gdbtypes.h revision 1.1.1.9
1
2/* Internal type definitions for GDB.
3
4   Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6   Contributed by Cygnus Support, using pieces from other GDB modules.
7
8   This file is part of GDB.
9
10   This program is free software; you can redistribute it and/or modify
11   it under the terms of the GNU General Public License as published by
12   the Free Software Foundation; either version 3 of the License, or
13   (at your option) any later version.
14
15   This program is distributed in the hope that it will be useful,
16   but WITHOUT ANY WARRANTY; without even the implied warranty of
17   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18   GNU General Public License for more details.
19
20   You should have received a copy of the GNU General Public License
21   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22
23#if !defined (GDBTYPES_H)
24#define GDBTYPES_H 1
25
26/* * \page gdbtypes GDB Types
27
28   GDB represents all the different kinds of types in programming
29   languages using a common representation defined in gdbtypes.h.
30
31   The main data structure is main_type; it consists of a code (such
32   as #TYPE_CODE_ENUM for enumeration types), a number of
33   generally-useful fields such as the printable name, and finally a
34   field main_type::type_specific that is a union of info specific to
35   particular languages or other special cases (such as calling
36   convention).
37
38   The available type codes are defined in enum #type_code.  The enum
39   includes codes both for types that are common across a variety
40   of languages, and for types that are language-specific.
41
42   Most accesses to type fields go through macros such as
43   #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n).  These are
44   written such that they can be used as both rvalues and lvalues.
45 */
46
47#include "hashtab.h"
48#include "gdbsupport/array-view.h"
49#include "gdbsupport/offset-type.h"
50#include "gdbsupport/enum-flags.h"
51#include "gdbsupport/underlying.h"
52#include "gdbsupport/print-utils.h"
53#include "dwarf2.h"
54#include "gdb_obstack.h"
55
56/* Forward declarations for prototypes.  */
57struct field;
58struct block;
59struct value_print_options;
60struct language_defn;
61struct dwarf2_per_cu_data;
62struct dwarf2_per_objfile;
63
64/* These declarations are DWARF-specific as some of the gdbtypes.h data types
65   are already DWARF-specific.  */
66
67/* * Offset relative to the start of its containing CU (compilation
68   unit).  */
69DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71/* * Offset relative to the start of its .debug_info or .debug_types
72   section.  */
73DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75static inline char *
76sect_offset_str (sect_offset offset)
77{
78  return hex_string (to_underlying (offset));
79}
80
81/* Some macros for char-based bitfields.  */
82
83#define B_SET(a,x)	((a)[(x)>>3] |= (1 << ((x)&7)))
84#define B_CLR(a,x)	((a)[(x)>>3] &= ~(1 << ((x)&7)))
85#define B_TST(a,x)	((a)[(x)>>3] & (1 << ((x)&7)))
86#define B_TYPE		unsigned char
87#define	B_BYTES(x)	( 1 + ((x)>>3) )
88#define	B_CLRALL(a,x)	memset ((a), 0, B_BYTES(x))
89
90/* * Different kinds of data types are distinguished by the `code'
91   field.  */
92
93enum type_code
94  {
95    TYPE_CODE_BITSTRING = -1,	/**< Deprecated  */
96    TYPE_CODE_UNDEF = 0,	/**< Not used; catches errors */
97    TYPE_CODE_PTR,		/**< Pointer type */
98
99    /* * Array type with lower & upper bounds.
100
101       Regardless of the language, GDB represents multidimensional
102       array types the way C does: as arrays of arrays.  So an
103       instance of a GDB array type T can always be seen as a series
104       of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105       memory.
106
107       Row-major languages like C lay out multi-dimensional arrays so
108       that incrementing the rightmost index in a subscripting
109       expression results in the smallest change in the address of the
110       element referred to.  Column-major languages like Fortran lay
111       them out so that incrementing the leftmost index results in the
112       smallest change.
113
114       This means that, in column-major languages, working our way
115       from type to target type corresponds to working through indices
116       from right to left, not left to right.  */
117    TYPE_CODE_ARRAY,
118
119    TYPE_CODE_STRUCT,		/**< C struct or Pascal record */
120    TYPE_CODE_UNION,		/**< C union or Pascal variant part */
121    TYPE_CODE_ENUM,		/**< Enumeration type */
122    TYPE_CODE_FLAGS,		/**< Bit flags type */
123    TYPE_CODE_FUNC,		/**< Function type */
124    TYPE_CODE_INT,		/**< Integer type */
125
126    /* * Floating type.  This is *NOT* a complex type.  */
127    TYPE_CODE_FLT,
128
129    /* * Void type.  The length field specifies the length (probably
130       always one) which is used in pointer arithmetic involving
131       pointers to this type, but actually dereferencing such a
132       pointer is invalid; a void type has no length and no actual
133       representation in memory or registers.  A pointer to a void
134       type is a generic pointer.  */
135    TYPE_CODE_VOID,
136
137    TYPE_CODE_SET,		/**< Pascal sets */
138    TYPE_CODE_RANGE,		/**< Range (integers within spec'd bounds).  */
139
140    /* * A string type which is like an array of character but prints
141       differently.  It does not contain a length field as Pascal
142       strings (for many Pascals, anyway) do; if we want to deal with
143       such strings, we should use a new type code.  */
144    TYPE_CODE_STRING,
145
146    /* * Unknown type.  The length field is valid if we were able to
147       deduce that much about the type, or 0 if we don't even know
148       that.  */
149    TYPE_CODE_ERROR,
150
151    /* C++ */
152    TYPE_CODE_METHOD,		/**< Method type */
153
154    /* * Pointer-to-member-function type.  This describes how to access a
155       particular member function of a class (possibly a virtual
156       member function).  The representation may vary between different
157       C++ ABIs.  */
158    TYPE_CODE_METHODPTR,
159
160    /* * Pointer-to-member type.  This is the offset within a class to
161       some particular data member.  The only currently supported
162       representation uses an unbiased offset, with -1 representing
163       NULL; this is used by the Itanium C++ ABI (used by GCC on all
164       platforms).  */
165    TYPE_CODE_MEMBERPTR,
166
167    TYPE_CODE_REF,		/**< C++ Reference types */
168
169    TYPE_CODE_RVALUE_REF,	/**< C++ rvalue reference types */
170
171    TYPE_CODE_CHAR,		/**< *real* character type */
172
173    /* * Boolean type.  0 is false, 1 is true, and other values are
174       non-boolean (e.g. FORTRAN "logical" used as unsigned int).  */
175    TYPE_CODE_BOOL,
176
177    /* Fortran */
178    TYPE_CODE_COMPLEX,		/**< Complex float */
179
180    TYPE_CODE_TYPEDEF,
181
182    TYPE_CODE_NAMESPACE,	/**< C++ namespace.  */
183
184    TYPE_CODE_DECFLOAT,		/**< Decimal floating point.  */
185
186    TYPE_CODE_MODULE,		/**< Fortran module.  */
187
188    /* * Internal function type.  */
189    TYPE_CODE_INTERNAL_FUNCTION,
190
191    /* * Methods implemented in extension languages.  */
192    TYPE_CODE_XMETHOD
193  };
194
195/* * Some bits for the type's instance_flags word.  See the macros
196   below for documentation on each bit.  */
197
198enum type_instance_flag_value : unsigned
199{
200  TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201  TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202  TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203  TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204  TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205  TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206  TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207  TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208  TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209};
210
211DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213/* * Unsigned integer type.  If this is not set for a TYPE_CODE_INT,
214   the type is signed (unless TYPE_NOSIGN (below) is set).  */
215
216#define TYPE_UNSIGNED(t)	(TYPE_MAIN_TYPE (t)->flag_unsigned)
217
218/* * No sign for this type.  In C++, "char", "signed char", and
219   "unsigned char" are distinct types; so we need an extra flag to
220   indicate the absence of a sign!  */
221
222#define TYPE_NOSIGN(t)		(TYPE_MAIN_TYPE (t)->flag_nosign)
223
224/* * A compiler may supply dwarf instrumentation
225   that indicates the desired endian interpretation of the variable
226   differs from the native endian representation. */
227
228#define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
229
230/* * This appears in a type's flags word if it is a stub type (e.g.,
231   if someone referenced a type that wasn't defined in a source file
232   via (struct sir_not_appearing_in_this_film *)).  */
233
234#define TYPE_STUB(t)		(TYPE_MAIN_TYPE (t)->flag_stub)
235
236/* * The target type of this type is a stub type, and this type needs
237   to be updated if it gets un-stubbed in check_typedef.  Used for
238   arrays and ranges, in which TYPE_LENGTH of the array/range gets set
239   based on the TYPE_LENGTH of the target type.  Also, set for
240   TYPE_CODE_TYPEDEF.  */
241
242#define TYPE_TARGET_STUB(t)	(TYPE_MAIN_TYPE (t)->flag_target_stub)
243
244/* * This is a function type which appears to have a prototype.  We
245   need this for function calls in order to tell us if it's necessary
246   to coerce the args, or to just do the standard conversions.  This
247   is used with a short field.  */
248
249#define TYPE_PROTOTYPED(t)	(TYPE_MAIN_TYPE (t)->flag_prototyped)
250
251/* * FIXME drow/2002-06-03:  Only used for methods, but applies as well
252   to functions.  */
253
254#define TYPE_VARARGS(t)		(TYPE_MAIN_TYPE (t)->flag_varargs)
255
256/* * Identify a vector type.  Gcc is handling this by adding an extra
257   attribute to the array type.  We slurp that in as a new flag of a
258   type.  This is used only in dwarf2read.c.  */
259#define TYPE_VECTOR(t)		(TYPE_MAIN_TYPE (t)->flag_vector)
260
261/* * The debugging formats (especially STABS) do not contain enough
262   information to represent all Ada types---especially those whose
263   size depends on dynamic quantities.  Therefore, the GNAT Ada
264   compiler includes extra information in the form of additional type
265   definitions connected by naming conventions.  This flag indicates
266   that the type is an ordinary (unencoded) GDB type that has been
267   created from the necessary run-time information, and does not need
268   further interpretation.  Optionally marks ordinary, fixed-size GDB
269   type.  */
270
271#define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
272
273/* * This debug target supports TYPE_STUB(t).  In the unsupported case
274   we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
275   TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
276   guessed the TYPE_STUB(t) value (see dwarfread.c).  */
277
278#define TYPE_STUB_SUPPORTED(t)   (TYPE_MAIN_TYPE (t)->flag_stub_supported)
279
280/* * Not textual.  By default, GDB treats all single byte integers as
