1/* Exercise mpz_*_kronecker_*() and mpz_jacobi() functions.
2
3Copyright 1999-2004, 2013 Free Software Foundation, Inc.
4
5This file is part of the GNU MP Library test suite.
6
7The GNU MP Library test suite is free software; you can redistribute it
8and/or modify it under the terms of the GNU General Public License as
9published by the Free Software Foundation; either version 3 of the License,
10or (at your option) any later version.
11
12The GNU MP Library test suite is distributed in the hope that it will be
13useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
15Public License for more details.
16
17You should have received a copy of the GNU General Public License along with
18the GNU MP Library test suite.  If not, see https://www.gnu.org/licenses/.  */
19
20
21/* With no arguments the various Kronecker/Jacobi symbol routines are
22   checked against some test data and a lot of derived data.
23
24   To check the test data against PARI-GP, run
25
26	   t-jac -p | gp -q
27
28   Enhancements:
29
30   More big test cases than those given by check_squares_zi would be good.  */
31
32
33#include <stdio.h>
34#include <stdlib.h>
35#include <string.h>
36
37#include "gmp-impl.h"
38#include "tests.h"
39
40#ifdef _LONG_LONG_LIMB
41#define LL(l,ll)  ll
42#else
43#define LL(l,ll)  l
44#endif
45
46
47int option_pari = 0;
48
49
50unsigned long
51mpz_mod4 (mpz_srcptr z)
52{
53  mpz_t          m;
54  unsigned long  ret;
55
56  mpz_init (m);
57  mpz_fdiv_r_2exp (m, z, 2);
58  ret = mpz_get_ui (m);
59  mpz_clear (m);
60  return ret;
61}
62
63int
64mpz_fits_ulimb_p (mpz_srcptr z)
65{
66  return (SIZ(z) == 1 || SIZ(z) == 0);
67}
68
69mp_limb_t
70mpz_get_ulimb (mpz_srcptr z)
71{
72  if (SIZ(z) == 0)
73    return 0;
74  else
75    return PTR(z)[0];
76}
77
78
79void
80try_base (mp_limb_t a, mp_limb_t b, int answer)
81{
82  int  got;
83
84  if ((b & 1) == 0 || b == 1 || a > b)
85    return;
86
87  got = mpn_jacobi_base (a, b, 0);
88  if (got != answer)
89    {
90      printf (LL("mpn_jacobi_base (%lu, %lu) is %d should be %d\n",
91		 "mpn_jacobi_base (%llu, %llu) is %d should be %d\n"),
92	      a, b, got, answer);
93      abort ();
94    }
95}
96
97
98void
99try_zi_ui (mpz_srcptr a, unsigned long b, int answer)
100{
101  int  got;
102
103  got = mpz_kronecker_ui (a, b);
104  if (got != answer)
105    {
106      printf ("mpz_kronecker_ui (");
107      mpz_out_str (stdout, 10, a);
108      printf (", %lu) is %d should be %d\n", b, got, answer);
109      abort ();
110    }
111}
112
113
114void
115try_zi_si (mpz_srcptr a, long b, int answer)
116{
117  int  got;
118
119  got = mpz_kronecker_si (a, b);
120  if (got != answer)
121    {
122      printf ("mpz_kronecker_si (");
123      mpz_out_str (stdout, 10, a);
124      printf (", %ld) is %d should be %d\n", b, got, answer);
125      abort ();
126    }
127}
128
129
130void
131try_ui_zi (unsigned long a, mpz_srcptr b, int answer)
132{
133  int  got;
134
135  got = mpz_ui_kronecker (a, b);
136  if (got != answer)
137    {
138      printf ("mpz_ui_kronecker (%lu, ", a);
139      mpz_out_str (stdout, 10, b);
140      printf (") is %d should be %d\n", got, answer);
141      abort ();
142    }
143}
144
145
146void
147try_si_zi (long a, mpz_srcptr b, int answer)
