1
2/* Internal type definitions for GDB.
3
4   Copyright (C) 1992-2023 Free Software Foundation, Inc.
5
6   Contributed by Cygnus Support, using pieces from other GDB modules.
7
8   This file is part of GDB.
9
10   This program is free software; you can redistribute it and/or modify
11   it under the terms of the GNU General Public License as published by
12   the Free Software Foundation; either version 3 of the License, or
13   (at your option) any later version.
14
15   This program is distributed in the hope that it will be useful,
16   but WITHOUT ANY WARRANTY; without even the implied warranty of
17   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18   GNU General Public License for more details.
19
20   You should have received a copy of the GNU General Public License
21   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22
23#if !defined (GDBTYPES_H)
24#define GDBTYPES_H 1
25
26/* * \page gdbtypes GDB Types
27
28   GDB represents all the different kinds of types in programming
29   languages using a common representation defined in gdbtypes.h.
30
31   The main data structure is main_type; it consists of a code (such
32   as #TYPE_CODE_ENUM for enumeration types), a number of
33   generally-useful fields such as the printable name, and finally a
34   field main_type::type_specific that is a union of info specific to
35   particular languages or other special cases (such as calling
36   convention).
37
38   The available type codes are defined in enum #type_code.  The enum
39   includes codes both for types that are common across a variety
40   of languages, and for types that are language-specific.
41
42   Most accesses to type fields go through macros such as
43   #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n).  These are
44   written such that they can be used as both rvalues and lvalues.
45 */
46
47#include "hashtab.h"
48#include "gdbsupport/array-view.h"
49#include "gdbsupport/gdb-hashtab.h"
50#include "gdbsupport/gdb_optional.h"
51#include "gdbsupport/offset-type.h"
52#include "gdbsupport/enum-flags.h"
53#include "gdbsupport/underlying.h"
54#include "gdbsupport/print-utils.h"
55#include "gdbsupport/function-view.h"
56#include "dwarf2.h"
57#include "gdbsupport/gdb_obstack.h"
58#include "gmp-utils.h"
59#include "frame-info.h"
60
61/* Forward declarations for prototypes.  */
62struct field;
63struct block;
64struct value_print_options;
65struct language_defn;
66struct dwarf2_per_cu_data;
67struct dwarf2_per_objfile;
68
69/* These declarations are DWARF-specific as some of the gdbtypes.h data types
70   are already DWARF-specific.  */
71
72/* * Offset relative to the start of its containing CU (compilation
73   unit).  */
74DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
75
76/* * Offset relative to the start of its .debug_info or .debug_types
77   section.  */
78DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
79
80static inline char *
81sect_offset_str (sect_offset offset)
82{
83  return hex_string (to_underlying (offset));
84}
85
86/* Some macros for char-based bitfields.  */
87
88#define B_SET(a,x)	((a)[(x)>>3] |= (1 << ((x)&7)))
89#define B_CLR(a,x)	((a)[(x)>>3] &= ~(1 << ((x)&7)))
90#define B_TST(a,x)	((a)[(x)>>3] & (1 << ((x)&7)))
91#define B_TYPE		unsigned char
92#define	B_BYTES(x)	( 1 + ((x)>>3) )
93#define	B_CLRALL(a,x)	memset ((a), 0, B_BYTES(x))
94
95/* * Different kinds of data types are distinguished by the `code'
96   field.  */
97
98enum type_code
99  {
100    TYPE_CODE_UNDEF = 0,	/**< Not used; catches errors */
101
102#define OP(X) X,
103#include "type-codes.def"
104#undef OP
105
106  };
107
108/* * Some bits for the type's instance_flags word.  See the macros
109   below for documentation on each bit.  */
110
111enum type_instance_flag_value : unsigned
112{
113  TYPE_INSTANCE_FLAG_CONST = (1 << 0),
114  TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
115  TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
116  TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
117  TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
118  TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
119  TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
120  TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
121  TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
122};
123
124DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
125
126/* * Not textual.  By default, GDB treats all single byte integers as
127   characters (or elements of strings) unless this flag is set.  */
128
129#define TYPE_NOTTEXT(t)	(((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_NOTTEXT)
130
131/* * Constant type.  If this is set, the corresponding type has a
132   const modifier.  */
133
134#define TYPE_CONST(t) ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CONST) != 0)
135
136/* * Volatile type.  If this is set, the corresponding type has a
137   volatile modifier.  */
138
139#define TYPE_VOLATILE(t) \
140  ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
141
142/* * Restrict type.  If this is set, the corresponding type has a
143   restrict modifier.  */
144
145#define TYPE_RESTRICT(t) \
146  ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
147
148/* * Atomic type.  If this is set, the corresponding type has an
149   _Atomic modifier.  */
150
151#define TYPE_ATOMIC(t) \
152  ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
153
154/* * True if this type represents either an lvalue or lvalue reference type.  */
155
156#define TYPE_IS_REFERENCE(t) \
157  ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
158
159/* * True if this type is allocatable.  */
160#define TYPE_IS_ALLOCATABLE(t) \
161  ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
162
163/* * True if this type has variant parts.  */
164#define TYPE_HAS_VARIANT_PARTS(t) \
165  ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
166
167/* * True if this type has a dynamic length.  */
168#define TYPE_HAS_DYNAMIC_LENGTH(t) \
169  ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
170
171/* * Instruction-space delimited type.  This is for Harvard architectures
172   which have separate instruction and data address spaces (and perhaps
173   others).
174
175   GDB usually defines a flat address space that is a superset of the
176   architecture's two (or more) address spaces, but this is an extension
177   of the architecture's model.
178
179   If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
180   resides in instruction memory, even if its address (in the extended
181   flat address space) does not reflect this.
182
183   Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
184   corresponding type resides in the data memory space, even if
185   this is not indicated by its (flat address space) address.
186
187   If neither flag is set, the default space for functions / methods
188   is instruction space, and for data objects is data memory.  */
189
190#define TYPE_CODE_SPACE(t) \
191  ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
192
193#define TYPE_DATA_SPACE(t) \
194  ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
195
196/* * Address class flags.  Some environments provide for pointers
197   whose size is different from that of a normal pointer or address
198   types where the bits are interpreted differently than normal
199   addresses.  The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
200   target specific ways to represent these different types of address
201   classes.  */
202
203#define TYPE_ADDRESS_CLASS_1(t) (((t)->instance_flags ()) \
204				 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
205#define TYPE_ADDRESS_CLASS_2(t) (((t)->instance_flags ()) \
206				 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
207#define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
208  (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
209#define TYPE_ADDRESS_CLASS_ALL(t) (((t)->instance_flags ()) \
210				   & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
211
212/* * Information about a single discriminant.  */
213
214struct discriminant_range
215{
216  /* * The range of values for the variant.  This is an inclusive
217     range.  */
218  ULONGEST low, high;
219
220  /* * Return true if VALUE is contained in this range.  IS_UNSIGNED
221     is true if this should be an unsigned comparison; false for
222     signed.  */
223  bool contains (ULONGEST value, bool is_unsigned) const
224  {
225    if (is_unsigned)
226      return value >= low && value <= high;
227    LONGEST valuel = (LONGEST) value;
228    return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
229  }
230};
231
232struct variant_part;
233
234/* * A single variant.  A variant has a list of discriminant values.
235   When the discriminator matches one of these, the variant is
236   enabled.  Each variant controls zero or more fields; and may also
237   control other variant parts as well.  This struct corresponds to
238   DW_TAG_variant in DWARF.  */
239
240struct variant : allocate_on_obstack
241{
242  /* * The discriminant ranges for this variant.  */
243  gdb::array_view<discriminant_range> discriminants;
244
245  /* * The fields controlled by this variant.  This is inclusive on
246     the low end and exclusive on the high end.  A variant may not
247     control any fields, in which case the two values will be equal.
248     These are indexes into the type's array of fields.  */
249  int first_field;
250  int last_field;
251
252  /* * Variant parts controlled by this variant.  */
253  gdb::array_view<variant_part> parts;
254
255  /* * Return true if this is the default variant.  The default
256     variant can be recognized because it has no associated
257     discriminants.  */
258  bool is_default () const
259  {
260    return discriminants.empty ();
261  }
262
263  /* * Return true if this variant matches VALUE.  IS_UNSIGNED is true
264     if this should be an unsigned comparison; false for signed.  */
265  bool matches (ULONGEST value, bool is_unsigned) const;
266};
267
268/* * A variant part.  Each variant part has an optional discriminant
269   and holds an array of variants.  This struct corresponds to
270   DW_TAG_variant_part in DWARF.  */
271
272struct variant_part : allocate_on_obstack
273{
274  /* * The index of the discriminant field in the outer type.  This is
275     an index into the type's array of fields.  If this is -1, there
276     is no discriminant, and only the default variant can be
277     considered to be selected.  */
278  int discriminant_index;
279
280  /* * True if this discriminant is unsigned; false if signed.  This
281     comes from the type of the discriminant.  */
282  bool is_unsigned;
283
284  /* * The variants that are controlled by this variant part.  Note
285     that these will always be sorted by field number.  */
286  gdb::array_view<variant> variants;
287};
288
289
290enum dynamic_prop_kind
291{
292  PROP_UNDEFINED, /* Not defined.  */
293  PROP_CONST,     /* Constant.  */
294  PROP_ADDR_OFFSET, /* Address offset.  */
295  PROP_LOCEXPR,   /* Location expression.  */
296  PROP_LOCLIST,    /* Location list.  */
297  PROP_VARIANT_PARTS, /* Variant parts.  */
298  PROP_TYPE,	   /* Type.  */
299  PROP_VARIABLE_NAME, /* Variable name.  */
300};
301
302union dynamic_prop_data
303{
304  /* Storage for constant property.  */
305
306  LONGEST const_val;
307
308  /* Storage for dynamic property.  */
309
310  void *baton;
311
312  /* Storage of variant parts for a type.  A type with variant parts
313     has all its fields "linearized" -- stored in a single field
314     array, just as if they had all been declared that way.  The
315     variant parts are attached via a dynamic property, and then are
316     used to control which fields end up in the final type during
317     dynamic type resolution.  */
318
319  const gdb::array_view<variant_part> *variant_parts;
320
321  /* Once a variant type is resolved, we may want to be able to go
322     from the resolved type to the original type.  In this case we
323     rewrite the property's kind and set this field.  */
324
325  struct type *original_type;
326
327  /* Name of a variable to look up; the variable holds the value of
328     this property.  */
329
330  const char *variable_name;
331};
332
333/* * Used to store a dynamic property.  */
334
335struct dynamic_prop
336{
337  dynamic_prop_kind kind () const
338  {
339    return m_kind;
340  }
341
342  void set_undefined ()
343  {
344    m_kind = PROP_UNDEFINED;
345  }
346
347  LONGEST const_val () const
348  {
349    gdb_assert (m_kind == PROP_CONST);
350
351    return m_data.const_val;
352  }
353
354  void set_const_val (LONGEST const_val)
355  {
356    m_kind = PROP_CONST;
357    m_data.const_val = const_val;
358  }
359
360  void *baton () const
361  {
362    gdb_assert (m_kind == PROP_LOCEXPR
363		|| m_kind == PROP_LOCLIST
364		|| m_kind == PROP_ADDR_OFFSET);
365
366    return m_data.baton;
367  }
368
369  void set_locexpr (void *baton)
370  {
371    m_kind = PROP_LOCEXPR;
372    m_data.baton = baton;
373  }
374
375  void set_loclist (void *baton)
376  {
377    m_kind = PROP_LOCLIST;
378    m_data.baton = baton;
379  }
380
381  void set_addr_offset (void *baton)
382  {
383    m_kind = PROP_ADDR_OFFSET;
384    m_data.baton = baton;
385  }
386
387  const gdb::array_view<variant_part> *variant_parts () const
388  {
389    gdb_assert (m_kind == PROP_VARIANT_PARTS);
390
391    return m_data.variant_parts;
392  }
393
394  void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
395  {
396    m_kind = PROP_VARIANT_PARTS;
397    m_data.variant_parts = variant_parts;
398  }
399
400  struct type *original_type () const
401  {
402    gdb_assert (m_kind == PROP_TYPE);
403
404    return m_data.original_type;
405  }
406
407  void set_original_type (struct type *original_type)
408  {
409    m_kind = PROP_TYPE;
410    m_data.original_type = original_type;
411  }
412
413  /* Return the name of the variable that holds this property's value.