281   characters (or elements of strings) unless this flag is set.  */
282
283#define TYPE_NOTTEXT(t)	(TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
284
285/* * Used only for TYPE_CODE_FUNC where it specifies the real function
286   address is returned by this function call.  TYPE_TARGET_TYPE
287   determines the final returned function type to be presented to
288   user.  */
289
290#define TYPE_GNU_IFUNC(t)	(TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
291
292/* * Type owner.  If TYPE_OBJFILE_OWNED is true, the type is owned by
293   the objfile retrieved as TYPE_OBJFILE.  Otherwise, the type is
294   owned by an architecture; TYPE_OBJFILE is NULL in this case.  */
295
296#define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
297#define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
298#define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
299
300/* * True if this type was declared using the "class" keyword.  This is
301   only valid for C++ structure and enum types.  If false, a structure
302   was declared as a "struct"; if true it was declared "class".  For
303   enum types, this is true when "enum class" or "enum struct" was
304   used to declare the type..  */
305
306#define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
307
308/* * True if this type is a "flag" enum.  A flag enum is one where all
309   the values are pairwise disjoint when "and"ed together.  This
310   affects how enum values are printed.  */
311
312#define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
313
314/* * Constant type.  If this is set, the corresponding type has a
315   const modifier.  */
316
317#define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
318
319/* * Volatile type.  If this is set, the corresponding type has a
320   volatile modifier.  */
321
322#define TYPE_VOLATILE(t) \
323  ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
324
325/* * Restrict type.  If this is set, the corresponding type has a
326   restrict modifier.  */
327
328#define TYPE_RESTRICT(t) \
329  ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
330
331/* * Atomic type.  If this is set, the corresponding type has an
332   _Atomic modifier.  */
333
334#define TYPE_ATOMIC(t) \
335  ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
336
337/* * True if this type represents either an lvalue or lvalue reference type.  */
338
339#define TYPE_IS_REFERENCE(t) \
340  ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
341
342/* * True if this type is allocatable.  */
343#define TYPE_IS_ALLOCATABLE(t) \
344  ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
345
346/* * True if this type has variant parts.  */
347#define TYPE_HAS_VARIANT_PARTS(t) \
348  ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
349
350/* * True if this type has a dynamic length.  */
351#define TYPE_HAS_DYNAMIC_LENGTH(t) \
352  ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
353
354/* * Instruction-space delimited type.  This is for Harvard architectures
355   which have separate instruction and data address spaces (and perhaps
356   others).
357
358   GDB usually defines a flat address space that is a superset of the
359   architecture's two (or more) address spaces, but this is an extension
360   of the architecture's model.
361
362   If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
363   resides in instruction memory, even if its address (in the extended
364   flat address space) does not reflect this.
365
366   Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
367   corresponding type resides in the data memory space, even if
368   this is not indicated by its (flat address space) address.
369
370   If neither flag is set, the default space for functions / methods
371   is instruction space, and for data objects is data memory.  */
372
373#define TYPE_CODE_SPACE(t) \
374  ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
375
376#define TYPE_DATA_SPACE(t) \
377  ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
378
379/* * Address class flags.  Some environments provide for pointers
380   whose size is different from that of a normal pointer or address
381   types where the bits are interpreted differently than normal
382   addresses.  The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
383   target specific ways to represent these different types of address
384   classes.  */
385
386#define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
387                                 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
388#define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
389				 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
390#define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
391  (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
392#define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
393				   & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
394
395/* * Information about a single discriminant.  */
396
397struct discriminant_range
398{
399  /* * The range of values for the variant.  This is an inclusive
400     range.  */
401  ULONGEST low, high;
402
403  /* * Return true if VALUE is contained in this range.  IS_UNSIGNED
404     is true if this should be an unsigned comparison; false for
405     signed.  */
406  bool contains (ULONGEST value, bool is_unsigned) const
407  {
408    if (is_unsigned)
409      return value >= low && value <= high;
410    LONGEST valuel = (LONGEST) value;
411    return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
412  }
413};
414
415struct variant_part;
416
417/* * A single variant.  A variant has a list of discriminant values.
418   When the discriminator matches one of these, the variant is
419   enabled.  Each variant controls zero or more fields; and may also
420   control other variant parts as well.  This struct corresponds to
421   DW_TAG_variant in DWARF.  */
422
423struct variant : allocate_on_obstack
424{
425  /* * The discriminant ranges for this variant.  */
426  gdb::array_view<discriminant_range> discriminants;
427
428  /* * The fields controlled by this variant.  This is inclusive on
429     the low end and exclusive on the high end.  A variant may not
430     control any fields, in which case the two values will be equal.
431     These are indexes into the type's array of fields.  */
432  int first_field;
433  int last_field;
434
435  /* * Variant parts controlled by this variant.  */
436  gdb::array_view<variant_part> parts;
437
438  /* * Return true if this is the default variant.  The default
439     variant can be recognized because it has no associated
440     discriminants.  */
441  bool is_default () const
442  {
443    return discriminants.empty ();
444  }
445
446  /* * Return true if this variant matches VALUE.  IS_UNSIGNED is true
447     if this should be an unsigned comparison; false for signed.  */
448  bool matches (ULONGEST value, bool is_unsigned) const;
449};
450
451/* * A variant part.  Each variant part has an optional discriminant
452   and holds an array of variants.  This struct corresponds to
453   DW_TAG_variant_part in DWARF.  */
454
455struct variant_part : allocate_on_obstack
456{
457  /* * The index of the discriminant field in the outer type.  This is
458     an index into the type's array of fields.  If this is -1, there
459     is no discriminant, and only the default variant can be
460     considered to be selected.  */
461  int discriminant_index;
462
463  /* * True if this discriminant is unsigned; false if signed.  This
464     comes from the type of the discriminant.  */
465  bool is_unsigned;
466
467  /* * The variants that are controlled by this variant part.  Note
468     that these will always be sorted by field number.  */
469  gdb::array_view<variant> variants;
470};
471
472
473enum dynamic_prop_kind
474{
475  PROP_UNDEFINED, /* Not defined.  */
476  PROP_CONST,     /* Constant.  */
477  PROP_ADDR_OFFSET, /* Address offset.  */
478  PROP_LOCEXPR,   /* Location expression.  */
479  PROP_LOCLIST,    /* Location list.  */
480  PROP_VARIANT_PARTS, /* Variant parts.  */
481  PROP_TYPE,	   /* Type.  */
482};
483
484union dynamic_prop_data
485{
486  /* Storage for constant property.  */
487
488  LONGEST const_val;
489
490  /* Storage for dynamic property.  */
491
492  void *baton;
493
494  /* Storage of variant parts for a type.  A type with variant parts
495     has all its fields "linearized" -- stored in a single field
496     array, just as if they had all been declared that way.  The
497     variant parts are attached via a dynamic property, and then are
498     used to control which fields end up in the final type during
499     dynamic type resolution.  */
500
501  const gdb::array_view<variant_part> *variant_parts;
502
503  /* Once a variant type is resolved, we may want to be able to go
504     from the resolved type to the original type.  In this case we
505     rewrite the property's kind and set this field.  */
506
507  struct type *original_type;
508};
509
510/* * Used to store a dynamic property.  */
511
512struct dynamic_prop
513{
514  dynamic_prop_kind kind () const
515  {
516    return m_kind;
517  }
518
519  void set_undefined ()
520  {
521    m_kind = PROP_UNDEFINED;
522  }
523
524  LONGEST const_val () const
525  {
526    gdb_assert (m_kind == PROP_CONST);
527
528    return m_data.const_val;
529  }
530
531  void set_const_val (LONGEST const_val)
532  {
533    m_kind = PROP_CONST;
534    m_data.const_val = const_val;
535  }
536
537  void *baton () const
538  {
539    gdb_assert (m_kind == PROP_LOCEXPR
540		|| m_kind == PROP_LOCLIST
541		|| m_kind == PROP_ADDR_OFFSET);
542
543    return m_data.baton;
544  }
545
546  void set_locexpr (void *baton)
547  {
548    m_kind = PROP_LOCEXPR;
549    m_data.baton = baton;
550  }
551
552  void set_loclist (void *baton)
553  {
554    m_kind = PROP_LOCLIST;
555    m_data.baton = baton;
556  }
557
558  void set_addr_offset (void *baton)
559  {
560    m_kind = PROP_ADDR_OFFSET;
561    m_data.baton = baton;
562  }
563
564  const gdb::array_view<variant_part> *variant_parts () const
565  {
566    gdb_assert (m_kind == PROP_VARIANT_PARTS);
567
568    return m_data.variant_parts;
569  }
570
571  void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
572  {
573    m_kind = PROP_VARIANT_PARTS;
574    m_data.variant_parts = variant_parts;
575  }
576
577  struct type *original_type () const
578  {
579    gdb_assert (m_kind == PROP_TYPE);
580
581    return m_data.original_type;
582  }
583
584  void set_original_type (struct type *original_type)
585  {
586    m_kind = PROP_TYPE;
587    m_data.original_type = original_type;
588  }
589
590  /* Determine which field of the union dynamic_prop.data is used.  */
591  enum dynamic_prop_kind m_kind;
592
593  /* Storage for dynamic or static value.  */
594  union dynamic_prop_data m_data;
595};
596
597/* Compare two dynamic_prop objects for equality.  dynamic_prop
598   instances are equal iff they have the same type and storage.  */
599extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
600
601/* Compare two dynamic_prop objects for inequality.  */
602static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
603{
604  return !(l == r);
605}
606
607/* * Define a type's dynamic property node kind.  */
608enum dynamic_prop_node_kind
609{
610  /* A property providing a type's data location.