148{
149  int  got;
150
151  got = mpz_si_kronecker (a, b);
152  if (got != answer)
153    {
154      printf ("mpz_si_kronecker (%ld, ", a);
155      mpz_out_str (stdout, 10, b);
156      printf (") is %d should be %d\n", got, answer);
157      abort ();
158    }
159}
160
161
162/* Don't bother checking mpz_jacobi, since it only differs for b even, and
163   we don't have an actual expected answer for it.  tests/devel/try.c does
164   some checks though.  */
165void
166try_zi_zi (mpz_srcptr a, mpz_srcptr b, int answer)
167{
168  int  got;
169
170  got = mpz_kronecker (a, b);
171  if (got != answer)
172    {
173      printf ("mpz_kronecker (");
174      mpz_out_str (stdout, 10, a);
175      printf (", ");
176      mpz_out_str (stdout, 10, b);
177      printf (") is %d should be %d\n", got, answer);
178      abort ();
179    }
180}
181
182
183void
184try_pari (mpz_srcptr a, mpz_srcptr b, int answer)
185{
186  printf ("try(");
187  mpz_out_str (stdout, 10, a);
188  printf (",");
189  mpz_out_str (stdout, 10, b);
190  printf (",%d)\n", answer);
191}
192
193
194void
195try_each (mpz_srcptr a, mpz_srcptr b, int answer)
196{
197#if 0
198  fprintf(stderr, "asize = %d, bsize = %d\n",
199	  mpz_sizeinbase (a, 2), mpz_sizeinbase (b, 2));
200#endif
201  if (option_pari)
202    {
203      try_pari (a, b, answer);
204      return;
205    }
206
207  if (mpz_fits_ulimb_p (a) && mpz_fits_ulimb_p (b))
208    try_base (mpz_get_ulimb (a), mpz_get_ulimb (b), answer);
209
210  if (mpz_fits_ulong_p (b))
211    try_zi_ui (a, mpz_get_ui (b), answer);
212
213  if (mpz_fits_slong_p (b))
214    try_zi_si (a, mpz_get_si (b), answer);
215
216  if (mpz_fits_ulong_p (a))
217    try_ui_zi (mpz_get_ui (a), b, answer);
218
219  if (mpz_fits_sint_p (a))
220    try_si_zi (mpz_get_si (a), b, answer);
221
222  try_zi_zi (a, b, answer);
223}
224
225
226/* Try (a/b) and (a/-b). */
227void
228try_pn (mpz_srcptr a, mpz_srcptr b_orig, int answer)
229{
230  mpz_t  b;
231
232  mpz_init_set (b, b_orig);
233  try_each (a, b, answer);
234
235  mpz_neg (b, b);
236  if (mpz_sgn (a) < 0)
237    answer = -answer;
238
239  try_each (a, b, answer);
240
241  mpz_clear (b);
242}
243
244
245/* Try (a+k*p/b) for various k, using the fact (a/b) is periodic in a with
246   period p.  For b>0, p=b if b!=2mod4 or p=4*b if b==2mod4. */
247
248void
249try_periodic_num (mpz_srcptr a_orig, mpz_srcptr b, int answer)
250{
251  mpz_t  a, a_period;
252  int    i;
253
254  if (mpz_sgn (b) <= 0)
255    return;
256
257  mpz_init_set (a, a_orig);
258  mpz_init_set (a_period, b);
259  if (mpz_mod4 (b) == 2)
260    mpz_mul_ui (a_period, a_period, 4);
261
262  /* don't bother with these tests if they're only going to produce
263     even/even */
264  if (mpz_even_p (a) && mpz_even_p (b) && mpz_even_p (a_period))
265    goto done;
266
267  for (i = 0; i < 6; i++)
268    {
269      mpz_add (a, a, a_period);
270      try_pn (a, b, answer);
271    }
272
273  mpz_set (a, a_orig);
274  for (i = 0; i < 6; i++)
275    {
276      mpz_sub (a, a, a_period);
277      try_pn (a, b, answer);
278    }
279
280 done:
281  mpz_clear (a);
282  mpz_clear (a_period);
283}
284
285
286/* Try (a/b+k*p) for various k, using the fact (a/b) is periodic in b of
287   period p.