414     Only valid for PROP_VARIABLE_NAME.  */
415  const char *variable_name () const
416  {
417    gdb_assert (m_kind == PROP_VARIABLE_NAME);
418    return m_data.variable_name;
419  }
420
421  /* Set the name of the variable that holds this property's value,
422     and set this property to be of kind PROP_VARIABLE_NAME.  */
423  void set_variable_name (const char *name)
424  {
425    m_kind = PROP_VARIABLE_NAME;
426    m_data.variable_name = name;
427  }
428
429  /* Determine which field of the union dynamic_prop.data is used.  */
430  enum dynamic_prop_kind m_kind;
431
432  /* Storage for dynamic or static value.  */
433  union dynamic_prop_data m_data;
434};
435
436/* Compare two dynamic_prop objects for equality.  dynamic_prop
437   instances are equal iff they have the same type and storage.  */
438extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
439
440/* Compare two dynamic_prop objects for inequality.  */
441static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
442{
443  return !(l == r);
444}
445
446/* * Define a type's dynamic property node kind.  */
447enum dynamic_prop_node_kind
448{
449  /* A property providing a type's data location.
450     Evaluating this field yields to the location of an object's data.  */
451  DYN_PROP_DATA_LOCATION,
452
453  /* A property representing DW_AT_allocated.  The presence of this attribute
454     indicates that the object of the type can be allocated/deallocated.  */
455  DYN_PROP_ALLOCATED,
456
457  /* A property representing DW_AT_associated.  The presence of this attribute
458     indicated that the object of the type can be associated.  */
459  DYN_PROP_ASSOCIATED,
460
461  /* A property providing an array's byte stride.  */
462  DYN_PROP_BYTE_STRIDE,
463
464  /* A property holding variant parts.  */
465  DYN_PROP_VARIANT_PARTS,
466
467  /* A property representing DW_AT_rank. The presence of this attribute
468     indicates that the object is of assumed rank array type.  */
469  DYN_PROP_RANK,
470
471  /* A property holding the size of the type.  */
472  DYN_PROP_BYTE_SIZE,
473};
474
475/* * List for dynamic type attributes.  */
476struct dynamic_prop_list
477{
478  /* The kind of dynamic prop in this node.  */
479  enum dynamic_prop_node_kind prop_kind;
480
481  /* The dynamic property itself.  */
482  struct dynamic_prop prop;
483
484  /* A pointer to the next dynamic property.  */
485  struct dynamic_prop_list *next;
486};
487
488/* * Determine which field of the union main_type.fields[x].loc is
489   used.  */
490
491enum field_loc_kind
492  {
493    FIELD_LOC_KIND_BITPOS,	/**< bitpos */
494    FIELD_LOC_KIND_ENUMVAL,	/**< enumval */
495    FIELD_LOC_KIND_PHYSADDR,	/**< physaddr */
496    FIELD_LOC_KIND_PHYSNAME,	/**< physname */
497    FIELD_LOC_KIND_DWARF_BLOCK	/**< dwarf_block */
498  };
499
500/* * A discriminant to determine which field in the
501   main_type.type_specific union is being used, if any.
502
503   For types such as TYPE_CODE_FLT, the use of this
504   discriminant is really redundant, as we know from the type code
505   which field is going to be used.  As such, it would be possible to
506   reduce the size of this enum in order to save a bit or two for
507   other fields of struct main_type.  But, since we still have extra
508   room , and for the sake of clarity and consistency, we treat all fields
509   of the union the same way.  */
510
511enum type_specific_kind
512{
513  TYPE_SPECIFIC_NONE,
514  TYPE_SPECIFIC_CPLUS_STUFF,
515  TYPE_SPECIFIC_GNAT_STUFF,
516  TYPE_SPECIFIC_FLOATFORMAT,
517  /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD.  */
518  TYPE_SPECIFIC_FUNC,
519  TYPE_SPECIFIC_SELF_TYPE,
520  TYPE_SPECIFIC_INT,
521  TYPE_SPECIFIC_FIXED_POINT,
522};
523
524union type_owner
525{
526  struct objfile *objfile;
527  struct gdbarch *gdbarch;
528};
529
530union field_location
531{
532  /* * Position of this field, counting in bits from start of
533     containing structure.  For big-endian targets, it is the bit
534     offset to the MSB.  For little-endian targets, it is the bit
535     offset to the LSB.  */
536
537  LONGEST bitpos;
538
539  /* * Enum value.  */
540  LONGEST enumval;
541
542  /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
543     physaddr is the location (in the target) of the static
544     field.  Otherwise, physname is the mangled label of the
545     static field.  */
546
547  CORE_ADDR physaddr;
548  const char *physname;
549
550  /* * The field location can be computed by evaluating the
551     following DWARF block.  Its DATA is allocated on
552     objfile_obstack - no CU load is needed to access it.  */
553
554  struct dwarf2_locexpr_baton *dwarf_block;
555};
556
557struct field
558{
559  struct type *type () const
560  {
561    return this->m_type;
562  }
563
564  void set_type (struct type *type)
565  {
566    this->m_type = type;
567  }
568
569  const char *name () const
570  {
571    return m_name;
572  }
573
574  void set_name (const char *name)
575  {
576    m_name = name;
577  }
578
579  /* Location getters / setters.  */
580
581  field_loc_kind loc_kind () const
582  {
583    return m_loc_kind;
584  }
585
586  LONGEST loc_bitpos () const
587  {
588    gdb_assert (m_loc_kind == FIELD_LOC_KIND_BITPOS);
589    return m_loc.bitpos;
590  }
591
592  void set_loc_bitpos (LONGEST bitpos)
593  {
594    m_loc_kind = FIELD_LOC_KIND_BITPOS;
595    m_loc.bitpos = bitpos;
596  }
597
598  LONGEST loc_enumval () const
599  {
600    gdb_assert (m_loc_kind == FIELD_LOC_KIND_ENUMVAL);
601    return m_loc.enumval;
602  }
603
604  void set_loc_enumval (LONGEST enumval)
605  {
606    m_loc_kind = FIELD_LOC_KIND_ENUMVAL;
607    m_loc.enumval = enumval;
608  }
609
610  CORE_ADDR loc_physaddr () const
611  {
612    gdb_assert (m_loc_kind == FIELD_LOC_KIND_PHYSADDR);
613    return m_loc.physaddr;
614  }
615
616  void set_loc_physaddr (CORE_ADDR physaddr)
617  {
618    m_loc_kind = FIELD_LOC_KIND_PHYSADDR;
619    m_loc.physaddr = physaddr;
620  }
621
622  const char *loc_physname () const
623  {
624    gdb_assert (m_loc_kind == FIELD_LOC_KIND_PHYSNAME);
625    return m_loc.physname;
626  }
627
628  void set_loc_physname (const char *physname)
629  {
630    m_loc_kind = FIELD_LOC_KIND_PHYSNAME;
631    m_loc.physname = physname;
632  }
633
634  dwarf2_locexpr_baton *loc_dwarf_block () const
635  {
636    gdb_assert (m_loc_kind == FIELD_LOC_KIND_DWARF_BLOCK);
637    return m_loc.dwarf_block;
638  }
639
640  void set_loc_dwarf_block (dwarf2_locexpr_baton *dwarf_block)
641  {
642    m_loc_kind = FIELD_LOC_KIND_DWARF_BLOCK;
643    m_loc.dwarf_block = dwarf_block;
644  }
645
646  union field_location m_loc;
647
648  /* * For a function or member type, this is 1 if the argument is
649     marked artificial.  Artificial arguments should not be shown
650     to the user.  For TYPE_CODE_RANGE it is set if the specific
651     bound is not defined.  */
652
653  unsigned int artificial : 1;
654
655  /* * Discriminant for union field_location.  */
656
657  ENUM_BITFIELD(field_loc_kind) m_loc_kind : 3;
658
659  /* * Size of this field, in bits, or zero if not packed.
660     If non-zero in an array type, indicates the element size in
661     bits (used only in Ada at the moment).
662     For an unpacked field, the field's type's length
663     says how many bytes the field occupies.  */
664
665  unsigned int bitsize : 28;
666
667  /* * In a struct or union type, type of this field.
668     - In a function or member type, type of this argument.
669     - In an array type, the domain-type of the array.  */
670
671  struct type *m_type;
672
673  /* * Name of field, value or argument.
674     NULL for range bounds, array domains, and member function
675     arguments.  */
676
677  const char *m_name;
678};
679
680struct range_bounds
681{
682  ULONGEST bit_stride () const
683  {
684    if (this->flag_is_byte_stride)
685      return this->stride.const_val () * 8;
686    else
687      return this->stride.const_val ();
688  }
689
690  /* * Low bound of range.  */
691
692  struct dynamic_prop low;
693
694  /* * High bound of range.  */
695
696  struct dynamic_prop high;
697
698  /* The stride value for this range.  This can be stored in bits or bytes
699     based on the value of BYTE_STRIDE_P.  It is optional to have a stride
700     value, if this range has no stride value defined then this will be set
701     to the constant zero.  */
702
703  struct dynamic_prop stride;
704
705  /* * The bias.  Sometimes a range value is biased before storage.
706     The bias is added to the stored bits to form the true value.  */
707
708  LONGEST bias;
709
710  /* True if HIGH range bound contains the number of elements in the
711     subrange.  This affects how the final high bound is computed.  */
712
713  unsigned int flag_upper_bound_is_count : 1;
714
715  /* True if LOW or/and HIGH are resolved into a static bound from
716     a dynamic one.  */
717
718  unsigned int flag_bound_evaluated : 1;
719
720  /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits.  */
721
722  unsigned int flag_is_byte_stride : 1;
723};
724
725/* Compare two range_bounds objects for equality.  Simply does
726   memberwise comparison.  */
727extern bool operator== (const range_bounds &l, const range_bounds &r);
728
729/* Compare two range_bounds objects for inequality.  */
730static inline bool operator!= (const range_bounds &l, const range_bounds &r)
731{
732  return !(l == r);
733}
734
735union type_specific
736{
737  /* * CPLUS_STUFF is for TYPE_CODE_STRUCT.  It is initialized to
738     point to cplus_struct_default, a default static instance of a
739     struct cplus_struct_type.  */
740
741  struct cplus_struct_type *cplus_stuff;
742
743  /* * GNAT_STUFF is for types for which the GNAT Ada compiler
744     provides additional information.  */
745
746  struct gnat_aux_type *gnat_stuff;
747
748  /* * FLOATFORMAT is for TYPE_CODE_FLT.  It is a pointer to a
749     floatformat object that describes the floating-point value
750     that resides within the type.  */
751
752  const struct floatformat *floatformat;
753
754  /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types.  */
755
756  struct func_type *func_stuff;
757
758  /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
759     TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
760     is a member of.  */
761
762  struct type *self_type;
763
764  /* * For TYPE_CODE_FIXED_POINT types, the info necessary to decode
765     values of that type.  */
766  struct fixed_point_type_info *fixed_point_info;
767
768  /* * An integer-like scalar type may be stored in just part of its
769     enclosing storage bytes.  This structure describes this
770     situation.  */
771  struct
772  {
773    /* * The bit size of the integer.  This can be 0.  For integers
774       that fill their storage (the ordinary case), this field holds
775       the byte size times 8.  */
776    unsigned short bit_size;
777    /* * The bit offset of the integer.  This is ordinarily 0, and can
778       only be non-zero if the bit size is less than the storage
779       size.  */
780    unsigned short bit_offset;
781  } int_stuff;
782};
783
784/* * Main structure representing a type in GDB.
