1/* Prologue value handling for GDB.
2   Copyright (C) 2003-2023 Free Software Foundation, Inc.
3
4   This file is part of GDB.
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 3 of the License, or
9   (at your option) any later version.
10
11   This program is distributed in the hope that it will be useful,
12   but WITHOUT ANY WARRANTY; without even the implied warranty of
13   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   GNU General Public License for more details.
15
16   You should have received a copy of the GNU General Public License
17   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
18
19#include "defs.h"
20#include "prologue-value.h"
21#include "regcache.h"
22
23
24/* Constructors.  */
25
26pv_t
27pv_unknown (void)
28{
29  pv_t v = { pvk_unknown, 0, 0 };
30
31  return v;
32}
33
34
35pv_t
36pv_constant (CORE_ADDR k)
37{
38  pv_t v;
39
40  v.kind = pvk_constant;
41  v.reg = -1;                   /* for debugging */
42  v.k = k;
43
44  return v;
45}
46
47
48pv_t
49pv_register (int reg, CORE_ADDR k)
50{
51  pv_t v;
52
53  v.kind = pvk_register;
54  v.reg = reg;
55  v.k = k;
56
57  return v;
58}
59
60
61
62/* Arithmetic operations.  */
63
64/* If one of *A and *B is a constant, and the other isn't, swap the
65   values as necessary to ensure that *B is the constant.  This can
66   reduce the number of cases we need to analyze in the functions
67   below.  */
68static void
69constant_last (pv_t *a, pv_t *b)
70{
71  if (a->kind == pvk_constant
72      && b->kind != pvk_constant)
73    {
74      pv_t temp = *a;
75      *a = *b;
76      *b = temp;
77    }
78}
79
80
81pv_t
82pv_add (pv_t a, pv_t b)
83{
84  constant_last (&a, &b);
85
86  /* We can add a constant to a register.  */
87  if (a.kind == pvk_register
88      && b.kind == pvk_constant)
89    return pv_register (a.reg, a.k + b.k);
90
91  /* We can add a constant to another constant.  */
92  else if (a.kind == pvk_constant
93	   && b.kind == pvk_constant)
94    return pv_constant (a.k + b.k);
95
96  /* Anything else we don't know how to add.  We don't have a
97     representation for, say, the sum of two registers, or a multiple
98     of a register's value (adding a register to itself).  */
99  else
100    return pv_unknown ();
101}
102
103
104pv_t
105pv_add_constant (pv_t v, CORE_ADDR k)
106{
107  /* Rather than thinking of all the cases we can and can't handle,
108     we'll just let pv_add take care of that for us.  */
109  return pv_add (v, pv_constant (k));
110}
111
112
113pv_t
114pv_subtract (pv_t a, pv_t b)
115{
116  /* This isn't quite the same as negating B and adding it to A, since
117     we don't have a representation for the negation of anything but a
118     constant.  For example, we can't negate { pvk_register, R1, 10 },
119     but we do know that { pvk_register, R1, 10 } minus { pvk_register,
120     R1, 5 } is { pvk_constant, <ignored>, 5 }.
121
122     This means, for example, that we could subtract two stack
123     addresses; they're both relative to the original SP.  Since the
124     frame pointer is set based on the SP, its value will be the
125     original SP plus some constant (probably zero), so we can use its
126     value just fine, too.  */
127
128  constant_last (&a, &b);
129
130  /* We can subtract two constants.  */
131  if (a.kind == pvk_constant
132      && b.kind == pvk_constant)
133    return pv_constant (a.k - b.k);
134
135  /* We can subtract a constant from a register.  */
136  else if (a.kind == pvk_register
137	   && b.kind == pvk_constant)
138    return pv_register (a.reg, a.k - b.k);
139
140  /* We can subtract a register from itself, yielding a constant.  */
141  else if (a.kind == pvk_register
142	   && b.kind == pvk_register
143	   && a.reg == b.reg)
144    return pv_constant (a.k - b.k);
145
146  /* We don't know how to subtract anything else.  */
147  else
148    return pv_unknown ();
149}
150
151
152pv_t
153pv_logical_and (pv_t a, pv_t b)
154{
155  constant_last (&a, &b);
156
157  /* We can 'and' two constants.  */
158  if (a.kind == pvk_constant
159      && b.kind == pvk_constant)
160    return pv_constant (a.k & b.k);
161
162  /* We can 'and' anything with the constant zero.  */
163  else if (b.kind == pvk_constant
164	   && b.k == 0)
165    return pv_constant (0);
166
167  /* We can 'and' anything with ~0.  */
168  else if (b.kind == pvk_constant
169	   && b.k == ~ (CORE_ADDR) 0)
170    return a;
171
172  /* We can 'and' a register with itself.  */
173  else if (a.kind == pvk_register
174	   && b.kind == pvk_register
175	   && a.reg == b.reg
176	   && a.k == b.k)
177    return a;
178
179  /* Otherwise, we don't know.  */
180  else
181    return pv_unknown ();
182}
183
184
185
186/* Examining prologue values.  */