288
289			       period p
290	   a==0,1mod4             a
291	   a==2mod4              4*a
292	   a==3mod4 and b odd    4*a
293	   a==3mod4 and b even   8*a
294
295   In Henri Cohen's book the period is given as 4*a for all a==2,3mod4, but
296   a counterexample would seem to be (3/2)=-1 which with (3/14)=+1 doesn't
297   have period 4*a (but rather 8*a with (3/26)=-1).  Maybe the plain 4*a is
298   to be read as applying to a plain Jacobi symbol with b odd, rather than
299   the Kronecker extension to b even. */
300
301void
302try_periodic_den (mpz_srcptr a, mpz_srcptr b_orig, int answer)
303{
304  mpz_t  b, b_period;
305  int    i;
306
307  if (mpz_sgn (a) == 0 || mpz_sgn (b_orig) == 0)
308    return;
309
310  mpz_init_set (b, b_orig);
311
312  mpz_init_set (b_period, a);
313  if (mpz_mod4 (a) == 3 && mpz_even_p (b))
314    mpz_mul_ui (b_period, b_period, 8L);
315  else if (mpz_mod4 (a) >= 2)
316    mpz_mul_ui (b_period, b_period, 4L);
317
318  /* don't bother with these tests if they're only going to produce
319     even/even */
320  if (mpz_even_p (a) && mpz_even_p (b) && mpz_even_p (b_period))
321    goto done;
322
323  for (i = 0; i < 6; i++)
324    {
325      mpz_add (b, b, b_period);
326      try_pn (a, b, answer);
327    }
328
329  mpz_set (b, b_orig);
330  for (i = 0; i < 6; i++)
331    {
332      mpz_sub (b, b, b_period);
333      try_pn (a, b, answer);
334    }
335
336 done:
337  mpz_clear (b);
338  mpz_clear (b_period);
339}
340
341
342static const unsigned long  ktable[] = {
343  0, 1, 2, 3, 4, 5, 6, 7,
344  GMP_NUMB_BITS-1, GMP_NUMB_BITS, GMP_NUMB_BITS+1,
345  2*GMP_NUMB_BITS-1, 2*GMP_NUMB_BITS, 2*GMP_NUMB_BITS+1,
346  3*GMP_NUMB_BITS-1, 3*GMP_NUMB_BITS, 3*GMP_NUMB_BITS+1
347};
348
349
350/* Try (a/b*2^k) for various k. */
351void
352try_2den (mpz_srcptr a, mpz_srcptr b_orig, int answer)
353{
354  mpz_t  b;
355  int    kindex;
356  int    answer_a2, answer_k;
357  unsigned long k;
358
359  /* don't bother when b==0 */
360  if (mpz_sgn (b_orig) == 0)
361    return;
362
363  mpz_init_set (b, b_orig);
364
365  /* (a/2) is 0 if a even, 1 if a==1 or 7 mod 8, -1 if a==3 or 5 mod 8 */
366  answer_a2 = (mpz_even_p (a) ? 0
367	       : (((SIZ(a) >= 0 ? PTR(a)[0] : -PTR(a)[0]) + 2) & 7) < 4 ? 1
368	       : -1);
369
370  for (kindex = 0; kindex < numberof (ktable); kindex++)
371    {
372      k = ktable[kindex];
373
374      /* answer_k = answer*(answer_a2^k) */
375      answer_k = (answer_a2 == 0 && k != 0 ? 0
376		  : (k & 1) == 1 && answer_a2 == -1 ? -answer
377		  : answer);
378
379      mpz_mul_2exp (b, b_orig, k);
380      try_pn (a, b, answer_k);
381    }
382
383  mpz_clear (b);
384}
385
386
387/* Try (a*2^k/b) for various k.  If it happens mpz_ui_kronecker() gets (2/b)
388   wrong it will show up as wrong answers demanded. */
389void
390try_2num (mpz_srcptr a_orig, mpz_srcptr b, int answer)
391{
392  mpz_t  a;
393  int    kindex;
394  int    answer_2b, answer_k;
395  unsigned long  k;
396
397  /* don't bother when a==0 */
398  if (mpz_sgn (a_orig) == 0)
399    return;
400
401  mpz_init (a);
402
403  /* (2/b) is 0 if b even, 1 if b==1 or 7 mod 8, -1 if b==3 or 5 mod 8 */
404  answer_2b = (mpz_even_p (b) ? 0
405	       : (((SIZ(b) >= 0 ? PTR(b)[0] : -PTR(b)[0]) + 2) & 7) < 4 ? 1
406	       : -1);
407
408  for (kindex = 0; kindex < numberof (ktable); kindex++)
409    {
410      k = ktable[kindex];
411
412      /* answer_k = answer*(answer_2b^k) */
413      answer_k = (answer_2b == 0 && k != 0 ? 0
414		  : (k & 1) == 1 && answer_2b == -1 ? -answer
415		  : answer);
416
417	mpz_mul_2exp (a, a_orig, k);
418      try_pn (a, b, answer_k);
419    }
420
421  mpz_clear (a);
422}
423
424
425/* The try_2num() and try_2den() routines don't in turn call
426   try_periodic_num() and try_periodic_den() because it hugely increases the
427   number of tests performed, without obviously increasing coverage.