611     Evaluating this field yields to the location of an object's data.  */
612  DYN_PROP_DATA_LOCATION,
613
614  /* A property representing DW_AT_allocated.  The presence of this attribute
615     indicates that the object of the type can be allocated/deallocated.  */
616  DYN_PROP_ALLOCATED,
617
618  /* A property representing DW_AT_associated.  The presence of this attribute
619     indicated that the object of the type can be associated.  */
620  DYN_PROP_ASSOCIATED,
621
622  /* A property providing an array's byte stride.  */
623  DYN_PROP_BYTE_STRIDE,
624
625  /* A property holding variant parts.  */
626  DYN_PROP_VARIANT_PARTS,
627
628  /* A property holding the size of the type.  */
629  DYN_PROP_BYTE_SIZE,
630};
631
632/* * List for dynamic type attributes.  */
633struct dynamic_prop_list
634{
635  /* The kind of dynamic prop in this node.  */
636  enum dynamic_prop_node_kind prop_kind;
637
638  /* The dynamic property itself.  */
639  struct dynamic_prop prop;
640
641  /* A pointer to the next dynamic property.  */
642  struct dynamic_prop_list *next;
643};
644
645/* * Determine which field of the union main_type.fields[x].loc is
646   used.  */
647
648enum field_loc_kind
649  {
650    FIELD_LOC_KIND_BITPOS,	/**< bitpos */
651    FIELD_LOC_KIND_ENUMVAL,	/**< enumval */
652    FIELD_LOC_KIND_PHYSADDR,	/**< physaddr */
653    FIELD_LOC_KIND_PHYSNAME,	/**< physname */
654    FIELD_LOC_KIND_DWARF_BLOCK	/**< dwarf_block */
655  };
656
657/* * A discriminant to determine which field in the
658   main_type.type_specific union is being used, if any.
659
660   For types such as TYPE_CODE_FLT, the use of this
661   discriminant is really redundant, as we know from the type code
662   which field is going to be used.  As such, it would be possible to
663   reduce the size of this enum in order to save a bit or two for
664   other fields of struct main_type.  But, since we still have extra
665   room , and for the sake of clarity and consistency, we treat all fields
666   of the union the same way.  */
667
668enum type_specific_kind
669{
670  TYPE_SPECIFIC_NONE,
671  TYPE_SPECIFIC_CPLUS_STUFF,
672  TYPE_SPECIFIC_GNAT_STUFF,
673  TYPE_SPECIFIC_FLOATFORMAT,
674  /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD.  */
675  TYPE_SPECIFIC_FUNC,
676  TYPE_SPECIFIC_SELF_TYPE
677};
678
679union type_owner
680{
681  struct objfile *objfile;
682  struct gdbarch *gdbarch;
683};
684
685union field_location
686{
687  /* * Position of this field, counting in bits from start of
688     containing structure.  For big-endian targets, it is the bit
689     offset to the MSB.  For little-endian targets, it is the bit
690     offset to the LSB.  */
691
692  LONGEST bitpos;
693
694  /* * Enum value.  */
695  LONGEST enumval;
696
697  /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
698     physaddr is the location (in the target) of the static
699     field.  Otherwise, physname is the mangled label of the
700     static field.  */
701
702  CORE_ADDR physaddr;
703  const char *physname;
704
705  /* * The field location can be computed by evaluating the
706     following DWARF block.  Its DATA is allocated on
707     objfile_obstack - no CU load is needed to access it.  */
708
709  struct dwarf2_locexpr_baton *dwarf_block;
710};
711
712struct field
713{
714  struct type *type () const
715  {
716    return this->m_type;
717  }
718
719  void set_type (struct type *type)
720  {
721    this->m_type = type;
722  }
723
724  union field_location loc;
725
726  /* * For a function or member type, this is 1 if the argument is
727     marked artificial.  Artificial arguments should not be shown
728     to the user.  For TYPE_CODE_RANGE it is set if the specific
729     bound is not defined.  */
730
731  unsigned int artificial : 1;
732
733  /* * Discriminant for union field_location.  */
734
735  ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
736
737  /* * Size of this field, in bits, or zero if not packed.
738     If non-zero in an array type, indicates the element size in
739     bits (used only in Ada at the moment).
740     For an unpacked field, the field's type's length
741     says how many bytes the field occupies.  */
742
743  unsigned int bitsize : 28;
744
745  /* * In a struct or union type, type of this field.
746     - In a function or member type, type of this argument.
747     - In an array type, the domain-type of the array.  */
748
749  struct type *m_type;
750
751  /* * Name of field, value or argument.
752     NULL for range bounds, array domains, and member function
753     arguments.  */
754
755  const char *name;
756};
757
758struct range_bounds
759{
760  ULONGEST bit_stride () const
761  {
762    if (this->flag_is_byte_stride)
763      return this->stride.const_val () * 8;
764    else
765      return this->stride.const_val ();
766  }
767
768  /* * Low bound of range.  */
769
770  struct dynamic_prop low;
771
772  /* * High bound of range.  */
773
774  struct dynamic_prop high;
775
776  /* The stride value for this range.  This can be stored in bits or bytes
777     based on the value of BYTE_STRIDE_P.  It is optional to have a stride
778     value, if this range has no stride value defined then this will be set
779     to the constant zero.  */
780
781  struct dynamic_prop stride;
782
783  /* * The bias.  Sometimes a range value is biased before storage.
784     The bias is added to the stored bits to form the true value.  */
785
786  LONGEST bias;
787
788  /* True if HIGH range bound contains the number of elements in the
789     subrange.  This affects how the final high bound is computed.  */
790
791  unsigned int flag_upper_bound_is_count : 1;
792
793  /* True if LOW or/and HIGH are resolved into a static bound from
794     a dynamic one.  */
795
796  unsigned int flag_bound_evaluated : 1;
797
798  /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits.  */
799
800  unsigned int flag_is_byte_stride : 1;
801};
802
803/* Compare two range_bounds objects for equality.  Simply does
804   memberwise comparison.  */
805extern bool operator== (const range_bounds &l, const range_bounds &r);
806
807/* Compare two range_bounds objects for inequality.  */
808static inline bool operator!= (const range_bounds &l, const range_bounds &r)
809{
810  return !(l == r);
811}
812
813union type_specific
814{
815  /* * CPLUS_STUFF is for TYPE_CODE_STRUCT.  It is initialized to
816     point to cplus_struct_default, a default static instance of a
817     struct cplus_struct_type.  */
818
819  struct cplus_struct_type *cplus_stuff;
820
821  /* * GNAT_STUFF is for types for which the GNAT Ada compiler
822     provides additional information.  */
823
824  struct gnat_aux_type *gnat_stuff;
825
826  /* * FLOATFORMAT is for TYPE_CODE_FLT.  It is a pointer to a
827     floatformat object that describes the floating-point value
828     that resides within the type.  */
829
830  const struct floatformat *floatformat;
831
832  /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types.  */
833
834  struct func_type *func_stuff;
835
836  /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
837     TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
838     is a member of.  */
839
840  struct type *self_type;
841};
842
843/* * Main structure representing a type in GDB.
844
845   This structure is space-critical.  Its layout has been tweaked to
846   reduce the space used.  */
847
848struct main_type
849{
850  /* * Code for kind of type.  */
851
852  ENUM_BITFIELD(type_code) code : 8;
853
854  /* * Flags about this type.  These fields appear at this location
855     because they packs nicely here.  See the TYPE_* macros for
856     documentation about these fields.  */
857
858  unsigned int flag_unsigned : 1;
859  unsigned int flag_nosign : 1;
860  unsigned int flag_stub : 1;
861  unsigned int flag_target_stub : 1;
862  unsigned int flag_prototyped : 1;
863  unsigned int flag_varargs : 1;
864  unsigned int flag_vector : 1;
865  unsigned int flag_stub_supported : 1;
866  unsigned int flag_gnu_ifunc : 1;
867  unsigned int flag_fixed_instance : 1;
868  unsigned int flag_objfile_owned : 1;
869  unsigned int flag_endianity_not_default : 1;
870
871  /* * True if this type was declared with "class" rather than
872     "struct".  */
873
874  unsigned int flag_declared_class : 1;
875
876  /* * True if this is an enum type with disjoint values.  This
877     affects how the enum is printed.  */
878
879  unsigned int flag_flag_enum : 1;
880
881  /* * A discriminant telling us which field of the type_specific
882     union is being used for this type, if any.  */
883
884  ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
885
886  /* * Number of fields described for this type.  This field appears
887     at this location because it packs nicely here.  */
888
889  short nfields;
890
891  /* * Name of this type, or NULL if none.
892
893     This is used for printing only.  For looking up a name, look for
894     a symbol in the VAR_DOMAIN.  This is generally allocated in the
895     objfile's obstack.  However coffread.c uses malloc.  */
896
897  const char *name;
898
899  /* * Every type is now associated with a particular objfile, and the
900     type is allocated on the objfile_obstack for that objfile.  One
901     problem however, is that there are times when gdb allocates new
902     types while it is not in the process of reading symbols from a
903     particular objfile.  Fortunately, these happen when the type
904     being created is a derived type of an existing type, such as in
905     lookup_pointer_type().  So we can just allocate the new type
906     using the same objfile as the existing type, but to do this we
907     need a backpointer to the objfile from the existing type.  Yes
908     this is somewhat ugly, but without major overhaul of the internal
909     type system, it can't be avoided for now.  */
910
911  union type_owner owner;
912
913  /* * For a pointer type, describes the type of object pointed to.