785
786   This structure is space-critical.  Its layout has been tweaked to
787   reduce the space used.  */
788
789struct main_type
790{
791  /* * Code for kind of type.  */
792
793  ENUM_BITFIELD(type_code) code : 8;
794
795  /* * Flags about this type.  These fields appear at this location
796     because they packs nicely here.  See the TYPE_* macros for
797     documentation about these fields.  */
798
799  unsigned int m_flag_unsigned : 1;
800  unsigned int m_flag_nosign : 1;
801  unsigned int m_flag_stub : 1;
802  unsigned int m_flag_target_stub : 1;
803  unsigned int m_flag_prototyped : 1;
804  unsigned int m_flag_varargs : 1;
805  unsigned int m_flag_vector : 1;
806  unsigned int m_flag_stub_supported : 1;
807  unsigned int m_flag_gnu_ifunc : 1;
808  unsigned int m_flag_fixed_instance : 1;
809  unsigned int m_flag_objfile_owned : 1;
810  unsigned int m_flag_endianity_not_default : 1;
811
812  /* * True if this type was declared with "class" rather than
813     "struct".  */
814
815  unsigned int m_flag_declared_class : 1;
816
817  /* * True if this is an enum type with disjoint values.  This
818     affects how the enum is printed.  */
819
820  unsigned int m_flag_flag_enum : 1;
821
822  /* * For TYPE_CODE_ARRAY, this is true if this type is part of a
823     multi-dimensional array.  Multi-dimensional arrays are
824     represented internally as arrays of arrays, and this flag lets
825     gdb distinguish between multiple dimensions and an ordinary array
826     of arrays.  The flag is set on each inner dimension, but not the
827     outermost dimension.  */
828
829  unsigned int m_multi_dimensional : 1;
830
831  /* * A discriminant telling us which field of the type_specific
832     union is being used for this type, if any.  */
833
834  ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
835
836  /* * Number of fields described for this type.  This field appears
837     at this location because it packs nicely here.  */
838
839  short nfields;
840
841  /* * Name of this type, or NULL if none.
842
843     This is used for printing only.  For looking up a name, look for
844     a symbol in the VAR_DOMAIN.  This is generally allocated in the
845     objfile's obstack.  However coffread.c uses malloc.  */
846
847  const char *name;
848
849  /* * Every type is now associated with a particular objfile, and the
850     type is allocated on the objfile_obstack for that objfile.  One
851     problem however, is that there are times when gdb allocates new
852     types while it is not in the process of reading symbols from a
853     particular objfile.  Fortunately, these happen when the type
854     being created is a derived type of an existing type, such as in
855     lookup_pointer_type().  So we can just allocate the new type
856     using the same objfile as the existing type, but to do this we
857     need a backpointer to the objfile from the existing type.  Yes
858     this is somewhat ugly, but without major overhaul of the internal
859     type system, it can't be avoided for now.  */
860
861  union type_owner m_owner;
862
863  /* * For a pointer type, describes the type of object pointed to.
864     - For an array type, describes the type of the elements.
865     - For a function or method type, describes the type of the return value.
866     - For a range type, describes the type of the full range.
867     - For a complex type, describes the type of each coordinate.
868     - For a special record or union type encoding a dynamic-sized type
869     in GNAT, a memoized pointer to a corresponding static version of
870     the type.
871     - Unused otherwise.  */
872
873  struct type *m_target_type;
874
875  /* * For structure and union types, a description of each field.
876     For set and pascal array types, there is one "field",
877     whose type is the domain type of the set or array.
878     For range types, there are two "fields",
879     the minimum and maximum values (both inclusive).
880     For enum types, each possible value is described by one "field".
881     For a function or method type, a "field" for each parameter.
882     For C++ classes, there is one field for each base class (if it is
883     a derived class) plus one field for each class data member.  Member
884     functions are recorded elsewhere.
885
886     Using a pointer to a separate array of fields
887     allows all types to have the same size, which is useful
888     because we can allocate the space for a type before
889     we know what to put in it.  */
890
891  union
892  {
893    struct field *fields;
894
895    /* * Union member used for range types.  */
896
897    struct range_bounds *bounds;
898
899    /* If this is a scalar type, then this is its corresponding
900       complex type.  */
901    struct type *complex_type;
902
903  } flds_bnds;
904
905  /* * Slot to point to additional language-specific fields of this
906     type.  */
907
908  union type_specific type_specific;
909
910  /* * Contains all dynamic type properties.  */
911  struct dynamic_prop_list *dyn_prop_list;
912};
913
914/* * Number of bits allocated for alignment.  */
915
916#define TYPE_ALIGN_BITS 8
917
918/* * A ``struct type'' describes a particular instance of a type, with
919   some particular qualification.  */
920
921struct type
922{
923  /* Get the type code of this type.
924
925     Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
926     type, you need to do `check_typedef (type)->code ()`.  */
927  type_code code () const
928  {
929    return this->main_type->code;
930  }
931
932  /* Set the type code of this type.  */
933  void set_code (type_code code)
934  {
935    this->main_type->code = code;
936  }
937
938  /* Get the name of this type.  */
939  const char *name () const
940  {
941    return this->main_type->name;
942  }
943
944  /* Set the name of this type.  */
945  void set_name (const char *name)
946  {
947    this->main_type->name = name;
948  }
949
950  /* Note that if thistype is a TYPEDEF type, you have to call check_typedef.
951     But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
952     so you only have to call check_typedef once.  Since allocate_value
953     calls check_typedef, VALUE_TYPE (X)->length () is safe.  */
954  ULONGEST length () const
955  {
956    return this->m_length;
957  }
958
959  void set_length (ULONGEST length)
960  {
961    this->m_length = length;
962  }
963
964  /* Get the number of fields of this type.  */
965  int num_fields () const
966  {
967    return this->main_type->nfields;
968  }
969
970  /* Set the number of fields of this type.  */
971  void set_num_fields (int num_fields)
972  {
973    this->main_type->nfields = num_fields;
974  }
975
976  /* Get the fields array of this type.  */
977  struct field *fields () const
978  {
979    return this->main_type->flds_bnds.fields;
980  }
981
982  /* Get the field at index IDX.  */
983  struct field &field (int idx) const
984  {
985    gdb_assert (idx >= 0 && idx < num_fields ());
986    return this->fields ()[idx];
987  }
988
989  /* Set the fields array of this type.  */
990  void set_fields (struct field *fields)
991  {
992    this->main_type->flds_bnds.fields = fields;
993  }
994
995  type *index_type () const
996  {
997    return this->field (0).type ();
998  }
999
1000  struct type *target_type () const
1001  {
1002    return this->main_type->m_target_type;
1003  }
1004
1005  void set_target_type (struct type *target_type)
1006  {
1007    this->main_type->m_target_type = target_type;
1008  }
1009
1010  void set_index_type (type *index_type)
1011  {
1012    this->field (0).set_type (index_type);
1013  }
1014
1015  /* Return the instance flags converted to the correct type.  */
1016  const type_instance_flags instance_flags () const
1017  {
1018    return (enum type_instance_flag_value) this->m_instance_flags;
1019  }
1020
1021  /* Set the instance flags.  */
1022  void set_instance_flags (type_instance_flags flags)
1023  {
1024    this->m_instance_flags = flags;
1025  }
1026
1027  /* Get the bounds bounds of this type.  The type must be a range type.  */
1028  range_bounds *bounds () const
1029  {
1030    switch (this->code ())
1031      {
1032      case TYPE_CODE_RANGE:
1033	return this->main_type->flds_bnds.bounds;
1034
1035      case TYPE_CODE_ARRAY:
1036      case TYPE_CODE_STRING:
1037	return this->index_type ()->bounds ();
1038
1039      default:
1040	gdb_assert_not_reached
1041	  ("type::bounds called on type with invalid code");
1042      }
1043  }
1044
1045  /* Set the bounds of this type.  The type must be a range type.  */
1046  void set_bounds (range_bounds *bounds)
1047  {
1048    gdb_assert (this->code () == TYPE_CODE_RANGE);
1049
1050    this->main_type->flds_bnds.bounds = bounds;
1051  }
1052
1053  ULONGEST bit_stride () const
1054  {
1055    if (this->code () == TYPE_CODE_ARRAY && this->field (0).bitsize != 0)
1056      return this->field (0).bitsize;
1057    return this->bounds ()->bit_stride ();
1058  }
1059
1060  /* Unsigned integer type.  If this is not set for a TYPE_CODE_INT,
1061     the type is signed (unless TYPE_NOSIGN is set).  */
1062
1063  bool is_unsigned () const
1064  {
1065    return this->main_type->m_flag_unsigned;
1066  }
1067
1068  void set_is_unsigned (bool is_unsigned)
1069  {
1070    this->main_type->m_flag_unsigned = is_unsigned;
1071  }
1072
1073  /* No sign for this type.  In C++, "char", "signed char", and
1074     "unsigned char" are distinct types; so we need an extra flag to
1075     indicate the absence of a sign!  */
1076
1077  bool has_no_signedness () const
1078  {
1079    return this->main_type->m_flag_nosign;
1080  }
1081
1082  void set_has_no_signedness (bool has_no_signedness)
1083  {
1084    this->main_type->m_flag_nosign = has_no_signedness;
1085  }
1086
1087  /* This appears in a type's flags word if it is a stub type (e.g.,
1088     if someone referenced a type that wasn't defined in a source file
1089     via (struct sir_not_appearing_in_this_film *)).  */
1090
1091  bool is_stub () const
1092  {
1093    return this->main_type->m_flag_stub;
1094  }
1095
1096  void set_is_stub (bool is_stub)
1097  {
1098    this->main_type->m_flag_stub = is_stub;
1099  }
1100
1101  /* The target type of this type is a stub type, and this type needs
1102     to be updated if it gets un-stubbed in check_typedef.  Used for
1103     arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1104     based on the TYPE_LENGTH of the target type.  Also, set for
1105     TYPE_CODE_TYPEDEF.  */
1106
1107  bool target_is_stub () const
1108  {
1109    return this->main_type->m_flag_target_stub;
1110  }
1111
1112  void set_target_is_stub (bool target_is_stub)
1113  {
1114    this->main_type->m_flag_target_stub = target_is_stub;
1115  }
1116
1117  /* This is a function type which appears to have a prototype.  We
1118     need this for function calls in order to tell us if it's necessary
1119     to coerce the args, or to just do the standard conversions.  This
1120     is used with a short field.  */
1121
1122  bool is_prototyped () const
1123  {
1124    return this->main_type->m_flag_prototyped;
1125  }
1126
1127  void set_is_prototyped (bool is_prototyped)
1128  {
1129    this->main_type->m_flag_prototyped = is_prototyped;
1130  }
1131
1132  /* FIXME drow/2002-06-03:  Only used for methods, but applies as well
1133     to functions.  */
1134
1135  bool has_varargs () const
1136  {
1137    return this->main_type->m_flag_varargs;
1138  }
1139
1140  void set_has_varargs (bool has_varargs)
1141  {
1142    this->main_type->m_flag_varargs = has_varargs;
1143  }
1144
1145  /* Identify a vector type.  Gcc is handling this by adding an extra
1146     attribute to the array type.  We slurp that in as a new flag of a
1147     type.  This is used only in dwarf2read.c.  */
1148
1149  bool is_vector () const
1150  {
1151    return this->main_type->m_flag_vector;
1152  }
1153
1154  void set_is_vector (bool is_vector)
1155  {
1156    this->main_type->m_flag_vector = is_vector;
1157  }
1158
1159  /* This debug target supports TYPE_STUB(t).  In the unsupported case