428
429   Useful extra derived cases can be added here. */
430
431void
432try_all (mpz_t a, mpz_t b, int answer)
433{
434  try_pn (a, b, answer);
435  try_periodic_num (a, b, answer);
436  try_periodic_den (a, b, answer);
437  try_2num (a, b, answer);
438  try_2den (a, b, answer);
439}
440
441
442void
443check_data (void)
444{
445  static const struct {
446    const char  *a;
447    const char  *b;
448    int         answer;
449
450  } data[] = {
451
452    /* Note that the various derived checks in try_all() reduce the cases
453       that need to be given here.  */
454
455    /* some zeros */
456    {  "0",  "0", 0 },
457    {  "0",  "2", 0 },
458    {  "0",  "6", 0 },
459    {  "5",  "0", 0 },
460    { "24", "60", 0 },
461
462    /* (a/1) = 1, any a
463       In particular note (0/1)=1 so that (a/b)=(a mod b/b). */
464    { "0", "1", 1 },
465    { "1", "1", 1 },
466    { "2", "1", 1 },
467    { "3", "1", 1 },
468    { "4", "1", 1 },
469    { "5", "1", 1 },
470
471    /* (0/b) = 0, b != 1 */
472    { "0",  "3", 0 },
473    { "0",  "5", 0 },
474    { "0",  "7", 0 },
475    { "0",  "9", 0 },
476    { "0", "11", 0 },
477    { "0", "13", 0 },
478    { "0", "15", 0 },
479
480    /* (1/b) = 1 */
481    { "1",  "1", 1 },
482    { "1",  "3", 1 },
483    { "1",  "5", 1 },
484    { "1",  "7", 1 },
485    { "1",  "9", 1 },
486    { "1", "11", 1 },
487
488    /* (-1/b) = (-1)^((b-1)/2) which is -1 for b==3 mod 4 */
489    { "-1",  "1",  1 },
490    { "-1",  "3", -1 },
491    { "-1",  "5",  1 },
492    { "-1",  "7", -1 },
493    { "-1",  "9",  1 },
494    { "-1", "11", -1 },
495    { "-1", "13",  1 },
496    { "-1", "15", -1 },
497    { "-1", "17",  1 },
498    { "-1", "19", -1 },
499
500    /* (2/b) = (-1)^((b^2-1)/8) which is -1 for b==3,5 mod 8.
501       try_2num() will exercise multiple powers of 2 in the numerator.  */
502    { "2",  "1",  1 },
503    { "2",  "3", -1 },
504    { "2",  "5", -1 },
505    { "2",  "7",  1 },
506    { "2",  "9",  1 },
507    { "2", "11", -1 },
508    { "2", "13", -1 },
509    { "2", "15",  1 },
510    { "2", "17",  1 },
511
512    /* (-2/b) = (-1)^((b^2-1)/8)*(-1)^((b-1)/2) which is -1 for b==5,7mod8.
513       try_2num() will exercise multiple powers of 2 in the numerator, which
514       will test that the shift in mpz_si_kronecker() uses unsigned not
515       signed.  */
516    { "-2",  "1",  1 },
517    { "-2",  "3",  1 },
518    { "-2",  "5", -1 },
519    { "-2",  "7", -1 },
520    { "-2",  "9",  1 },
521    { "-2", "11",  1 },
522    { "-2", "13", -1 },
523    { "-2", "15", -1 },
524    { "-2", "17",  1 },
525
526    /* (a/2)=(2/a).