914     - For an array type, describes the type of the elements.
915     - For a function or method type, describes the type of the return value.
916     - For a range type, describes the type of the full range.
917     - For a complex type, describes the type of each coordinate.
918     - For a special record or union type encoding a dynamic-sized type
919     in GNAT, a memoized pointer to a corresponding static version of
920     the type.
921     - Unused otherwise.  */
922
923  struct type *target_type;
924
925  /* * For structure and union types, a description of each field.
926     For set and pascal array types, there is one "field",
927     whose type is the domain type of the set or array.
928     For range types, there are two "fields",
929     the minimum and maximum values (both inclusive).
930     For enum types, each possible value is described by one "field".
931     For a function or method type, a "field" for each parameter.
932     For C++ classes, there is one field for each base class (if it is
933     a derived class) plus one field for each class data member.  Member
934     functions are recorded elsewhere.
935
936     Using a pointer to a separate array of fields
937     allows all types to have the same size, which is useful
938     because we can allocate the space for a type before
939     we know what to put in it.  */
940
941  union
942  {
943    struct field *fields;
944
945    /* * Union member used for range types.  */
946
947    struct range_bounds *bounds;
948
949    /* If this is a scalar type, then this is its corresponding
950       complex type.  */
951    struct type *complex_type;
952
953  } flds_bnds;
954
955  /* * Slot to point to additional language-specific fields of this
956     type.  */
957
958  union type_specific type_specific;
959
960  /* * Contains all dynamic type properties.  */
961  struct dynamic_prop_list *dyn_prop_list;
962};
963
964/* * Number of bits allocated for alignment.  */
965
966#define TYPE_ALIGN_BITS 8
967
968/* * A ``struct type'' describes a particular instance of a type, with
969   some particular qualification.  */
970
971struct type
972{
973  /* Get the type code of this type.
974
975     Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
976     type, you need to do `check_typedef (type)->code ()`.  */
977  type_code code () const
978  {
979    return this->main_type->code;
980  }
981
982  /* Set the type code of this type.  */
983  void set_code (type_code code)
984  {
985    this->main_type->code = code;
986  }
987
988  /* Get the name of this type.  */
989  const char *name () const
990  {
991    return this->main_type->name;
992  }
993
994  /* Set the name of this type.  */
995  void set_name (const char *name)
996  {
997    this->main_type->name = name;
998  }
999
1000  /* Get the number of fields of this type.  */
1001  int num_fields () const
1002  {
1003    return this->main_type->nfields;
1004  }
1005
1006  /* Set the number of fields of this type.  */
1007  void set_num_fields (int num_fields)
1008  {
1009    this->main_type->nfields = num_fields;
1010  }
1011
1012  /* Get the fields array of this type.  */
1013  struct field *fields () const
1014  {
1015    return this->main_type->flds_bnds.fields;
1016  }
1017
1018  /* Get the field at index IDX.  */
1019  struct field &field (int idx) const
1020  {
1021    return this->fields ()[idx];
1022  }
1023
1024  /* Set the fields array of this type.  */
1025  void set_fields (struct field *fields)
1026  {
1027    this->main_type->flds_bnds.fields = fields;
1028  }
1029
1030  type *index_type () const
1031  {
1032    return this->field (0).type ();
1033  }
1034
1035  void set_index_type (type *index_type)
1036  {
1037    this->field (0).set_type (index_type);
1038  }
1039
1040  /* Get the bounds bounds of this type.  The type must be a range type.  */
1041  range_bounds *bounds () const
1042  {
1043    switch (this->code ())
1044      {
1045      case TYPE_CODE_RANGE:
1046	return this->main_type->flds_bnds.bounds;
1047
1048      case TYPE_CODE_ARRAY:
1049      case TYPE_CODE_STRING:
1050	return this->index_type ()->bounds ();
1051
1052      default:
1053	gdb_assert_not_reached
1054	  ("type::bounds called on type with invalid code");
1055      }
1056  }
1057
1058  /* Set the bounds of this type.  The type must be a range type.  */
1059  void set_bounds (range_bounds *bounds)
1060  {
1061    gdb_assert (this->code () == TYPE_CODE_RANGE);
1062
1063    this->main_type->flds_bnds.bounds = bounds;
1064  }
1065
1066  ULONGEST bit_stride () const
1067  {
1068    return this->bounds ()->bit_stride ();
1069  }
1070
1071  /* * Return the dynamic property of the requested KIND from this type's
1072     list of dynamic properties.  */
1073  dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1074
1075  /* * Given a dynamic property PROP of a given KIND, add this dynamic
1076     property to this type.
1077
1078     This function assumes that this type is objfile-owned.  */
1079  void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1080
1081  /* * Remove dynamic property of kind KIND from this type, if it exists.  */
1082  void remove_dyn_prop (dynamic_prop_node_kind kind);
1083
1084  /* * Type that is a pointer to this type.
1085     NULL if no such pointer-to type is known yet.
1086     The debugger may add the address of such a type
1087     if it has to construct one later.  */
1088
1089  struct type *pointer_type;
1090
1091  /* * C++: also need a reference type.  */
1092
1093  struct type *reference_type;
1094
1095  /* * A C++ rvalue reference type added in C++11. */
1096
1097  struct type *rvalue_reference_type;
1098
1099  /* * Variant chain.  This points to a type that differs from this
1100     one only in qualifiers and length.  Currently, the possible
1101     qualifiers are const, volatile, code-space, data-space, and
1102     address class.  The length may differ only when one of the
1103     address class flags are set.  The variants are linked in a
1104     circular ring and share MAIN_TYPE.  */
1105
1106  struct type *chain;
1107
1108  /* * The alignment for this type.  Zero means that the alignment was
1109     not specified in the debug info.  Note that this is stored in a
1110     funny way: as the log base 2 (plus 1) of the alignment; so a
1111     value of 1 means the alignment is 1, and a value of 9 means the
1112     alignment is 256.  */
1113
1114  unsigned align_log2 : TYPE_ALIGN_BITS;
1115
1116  /* * Flags specific to this instance of the type, indicating where
1117     on the ring we are.
1118
1119     For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1120     binary or-ed with the target type, with a special case for
1121     address class and space class.  For example if this typedef does
1122     not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1123     instance flags are completely inherited from the target type.  No
1124     qualifiers can be cleared by the typedef.  See also
1125     check_typedef.  */
1126  unsigned instance_flags : 9;
1127
1128  /* * Length of storage for a value of this type.  The value is the
1129     expression in host bytes of what sizeof(type) would return.  This
1130     size includes padding.  For example, an i386 extended-precision
1131     floating point value really only occupies ten bytes, but most
1132     ABI's declare its size to be 12 bytes, to preserve alignment.
1133     A `struct type' representing such a floating-point type would
1134     have a `length' value of 12, even though the last two bytes are
1135     unused.
1136
1137     Since this field is expressed in host bytes, its value is appropriate
1138     to pass to memcpy and such (it is assumed that GDB itself always runs
1139     on an 8-bits addressable architecture).  However, when using it for
1140     target address arithmetic (e.g. adding it to a target address), the
1141     type_length_units function should be used in order to get the length
1142     expressed in target addressable memory units.  */
1143
1144  ULONGEST length;
1145
1146  /* * Core type, shared by a group of qualified types.  */
1147
1148  struct main_type *main_type;
1149};
1150
1151struct fn_fieldlist
1152{
1153
1154  /* * The overloaded name.
1155     This is generally allocated in the objfile's obstack.
1156     However stabsread.c sometimes uses malloc.  */
1157
1158  const char *name;
1159
1160  /* * The number of methods with this name.  */
1161
1162  int length;
1163
1164  /* * The list of methods.  */
1165
1166  struct fn_field *fn_fields;
1167};
1168
1169
1170
1171struct fn_field
1172{
1173  /* * If is_stub is clear, this is the mangled name which we can look
1174     up to find the address of the method (FIXME: it would be cleaner
1175     to have a pointer to the struct symbol here instead).
1176
1177     If is_stub is set, this is the portion of the mangled name which
1178     specifies the arguments.  For example, "ii", if there are two int
1179     arguments, or "" if there are no arguments.  See gdb_mangle_name
1180     for the conversion from this format to the one used if is_stub is
1181     clear.  */
1182
1183  const char *physname;
1184
1185  /* * The function type for the method.
1186
1187     (This comment used to say "The return value of the method", but
1188     that's wrong.  The function type is expected here, i.e. something
1189     with TYPE_CODE_METHOD, and *not* the return-value type).  */
1190
1191  struct type *type;
1192
1193  /* * For virtual functions.  First baseclass that defines this
1194     virtual function.  */
1195
1196  struct type *fcontext;
1197
1198  /* Attributes.  */
1199
1200  unsigned int is_const:1;
1201  unsigned int is_volatile:1;
1202  unsigned int is_private:1;
1203  unsigned int is_protected:1;
1204  unsigned int is_artificial:1;
1205
1206  /* * A stub method only has some fields valid (but they are enough
1207     to reconstruct the rest of the fields).  */
1208
1209  unsigned int is_stub:1;
1210
1211  /* * True if this function is a constructor, false otherwise.  */
1212
1213  unsigned int is_constructor : 1;
1214
1215  /* * True if this function is deleted, false otherwise.  */
1216
1217  unsigned int is_deleted : 1;
1218
1219  /* * DW_AT_defaulted attribute for this function.  The value is one
1220     of the DW_DEFAULTED constants.  */
1221
1222  ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1223
1224  /* * Unused.  */
1225
1226  unsigned int dummy:6;
1227
1228  /* * Index into that baseclass's virtual function table, minus 2;
1229     else if static: VOFFSET_STATIC; else: 0.  */
1230
1231  unsigned int voffset:16;
1232
1233#define VOFFSET_STATIC 1
1234
1235};
1236
1237struct decl_field
1238{
1239  /* * Unqualified name to be prefixed by owning class qualified
1240     name.  */
1241
1242  const char *name;
1243
1244  /* * Type this typedef named NAME represents.  */
1245
1246  struct type *type;
1247
1248  /* * True if this field was declared protected, false otherwise.  */
1249  unsigned int is_protected : 1;
1250
1251  /* * True if this field was declared private, false otherwise.  */
1252  unsigned int is_private : 1;
1253};
1254
1255/* * C++ language-specific information for TYPE_CODE_STRUCT and
1256   TYPE_CODE_UNION nodes.  */
1257
1258struct cplus_struct_type
1259  {
1260    /* * Number of base classes this type derives from.  The
1261       baseclasses are stored in the first N_BASECLASSES fields
1262       (i.e. the `fields' field of the struct type).  The only fields
1263       of struct field that are used are: type, name, loc.bitpos.  */
1264
1265    short n_baseclasses;
1266
1267    /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1268       All access to this field must be through TYPE_VPTR_FIELDNO as one
1269       thing it does is check whether the field has been initialized.