1160     we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1161     TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1162     guessed the TYPE_STUB(t) value (see dwarfread.c).  */
1163
1164  bool stub_is_supported () const
1165  {
1166    return this->main_type->m_flag_stub_supported;
1167  }
1168
1169  void set_stub_is_supported (bool stub_is_supported)
1170  {
1171    this->main_type->m_flag_stub_supported = stub_is_supported;
1172  }
1173
1174  /* Used only for TYPE_CODE_FUNC where it specifies the real function
1175     address is returned by this function call.  The target_type method
1176     determines the final returned function type to be presented to
1177     user.  */
1178
1179  bool is_gnu_ifunc () const
1180  {
1181    return this->main_type->m_flag_gnu_ifunc;
1182  }
1183
1184  void set_is_gnu_ifunc (bool is_gnu_ifunc)
1185  {
1186    this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1187  }
1188
1189  /* The debugging formats (especially STABS) do not contain enough
1190     information to represent all Ada types---especially those whose
1191     size depends on dynamic quantities.  Therefore, the GNAT Ada
1192     compiler includes extra information in the form of additional type
1193     definitions connected by naming conventions.  This flag indicates
1194     that the type is an ordinary (unencoded) GDB type that has been
1195     created from the necessary run-time information, and does not need
1196     further interpretation.  Optionally marks ordinary, fixed-size GDB
1197     type.  */
1198
1199  bool is_fixed_instance () const
1200  {
1201    return this->main_type->m_flag_fixed_instance;
1202  }
1203
1204  void set_is_fixed_instance (bool is_fixed_instance)
1205  {
1206    this->main_type->m_flag_fixed_instance = is_fixed_instance;
1207  }
1208
1209  /* A compiler may supply dwarf instrumentation that indicates the desired
1210     endian interpretation of the variable differs from the native endian
1211     representation. */
1212
1213  bool endianity_is_not_default () const
1214  {
1215    return this->main_type->m_flag_endianity_not_default;
1216  }
1217
1218  void set_endianity_is_not_default (bool endianity_is_not_default)
1219  {
1220    this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1221  }
1222
1223
1224  /* True if this type was declared using the "class" keyword.  This is
1225     only valid for C++ structure and enum types.  If false, a structure
1226     was declared as a "struct"; if true it was declared "class".  For
1227     enum types, this is true when "enum class" or "enum struct" was
1228     used to declare the type.  */
1229
1230  bool is_declared_class () const
1231  {
1232    return this->main_type->m_flag_declared_class;
1233  }
1234
1235  void set_is_declared_class (bool is_declared_class) const
1236  {
1237    this->main_type->m_flag_declared_class = is_declared_class;
1238  }
1239
1240  /* True if this type is a "flag" enum.  A flag enum is one where all
1241     the values are pairwise disjoint when "and"ed together.  This
1242     affects how enum values are printed.  */
1243
1244  bool is_flag_enum () const
1245  {
1246    return this->main_type->m_flag_flag_enum;
1247  }
1248
1249  void set_is_flag_enum (bool is_flag_enum)
1250  {
1251    this->main_type->m_flag_flag_enum = is_flag_enum;
1252  }
1253
1254  /* True if this array type is part of a multi-dimensional array.  */
1255
1256  bool is_multi_dimensional () const
1257  {
1258    return this->main_type->m_multi_dimensional;
1259  }
1260
1261  void set_is_multi_dimensional (bool value)
1262  {
1263    this->main_type->m_multi_dimensional = value;
1264  }
1265
1266  /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return a reference
1267     to this type's fixed_point_info.  */
1268
1269  struct fixed_point_type_info &fixed_point_info () const
1270  {
1271    gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1272    gdb_assert (this->main_type->type_specific.fixed_point_info != nullptr);
1273
1274    return *this->main_type->type_specific.fixed_point_info;
1275  }
1276
1277  /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, set this type's
1278     fixed_point_info to INFO.  */
1279
1280  void set_fixed_point_info (struct fixed_point_type_info *info) const
1281  {
1282    gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1283
1284    this->main_type->type_specific.fixed_point_info = info;
1285  }
1286
1287  /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its base type.
1288
1289     In other words, this returns the type after having peeled all
1290     intermediate type layers (such as TYPE_CODE_RANGE, for instance).
1291     The TYPE_CODE of the type returned is guaranteed to be
1292     a TYPE_CODE_FIXED_POINT.  */
1293
1294  struct type *fixed_point_type_base_type ();
1295
1296  /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its scaling
1297     factor.  */
1298
1299  const gdb_mpq &fixed_point_scaling_factor ();
1300
1301  /* * Return the dynamic property of the requested KIND from this type's
1302     list of dynamic properties.  */
1303  dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1304
1305  /* * Given a dynamic property PROP of a given KIND, add this dynamic
1306     property to this type.
1307
1308     This function assumes that this type is objfile-owned.  */
1309  void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1310
1311  /* * Remove dynamic property of kind KIND from this type, if it exists.  */
1312  void remove_dyn_prop (dynamic_prop_node_kind kind);
1313
1314  /* Return true if this type is owned by an objfile.  Return false if it is
1315     owned by an architecture.  */
1316  bool is_objfile_owned () const
1317  {
1318    return this->main_type->m_flag_objfile_owned;
1319  }
1320
1321  /* Set the owner of the type to be OBJFILE.  */
1322  void set_owner (objfile *objfile)
1323  {
1324    gdb_assert (objfile != nullptr);
1325
1326    this->main_type->m_owner.objfile = objfile;
1327    this->main_type->m_flag_objfile_owned = true;
1328  }
1329
1330  /* Set the owner of the type to be ARCH.  */
1331  void set_owner (gdbarch *arch)
1332  {
1333    gdb_assert (arch != nullptr);
1334
1335    this->main_type->m_owner.gdbarch = arch;
1336    this->main_type->m_flag_objfile_owned = false;
1337  }
1338
1339  /* Return the objfile owner of this type.
1340
1341     Return nullptr if this type is not objfile-owned.  */
1342  struct objfile *objfile_owner () const
1343  {
1344    if (!this->is_objfile_owned ())
1345      return nullptr;
1346
1347    return this->main_type->m_owner.objfile;
1348  }
1349
1350  /* Return the gdbarch owner of this type.
1351
1352     Return nullptr if this type is not gdbarch-owned.  */
1353  gdbarch *arch_owner () const
1354  {
1355    if (this->is_objfile_owned ())
1356      return nullptr;
1357
1358    return this->main_type->m_owner.gdbarch;
1359  }
1360
1361  /* Return the type's architecture.  For types owned by an
1362     architecture, that architecture is returned.  For types owned by an
1363     objfile, that objfile's architecture is returned.
1364
1365     The return value is always non-nullptr.  */
1366  gdbarch *arch () const;
1367
1368  /* * Return true if this is an integer type whose logical (bit) size
1369     differs from its storage size; false otherwise.  Always return
1370     false for non-integer (i.e., non-TYPE_SPECIFIC_INT) types.  */
1371  bool bit_size_differs_p () const
1372  {
1373    return (main_type->type_specific_field == TYPE_SPECIFIC_INT
1374	    && main_type->type_specific.int_stuff.bit_size != 8 * length ());
1375  }
1376
1377  /* * Return the logical (bit) size for this integer type.  Only
1378     valid for integer (TYPE_SPECIFIC_INT) types.  */
1379  unsigned short bit_size () const
1380  {
1381    gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1382    return main_type->type_specific.int_stuff.bit_size;
1383  }
1384
1385  /* * Return the bit offset for this integer type.  Only valid for
1386     integer (TYPE_SPECIFIC_INT) types.  */
1387  unsigned short bit_offset () const
1388  {
1389    gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1390    return main_type->type_specific.int_stuff.bit_offset;
1391  }
1392
1393  /* Return true if this is a pointer or reference type.  */
1394  bool is_pointer_or_reference () const
1395  {
1396    return this->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (this);
1397  }
1398
1399  /* * Type that is a pointer to this type.
1400     NULL if no such pointer-to type is known yet.
1401     The debugger may add the address of such a type
1402     if it has to construct one later.  */
1403
1404  struct type *pointer_type;
1405
1406  /* * C++: also need a reference type.  */
1407
1408  struct type *reference_type;
1409
1410  /* * A C++ rvalue reference type added in C++11. */
1411
1412  struct type *rvalue_reference_type;
1413
1414  /* * Variant chain.  This points to a type that differs from this
1415     one only in qualifiers and length.  Currently, the possible
1416     qualifiers are const, volatile, code-space, data-space, and
1417     address class.  The length may differ only when one of the
1418     address class flags are set.  The variants are linked in a
1419     circular ring and share MAIN_TYPE.  */
1420
1421  struct type *chain;
1422
1423  /* * The alignment for this type.  Zero means that the alignment was
1424     not specified in the debug info.  Note that this is stored in a
1425     funny way: as the log base 2 (plus 1) of the alignment; so a
1426     value of 1 means the alignment is 1, and a value of 9 means the
1427     alignment is 256.  */
1428
1429  unsigned align_log2 : TYPE_ALIGN_BITS;
1430
1431  /* * Flags specific to this instance of the type, indicating where
1432     on the ring we are.
1433
1434     For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1435     binary or-ed with the target type, with a special case for
1436     address class and space class.  For example if this typedef does
1437     not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1438     instance flags are completely inherited from the target type.  No
1439     qualifiers can be cleared by the typedef.  See also
1440     check_typedef.  */
1441  unsigned m_instance_flags : 9;
1442
1443  /* * Length of storage for a value of this type.  The value is the
1444     expression in host bytes of what sizeof(type) would return.  This
1445     size includes padding.  For example, an i386 extended-precision
1446     floating point value really only occupies ten bytes, but most
1447     ABI's declare its size to be 12 bytes, to preserve alignment.
1448     A `struct type' representing such a floating-point type would
1449     have a `length' value of 12, even though the last two bytes are
1450     unused.
1451
1452     Since this field is expressed in host bytes, its value is appropriate
1453     to pass to memcpy and such (it is assumed that GDB itself always runs
1454     on an 8-bits addressable architecture).  However, when using it for
1455     target address arithmetic (e.g. adding it to a target address), the
1456     type_length_units function should be used in order to get the length
1457     expressed in target addressable memory units.  */
1458
1459  ULONGEST m_length;
1460
1461  /* * Core type, shared by a group of qualified types.  */
1462
1463  struct main_type *main_type;
1464};
1465
1466struct fn_fieldlist
1467{
1468
1469  /* * The overloaded name.
1470     This is generally allocated in the objfile's obstack.
1471     However stabsread.c sometimes uses malloc.  */
1472
1473  const char *name;
1474
1475  /* * The number of methods with this name.  */
1476
1477  int length;
1478
1479  /* * The list of methods.  */
1480
1481  struct fn_field *fn_fields;
1482};
1483
1484
1485
1486struct fn_field
1487{
1488  /* * If is_stub is clear, this is the mangled name which we can look
1489     up to find the address of the method (FIXME: it would be cleaner
1490     to have a pointer to the struct symbol here instead).