527       try_2den() will exercise multiple powers of 2 in the denominator. */
528    {  "3",  "2", -1 },
529    {  "5",  "2", -1 },
530    {  "7",  "2",  1 },
531    {  "9",  "2",  1 },
532    {  "11", "2", -1 },
533
534    /* Harriet Griffin, "Elementary Theory of Numbers", page 155, various
535       examples.  */
536    {   "2", "135",  1 },
537    { "135",  "19", -1 },
538    {   "2",  "19", -1 },
539    {  "19", "135",  1 },
540    { "173", "135",  1 },
541    {  "38", "135",  1 },
542    { "135", "173",  1 },
543    { "173",   "5", -1 },
544    {   "3",   "5", -1 },
545    {   "5", "173", -1 },
546    { "173",   "3", -1 },
547    {   "2",   "3", -1 },
548    {   "3", "173", -1 },
549    { "253",  "21",  1 },
550    {   "1",  "21",  1 },
551    {  "21", "253",  1 },
552    {  "21",  "11", -1 },
553    {  "-1",  "11", -1 },
554
555    /* Griffin page 147 */
556    {  "-1",  "17",  1 },
557    {   "2",  "17",  1 },
558    {  "-2",  "17",  1 },
559    {  "-1",  "89",  1 },
560    {   "2",  "89",  1 },
561
562    /* Griffin page 148 */
563    {  "89",  "11",  1 },
564    {   "1",  "11",  1 },
565    {  "89",   "3", -1 },
566    {   "2",   "3", -1 },
567    {   "3",  "89", -1 },
568    {  "11",  "89",  1 },
569    {  "33",  "89", -1 },
570
571    /* H. Davenport, "The Higher Arithmetic", page 65, the quadratic
572       residues and non-residues mod 19.  */
573    {  "1", "19",  1 },
574    {  "4", "19",  1 },
575    {  "5", "19",  1 },
576    {  "6", "19",  1 },
577    {  "7", "19",  1 },
578    {  "9", "19",  1 },
579    { "11", "19",  1 },
580    { "16", "19",  1 },
581    { "17", "19",  1 },
582    {  "2", "19", -1 },
583    {  "3", "19", -1 },
584    {  "8", "19", -1 },
585    { "10", "19", -1 },
586    { "12", "19", -1 },
587    { "13", "19", -1 },
588    { "14", "19", -1 },
589    { "15", "19", -1 },
590    { "18", "19", -1 },
591
592    /* Residues and non-residues mod 13 */
593    {  "0",  "13",  0 },
594    {  "1",  "13",  1 },
595    {  "2",  "13", -1 },
596    {  "3",  "13",  1 },
597    {  "4",  "13",  1 },
598    {  "5",  "13", -1 },
599    {  "6",  "13", -1 },
600    {  "7",  "13", -1 },
601    {  "8",  "13", -1 },
602    {  "9",  "13",  1 },
603    { "10",  "13",  1 },
604    { "11",  "13", -1 },
605    { "12",  "13",  1 },
606
607    /* various */
608    {  "5",   "7", -1 },
609    { "15",  "17",  1 },
610    { "67",  "89",  1 },
611
612    /* special values inducing a==b==1 at the end of jac_or_kron() */
613    { "0x10000000000000000000000000000000000000000000000001",
614      "0x10000000000000000000000000000000000000000000000003", 1 },
615
616    /* Test for previous bugs in jacobi_2. */
617    { "0x43900000000", "0x42400000439", -1 }, /* 32-bit limbs */
618    { "0x4390000000000000000", "0x4240000000000000439", -1 }, /* 64-bit limbs */
619
620    { "198158408161039063", "198158360916398807", -1 },
621
622    /* Some tests involving large quotients in the continued fraction
623       expansion. */
624    { "37200210845139167613356125645445281805",
625      "451716845976689892447895811408978421929", -1 },
626    { "67674091930576781943923596701346271058970643542491743605048620644676477275152701774960868941561652032482173612421015",
627      "4902678867794567120224500687210807069172039735", 0 },
628    { "2666617146103764067061017961903284334497474492754652499788571378062969111250584288683585223600172138551198546085281683283672592", "2666617146103764067061017961903284334497474492754652499788571378062969111250584288683585223600172138551198546085281683290481773", 1 },
629
630    /* Exercises the case asize == 1, btwos > 0 in mpz_jacobi. */
631    { "804609", "421248363205206617296534688032638102314410556521742428832362659824", 1 } ,
632    { "4190209", "2239744742177804210557442048984321017460028974602978995388383905961079286530650825925074203175536427000", 1 },
633
634    /* Exercises the case asize == 1, btwos = 63 in mpz_jacobi
635       (relevant when GMP_LIMB_BITS == 64). */
636    { "17311973299000934401", "1675975991242824637446753124775689449936871337036614677577044717424700351103148799107651171694863695242089956242888229458836426332300124417011114380886016", 1 },
637    { "3220569220116583677", "41859917623035396746", -1 },
638
639    /* Other test cases that triggered bugs during development. */
640    { "37200210845139167613356125645445281805", "340116213441272389607827434472642576514", -1 },
641    { "74400421690278335226712251290890563610", "451716845976689892447895811408978421929", -1 },
642  };
643
644  int    i;
645  mpz_t  a, b;
646
647  mpz_init (a);
648  mpz_init (b);
649
650  for (i = 0; i < numberof (data); i++)
651    {
652      mpz_set_str_or_abort (a, data[i].a, 0);
653      mpz_set_str_or_abort (b, data[i].b, 0);
654      try_all (a, b, data[i].answer);
655    }
656
657  mpz_clear (a);
658  mpz_clear (b);
659}
660
661
662/* (a^2/b)=1 if gcd(a,b)=1, or (a^2/b)=0 if gcd(a,b)!=1.