1270       Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1271       which for portability reasons doesn't initialize this field.
1272       TYPE_VPTR_FIELDNO returns -1 for this case.
1273
1274       If -1, we were unable to find the virtual function table pointer in
1275       initial symbol reading, and get_vptr_fieldno should be called to find
1276       it if possible.  get_vptr_fieldno will update this field if possible.
1277       Otherwise the value is left at -1.
1278
1279       Unused if this type does not have virtual functions.  */
1280
1281    short vptr_fieldno;
1282
1283    /* * Number of methods with unique names.  All overloaded methods
1284       with the same name count only once.  */
1285
1286    short nfn_fields;
1287
1288    /* * Number of template arguments.  */
1289
1290    unsigned short n_template_arguments;
1291
1292    /* * One if this struct is a dynamic class, as defined by the
1293       Itanium C++ ABI: if it requires a virtual table pointer,
1294       because it or any of its base classes have one or more virtual
1295       member functions or virtual base classes.  Minus one if not
1296       dynamic.  Zero if not yet computed.  */
1297
1298    int is_dynamic : 2;
1299
1300    /* * The calling convention for this type, fetched from the
1301       DW_AT_calling_convention attribute.  The value is one of the
1302       DW_CC constants.  */
1303
1304    ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1305
1306    /* * The base class which defined the virtual function table pointer.  */
1307
1308    struct type *vptr_basetype;
1309
1310    /* * For derived classes, the number of base classes is given by
1311       n_baseclasses and virtual_field_bits is a bit vector containing
1312       one bit per base class.  If the base class is virtual, the
1313       corresponding bit will be set.
1314       I.E, given:
1315
1316       class A{};
1317       class B{};
1318       class C : public B, public virtual A {};
1319
1320       B is a baseclass of C; A is a virtual baseclass for C.
1321       This is a C++ 2.0 language feature.  */
1322
1323    B_TYPE *virtual_field_bits;
1324
1325    /* * For classes with private fields, the number of fields is
1326       given by nfields and private_field_bits is a bit vector
1327       containing one bit per field.
1328
1329       If the field is private, the corresponding bit will be set.  */
1330
1331    B_TYPE *private_field_bits;
1332
1333    /* * For classes with protected fields, the number of fields is
1334       given by nfields and protected_field_bits is a bit vector
1335       containing one bit per field.
1336
1337       If the field is private, the corresponding bit will be set.  */
1338
1339    B_TYPE *protected_field_bits;
1340
1341    /* * For classes with fields to be ignored, either this is
1342       optimized out or this field has length 0.  */
1343
1344    B_TYPE *ignore_field_bits;
1345
1346    /* * For classes, structures, and unions, a description of each
1347       field, which consists of an overloaded name, followed by the
1348       types of arguments that the method expects, and then the name
1349       after it has been renamed to make it distinct.
1350
1351       fn_fieldlists points to an array of nfn_fields of these.  */
1352
1353    struct fn_fieldlist *fn_fieldlists;
1354
1355    /* * typedefs defined inside this class.  typedef_field points to
1356       an array of typedef_field_count elements.  */
1357
1358    struct decl_field *typedef_field;
1359
1360    unsigned typedef_field_count;
1361
1362    /* * The nested types defined by this type.  nested_types points to
1363       an array of nested_types_count elements.  */
1364
1365    struct decl_field *nested_types;
1366
1367    unsigned nested_types_count;
1368
1369    /* * The template arguments.  This is an array with
1370       N_TEMPLATE_ARGUMENTS elements.  This is NULL for non-template
1371       classes.  */
1372
1373    struct symbol **template_arguments;
1374  };
1375
1376/* * Struct used to store conversion rankings.  */
1377
1378struct rank
1379  {
1380    short rank;
1381
1382    /* * When two conversions are of the same type and therefore have
1383       the same rank, subrank is used to differentiate the two.
1384
1385       Eg: Two derived-class-pointer to base-class-pointer conversions
1386       would both have base pointer conversion rank, but the
1387       conversion with the shorter distance to the ancestor is
1388       preferable.  'subrank' would be used to reflect that.  */
1389
1390    short subrank;
1391  };
1392
1393/* * Used for ranking a function for overload resolution.  */
1394
1395typedef std::vector<rank> badness_vector;
1396
1397/* * GNAT Ada-specific information for various Ada types.  */
1398
1399struct gnat_aux_type
1400  {
1401    /* * Parallel type used to encode information about dynamic types
1402       used in Ada (such as variant records, variable-size array,
1403       etc).  */
1404    struct type* descriptive_type;
1405  };
1406
1407/* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types.  */
1408
1409struct func_type
1410  {
1411    /* * The calling convention for targets supporting multiple ABIs.
1412       Right now this is only fetched from the Dwarf-2
1413       DW_AT_calling_convention attribute.  The value is one of the
1414       DW_CC constants.  */
1415
1416    ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1417
1418    /* * Whether this function normally returns to its caller.  It is
1419       set from the DW_AT_noreturn attribute if set on the
1420       DW_TAG_subprogram.  */
1421
1422    unsigned int is_noreturn : 1;
1423
1424    /* * Only those DW_TAG_call_site's in this function that have
1425       DW_AT_call_tail_call set are linked in this list.  Function
1426       without its tail call list complete
1427       (DW_AT_call_all_tail_calls or its superset
1428       DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1429       DW_TAG_call_site's exist in such function. */
1430
1431    struct call_site *tail_call_list;
1432
1433    /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1434       contains the method.  */
1435
1436    struct type *self_type;
1437  };
1438
1439/* struct call_site_parameter can be referenced in callees by several ways.  */
1440
1441enum call_site_parameter_kind
1442{
1443  /* * Use field call_site_parameter.u.dwarf_reg.  */
1444  CALL_SITE_PARAMETER_DWARF_REG,
1445
1446  /* * Use field call_site_parameter.u.fb_offset.  */
1447  CALL_SITE_PARAMETER_FB_OFFSET,
1448
1449  /* * Use field call_site_parameter.u.param_offset.  */
1450  CALL_SITE_PARAMETER_PARAM_OFFSET
1451};
1452
1453struct call_site_target
1454{
1455  union field_location loc;
1456
1457  /* * Discriminant for union field_location.  */
1458
1459  ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1460};
1461
1462union call_site_parameter_u
1463{
1464  /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1465     as DWARF register number, for register passed
1466     parameters.  */
1467
1468  int dwarf_reg;
1469
1470  /* * Offset from the callee's frame base, for stack passed
1471     parameters.  This equals offset from the caller's stack
1472     pointer.  */
1473
1474  CORE_ADDR fb_offset;
1475
1476  /* * Offset relative to the start of this PER_CU to
1477     DW_TAG_formal_parameter which is referenced by both
1478     caller and the callee.  */
1479
1480  cu_offset param_cu_off;
1481};
1482
1483struct call_site_parameter
1484{
1485  ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1486
1487  union call_site_parameter_u u;
1488
1489  /* * DW_TAG_formal_parameter's DW_AT_call_value.  It is never NULL.  */
1490
1491  const gdb_byte *value;
1492  size_t value_size;
1493
1494  /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1495     It may be NULL if not provided by DWARF.  */
1496
1497  const gdb_byte *data_value;
1498  size_t data_value_size;
1499};
1500
1501/* * A place where a function gets called from, represented by
1502   DW_TAG_call_site.  It can be looked up from symtab->call_site_htab.  */
1503
1504struct call_site
1505  {
1506    /* * Address of the first instruction after this call.  It must be
1507       the first field as we overload core_addr_hash and core_addr_eq
1508       for it.  */
1509
1510    CORE_ADDR pc;
1511
1512    /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST.  */
1513
1514    struct call_site *tail_call_next;
1515
1516    /* * Describe DW_AT_call_target.  Missing attribute uses
1517       FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL.  */
1518
1519    struct call_site_target target;
1520
1521    /* * Size of the PARAMETER array.  */
1522
1523    unsigned parameter_count;
1524
1525    /* * CU of the function where the call is located.  It gets used
1526       for DWARF blocks execution in the parameter array below.  */
1527
1528    dwarf2_per_cu_data *per_cu;
1529
1530    /* objfile of the function where the call is located.  */
1531
1532    dwarf2_per_objfile *per_objfile;
1533
1534    /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter.  */
1535
1536    struct call_site_parameter parameter[1];
1537  };
1538
1539/* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1540   static structure.  */
1541
1542extern const struct cplus_struct_type cplus_struct_default;
1543
1544extern void allocate_cplus_struct_type (struct type *);
1545
1546#define INIT_CPLUS_SPECIFIC(type) \
1547  (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1548   TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1549   &cplus_struct_default)
1550
1551#define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1552
1553#define HAVE_CPLUS_STRUCT(type) \
1554  (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1555   && TYPE_RAW_CPLUS_SPECIFIC (type) !=  &cplus_struct_default)
1556
1557#define INIT_NONE_SPECIFIC(type) \
1558  (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1559   TYPE_MAIN_TYPE (type)->type_specific = {})
1560
1561extern const struct gnat_aux_type gnat_aux_default;
1562
1563extern void allocate_gnat_aux_type (struct type *);
1564
1565#define INIT_GNAT_SPECIFIC(type) \
1566  (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1567   TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1568#define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1569/* * A macro that returns non-zero if the type-specific data should be
1570   read as "gnat-stuff".  */
1571#define HAVE_GNAT_AUX_INFO(type) \
1572  (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1573
1574/* * True if TYPE is known to be an Ada type of some kind.  */
1575#define ADA_TYPE_P(type)					\
1576  (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF	\
1577    || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE	\
1578	&& TYPE_FIXED_INSTANCE (type)))
1579
1580#define INIT_FUNC_SPECIFIC(type)					       \
1581  (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC,			       \
1582   TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *)      \
1583     TYPE_ZALLOC (type,							       \
1584		  sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1585
1586#define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1587#define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1588#define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1589#define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1590#define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1591#define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1592#define TYPE_CHAIN(thistype) (thistype)->chain
1593/* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1594   But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1595   so you only have to call check_typedef once.  Since allocate_value
1596   calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe.  */
1597#define TYPE_LENGTH(thistype) (thistype)->length
1598
1599/* * Return the alignment of the type in target addressable memory
1600   units, or 0 if no alignment was specified.  */
1601#define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1602
1603/* * Return the alignment of the type in target addressable memory
1604   units, or 0 if no alignment was specified.  */
1605extern unsigned type_raw_align (struct type *);
1606
1607/* * Return the alignment of the type in target addressable memory
1608   units.  Return 0 if the alignment cannot be determined; but note
1609   that this makes an effort to compute the alignment even it it was
1610   not specified in the debug info.  */
1611extern unsigned type_align (struct type *);
1612
1613/* * Set the alignment of the type.  The alignment must be a power of
1614   2.  Returns false if the given value does not fit in the available
1615   space in struct type.  */