187
188int
189pv_is_identical (pv_t a, pv_t b)
190{
191  if (a.kind != b.kind)
192    return 0;
193
194  switch (a.kind)
195    {
196    case pvk_unknown:
197      return 1;
198    case pvk_constant:
199      return (a.k == b.k);
200    case pvk_register:
201      return (a.reg == b.reg && a.k == b.k);
202    default:
203      gdb_assert_not_reached ("unexpected prologue value kind");
204    }
205}
206
207
208int
209pv_is_constant (pv_t a)
210{
211  return (a.kind == pvk_constant);
212}
213
214
215int
216pv_is_register (pv_t a, int r)
217{
218  return (a.kind == pvk_register
219	  && a.reg == r);
220}
221
222
223int
224pv_is_register_k (pv_t a, int r, CORE_ADDR k)
225{
226  return (a.kind == pvk_register
227	  && a.reg == r
228	  && a.k == k);
229}
230
231
232enum pv_boolean
233pv_is_array_ref (pv_t addr, CORE_ADDR size,
234		 pv_t array_addr, CORE_ADDR array_len,
235		 CORE_ADDR elt_size,
236		 int *i)
237{
238  /* Note that, since .k is a CORE_ADDR, and CORE_ADDR is unsigned, if
239     addr is *before* the start of the array, then this isn't going to
240     be negative...  */
241  pv_t offset = pv_subtract (addr, array_addr);
242
243  if (offset.kind == pvk_constant)
244    {
245      /* This is a rather odd test.  We want to know if the SIZE bytes
246	 at ADDR don't overlap the array at all, so you'd expect it to
247	 be an || expression: "if we're completely before || we're
248	 completely after".  But with unsigned arithmetic, things are
249	 different: since it's a number circle, not a number line, the
250	 right values for offset.k are actually one contiguous range.  */
251      if (offset.k <= -size
252	  && offset.k >= array_len * elt_size)
253	return pv_definite_no;
254      else if (offset.k % elt_size != 0
255	       || size != elt_size)
256	return pv_maybe;
257      else
258	{
259	  *i = offset.k / elt_size;
260	  return pv_definite_yes;
261	}
262    }
263  else
264    return pv_maybe;
265}
266
267
268
269/* Areas.  */
270
271
272/* A particular value known to be stored in an area.
273
274   Entries form a ring, sorted by unsigned offset from the area's base
275   register's value.  Since entries can straddle the wrap-around point,
276   unsigned offsets form a circle, not a number line, so the list
277   itself is structured the same way --- there is no inherent head.
278   The entry with the lowest offset simply follows the entry with the
279   highest offset.  Entries may abut, but never overlap.  The area's
280   'entry' pointer points to an arbitrary node in the ring.  */
281struct pv_area::area_entry
282{
283  /* Links in the doubly-linked ring.  */
284  struct area_entry *prev, *next;
285
286  /* Offset of this entry's address from the value of the base
287     register.  */
288  CORE_ADDR offset;
289
290  /* The size of this entry.  Note that an entry may wrap around from
291     the end of the address space to the beginning.  */
292  CORE_ADDR size;
293
294  /* The value stored here.  */
295  pv_t value;
296};
297
298
299/* See prologue-value.h.  */
300
301pv_area::pv_area (int base_reg, int addr_bit)
302  : m_base_reg (base_reg),
303    /* Remember that shift amounts equal to the type's width are
304       undefined.  */
305    m_addr_mask (((((CORE_ADDR) 1 << (addr_bit - 1)) - 1) << 1) | 1),
306    m_entry (nullptr)
307{
308}
309
310/* See prologue-value.h.  */
311
312void
313pv_area::clear_entries ()
314{
315  struct area_entry *e = m_entry;
316
317  if (e)
318    {
319      /* This needs to be a do-while loop, in order to actually
320	 process the node being checked for in the terminating
321	 condition.  */
322      do
323	{
324	  struct area_entry *next = e->next;
325
326	  xfree (e);
327	  e = next;
328	}
329      while (e != m_entry);
330
331      m_entry = 0;
332    }
333}
334
335
336pv_area::~pv_area ()
337{
338  clear_entries ();
339}
340
341
342/* See prologue-value.h.  */
343
344bool
345pv_area::store_would_trash (pv_t addr)
346{
347  /* It may seem odd that pvk_constant appears here --- after all,
348     that's the case where we know the most about the address!  But
349     pv_areas are always relative to a register, and we don't know the
350     value of the register, so we can't compare entry addresses to
351     constants.  */
352  return (addr.kind == pvk_unknown
353	  || addr.kind == pvk_constant
354	  || (addr.kind == pvk_register && addr.reg != m_base_reg));
355}
356
357
358/* See prologue-value.h.  */
359
360struct pv_area::area_entry *
361pv_area::find_entry (CORE_ADDR offset)
362{
363  struct area_entry *e = m_entry;
364
365  if (! e)
366    return 0;
367
368  /* If the next entry would be better than the current one, then scan
369     forward.  Since we use '<' in this loop, it always terminates.