663   This includes when a=0 or b=0. */
664void
665check_squares_zi (void)
666{
667  gmp_randstate_ptr rands = RANDS;
668  mpz_t  a, b, g;
669  int    i, answer;
670  mp_size_t size_range, an, bn;
671  mpz_t bs;
672
673  mpz_init (bs);
674  mpz_init (a);
675  mpz_init (b);
676  mpz_init (g);
677
678  for (i = 0; i < 50; i++)
679    {
680      mpz_urandomb (bs, rands, 32);
681      size_range = mpz_get_ui (bs) % 10 + i/8 + 2;
682
683      mpz_urandomb (bs, rands, size_range);
684      an = mpz_get_ui (bs);
685      mpz_rrandomb (a, rands, an);
686
687      mpz_urandomb (bs, rands, size_range);
688      bn = mpz_get_ui (bs);
689      mpz_rrandomb (b, rands, bn);
690
691      mpz_gcd (g, a, b);
692      if (mpz_cmp_ui (g, 1L) == 0)
693	answer = 1;
694      else
695	answer = 0;
696
697      mpz_mul (a, a, a);
698
699      try_all (a, b, answer);
700    }
701
702  mpz_clear (bs);
703  mpz_clear (a);
704  mpz_clear (b);
705  mpz_clear (g);
706}
707
708
709/* Check the handling of asize==0, make sure it isn't affected by the low
710   limb. */
711void
712check_a_zero (void)
713{
714  mpz_t  a, b;
715
716  mpz_init_set_ui (a, 0);
717  mpz_init (b);
718
719  mpz_set_ui (b, 1L);
720  PTR(a)[0] = 0;
721  try_all (a, b, 1);   /* (0/1)=1 */
722  PTR(a)[0] = 1;
723  try_all (a, b, 1);   /* (0/1)=1 */
724
725  mpz_set_si (b, -1L);
726  PTR(a)[0] = 0;
727  try_all (a, b, 1);   /* (0/-1)=1 */
728  PTR(a)[0] = 1;
729  try_all (a, b, 1);   /* (0/-1)=1 */
730
731  mpz_set_ui (b, 0);
732  PTR(a)[0] = 0;
733  try_all (a, b, 0);   /* (0/0)=0 */
734  PTR(a)[0] = 1;
735  try_all (a, b, 0);   /* (0/0)=0 */
736
737  mpz_set_ui (b, 2);
738  PTR(a)[0] = 0;
739  try_all (a, b, 0);   /* (0/2)=0 */
740  PTR(a)[0] = 1;
741  try_all (a, b, 0);   /* (0/2)=0 */
742
743  mpz_clear (a);
744  mpz_clear (b);
745}
746
747
748/* Assumes that b = prod p_k^e_k */
749int
750ref_jacobi (mpz_srcptr a, mpz_srcptr b, unsigned nprime,
751	    mpz_t prime[], unsigned *exp)
752{
753  unsigned i;
754  int res;
755
756  for (i = 0, res = 1; i < nprime; i++)
757    if (exp[i])
758      {
759	int legendre = refmpz_legendre (a, prime[i]);
760	if (!legendre)
761	  return 0;
762	if (exp[i] & 1)
763	  res *= legendre;
764      }
765  return res;
766}
767
768void
769check_jacobi_factored (void)
770{
771#define PRIME_N 10
772#define PRIME_MAX_SIZE 50
773#define PRIME_MAX_EXP 4
774#define PRIME_A_COUNT 10
775#define PRIME_B_COUNT 5
776#define PRIME_MAX_B_SIZE 2000
777
778  gmp_randstate_ptr rands = RANDS;
779  mpz_t prime[PRIME_N];
780  unsigned exp[PRIME_N];