1616extern bool set_type_align (struct type *, ULONGEST);
1617
1618/* Property accessors for the type data location.  */
1619#define TYPE_DATA_LOCATION(thistype) \
1620  ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1621#define TYPE_DATA_LOCATION_BATON(thistype) \
1622  TYPE_DATA_LOCATION (thistype)->data.baton
1623#define TYPE_DATA_LOCATION_ADDR(thistype) \
1624  (TYPE_DATA_LOCATION (thistype)->const_val ())
1625#define TYPE_DATA_LOCATION_KIND(thistype) \
1626  (TYPE_DATA_LOCATION (thistype)->kind ())
1627#define TYPE_DYNAMIC_LENGTH(thistype) \
1628  ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1629
1630/* Property accessors for the type allocated/associated.  */
1631#define TYPE_ALLOCATED_PROP(thistype) \
1632  ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1633#define TYPE_ASSOCIATED_PROP(thistype) \
1634  ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1635
1636/* C++ */
1637
1638#define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1639/* Do not call this, use TYPE_SELF_TYPE.  */
1640extern struct type *internal_type_self_type (struct type *);
1641extern void set_type_self_type (struct type *, struct type *);
1642
1643extern int internal_type_vptr_fieldno (struct type *);
1644extern void set_type_vptr_fieldno (struct type *, int);
1645extern struct type *internal_type_vptr_basetype (struct type *);
1646extern void set_type_vptr_basetype (struct type *, struct type *);
1647#define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1648#define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1649
1650#define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1651#define TYPE_SPECIFIC_FIELD(thistype) \
1652  TYPE_MAIN_TYPE(thistype)->type_specific_field
1653/* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1654   where we're trying to print an Ada array using the C language.
1655   In that case, there is no "cplus_stuff", but the C language assumes
1656   that there is.  What we do, in that case, is pretend that there is
1657   an implicit one which is the default cplus stuff.  */
1658#define TYPE_CPLUS_SPECIFIC(thistype) \
1659   (!HAVE_CPLUS_STRUCT(thistype) \
1660    ? (struct cplus_struct_type*)&cplus_struct_default \
1661    : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1662#define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1663#define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1664  TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1665#define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1666#define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1667#define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1668#define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1669#define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1670#define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1671#define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1672#define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1673#define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1674#define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1675#define BASETYPE_VIA_PUBLIC(thistype, index) \
1676  ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1677#define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1678
1679#define BASETYPE_VIA_VIRTUAL(thistype, index) \
1680  (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1681    : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1682
1683#define FIELD_NAME(thisfld) ((thisfld).name)
1684#define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1685#define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1686#define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1687#define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1688#define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1689#define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1690#define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1691#define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1692#define SET_FIELD_BITPOS(thisfld, bitpos)			\
1693  (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS,		\
1694   FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1695#define SET_FIELD_ENUMVAL(thisfld, enumval)			\
1696  (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL,		\
1697   FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1698#define SET_FIELD_PHYSNAME(thisfld, name)			\
1699  (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME,		\
1700   FIELD_STATIC_PHYSNAME (thisfld) = (name))
1701#define SET_FIELD_PHYSADDR(thisfld, addr)			\
1702  (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR,		\
1703   FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1704#define SET_FIELD_DWARF_BLOCK(thisfld, addr)			\
1705  (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK,	\
1706   FIELD_DWARF_BLOCK (thisfld) = (addr))
1707#define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1708#define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1709
1710#define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1711#define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1712#define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1713#define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1714#define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1715#define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1716#define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1717#define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1718#define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1719#define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1720
1721#define TYPE_FIELD_PRIVATE_BITS(thistype) \
1722  TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1723#define TYPE_FIELD_PROTECTED_BITS(thistype) \
1724  TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1725#define TYPE_FIELD_IGNORE_BITS(thistype) \
1726  TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1727#define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1728  TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1729#define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1730  B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1731#define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1732  B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1733#define SET_TYPE_FIELD_IGNORE(thistype, n) \
1734  B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1735#define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1736  B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1737#define TYPE_FIELD_PRIVATE(thistype, n) \
1738  (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1739    : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1740#define TYPE_FIELD_PROTECTED(thistype, n) \
1741  (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1742    : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1743#define TYPE_FIELD_IGNORE(thistype, n) \
1744  (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1745    : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1746#define TYPE_FIELD_VIRTUAL(thistype, n) \
1747  (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1748    : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1749
1750#define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1751#define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1752#define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1753#define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1754#define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1755
1756#define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1757  TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1758#define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1759  TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1760#define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1761  TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1762
1763#define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1764#define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1765#define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1766#define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1767#define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1768#define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1769#define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1770#define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1771#define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1772#define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1773#define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1774#define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1775#define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1776#define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1777#define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1778#define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1779#define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1780
1781/* Accessors for typedefs defined by a class.  */
1782#define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1783  TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1784#define TYPE_TYPEDEF_FIELD(thistype, n) \
1785  TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1786#define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1787  TYPE_TYPEDEF_FIELD (thistype, n).name
1788#define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1789  TYPE_TYPEDEF_FIELD (thistype, n).type
1790#define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1791  TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1792#define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1793  TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1794#define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n)        \
1795  TYPE_TYPEDEF_FIELD (thistype, n).is_private
1796
1797#define TYPE_NESTED_TYPES_ARRAY(thistype)	\
1798  TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1799#define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1800  TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1801#define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1802  TYPE_NESTED_TYPES_FIELD (thistype, n).name
1803#define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1804  TYPE_NESTED_TYPES_FIELD (thistype, n).type
1805#define TYPE_NESTED_TYPES_COUNT(thistype) \
1806  TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1807#define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1808  TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1809#define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n)	\
1810  TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1811
1812#define TYPE_IS_OPAQUE(thistype) \
1813  ((((thistype)->code () == TYPE_CODE_STRUCT) \
1814    || ((thistype)->code () == TYPE_CODE_UNION)) \
1815   && ((thistype)->num_fields () == 0) \
1816   && (!HAVE_CPLUS_STRUCT (thistype) \
1817       || TYPE_NFN_FIELDS (thistype) == 0) \
1818   && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1819
1820/* * A helper macro that returns the name of a type or "unnamed type"
1821   if the type has no name.  */
1822
1823#define TYPE_SAFE_NAME(type) \
1824  (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1825
1826/* * A helper macro that returns the name of an error type.  If the
1827   type has a name, it is used; otherwise, a default is used.  */
1828
1829#define TYPE_ERROR_NAME(type) \
1830  (type->name () ? type->name () : _("<error type>"))
1831
1832/* Given TYPE, return its floatformat.  */
1833const struct floatformat *floatformat_from_type (const struct type *type);
1834
1835struct builtin_type
1836{
1837  /* Integral types.  */
1838
1839  /* Implicit size/sign (based on the architecture's ABI).  */
1840  struct type *builtin_void;
1841  struct type *builtin_char;
1842  struct type *builtin_short;
1843  struct type *builtin_int;
1844  struct type *builtin_long;
1845  struct type *builtin_signed_char;
1846  struct type *builtin_unsigned_char;
1847  struct type *builtin_unsigned_short;
1848  struct type *builtin_unsigned_int;
1849  struct type *builtin_unsigned_long;
1850  struct type *builtin_bfloat16;
1851  struct type *builtin_half;
1852  struct type *builtin_float;
1853  struct type *builtin_double;
1854  struct type *builtin_long_double;
1855  struct type *builtin_complex;
1856  struct type *builtin_double_complex;
1857  struct type *builtin_string;
1858  struct type *builtin_bool;
1859  struct type *builtin_long_long;
1860  struct type *builtin_unsigned_long_long;
1861  struct type *builtin_decfloat;
1862  struct type *builtin_decdouble;
1863  struct type *builtin_declong;
1864
1865  /* "True" character types.