1491
1492     If is_stub is set, this is the portion of the mangled name which
1493     specifies the arguments.  For example, "ii", if there are two int
1494     arguments, or "" if there are no arguments.  See gdb_mangle_name
1495     for the conversion from this format to the one used if is_stub is
1496     clear.  */
1497
1498  const char *physname;
1499
1500  /* * The function type for the method.
1501
1502     (This comment used to say "The return value of the method", but
1503     that's wrong.  The function type is expected here, i.e. something
1504     with TYPE_CODE_METHOD, and *not* the return-value type).  */
1505
1506  struct type *type;
1507
1508  /* * For virtual functions.  First baseclass that defines this
1509     virtual function.  */
1510
1511  struct type *fcontext;
1512
1513  /* Attributes.  */
1514
1515  unsigned int is_const:1;
1516  unsigned int is_volatile:1;
1517  unsigned int is_private:1;
1518  unsigned int is_protected:1;
1519  unsigned int is_artificial:1;
1520
1521  /* * A stub method only has some fields valid (but they are enough
1522     to reconstruct the rest of the fields).  */
1523
1524  unsigned int is_stub:1;
1525
1526  /* * True if this function is a constructor, false otherwise.  */
1527
1528  unsigned int is_constructor : 1;
1529
1530  /* * True if this function is deleted, false otherwise.  */
1531
1532  unsigned int is_deleted : 1;
1533
1534  /* * DW_AT_defaulted attribute for this function.  The value is one
1535     of the DW_DEFAULTED constants.  */
1536
1537  ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1538
1539  /* * Unused.  */
1540
1541  unsigned int dummy:6;
1542
1543  /* * Index into that baseclass's virtual function table, minus 2;
1544     else if static: VOFFSET_STATIC; else: 0.  */
1545
1546  unsigned int voffset:16;
1547
1548#define VOFFSET_STATIC 1
1549
1550};
1551
1552struct decl_field
1553{
1554  /* * Unqualified name to be prefixed by owning class qualified
1555     name.  */
1556
1557  const char *name;
1558
1559  /* * Type this typedef named NAME represents.  */
1560
1561  struct type *type;
1562
1563  /* * True if this field was declared protected, false otherwise.  */
1564  unsigned int is_protected : 1;
1565
1566  /* * True if this field was declared private, false otherwise.  */
1567  unsigned int is_private : 1;
1568};
1569
1570/* * C++ language-specific information for TYPE_CODE_STRUCT and
1571   TYPE_CODE_UNION nodes.  */
1572
1573struct cplus_struct_type
1574  {
1575    /* * Number of base classes this type derives from.  The
1576       baseclasses are stored in the first N_BASECLASSES fields
1577       (i.e. the `fields' field of the struct type).  The only fields
1578       of struct field that are used are: type, name, loc.bitpos.  */
1579
1580    short n_baseclasses;
1581
1582    /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1583       All access to this field must be through TYPE_VPTR_FIELDNO as one
1584       thing it does is check whether the field has been initialized.
1585       Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1586       which for portability reasons doesn't initialize this field.
1587       TYPE_VPTR_FIELDNO returns -1 for this case.
1588
1589       If -1, we were unable to find the virtual function table pointer in
1590       initial symbol reading, and get_vptr_fieldno should be called to find
1591       it if possible.  get_vptr_fieldno will update this field if possible.
1592       Otherwise the value is left at -1.
1593
1594       Unused if this type does not have virtual functions.  */
1595
1596    short vptr_fieldno;
1597
1598    /* * Number of methods with unique names.  All overloaded methods
1599       with the same name count only once.  */
1600
1601    short nfn_fields;
1602
1603    /* * Number of template arguments.  */
1604
1605    unsigned short n_template_arguments;
1606
1607    /* * One if this struct is a dynamic class, as defined by the
1608       Itanium C++ ABI: if it requires a virtual table pointer,
1609       because it or any of its base classes have one or more virtual
1610       member functions or virtual base classes.  Minus one if not
1611       dynamic.  Zero if not yet computed.  */
1612
1613    int is_dynamic : 2;
1614
1615    /* * The calling convention for this type, fetched from the
1616       DW_AT_calling_convention attribute.  The value is one of the
1617       DW_CC constants.  */
1618
1619    ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1620
1621    /* * The base class which defined the virtual function table pointer.  */
1622
1623    struct type *vptr_basetype;
1624
1625    /* * For derived classes, the number of base classes is given by
1626       n_baseclasses and virtual_field_bits is a bit vector containing
1627       one bit per base class.  If the base class is virtual, the
1628       corresponding bit will be set.
1629       I.E, given:
1630
1631       class A{};
1632       class B{};
1633       class C : public B, public virtual A {};
1634
1635       B is a baseclass of C; A is a virtual baseclass for C.
1636       This is a C++ 2.0 language feature.  */
1637
1638    B_TYPE *virtual_field_bits;
1639
1640    /* * For classes with private fields, the number of fields is
1641       given by nfields and private_field_bits is a bit vector
1642       containing one bit per field.
1643
1644       If the field is private, the corresponding bit will be set.  */
1645
1646    B_TYPE *private_field_bits;
1647
1648    /* * For classes with protected fields, the number of fields is
1649       given by nfields and protected_field_bits is a bit vector
1650       containing one bit per field.
1651
1652       If the field is private, the corresponding bit will be set.  */
1653
1654    B_TYPE *protected_field_bits;
1655
1656    /* * For classes with fields to be ignored, either this is
1657       optimized out or this field has length 0.  */
1658
1659    B_TYPE *ignore_field_bits;
1660
1661    /* * For classes, structures, and unions, a description of each
1662       field, which consists of an overloaded name, followed by the
1663       types of arguments that the method expects, and then the name
1664       after it has been renamed to make it distinct.
1665
1666       fn_fieldlists points to an array of nfn_fields of these.  */
1667
1668    struct fn_fieldlist *fn_fieldlists;
1669
1670    /* * typedefs defined inside this class.  typedef_field points to
1671       an array of typedef_field_count elements.  */
1672
1673    struct decl_field *typedef_field;
1674
1675    unsigned typedef_field_count;
1676
1677    /* * The nested types defined by this type.  nested_types points to
1678       an array of nested_types_count elements.  */
1679
1680    struct decl_field *nested_types;
1681
1682    unsigned nested_types_count;
1683
1684    /* * The template arguments.  This is an array with
1685       N_TEMPLATE_ARGUMENTS elements.  This is NULL for non-template
1686       classes.  */
1687
1688    struct symbol **template_arguments;
1689  };
1690
1691/* * Struct used to store conversion rankings.  */
1692
1693struct rank
1694  {
1695    short rank;
1696
1697    /* * When two conversions are of the same type and therefore have
1698       the same rank, subrank is used to differentiate the two.
1699
1700       Eg: Two derived-class-pointer to base-class-pointer conversions
1701       would both have base pointer conversion rank, but the
1702       conversion with the shorter distance to the ancestor is
1703       preferable.  'subrank' would be used to reflect that.  */
1704
1705    short subrank;
1706  };
1707
1708/* * Used for ranking a function for overload resolution.  */
1709
1710typedef std::vector<rank> badness_vector;
1711
1712/* * GNAT Ada-specific information for various Ada types.  */
1713
1714struct gnat_aux_type
1715  {
1716    /* * Parallel type used to encode information about dynamic types
1717       used in Ada (such as variant records, variable-size array,
1718       etc).  */
1719    struct type* descriptive_type;
1720  };
1721
1722/* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types.  */
1723
1724struct func_type
1725  {
1726    /* * The calling convention for targets supporting multiple ABIs.
1727       Right now this is only fetched from the Dwarf-2
1728       DW_AT_calling_convention attribute.  The value is one of the
1729       DW_CC constants.  */
1730
1731    ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1732
1733    /* * Whether this function normally returns to its caller.  It is
1734       set from the DW_AT_noreturn attribute if set on the
1735       DW_TAG_subprogram.  */
1736
1737    unsigned int is_noreturn : 1;
1738
1739    /* * Only those DW_TAG_call_site's in this function that have
1740       DW_AT_call_tail_call set are linked in this list.  Function
1741       without its tail call list complete
1742       (DW_AT_call_all_tail_calls or its superset
1743       DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1744       DW_TAG_call_site's exist in such function. */
1745
1746    struct call_site *tail_call_list;
1747
1748    /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1749       contains the method.  */
1750
1751    struct type *self_type;
1752  };
1753
1754/* struct call_site_parameter can be referenced in callees by several ways.  */
1755
1756enum call_site_parameter_kind
1757{
1758  /* * Use field call_site_parameter.u.dwarf_reg.  */
1759  CALL_SITE_PARAMETER_DWARF_REG,
1760
1761  /* * Use field call_site_parameter.u.fb_offset.  */
1762  CALL_SITE_PARAMETER_FB_OFFSET,
1763
1764  /* * Use field call_site_parameter.u.param_offset.  */
1765  CALL_SITE_PARAMETER_PARAM_OFFSET
1766};
1767
1768struct call_site_target
1769{
1770  /* The kind of location held by this call site target.  */
1771  enum kind
1772  {
1773    /* An address.  */
1774    PHYSADDR,
1775    /* A name.  */
1776    PHYSNAME,
1777    /* A DWARF block.  */
1778    DWARF_BLOCK,
1779    /* An array of addresses.  */
1780    ADDRESSES,
1781  };
1782
1783  void set_loc_physaddr (CORE_ADDR physaddr)
1784  {
1785    m_loc_kind = PHYSADDR;
1786    m_loc.physaddr = physaddr;
1787  }
1788
1789  void set_loc_physname (const char *physname)
1790    {
1791      m_loc_kind = PHYSNAME;
1792      m_loc.physname = physname;
1793    }
1794
1795  void set_loc_dwarf_block (dwarf2_locexpr_baton *dwarf_block)
1796    {
1797      m_loc_kind = DWARF_BLOCK;
1798      m_loc.dwarf_block = dwarf_block;
1799    }
1800
1801  void set_loc_array (unsigned length, const CORE_ADDR *data)
1802  {
1803    m_loc_kind = ADDRESSES;
1804    m_loc.addresses.length = length;
1805    m_loc.addresses.values = data;
1806  }
1807
1808  /* Callback type for iterate_over_addresses.  */
1809
1810  using iterate_ftype = gdb::function_view<void (CORE_ADDR)>;
1811
1812  /* Call CALLBACK for each DW_TAG_call_site's DW_AT_call_target
1813     address.  CALLER_FRAME (for registers) can be NULL if it is not
1814     known.  This function always may throw NO_ENTRY_VALUE_ERROR.  */
1815
1816  void iterate_over_addresses (struct gdbarch *call_site_gdbarch,
1817			       const struct call_site *call_site,
1818			       frame_info_ptr caller_frame,
1819			       iterate_ftype callback) const;
1820
1821private:
1822
1823  union
1824  {
1825    /* Address.  */
1826    CORE_ADDR physaddr;
1827    /* Mangled name.  */
1828    const char *physname;
1829    /* DWARF block.  */
1830    struct dwarf2_locexpr_baton *dwarf_block;
1831    /* Array of addresses.  */
1832    struct
1833    {
1834      unsigned length;
1835      const CORE_ADDR *values;
1836    } addresses;
1837  } m_loc;
1838
1839  /* * Discriminant for union field_location.  */
1840  enum kind m_loc_kind;
1841};
1842
1843union call_site_parameter_u
1844{
1845  /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1846     as DWARF register number, for register passed
1847     parameters.  */
1848
1849  int dwarf_reg;
1850
1851  /* * Offset from the callee's frame base, for stack passed
1852     parameters.  This equals offset from the caller's stack
1853     pointer.  */
1854
1855  CORE_ADDR fb_offset;
1856
1857  /* * Offset relative to the start of this PER_CU to
1858     DW_TAG_formal_parameter which is referenced by both
1859     caller and the callee.  */
1860
1861  cu_offset param_cu_off;
1862};
1863
1864struct call_site_parameter
1865{
1866  ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1867
1868  union call_site_parameter_u u;
1869
1870  /* * DW_TAG_formal_parameter's DW_AT_call_value.  It is never NULL.  */
1871
1872  const gdb_byte *value;
1873  size_t value_size;
1874
1875  /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1876     It may be NULL if not provided by DWARF.  */
1877
1878  const gdb_byte *data_value;
1879  size_t data_value_size;
1880};
1881
1882/* * A place where a function gets called from, represented by
1883   DW_TAG_call_site.  It can be looked up from symtab->call_site_htab.  */
1884
1885struct call_site
1886  {
1887    call_site (CORE_ADDR pc, dwarf2_per_cu_data *per_cu,
1888	       dwarf2_per_objfile *per_objfile)
1889      : per_cu (per_cu), per_objfile (per_objfile), m_unrelocated_pc (pc)
1890    {}
1891
1892    static int
1893    eq (const call_site *a, const call_site *b)
1894    {
1895      return a->m_unrelocated_pc == b->m_unrelocated_pc;
1896    }
1897
1898    static hashval_t
1899    hash (const call_site *a)
1900    {
1901      return a->m_unrelocated_pc;
1902    }
1903
1904    static int
1905    eq (const void *a, const void *b)
1906    {
1907      return eq ((const call_site *)a, (const call_site *)b);
1908    }
1909
1910    static hashval_t
1911    hash (const void *a)
1912    {
1913      return hash ((const call_site *)a);
1914    }
1915
1916    /* Return the address of the first instruction after this call.  */
1917
1918    CORE_ADDR pc () const;
1919
1920    /* Call CALLBACK for each target address.  CALLER_FRAME (for
1921       registers) can be NULL if it is not known.  This function may
1922       throw NO_ENTRY_VALUE_ERROR.  */
1923
1924    void iterate_over_addresses (struct gdbarch *call_site_gdbarch,
1925				 frame_info_ptr caller_frame,
1926				 call_site_target::iterate_ftype callback)
1927      const
1928    {
1929      return target.iterate_over_addresses (call_site_gdbarch, this,
1930					    caller_frame, callback);
1931    }
1932
1933    /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST.  */
1934
1935    struct call_site *tail_call_next = nullptr;
1936
1937    /* * Describe DW_AT_call_target.  Missing attribute uses
1938       FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL.  */
1939
1940    struct call_site_target target {};
1941
1942    /* * Size of the PARAMETER array.  */
1943
1944    unsigned parameter_count = 0;
1945
1946    /* * CU of the function where the call is located.  It gets used
1947       for DWARF blocks execution in the parameter array below.  */
1948
1949    dwarf2_per_cu_data *const per_cu = nullptr;
1950
1951    /* objfile of the function where the call is located.  */
1952
1953    dwarf2_per_objfile *const per_objfile = nullptr;
1954
1955  private:
1956    /* Unrelocated address of the first instruction after this call.  */
