(n) */
129  /* multiply by n! */
130  mpz_fac_ui (t, n);
131  mpz_mul (s, s, t);
132  /* multiply by 2*den */
133  mpz_mul (s, s, den);
134  mpz_mul_2exp (s, s, 1);
135  /* now convert to mpfr */
136  mpfr_init2 (z, prec);
137  mpfr_set_z (z, s, MPFR_RNDZ);
138  /* now (2^prec * zeta(n) - p) * 2*den*n! - ulp(z) < z <=
139     2^prec * zeta(n) * 2*den*n!.
140     Since z <= 2^prec * zeta(n) * 2*den*n!,
141     ulp(z) <= 2*zeta(n) * 2*den*n!, thus
142     (2^prec * zeta(n)-(p+1)) * 2*den*n! < z <= 2^prec * zeta(n) * 2*den*n! */
143  mpfr_div_2ui (z, z, prec, MPFR_RNDZ);
144  /* now (zeta(n) - (p+1)/2^prec) * 2*den*n! < z <= zeta(n) * 2*den*n! */
145  /* divide by (2pi)^n */
146  mpfr_init2 (y, prec);
147  mpfr_const_pi (y, MPFR_RNDU);
148  /* pi <= y <= pi * (1 + 2^(1-prec)) */
149  mpfr_mul_2ui (y, y, 1, MPFR_RNDU);
150  /* 2pi <= y <= 2pi * (1 + 2^(1-prec)) */
151  mpfr_pow_ui (y, y, n, MPFR_RNDU);
152  /* (2pi)^n <= y <= (2pi)^n * (1 + 2^(1-prec))^(n+1) */
153  mpfr_div (z, z, y, MPFR_RNDZ);
154  /* now (zeta(n) - (p+1)/2^prec) * 2*den*n! / (2pi)^n / (1+2^(1-prec))^(n+1)
155     <= z <= zeta(n) * 2*den*n! / (2pi)^n, and since zeta(n) >= 1:
156     den * B[n] * (1 - (p+1)/2^prec) / (1+2^(1-prec))^(n+1)
157     <= z <= den * B[n]
158     Since 1 / (1+2^(1-prec))^(n+1) >= (1 - 2^(1-prec))^(n+1) >=
159     1 - (n+1) * 2^(1-prec):
160     den * B[n] / (2pi)^n * (1 - (p+1)/2^prec) * (1-(n+1)*2^(1-prec))
161     <= z <= den * B[n] thus
162     den * B[n] * (1 - (2n+p+3)/2^prec) <= z <= den * B[n] */
163
164  /* the error is bounded by 2^(EXP(z)-prec) * (2n+p+3) */
165  for (err = 0, p = 2 * n + p + 3; p > 1; err++, p = (p + 1) >> 1);
166  zn = MPFR_LIMB_SIZE(z) * GMP_NUMB_BITS; /* total number of bits of z */
167  if (err >= prec)
168    ok = 0;
169  else
170    {
171      err = prec - err;
172      /* now the absolute error is bounded by 2^(EXP(z) - err):
173         den * B[n] - 2^(EXP(z) - err) <= z <= den * B[n]
174         thus if subtracting 2^(EXP(z) - err) does not change the rounding
175         (up) we are ok */
176      err = mpn_scan1 (MPFR_MANT(z), zn - err);
177      /* weight of this 1 bit is 2^(EXP(z) - zn + err) */
178      ok = MPFR_EXP(z) < zn - err;
179    }
180  mpfr_get_z (num, z, MPFR_RNDU);
181  if ((n & 2) == 0)
182    mpz_neg (num, num);
183
184  /* multiply by (n+1)! */
185  mpz_mul_ui (t, t, n + 1);
186  mpz_divexact (t, t, den); /* t was still n! */
187  mpz_mul (num, num, t);
188
189  mpfr_clear (y);
190  mpfr_clear (z);
191  mpz_clear (s);
192  mpz_clear (t);
193  mpz_clear (u);
194
195  if (!ok)
196    {
197      MPFR_INC_PREC (prec, prec / 10);
198      goto try_again;
199    }
200
201  mpz_clear (den);
202}
203
204static MPFR_THREAD_ATTR mpz_t *bernoulli_table = NULL;
205static MPFR_THREAD_ATTR unsigned long bernoulli_size = 0;
206static MPFR_THREAD_ATTR unsigned long bernoulli_alloc = 0;
207
208mpz_srcptr
209mpfr_bernoulli_cache (unsigned long n)
210{
211  unsigned long i;
212
213  if (n >= bernoulli_size)
214    {
215      if (bernoulli_alloc == 0)
216        {
217          bernoulli_alloc = MAX(16, n + n/4);
218          bernoulli_table = (mpz_t *)
219            mpfr_allocate_func (bernoulli_alloc * sizeof (mpz_t));
220          bernoulli_size  = 0;
221        }
222      else if (n >= bernoulli_alloc)
223        {
224          bernoulli_table = (mpz_t *) mpfr_reallocate_func
225            (bernoulli_table, bernoulli_alloc * sizeof (mpz_t),
226             (n + n/4) * sizeof (mpz_t));
227          bernoulli_alloc = n + n/4;
228        }
229      MPFR_ASSERTD (bernoulli_alloc > n);
230      MPFR_ASSERTD (bernoulli_size >= 0);
231      for (i = bernoulli_size; i <= n; i++)
232        mpfr_bernoulli_internal (bernoulli_table, i);
233      bernoulli_size = n+1;
234    }
235  MPFR_ASSERTD (bernoulli_size > n);
236  return bernoulli_table[n];
237}
238
239void
240mpfr_bernoulli_freecache (void)
241{
242  unsigned long i;
243
244  if (bernoulli_table != NULL)
245    {
246      for (i = 0; i < bernoulli_size; i++)
247        {
248          mpz_clear (bernoulli_table[i]);
249        }
250      mpfr_free_func (bernoulli_table, bernoulli_alloc * sizeof (mpz_t));
251      bernoulli_table = NULL;
252      bernoulli_alloc = 0;
253      bernoulli_size = 0;
254    }
255}
256