1866      We use these for the '/c' print format, because c_char is just a
1867      one-byte integral type, which languages less laid back than C
1868      will print as ... well, a one-byte integral type.  */
1869  struct type *builtin_true_char;
1870  struct type *builtin_true_unsigned_char;
1871
1872  /* Explicit sizes - see C9X <intypes.h> for naming scheme.  The "int0"
1873     is for when an architecture needs to describe a register that has
1874     no size.  */
1875  struct type *builtin_int0;
1876  struct type *builtin_int8;
1877  struct type *builtin_uint8;
1878  struct type *builtin_int16;
1879  struct type *builtin_uint16;
1880  struct type *builtin_int24;
1881  struct type *builtin_uint24;
1882  struct type *builtin_int32;
1883  struct type *builtin_uint32;
1884  struct type *builtin_int64;
1885  struct type *builtin_uint64;
1886  struct type *builtin_int128;
1887  struct type *builtin_uint128;
1888
1889  /* Wide character types.  */
1890  struct type *builtin_char16;
1891  struct type *builtin_char32;
1892  struct type *builtin_wchar;
1893
1894  /* Pointer types.  */
1895
1896  /* * `pointer to data' type.  Some target platforms use an implicitly
1897     {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA.  */
1898  struct type *builtin_data_ptr;
1899
1900  /* * `pointer to function (returning void)' type.  Harvard
1901     architectures mean that ABI function and code pointers are not
1902     interconvertible.  Similarly, since ANSI, C standards have
1903     explicitly said that pointers to functions and pointers to data
1904     are not interconvertible --- that is, you can't cast a function
1905     pointer to void * and back, and expect to get the same value.
1906     However, all function pointer types are interconvertible, so void
1907     (*) () can server as a generic function pointer.  */
1908
1909  struct type *builtin_func_ptr;
1910
1911  /* * `function returning pointer to function (returning void)' type.
1912     The final void return type is not significant for it.  */
1913
1914  struct type *builtin_func_func;
1915
1916  /* Special-purpose types.  */
1917
1918  /* * This type is used to represent a GDB internal function.  */
1919
1920  struct type *internal_fn;
1921
1922  /* * This type is used to represent an xmethod.  */
1923  struct type *xmethod;
1924};
1925
1926/* * Return the type table for the specified architecture.  */
1927
1928extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1929
1930/* * Per-objfile types used by symbol readers.  */
1931
1932struct objfile_type
1933{
1934  /* Basic types based on the objfile architecture.  */
1935  struct type *builtin_void;
1936  struct type *builtin_char;
1937  struct type *builtin_short;
1938  struct type *builtin_int;
1939  struct type *builtin_long;
1940  struct type *builtin_long_long;
1941  struct type *builtin_signed_char;
1942  struct type *builtin_unsigned_char;
1943  struct type *builtin_unsigned_short;
1944  struct type *builtin_unsigned_int;
1945  struct type *builtin_unsigned_long;
1946  struct type *builtin_unsigned_long_long;
1947  struct type *builtin_half;
1948  struct type *builtin_float;
1949  struct type *builtin_double;
1950  struct type *builtin_long_double;
1951
1952  /* * This type is used to represent symbol addresses.  */
1953  struct type *builtin_core_addr;
1954
1955  /* * This type represents a type that was unrecognized in symbol
1956     read-in.  */
1957  struct type *builtin_error;
1958
1959  /* * Types used for symbols with no debug information.  */
1960  struct type *nodebug_text_symbol;
1961  struct type *nodebug_text_gnu_ifunc_symbol;
1962  struct type *nodebug_got_plt_symbol;
1963  struct type *nodebug_data_symbol;
1964  struct type *nodebug_unknown_symbol;
1965  struct type *nodebug_tls_symbol;
1966};
1967
1968/* * Return the type table for the specified objfile.  */
1969
1970extern const struct objfile_type *objfile_type (struct objfile *objfile);
1971
1972/* Explicit floating-point formats.  See "floatformat.h".  */
1973extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1974extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1975extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1976extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1977extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1978extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1979extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1980extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1981extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1982extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1983extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1984extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1985extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
1986
1987/* Allocate space for storing data associated with a particular
1988   type.  We ensure that the space is allocated using the same
1989   mechanism that was used to allocate the space for the type
1990   structure itself.  I.e.  if the type is on an objfile's
1991   objfile_obstack, then the space for data associated with that type
1992   will also be allocated on the objfile_obstack.  If the type is
1993   associated with a gdbarch, then the space for data associated with that
1994   type will also be allocated on the gdbarch_obstack.
1995
1996   If a type is not associated with neither an objfile or a gdbarch then
1997   you should not use this macro to allocate space for data, instead you
1998   should call xmalloc directly, and ensure the memory is correctly freed
1999   when it is no longer needed.  */
2000
2001#define TYPE_ALLOC(t,size)                                              \
2002  (obstack_alloc ((TYPE_OBJFILE_OWNED (t)                               \
2003                   ? &TYPE_OBJFILE (t)->objfile_obstack                 \
2004                   : gdbarch_obstack (TYPE_OWNER (t).gdbarch)),         \
2005                  size))
2006
2007
2008/* See comment on TYPE_ALLOC.  */
2009
2010#define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2011
2012/* Use alloc_type to allocate a type owned by an objfile.  Use
2013   alloc_type_arch to allocate a type owned by an architecture.  Use
2014   alloc_type_copy to allocate a type with the same owner as a
2015   pre-existing template type, no matter whether objfile or
2016   gdbarch.  */
2017extern struct type *alloc_type (struct objfile *);
2018extern struct type *alloc_type_arch (struct gdbarch *);
2019extern struct type *alloc_type_copy (const struct type *);
2020
2021/* * Return the type's architecture.  For types owned by an
2022   architecture, that architecture is returned.  For types owned by an
2023   objfile, that objfile's architecture is returned.  */
2024
2025extern struct gdbarch *get_type_arch (const struct type *);
2026
2027/* * This returns the target type (or NULL) of TYPE, also skipping
2028   past typedefs.  */
2029
2030extern struct type *get_target_type (struct type *type);
2031
2032/* Return the equivalent of TYPE_LENGTH, but in number of target
2033   addressable memory units of the associated gdbarch instead of bytes.  */
2034
2035extern unsigned int type_length_units (struct type *type);
2036
2037/* * Helper function to construct objfile-owned types.  */
2038
2039extern struct type *init_type (struct objfile *, enum type_code, int,
2040			       const char *);
2041extern struct type *init_integer_type (struct objfile *, int, int,
2042				       const char *);
2043extern struct type *init_character_type (struct objfile *, int, int,
2044					 const char *);
2045extern struct type *init_boolean_type (struct objfile *, int, int,
2046				       const char *);
2047extern struct type *init_float_type (struct objfile *, int, const char *,
2048				     const struct floatformat **,
2049				     enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2050extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2051extern struct type *init_complex_type (const char *, struct type *);
2052extern struct type *init_pointer_type (struct objfile *, int, const char *,
2053				       struct type *);
2054
2055/* Helper functions to construct architecture-owned types.  */
2056extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2057			       const char *);
2058extern struct type *arch_integer_type (struct gdbarch *, int, int,
2059				       const char *);
2060extern struct type *arch_character_type (struct gdbarch *, int, int,
2061					 const char *);
2062extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2063				       const char *);
2064extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2065				     const struct floatformat **);
2066extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2067extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2068				       struct type *);
2069
2070/* Helper functions to construct a struct or record type.  An
2071   initially empty type is created using arch_composite_type().
2072   Fields are then added using append_composite_type_field*().  A union
2073   type has its size set to the largest field.  A struct type has each
2074   field packed against the previous.  */
2075
2076extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2077					 const char *name, enum type_code code);
2078extern void append_composite_type_field (struct type *t, const char *name,
2079					 struct type *field);
2080extern void append_composite_type_field_aligned (struct type *t,
2081						 const char *name,
2082						 struct type *field,
2083						 int alignment);
2084struct field *append_composite_type_field_raw (struct type *t, const char *name,
2085					       struct type *field);
2086
2087/* Helper functions to construct a bit flags type.  An initially empty
2088   type is created using arch_flag_type().  Flags are then added using
2089   append_flag_type_field() and append_flag_type_flag().  */
2090extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2091				     const char *name, int bit);
2092extern void append_flags_type_field (struct type *type,
2093				     int start_bitpos, int nr_bits,
2094				     struct type *field_type, const char *name);
2095extern void append_flags_type_flag (struct type *type, int bitpos,
2096				    const char *name);
2097
2098extern void make_vector_type (struct type *array_type);
2099extern struct type *init_vector_type (struct type *elt_type, int n);
2100
2101extern struct type *lookup_reference_type (struct type *, enum type_code);
2102extern struct type *lookup_lvalue_reference_type (struct type *);
2103extern struct type *lookup_rvalue_reference_type (struct type *);
2104
2105
2106extern struct type *make_reference_type (struct type *, struct type **,
2107                                         enum type_code);
2108
2109extern struct type *make_cv_type (int, int, struct type *, struct type **);
2110
2111extern struct type *make_restrict_type (struct type *);
2112
2113extern struct type *make_unqualified_type (struct type *);
2114
2115extern struct type *make_atomic_type (struct type *);
2116
2117extern void replace_type (struct type *, struct type *);
2118
2119extern int address_space_name_to_int (struct gdbarch *, const char *);
2120
2121extern const char *address_space_int_to_name (struct gdbarch *, int);
2122
2123extern struct type *make_type_with_address_space (struct type *type,
2124						  int space_identifier);
2125
2126extern struct type *lookup_memberptr_type (struct type *, struct type *);
2127
2128extern struct type *lookup_methodptr_type (struct type *);
2129
2130extern void smash_to_method_type (struct type *type, struct type *self_type,
2131				  struct type *to_type, struct field *args,
2132				  int nargs, int varargs);
2133
2134extern void smash_to_memberptr_type (struct type *, struct type *,
2135				     struct type *);
2136
2137extern void smash_to_methodptr_type (struct type *, struct type *);
2138
2139extern struct type *allocate_stub_method (struct type *);
2140
2141extern const char *type_name_or_error (struct type *type);
2142
2143struct struct_elt
2144{
2145  /* The field of the element, or NULL if no element was found.  */
2146  struct field *field;
2147
2148  /* The bit offset of the element in the parent structure.  */
2149  LONGEST offset;
2150};