1957    const CORE_ADDR m_unrelocated_pc;
1958
1959  public:
1960    /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter.  */
1961
1962    struct call_site_parameter parameter[];
1963  };
1964
1965/* The type-specific info for TYPE_CODE_FIXED_POINT types.  */
1966
1967struct fixed_point_type_info
1968{
1969  /* The fixed point type's scaling factor.  */
1970  gdb_mpq scaling_factor;
1971};
1972
1973/* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1974   static structure.  */
1975
1976extern const struct cplus_struct_type cplus_struct_default;
1977
1978extern void allocate_cplus_struct_type (struct type *);
1979
1980#define INIT_CPLUS_SPECIFIC(type) \
1981  (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1982   TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1983   &cplus_struct_default)
1984
1985#define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1986
1987#define HAVE_CPLUS_STRUCT(type) \
1988  (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1989   && TYPE_RAW_CPLUS_SPECIFIC (type) !=  &cplus_struct_default)
1990
1991#define INIT_NONE_SPECIFIC(type) \
1992  (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1993   TYPE_MAIN_TYPE (type)->type_specific = {})
1994
1995extern const struct gnat_aux_type gnat_aux_default;
1996
1997extern void allocate_gnat_aux_type (struct type *);
1998
1999#define INIT_GNAT_SPECIFIC(type) \
2000  (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
2001   TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
2002#define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
2003/* * A macro that returns non-zero if the type-specific data should be
2004   read as "gnat-stuff".  */
2005#define HAVE_GNAT_AUX_INFO(type) \
2006  (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
2007
2008/* * True if TYPE is known to be an Ada type of some kind.  */
2009#define ADA_TYPE_P(type)					\
2010  (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF	\
2011    || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE	\
2012	&& (type)->is_fixed_instance ()))
2013
2014#define INIT_FUNC_SPECIFIC(type)					       \
2015  (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC,			       \
2016   TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *)      \
2017     TYPE_ZALLOC (type,							       \
2018		  sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
2019
2020/* "struct fixed_point_type_info" has a field that has a destructor.
2021   See allocate_fixed_point_type_info to understand how this is
2022   handled.  */
2023#define INIT_FIXED_POINT_SPECIFIC(type) \
2024  (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FIXED_POINT, \
2025   allocate_fixed_point_type_info (type))
2026
2027#define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
2028#define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
2029#define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
2030#define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
2031#define TYPE_CHAIN(thistype) (thistype)->chain
2032
2033/* * Return the alignment of the type in target addressable memory
2034   units, or 0 if no alignment was specified.  */
2035#define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
2036
2037/* * Return the alignment of the type in target addressable memory
2038   units, or 0 if no alignment was specified.  */
2039extern unsigned type_raw_align (struct type *);
2040
2041/* * Return the alignment of the type in target addressable memory
2042   units.  Return 0 if the alignment cannot be determined; but note
2043   that this makes an effort to compute the alignment even it it was
2044   not specified in the debug info.  */
2045extern unsigned type_align (struct type *);
2046
2047/* * Set the alignment of the type.  The alignment must be a power of
2048   2.  Returns false if the given value does not fit in the available
2049   space in struct type.  */
2050extern bool set_type_align (struct type *, ULONGEST);
2051
2052/* Property accessors for the type data location.  */
2053#define TYPE_DATA_LOCATION(thistype) \
2054  ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
2055#define TYPE_DATA_LOCATION_BATON(thistype) \
2056  TYPE_DATA_LOCATION (thistype)->data.baton
2057#define TYPE_DATA_LOCATION_ADDR(thistype) \
2058  (TYPE_DATA_LOCATION (thistype)->const_val ())
2059#define TYPE_DATA_LOCATION_KIND(thistype) \
2060  (TYPE_DATA_LOCATION (thistype)->kind ())
2061#define TYPE_DYNAMIC_LENGTH(thistype) \
2062  ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
2063
2064/* Property accessors for the type allocated/associated.  */
2065#define TYPE_ALLOCATED_PROP(thistype) \
2066  ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
2067#define TYPE_ASSOCIATED_PROP(thistype) \
2068  ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
2069#define TYPE_RANK_PROP(thistype) \
2070  ((thistype)->dyn_prop (DYN_PROP_RANK))
2071
2072/* C++ */
2073
2074#define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
2075/* Do not call this, use TYPE_SELF_TYPE.  */
2076extern struct type *internal_type_self_type (struct type *);
2077extern void set_type_self_type (struct type *, struct type *);
2078
2079extern int internal_type_vptr_fieldno (struct type *);
2080extern void set_type_vptr_fieldno (struct type *, int);
2081extern struct type *internal_type_vptr_basetype (struct type *);
2082extern void set_type_vptr_basetype (struct type *, struct type *);
2083#define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
2084#define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
2085
2086#define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
2087#define TYPE_SPECIFIC_FIELD(thistype) \
2088  TYPE_MAIN_TYPE(thistype)->type_specific_field
2089/* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
2090   where we're trying to print an Ada array using the C language.
2091   In that case, there is no "cplus_stuff", but the C language assumes
2092   that there is.  What we do, in that case, is pretend that there is
2093   an implicit one which is the default cplus stuff.  */
2094#define TYPE_CPLUS_SPECIFIC(thistype) \
2095   (!HAVE_CPLUS_STRUCT(thistype) \
2096    ? (struct cplus_struct_type*)&cplus_struct_default \
2097    : TYPE_RAW_CPLUS_SPECIFIC(thistype))
2098#define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
2099#define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
2100  TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
2101#define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
2102#define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
2103#define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
2104#define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
2105#define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
2106#define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
2107#define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
2108#define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
2109#define TYPE_BASECLASS_NAME(thistype,index) (thistype->field (index).name ())
2110#define TYPE_BASECLASS_BITPOS(thistype,index) (thistype->field (index).loc_bitpos ())
2111#define BASETYPE_VIA_PUBLIC(thistype, index) \
2112  ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
2113#define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
2114
2115#define BASETYPE_VIA_VIRTUAL(thistype, index) \
2116  (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
2117    : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
2118
2119#define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
2120#define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
2121
2122#define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
2123#define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
2124#define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
2125
2126#define TYPE_FIELD_PRIVATE_BITS(thistype) \
2127  TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
2128#define TYPE_FIELD_PROTECTED_BITS(thistype) \
2129  TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
2130#define TYPE_FIELD_IGNORE_BITS(thistype) \
2131  TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
2132#define TYPE_FIELD_VIRTUAL_BITS(thistype) \
2133  TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
2134#define SET_TYPE_FIELD_PRIVATE(thistype, n) \
2135  B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
2136#define SET_TYPE_FIELD_PROTECTED(thistype, n) \
2137  B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
2138#define SET_TYPE_FIELD_IGNORE(thistype, n) \
2139  B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
2140#define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
2141  B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
2142#define TYPE_FIELD_PRIVATE(thistype, n) \
2143  (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
2144    : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
2145#define TYPE_FIELD_PROTECTED(thistype, n) \
2146  (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
2147    : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
2148#define TYPE_FIELD_IGNORE(thistype, n) \
2149  (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
2150    : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
2151#define TYPE_FIELD_VIRTUAL(thistype, n) \
2152  (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
2153    : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
2154
2155#define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
2156#define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
2157#define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
2158#define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
2159#define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
2160
2161#define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
2162  TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
2163#define TYPE_TEMPLATE_ARGUMENTS(thistype) \
2164  TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
2165#define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
2166  TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
2167
2168#define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
2169#define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
2170#define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
2171#define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
2172#define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
2173#define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
2174#define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
2175#define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
2176#define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
2177#define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
2178#define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
2179#define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
2180#define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
2181#define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
2182#define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
2183#define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
2184#define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
2185
2186/* Accessors for typedefs defined by a class.  */
2187#define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
2188  TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
2189#define TYPE_TYPEDEF_FIELD(thistype, n) \
2190  TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
2191#define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
2192  TYPE_TYPEDEF_FIELD (thistype, n).name
2193#define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
2194  TYPE_TYPEDEF_FIELD (thistype, n).type
2195#define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
2196  TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
2197#define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
2198  TYPE_TYPEDEF_FIELD (thistype, n).is_protected
2199#define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n)        \
2200  TYPE_TYPEDEF_FIELD (thistype, n).is_private
2201
2202#define TYPE_NESTED_TYPES_ARRAY(thistype)	\
2203  TYPE_CPLUS_SPECIFIC (thistype)->nested_types
2204#define TYPE_NESTED_TYPES_FIELD(thistype, n) \
2205  TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
2206#define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
2207  TYPE_NESTED_TYPES_FIELD (thistype, n).name
2208#define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
2209  TYPE_NESTED_TYPES_FIELD (thistype, n).type
2210#define TYPE_NESTED_TYPES_COUNT(thistype) \
2211  TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
2212#define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
2213  TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
2214#define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n)	\
2215  TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
2216
2217#define TYPE_IS_OPAQUE(thistype) \
2218  ((((thistype)->code () == TYPE_CODE_STRUCT) \
2219    || ((thistype)->code () == TYPE_CODE_UNION)) \
2220   && ((thistype)->num_fields () == 0) \
2221   && (!HAVE_CPLUS_STRUCT (thistype) \
2222       || TYPE_NFN_FIELDS (thistype) == 0) \
2223   && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
2224
2225/* * A helper macro that returns the name of a type or "unnamed type"
2226   if the type has no name.  */
2227
2228#define TYPE_SAFE_NAME(type) \
2229  (type->name () != nullptr ? type->name () : _("<unnamed type>"))
2230
2231/* * A helper macro that returns the name of an error type.  If the
2232   type has a name, it is used; otherwise, a default is used.  */
2233
2234#define TYPE_ERROR_NAME(type) \
2235  (type->name () ? type->name () : _("<error type>"))
2236
2237/* Given TYPE, return its floatformat.  */
2238const struct floatformat *floatformat_from_type (const struct type *type);
2239
2240struct builtin_type
2241{
2242  /* Integral types.  */
2243
2244  /* Implicit size/sign (based on the architecture's ABI).  */
2245  struct type *builtin_void = nullptr;
2246  struct type *builtin_char = nullptr;
2247  struct type *builtin_short = nullptr;
2248  struct type *builtin_int = nullptr;
2249  struct type *builtin_long = nullptr;
2250  struct type *builtin_signed_char = nullptr;
2251  struct type *builtin_unsigned_char = nullptr;
2252  struct type *builtin_unsigned_short = nullptr;
2253  struct type *builtin_unsigned_int = nullptr;
2254  struct type *builtin_unsigned_long = nullptr;
2255  struct type *builtin_bfloat16 = nullptr;
2256  struct type *builtin_half = nullptr;
2257  struct type *builtin_float = nullptr;
2258  struct type *builtin_double = nullptr;
2259  struct type *builtin_long_double = nullptr;
2260  struct type *builtin_complex = nullptr;
2261  struct type *builtin_double_complex = nullptr;
2262  struct type *builtin_string = nullptr;
2263  struct type *builtin_bool = nullptr;
2264  struct type *builtin_long_long = nullptr;
2265  struct type *builtin_unsigned_long_long = nullptr;
2266  struct type *builtin_decfloat = nullptr;
2267  struct type *builtin_decdouble = nullptr;
2268  struct type *builtin_declong = nullptr;
2269
2270  /* "True" character types.