781  mpz_t a, b, t, bs;
782  unsigned i;
783
784  mpz_init (a);
785  mpz_init (b);
786  mpz_init (t);
787  mpz_init (bs);
788
789  /* Generate primes */
790  for (i = 0; i < PRIME_N; i++)
791    {
792      mp_size_t size;
793      mpz_init (prime[i]);
794      mpz_urandomb (bs, rands, 32);
795      size = mpz_get_ui (bs) % PRIME_MAX_SIZE + 2;
796      mpz_rrandomb (prime[i], rands, size);
797      if (mpz_cmp_ui (prime[i], 3) <= 0)
798	mpz_set_ui (prime[i], 3);
799      else
800	mpz_nextprime (prime[i], prime[i]);
801    }
802
803  for (i = 0; i < PRIME_B_COUNT; i++)
804    {
805      unsigned j, k;
806      mp_bitcnt_t bsize;
807
808      mpz_set_ui (b, 1);
809      bsize = 1;
810
811      for (j = 0; j < PRIME_N && bsize < PRIME_MAX_B_SIZE; j++)
812	{
813	  mpz_urandomb (bs, rands, 32);
814	  exp[j] = mpz_get_ui (bs) % PRIME_MAX_EXP;
815	  mpz_pow_ui (t, prime[j], exp[j]);
816	  mpz_mul (b, b, t);
817	  bsize = mpz_sizeinbase (b, 2);
818	}
819      for (k = 0; k < PRIME_A_COUNT; k++)
820	{
821	  int answer;
822	  mpz_rrandomb (a, rands, bsize + 2);
823	  answer = ref_jacobi (a, b, j, prime, exp);
824	  try_all (a, b, answer);
825	}
826    }
827  for (i = 0; i < PRIME_N; i++)
828    mpz_clear (prime[i]);
829
830  mpz_clear (a);
831  mpz_clear (b);
832  mpz_clear (t);
833  mpz_clear (bs);
834
835#undef PRIME_N
836#undef PRIME_MAX_SIZE
837#undef PRIME_MAX_EXP
838#undef PRIME_A_COUNT
839#undef PRIME_B_COUNT
840#undef PRIME_MAX_B_SIZE
841}
842
843/* These tests compute (a|n), where the quotient sequence includes
844   large quotients, and n has a known factorization. Such inputs are
845   generated as follows. First, construct a large n, as a power of a
846   prime p of moderate size.
847
848   Next, compute a matrix from factors (q,1;1,0), with q chosen with
849   uniformly distributed size. We must stop with matrix elements of
850   roughly half the size of n. Denote elements of M as M = (m00, m01;
851   m10, m11).
852
853   We now look for solutions to
854
855     n = m00 x + m01 y
856     a = m10 x + m11 y
857
858   with x,y > 0. Since n >= m00 * m01, there exists a positive
859   solution to the first equation. Find those x, y, and substitute in
860   the second equation to get a. Then the quotient sequence for (a|n)
861   is precisely the quotients used when constructing M, followed by
862   the quotient sequence for (x|y).
863
864   Numbers should also be large enough that we exercise hgcd_jacobi,
865   which means that they should be larger than
866
867     max (GCD_DC_THRESHOLD, 3 * HGCD_THRESHOLD)