2151
2152/* Given a type TYPE, lookup the field and offset of the component named
2153   NAME.
2154
2155   TYPE can be either a struct or union, or a pointer or reference to
2156   a struct or union.  If it is a pointer or reference, its target
2157   type is automatically used.  Thus '.' and '->' are interchangable,
2158   as specified for the definitions of the expression element types
2159   STRUCTOP_STRUCT and STRUCTOP_PTR.
2160
2161   If NOERR is nonzero, the returned structure will have field set to
2162   NULL if there is no component named NAME.
2163
2164   If the component NAME is a field in an anonymous substructure of
2165   TYPE, the returned offset is a "global" offset relative to TYPE
2166   rather than an offset within the substructure.  */
2167
2168extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2169
2170/* Given a type TYPE, lookup the type of the component named NAME.
2171
2172   TYPE can be either a struct or union, or a pointer or reference to
2173   a struct or union.  If it is a pointer or reference, its target
2174   type is automatically used.  Thus '.' and '->' are interchangable,
2175   as specified for the definitions of the expression element types
2176   STRUCTOP_STRUCT and STRUCTOP_PTR.
2177
2178   If NOERR is nonzero, return NULL if there is no component named
2179   NAME.  */
2180
2181extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2182
2183extern struct type *make_pointer_type (struct type *, struct type **);
2184
2185extern struct type *lookup_pointer_type (struct type *);
2186
2187extern struct type *make_function_type (struct type *, struct type **);
2188
2189extern struct type *lookup_function_type (struct type *);
2190
2191extern struct type *lookup_function_type_with_arguments (struct type *,
2192							 int,
2193							 struct type **);
2194
2195extern struct type *create_static_range_type (struct type *, struct type *,
2196					      LONGEST, LONGEST);
2197
2198
2199extern struct type *create_array_type_with_stride
2200  (struct type *, struct type *, struct type *,
2201   struct dynamic_prop *, unsigned int);
2202
2203extern struct type *create_range_type (struct type *, struct type *,
2204				       const struct dynamic_prop *,
2205				       const struct dynamic_prop *,
2206				       LONGEST);
2207
2208/* Like CREATE_RANGE_TYPE but also sets up a stride.  When BYTE_STRIDE_P
2209   is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2210   stride.  */
2211
2212extern struct type * create_range_type_with_stride
2213  (struct type *result_type, struct type *index_type,
2214   const struct dynamic_prop *low_bound,
2215   const struct dynamic_prop *high_bound, LONGEST bias,
2216   const struct dynamic_prop *stride, bool byte_stride_p);
2217
2218extern struct type *create_array_type (struct type *, struct type *,
2219				       struct type *);
2220
2221extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2222
2223extern struct type *create_string_type (struct type *, struct type *,
2224					struct type *);
2225extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2226
2227extern struct type *create_set_type (struct type *, struct type *);
2228
2229extern struct type *lookup_unsigned_typename (const struct language_defn *,
2230					      const char *);
2231
2232extern struct type *lookup_signed_typename (const struct language_defn *,
2233					    const char *);
2234
2235extern void get_unsigned_type_max (struct type *, ULONGEST *);
2236
2237extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2238
2239/* * Resolve all dynamic values of a type e.g. array bounds to static values.
2240   ADDR specifies the location of the variable the type is bound to.
2241   If TYPE has no dynamic properties return TYPE; otherwise a new type with
2242   static properties is returned.  */
2243extern struct type *resolve_dynamic_type
2244  (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2245   CORE_ADDR addr);
2246
2247/* * Predicate if the type has dynamic values, which are not resolved yet.  */
2248extern int is_dynamic_type (struct type *type);
2249
2250extern struct type *check_typedef (struct type *);
2251
2252extern void check_stub_method_group (struct type *, int);
2253
2254extern char *gdb_mangle_name (struct type *, int, int);
2255
2256extern struct type *lookup_typename (const struct language_defn *,
2257				     const char *, const struct block *, int);
2258
2259extern struct type *lookup_template_type (const char *, struct type *,
2260					  const struct block *);
2261
2262extern int get_vptr_fieldno (struct type *, struct type **);
2263
2264extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2265
2266extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2267			     LONGEST *high_bound);
2268
2269extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2270
2271extern int class_types_same_p (const struct type *, const struct type *);
2272
2273extern int is_ancestor (struct type *, struct type *);
2274
2275extern int is_public_ancestor (struct type *, struct type *);
2276
2277extern int is_unique_ancestor (struct type *, struct value *);
2278
2279/* Overload resolution */
2280
2281/* * Badness if parameter list length doesn't match arg list length.  */
2282extern const struct rank LENGTH_MISMATCH_BADNESS;
2283
2284/* * Dummy badness value for nonexistent parameter positions.  */
2285extern const struct rank TOO_FEW_PARAMS_BADNESS;
2286/* * Badness if no conversion among types.  */
2287extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2288
2289/* * Badness of an exact match.  */
2290extern const struct rank EXACT_MATCH_BADNESS;
2291
2292/* * Badness of integral promotion.  */
2293extern const struct rank INTEGER_PROMOTION_BADNESS;
2294/* * Badness of floating promotion.  */
2295extern const struct rank FLOAT_PROMOTION_BADNESS;
2296/* * Badness of converting a derived class pointer
2297   to a base class pointer.  */
2298extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2299/* * Badness of integral conversion.  */
2300extern const struct rank INTEGER_CONVERSION_BADNESS;
2301/* * Badness of floating conversion.  */
2302extern const struct rank FLOAT_CONVERSION_BADNESS;
2303/* * Badness of integer<->floating conversions.  */
2304extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2305/* * Badness of conversion of pointer to void pointer.  */
2306extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2307/* * Badness of conversion to boolean.  */
2308extern const struct rank BOOL_CONVERSION_BADNESS;
2309/* * Badness of converting derived to base class.  */
2310extern const struct rank BASE_CONVERSION_BADNESS;
2311/* * Badness of converting from non-reference to reference.  Subrank
2312   is the type of reference conversion being done.  */
2313extern const struct rank REFERENCE_CONVERSION_BADNESS;
2314extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2315/* * Conversion to rvalue reference.  */
2316#define REFERENCE_CONVERSION_RVALUE 1
2317/* * Conversion to const lvalue reference.  */
2318#define REFERENCE_CONVERSION_CONST_LVALUE 2
2319
2320/* * Badness of converting integer 0 to NULL pointer.  */
2321extern const struct rank NULL_POINTER_CONVERSION;
2322/* * Badness of cv-conversion.  Subrank is a flag describing the conversions
2323   being done.  */
2324extern const struct rank CV_CONVERSION_BADNESS;
2325#define CV_CONVERSION_CONST 1
2326#define CV_CONVERSION_VOLATILE 2
2327
2328/* Non-standard conversions allowed by the debugger */
2329
2330/* * Converting a pointer to an int is usually OK.  */
2331extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2332
2333/* * Badness of converting a (non-zero) integer constant
2334   to a pointer.  */
2335extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2336
2337extern struct rank sum_ranks (struct rank a, struct rank b);
2338extern int compare_ranks (struct rank a, struct rank b);
2339
2340extern int compare_badness (const badness_vector &,
2341			    const badness_vector &);
2342
2343extern badness_vector rank_function (gdb::array_view<type *> parms,
2344				     gdb::array_view<value *> args);
2345
2346extern struct rank rank_one_type (struct type *, struct type *,
2347				  struct value *);
2348
2349extern void recursive_dump_type (struct type *, int);
2350
2351extern int field_is_static (struct field *);
2352
2353/* printcmd.c */
2354
2355extern void print_scalar_formatted (const gdb_byte *, struct type *,
2356				    const struct value_print_options *,
2357				    int, struct ui_file *);
2358
2359extern int can_dereference (struct type *);
2360
2361extern int is_integral_type (struct type *);
2362
2363extern int is_floating_type (struct type *);
2364
2365extern int is_scalar_type (struct type *type);
2366
2367extern int is_scalar_type_recursive (struct type *);
2368
2369extern int class_or_union_p (const struct type *);
2370
2371extern void maintenance_print_type (const char *, int);
2372
2373extern htab_t create_copied_types_hash (struct objfile *objfile);
2374
2375extern struct type *copy_type_recursive (struct objfile *objfile,
2376					 struct type *type,
2377					 htab_t copied_types);
2378
2379extern struct type *copy_type (const struct type *type);
2380
2381extern bool types_equal (struct type *, struct type *);
2382
2383extern bool types_deeply_equal (struct type *, struct type *);
2384
2385extern int type_not_allocated (const struct type *type);
2386
2387extern int type_not_associated (const struct type *type);
2388
2389/* * When the type includes explicit byte ordering, return that.
2390   Otherwise, the byte ordering from gdbarch_byte_order for
2391   get_type_arch is returned.  */
2392
2393extern enum bfd_endian type_byte_order (const struct type *type);
2394
2395/* A flag to enable printing of debugging information of C++
2396   overloading.  */
2397
2398extern unsigned int overload_debug;
2399
2400#endif /* GDBTYPES_H */
2401