2271      We use these for the '/c' print format, because c_char is just a
2272      one-byte integral type, which languages less laid back than C
2273      will print as ... well, a one-byte integral type.  */
2274  struct type *builtin_true_char = nullptr;
2275  struct type *builtin_true_unsigned_char = nullptr;
2276
2277  /* Explicit sizes - see C9X <intypes.h> for naming scheme.  The "int0"
2278     is for when an architecture needs to describe a register that has
2279     no size.  */
2280  struct type *builtin_int0 = nullptr;
2281  struct type *builtin_int8 = nullptr;
2282  struct type *builtin_uint8 = nullptr;
2283  struct type *builtin_int16 = nullptr;
2284  struct type *builtin_uint16 = nullptr;
2285  struct type *builtin_int24 = nullptr;
2286  struct type *builtin_uint24 = nullptr;
2287  struct type *builtin_int32 = nullptr;
2288  struct type *builtin_uint32 = nullptr;
2289  struct type *builtin_int64 = nullptr;
2290  struct type *builtin_uint64 = nullptr;
2291  struct type *builtin_int128 = nullptr;
2292  struct type *builtin_uint128 = nullptr;
2293
2294  /* Wide character types.  */
2295  struct type *builtin_char16 = nullptr;
2296  struct type *builtin_char32 = nullptr;
2297  struct type *builtin_wchar = nullptr;
2298
2299  /* Pointer types.  */
2300
2301  /* * `pointer to data' type.  Some target platforms use an implicitly
2302     {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA.  */
2303  struct type *builtin_data_ptr = nullptr;
2304
2305  /* * `pointer to function (returning void)' type.  Harvard
2306     architectures mean that ABI function and code pointers are not
2307     interconvertible.  Similarly, since ANSI, C standards have
2308     explicitly said that pointers to functions and pointers to data
2309     are not interconvertible --- that is, you can't cast a function
2310     pointer to void * and back, and expect to get the same value.
2311     However, all function pointer types are interconvertible, so void
2312     (*) () can server as a generic function pointer.  */
2313
2314  struct type *builtin_func_ptr = nullptr;
2315
2316  /* * `function returning pointer to function (returning void)' type.
2317     The final void return type is not significant for it.  */
2318
2319  struct type *builtin_func_func = nullptr;
2320
2321  /* Special-purpose types.  */
2322
2323  /* * This type is used to represent a GDB internal function.  */
2324
2325  struct type *internal_fn = nullptr;
2326
2327  /* * This type is used to represent an xmethod.  */
2328  struct type *xmethod = nullptr;
2329};
2330
2331/* * Return the type table for the specified architecture.  */
2332
2333extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2334
2335/* * Per-objfile types used by symbol readers.  */
2336
2337struct objfile_type
2338{
2339  /* Basic types based on the objfile architecture.  */
2340  struct type *builtin_void;
2341  struct type *builtin_char;
2342  struct type *builtin_short;
2343  struct type *builtin_int;
2344  struct type *builtin_long;
2345  struct type *builtin_long_long;
2346  struct type *builtin_signed_char;
2347  struct type *builtin_unsigned_char;
2348  struct type *builtin_unsigned_short;
2349  struct type *builtin_unsigned_int;
2350  struct type *builtin_unsigned_long;
2351  struct type *builtin_unsigned_long_long;
2352  struct type *builtin_half;
2353  struct type *builtin_float;
2354  struct type *builtin_double;
2355  struct type *builtin_long_double;
2356
2357  /* * This type is used to represent symbol addresses.  */
2358  struct type *builtin_core_addr;
2359
2360  /* * This type represents a type that was unrecognized in symbol
2361     read-in.  */
2362  struct type *builtin_error;
2363
2364  /* * Types used for symbols with no debug information.  */
2365  struct type *nodebug_text_symbol;
2366  struct type *nodebug_text_gnu_ifunc_symbol;
2367  struct type *nodebug_got_plt_symbol;
2368  struct type *nodebug_data_symbol;
2369  struct type *nodebug_unknown_symbol;
2370  struct type *nodebug_tls_symbol;
2371};
2372
2373/* * Return the type table for the specified objfile.  */
2374
2375extern const struct objfile_type *objfile_type (struct objfile *objfile);
2376
2377/* Explicit floating-point formats.  See "floatformat.h".  */
2378extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2379extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2380extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2381extern const struct floatformat *floatformats_ieee_quad[BFD_ENDIAN_UNKNOWN];
2382extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2383extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2384extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2385extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2386extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2387extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2388extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2389extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2390extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2391
2392/* Allocate space for storing data associated with a particular
2393   type.  We ensure that the space is allocated using the same
2394   mechanism that was used to allocate the space for the type
2395   structure itself.  I.e.  if the type is on an objfile's
2396   objfile_obstack, then the space for data associated with that type
2397   will also be allocated on the objfile_obstack.  If the type is
2398   associated with a gdbarch, then the space for data associated with that
2399   type will also be allocated on the gdbarch_obstack.
2400
2401   If a type is not associated with neither an objfile or a gdbarch then
2402   you should not use this macro to allocate space for data, instead you
2403   should call xmalloc directly, and ensure the memory is correctly freed
2404   when it is no longer needed.  */
2405
2406#define TYPE_ALLOC(t,size)                                              \
2407  (obstack_alloc (((t)->is_objfile_owned ()                             \
2408		   ? &((t)->objfile_owner ()->objfile_obstack)          \
2409		   : gdbarch_obstack ((t)->arch_owner ())),             \
2410		  size))
2411
2412
2413/* See comment on TYPE_ALLOC.  */
2414
2415#define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2416
2417/* Use alloc_type to allocate a type owned by an objfile.  Use
2418   alloc_type_arch to allocate a type owned by an architecture.  Use
2419   alloc_type_copy to allocate a type with the same owner as a
2420   pre-existing template type, no matter whether objfile or
2421   gdbarch.  */
2422extern struct type *alloc_type (struct objfile *);
2423extern struct type *alloc_type_arch (struct gdbarch *);
2424extern struct type *alloc_type_copy (const struct type *);
2425
2426/* * This returns the target type (or NULL) of TYPE, also skipping
2427   past typedefs.  */
2428
2429extern struct type *get_target_type (struct type *type);
2430
2431/* Return the equivalent of TYPE_LENGTH, but in number of target
2432   addressable memory units of the associated gdbarch instead of bytes.  */
2433
2434extern unsigned int type_length_units (struct type *type);
2435
2436/* * Helper function to construct objfile-owned types.  */
2437
2438extern struct type *init_type (struct objfile *, enum type_code, int,
2439			       const char *);
2440extern struct type *init_integer_type (struct objfile *, int, int,
2441				       const char *);
2442extern struct type *init_character_type (struct objfile *, int, int,
2443					 const char *);
2444extern struct type *init_boolean_type (struct objfile *, int, int,
2445				       const char *);
2446extern struct type *init_float_type (struct objfile *, int, const char *,
2447				     const struct floatformat **,
2448				     enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2449extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2450extern bool can_create_complex_type (struct type *);
2451extern struct type *init_complex_type (const char *, struct type *);
2452extern struct type *init_pointer_type (struct objfile *, int, const char *,
2453				       struct type *);
2454extern struct type *init_fixed_point_type (struct objfile *, int, int,
2455					   const char *);
2456
2457/* Helper functions to construct architecture-owned types.  */
2458extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2459			       const char *);
2460extern struct type *arch_integer_type (struct gdbarch *, int, int,
2461				       const char *);
2462extern struct type *arch_character_type (struct gdbarch *, int, int,
2463					 const char *);
2464extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2465				       const char *);
2466extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2467				     const struct floatformat **);
2468extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2469extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2470				       struct type *);
2471
2472/* Helper functions to construct a struct or record type.  An
2473   initially empty type is created using arch_composite_type().