370
371     Note that, even setting aside the addr_mask stuff, we must not
372     simplify this, in high school algebra fashion, to
373     (e->next->offset < e->offset), because of the way < interacts
374     with wrap-around.  We have to subtract offset from both sides to
375     make sure both things we're comparing are on the same side of the
376     discontinuity.  */
377  while (((e->next->offset - offset) & m_addr_mask)
378	 < ((e->offset - offset) & m_addr_mask))
379    e = e->next;
380
381  /* If the previous entry would be better than the current one, then
382     scan backwards.  */
383  while (((e->prev->offset - offset) & m_addr_mask)
384	 < ((e->offset - offset) & m_addr_mask))
385    e = e->prev;
386
387  /* In case there's some locality to the searches, set the area's
388     pointer to the entry we've found.  */
389  m_entry = e;
390
391  return e;
392}
393
394
395/* See prologue-value.h.  */
396
397int
398pv_area::overlaps (struct area_entry *entry, CORE_ADDR offset, CORE_ADDR size)
399{
400  /* Think carefully about wrap-around before simplifying this.  */
401  return (((entry->offset - offset) & m_addr_mask) < size
402	  || ((offset - entry->offset) & m_addr_mask) < entry->size);
403}
404
405
406/* See prologue-value.h.  */
407
408void
409pv_area::store (pv_t addr, CORE_ADDR size, pv_t value)
410{
411  /* Remove any (potentially) overlapping entries.  */
412  if (store_would_trash (addr))
413    clear_entries ();
414  else
415    {
416      CORE_ADDR offset = addr.k;
417      struct area_entry *e = find_entry (offset);
418
419      /* Delete all entries that we would overlap.  */
420      while (e && overlaps (e, offset, size))
421	{
422	  struct area_entry *next = (e->next == e) ? 0 : e->next;
423
424	  e->prev->next = e->next;
425	  e->next->prev = e->prev;
426
427	  xfree (e);
428	  e = next;
429	}
430
431      /* Move the area's pointer to the next remaining entry.  This
432	 will also zero the pointer if we've deleted all the entries.  */
433      m_entry = e;
434    }
435
436  /* Now, there are no entries overlapping us, and m_entry is
437     either zero or pointing at the closest entry after us.  We can
438     just insert ourselves before that.
439
440     But if we're storing an unknown value, don't bother --- that's
441     the default.  */
442  if (value.kind == pvk_unknown)
443    return;
444  else
445    {
446      CORE_ADDR offset = addr.k;
447      struct area_entry *e = XNEW (struct area_entry);
448
449      e->offset = offset;
450      e->size = size;
451      e->value = value;
452
453      if (m_entry)
454	{
455	  e->prev = m_entry->prev;
456	  e->next = m_entry;
457	  e->prev->next = e->next->prev = e;
458	}
459      else
460	{
461	  e->prev = e->next = e;
462	  m_entry = e;
463	}
464    }
465}
466
467
468/* See prologue-value.h.  */
469
470pv_t
471pv_area::fetch (pv_t addr, CORE_ADDR size)
472{
473  /* If we have no entries, or we can't decide how ADDR relates to the
474     entries we do have, then the value is unknown.  */
475  if (! m_entry
476      || store_would_trash (addr))
477    return pv_unknown ();
478  else
479    {
480      CORE_ADDR offset = addr.k;
481      struct area_entry *e = find_entry (offset);
482
483      /* If this entry exactly matches what we're looking for, then
484	 we're set.  Otherwise, say it's unknown.  */
485      if (e->offset == offset && e->size == size)
486	return e->value;
487      else
488	return pv_unknown ();
489    }
490}
491
492
493/* See prologue-value.h.  */
494
495bool
496pv_area::find_reg (struct gdbarch *gdbarch, int reg, CORE_ADDR *offset_p)
497{
498  struct area_entry *e = m_entry;
499
500  if (e)
501    do
502      {
503	if (e->value.kind == pvk_register
504	    && e->value.reg == reg
505	    && e->value.k == 0
506	    && e->size == register_size (gdbarch, reg))
507	  {
508	    if (offset_p)
509	      *offset_p = e->offset;
510	    return true;
511	  }
512
513	e = e->next;
514      }
515    while (e != m_entry);
516
517  return false;
518}
519
520
521/* See prologue-value.h.  */
522
523void
524pv_area::scan (void (*func) (void *closure,
525			     pv_t addr,
526			     CORE_ADDR size,
527			     pv_t value),
528	       void *closure)
529{
530  struct area_entry *e = m_entry;
531  pv_t addr;
532
533  addr.kind = pvk_register;
534  addr.reg = m_base_reg;
535
536  if (e)
537    do
538      {
539	addr.k = e->offset;
540	func (closure, addr, e->size, e->value);
541	e = e->next;
542      }
543    while (e != m_entry);
544}
545