868
869   With an n of roughly 40000 bits, this should hold on most machines.
870*/
871
872void
873check_large_quotients (void)
874{
875#define COUNT 50
876#define PBITS 200
877#define PPOWER 201
878#define MAX_QBITS 500
879
880  gmp_randstate_ptr rands = RANDS;
881
882  mpz_t p, n, q, g, s, t, x, y, bs;
883  mpz_t M[2][2];
884  mp_bitcnt_t nsize;
885  unsigned i;
886
887  mpz_init (p);
888  mpz_init (n);
889  mpz_init (q);
890  mpz_init (g);
891  mpz_init (s);
892  mpz_init (t);
893  mpz_init (x);
894  mpz_init (y);
895  mpz_init (bs);
896  mpz_init (M[0][0]);
897  mpz_init (M[0][1]);
898  mpz_init (M[1][0]);
899  mpz_init (M[1][1]);
900
901  /* First generate a number with known factorization, as a random
902     smallish prime raised to an odd power. Then (a|n) = (a|p). */
903  mpz_rrandomb (p, rands, PBITS);
904  mpz_nextprime (p, p);
905  mpz_pow_ui (n, p, PPOWER);
906
907  nsize = mpz_sizeinbase (n, 2);
908
909  for (i = 0; i < COUNT; i++)
910    {
911      int answer;
912      mp_bitcnt_t msize;
913
914      mpz_set_ui (M[0][0], 1);
915      mpz_set_ui (M[0][1], 0);
916      mpz_set_ui (M[1][0], 0);
917      mpz_set_ui (M[1][1], 1);
918
919      for (msize = 1; 2*(msize + MAX_QBITS) + 1 < nsize ;)
920	{
921	  unsigned i;
922	  mpz_rrandomb (bs, rands, 32);
923	  mpz_rrandomb (q, rands, 1 + mpz_get_ui (bs) % MAX_QBITS);
924
925	  /* Multiply by (q, 1; 1,0) from the right */
926	  for (i = 0; i < 2; i++)
927	    {
928	      mp_bitcnt_t size;
929	      mpz_swap (M[i][0], M[i][1]);
930	      mpz_addmul (M[i][0], M[i][1], q);
931	      size = mpz_sizeinbase (M[i][0], 2);
932	      if (size > msize)
933		msize = size;
934	    }
935	}
936      mpz_gcdext (g, s, t, M[0][0], M[0][1]);
937      ASSERT_ALWAYS (mpz_cmp_ui (g, 1) == 0);
938
939      /* Solve n = M[0][0] * x + M[0][1] * y */
940      if (mpz_sgn (s) > 0)
941	{
942	  mpz_mul (x, n, s);
943	  mpz_fdiv_qr (q, x, x, M[0][1]);
944	  mpz_mul (y, q, M[0][0]);
945	  mpz_addmul (y, t, n);
946	  ASSERT_ALWAYS (mpz_sgn (y) > 0);
947	}
948      else
949	{
950	  mpz_mul (y, n, t);
951	  mpz_fdiv_qr (q, y, y, M[0][0]);
952	  mpz_mul (x, q, M[0][1]);
953	  mpz_addmul (x, s, n);
954	  ASSERT_ALWAYS (mpz_sgn (x) > 0);
955	}
956      mpz_mul (x, x, M[1][0]);
957      mpz_addmul (x, y, M[1][1]);
958
959      /* Now (x|n) has the selected large quotients */
960      answer = refmpz_legendre (x, p);
961      try_zi_zi (x, n, answer);
962    }
963  mpz_clear (p);
964  mpz_clear (n);
965  mpz_clear (q);
966  mpz_clear (g);
967  mpz_clear (s);
968  mpz_clear (t);
969  mpz_clear (x);
970  mpz_clear (y);
971  mpz_clear (bs);
972  mpz_clear (M[0][0]);
973  mpz_clear (M[0][1]);
974  mpz_clear (M[1][0]);
975  mpz_clear (M[1][1]);
976#undef COUNT
977#undef PBITS
978#undef PPOWER
979#undef MAX_QBITS
980}
981
982int
983main (int argc, char *argv[])
984{
985  tests_start ();
986
987  if (argc >= 2 && strcmp (argv[1], "-p") == 0)
988    {
989      option_pari = 1;
990
991      printf ("\
992try(a,b,answer) =\n\
993{\n\
994  if (kronecker(a,b) != answer,\n\
995    print(\"wrong at \", a, \",\", b,\n\
996      \" expected \", answer,\n\
997      \" pari says \", kronecker(a,b)))\n\
998}\n");
999    }
1000
1001  check_data ();
1002  check_squares_zi ();
1003  check_a_zero ();
1004  check_jacobi_factored ();
1005  check_large_quotients ();
1006  tests_end ();
1007  exit (0);
1008}
1009