2474   Fields are then added using append_composite_type_field*().  A union
2475   type has its size set to the largest field.  A struct type has each
2476   field packed against the previous.  */
2477
2478extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2479					 const char *name, enum type_code code);
2480extern void append_composite_type_field (struct type *t, const char *name,
2481					 struct type *field);
2482extern void append_composite_type_field_aligned (struct type *t,
2483						 const char *name,
2484						 struct type *field,
2485						 int alignment);
2486struct field *append_composite_type_field_raw (struct type *t, const char *name,
2487					       struct type *field);
2488
2489/* Helper functions to construct a bit flags type.  An initially empty
2490   type is created using arch_flag_type().  Flags are then added using
2491   append_flag_type_field() and append_flag_type_flag().  */
2492extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2493				     const char *name, int bit);
2494extern void append_flags_type_field (struct type *type,
2495				     int start_bitpos, int nr_bits,
2496				     struct type *field_type, const char *name);
2497extern void append_flags_type_flag (struct type *type, int bitpos,
2498				    const char *name);
2499
2500extern void make_vector_type (struct type *array_type);
2501extern struct type *init_vector_type (struct type *elt_type, int n);
2502
2503extern struct type *lookup_reference_type (struct type *, enum type_code);
2504extern struct type *lookup_lvalue_reference_type (struct type *);
2505extern struct type *lookup_rvalue_reference_type (struct type *);
2506
2507
2508extern struct type *make_reference_type (struct type *, struct type **,
2509					 enum type_code);
2510
2511extern struct type *make_cv_type (int, int, struct type *, struct type **);
2512
2513extern struct type *make_restrict_type (struct type *);
2514
2515extern struct type *make_unqualified_type (struct type *);
2516
2517extern struct type *make_atomic_type (struct type *);
2518
2519extern void replace_type (struct type *, struct type *);
2520
2521extern type_instance_flags address_space_name_to_type_instance_flags
2522  (struct gdbarch *, const char *);
2523
2524extern const char *address_space_type_instance_flags_to_name
2525  (struct gdbarch *, type_instance_flags);
2526
2527extern struct type *make_type_with_address_space
2528  (struct type *type, type_instance_flags space_identifier);
2529
2530extern struct type *lookup_memberptr_type (struct type *, struct type *);
2531
2532extern struct type *lookup_methodptr_type (struct type *);
2533
2534extern void smash_to_method_type (struct type *type, struct type *self_type,
2535				  struct type *to_type, struct field *args,
2536				  int nargs, int varargs);
2537
2538extern void smash_to_memberptr_type (struct type *, struct type *,
2539				     struct type *);
2540
2541extern void smash_to_methodptr_type (struct type *, struct type *);
2542
2543extern struct type *allocate_stub_method (struct type *);
2544
2545extern const char *type_name_or_error (struct type *type);
2546
2547struct struct_elt
2548{
2549  /* The field of the element, or NULL if no element was found.  */
2550  struct field *field;
2551
2552  /* The bit offset of the element in the parent structure.  */
2553  LONGEST offset;
2554};
2555
2556/* Given a type TYPE, lookup the field and offset of the component named
2557   NAME.
2558
2559   TYPE can be either a struct or union, or a pointer or reference to
2560   a struct or union.  If it is a pointer or reference, its target
2561   type is automatically used.  Thus '.' and '->' are interchangable,
2562   as specified for the definitions of the expression element types
2563   STRUCTOP_STRUCT and STRUCTOP_PTR.
2564
2565   If NOERR is nonzero, the returned structure will have field set to
2566   NULL if there is no component named NAME.
2567
2568   If the component NAME is a field in an anonymous substructure of
2569   TYPE, the returned offset is a "global" offset relative to TYPE
2570   rather than an offset within the substructure.  */
2571
2572extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2573
2574/* Given a type TYPE, lookup the type of the component named NAME.
2575
2576   TYPE can be either a struct or union, or a pointer or reference to
2577   a struct or union.  If it is a pointer or reference, its target
2578   type is automatically used.  Thus '.' and '->' are interchangable,
2579   as specified for the definitions of the expression element types
2580   STRUCTOP_STRUCT and STRUCTOP_PTR.
2581
2582   If NOERR is nonzero, return NULL if there is no component named
2583   NAME.  */
2584
2585extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2586
2587extern struct type *make_pointer_type (struct type *, struct type **);
2588
2589extern struct type *lookup_pointer_type (struct type *);
2590
2591extern struct type *make_function_type (struct type *, struct type **);
2592
2593extern struct type *lookup_function_type (struct type *);
2594
2595extern struct type *lookup_function_type_with_arguments (struct type *,
2596							 int,
2597							 struct type **);
2598
2599extern struct type *create_static_range_type (struct type *, struct type *,
2600					      LONGEST, LONGEST);
2601
2602
2603extern struct type *create_array_type_with_stride
2604  (struct type *, struct type *, struct type *,
2605   struct dynamic_prop *, unsigned int);
2606
2607extern struct type *create_range_type (struct type *, struct type *,
2608				       const struct dynamic_prop *,
2609				       const struct dynamic_prop *,
2610				       LONGEST);
2611
2612/* Like CREATE_RANGE_TYPE but also sets up a stride.  When BYTE_STRIDE_P
2613   is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2614   stride.  */
2615
2616extern struct type * create_range_type_with_stride
2617  (struct type *result_type, struct type *index_type,
2618   const struct dynamic_prop *low_bound,
2619   const struct dynamic_prop *high_bound, LONGEST bias,
2620   const struct dynamic_prop *stride, bool byte_stride_p);
2621
2622extern struct type *create_array_type (struct type *, struct type *,
2623				       struct type *);
2624
2625extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2626
2627extern struct type *create_string_type (struct type *, struct type *,
2628					struct type *);
2629extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2630
2631extern struct type *create_set_type (struct type *, struct type *);
2632
2633extern struct type *lookup_unsigned_typename (const struct language_defn *,
2634					      const char *);
2635
2636extern struct type *lookup_signed_typename (const struct language_defn *,
2637					    const char *);
2638
2639extern ULONGEST get_unsigned_type_max (struct type *);
2640
2641extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2642
2643extern CORE_ADDR get_pointer_type_max (struct type *);
2644
2645/* * Resolve all dynamic values of a type e.g. array bounds to static values.
2646   ADDR specifies the location of the variable the type is bound to.
2647   If TYPE has no dynamic properties return TYPE; otherwise a new type with
2648   static properties is returned.
2649
2650   For an array type, if the element type is dynamic, then that will
2651   not be resolved.  This is done because each individual element may
2652   have a different type when resolved (depending on the contents of
2653   memory).  In this situation, 'is_dynamic_type' will still return
2654   true for the return value of this function.  */
2655extern struct type *resolve_dynamic_type
2656  (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2657   CORE_ADDR addr);
2658
2659/* * Predicate if the type has dynamic values, which are not resolved yet.
2660   See the caveat in 'resolve_dynamic_type' to understand a scenario
2661   where an apparently-resolved type may still be considered
2662   "dynamic".  */
2663extern int is_dynamic_type (struct type *type);
2664
2665extern struct type *check_typedef (struct type *);
2666
2667extern void check_stub_method_group (struct type *, int);
2668
2669extern char *gdb_mangle_name (struct type *, int, int);
2670
2671extern struct type *lookup_typename (const struct language_defn *,
2672				     const char *, const struct block *, int);
2673
2674extern struct type *lookup_template_type (const char *, struct type *,
2675					  const struct block *);
2676
2677extern int get_vptr_fieldno (struct type *, struct type **);
2678
2679/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
2680   TYPE.
2681
2682   Return true if the two bounds are available, false otherwise.  */
2683
2684extern bool get_discrete_bounds (struct type *type, LONGEST *lowp,
2685				 LONGEST *highp);
2686
2687/* If TYPE's low bound is a known constant, return it, else return nullopt.  */
2688
2689extern gdb::optional<LONGEST> get_discrete_low_bound (struct type *type);
2690
2691/* If TYPE's high bound is a known constant, return it, else return nullopt.  */
2692
2693extern gdb::optional<LONGEST> get_discrete_high_bound (struct type *type);
2694
2695/* Assuming TYPE is a simple, non-empty array type, compute its upper
2696   and lower bound.  Save the low bound into LOW_BOUND if not NULL.
2697   Save the high bound into HIGH_BOUND if not NULL.
2698
2699   Return true if the operation was successful.  Return false otherwise,
2700   in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.  */
2701
2702extern bool get_array_bounds (struct type *type, LONGEST *low_bound,
2703			      LONGEST *high_bound);
2704
2705extern gdb::optional<LONGEST> discrete_position (struct type *type,
2706						 LONGEST val);
2707
2708extern int class_types_same_p (const struct type *, const struct type *);
2709
2710extern int is_ancestor (struct type *, struct type *);
2711
2712extern int is_public_ancestor (struct type *, struct type *);
2713
2714extern int is_unique_ancestor (struct type *, struct value *);
2715
2716/* Overload resolution */
2717
2718/* * Badness if parameter list length doesn't match arg list length.  */
2719extern const struct rank LENGTH_MISMATCH_BADNESS;
2720
2721/* * Dummy badness value for nonexistent parameter positions.  */
2722extern const struct rank TOO_FEW_PARAMS_BADNESS;
2723/* * Badness if no conversion among types.  */
2724extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2725
2726/* * Badness of an exact match.  */
2727extern const struct rank EXACT_MATCH_BADNESS;
2728
2729/* * Badness of integral promotion.  */
2730extern const struct rank INTEGER_PROMOTION_BADNESS;
2731/* * Badness of floating promotion.  */
2732extern const struct rank FLOAT_PROMOTION_BADNESS;
2733/* * Badness of converting a derived class pointer
2734   to a base class pointer.  */
2735extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2736/* * Badness of integral conversion.  */
2737extern const struct rank INTEGER_CONVERSION_BADNESS;
2738/* * Badness of floating conversion.  */
2739extern const struct rank FLOAT_CONVERSION_BADNESS;
2740/* * Badness of integer<->floating conversions.  */
2741extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2742/* * Badness of conversion of pointer to void pointer.  */
2743extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2744/* * Badness of conversion to boolean.  */
2745extern const struct rank BOOL_CONVERSION_BADNESS;
2746/* * Badness of converting derived to base class.  */
2747extern const struct rank BASE_CONVERSION_BADNESS;
2748/* * Badness of converting from non-reference to reference.  Subrank
2749   is the type of reference conversion being done.  */
2750extern const struct rank REFERENCE_CONVERSION_BADNESS;
2751extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2752/* * Conversion to rvalue reference.  */
2753#define REFERENCE_CONVERSION_RVALUE 1
2754/* * Conversion to const lvalue reference.  */
2755#define REFERENCE_CONVERSION_CONST_LVALUE 2
2756
2757/* * Badness of converting integer 0 to NULL pointer.  */
2758extern const struct rank NULL_POINTER_CONVERSION;
2759/* * Badness of cv-conversion.  Subrank is a flag describing the conversions
2760   being done.  */
2761extern const struct rank CV_CONVERSION_BADNESS;
2762#define CV_CONVERSION_CONST 1
2763#define CV_CONVERSION_VOLATILE 2
2764
2765/* Non-standard conversions allowed by the debugger */
2766
2767/* * Converting a pointer to an int is usually OK.  */
2768extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2769
2770/* * Badness of converting a (non-zero) integer constant
2771   to a pointer.  */
2772extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2773
2774extern struct rank sum_ranks (struct rank a, struct rank b);
2775extern int compare_ranks (struct rank a, struct rank b);
2776
2777extern int compare_badness (const badness_vector &,
2778			    const badness_vector &);
2779
2780extern badness_vector rank_function (gdb::array_view<type *> parms,
2781				     gdb::array_view<value *> args);
2782
2783extern struct rank rank_one_type (struct type *, struct type *,
2784				  struct value *);
2785
2786extern void recursive_dump_type (struct type *, int);
2787
2788extern int field_is_static (struct field *);
2789
2790/* printcmd.c */
2791
2792extern void print_scalar_formatted (const gdb_byte *, struct type *,
2793				    const struct value_print_options *,
2794				    int, struct ui_file *);
2795
2796extern int can_dereference (struct type *);
2797
2798extern int is_integral_type (struct type *);
2799
2800extern int is_floating_type (struct type *);
2801
2802extern int is_scalar_type (struct type *type);
2803
2804extern int is_scalar_type_recursive (struct type *);
2805
2806extern int class_or_union_p (const struct type *);
2807
2808extern void maintenance_print_type (const char *, int);
2809
2810extern htab_up create_copied_types_hash ();
2811
2812extern struct type *copy_type_recursive (struct type *type,
2813					 htab_t copied_types);
2814
2815extern struct type *copy_type (const struct type *type);
2816
2817extern bool types_equal (struct type *, struct type *);
2818
2819extern bool types_deeply_equal (struct type *, struct type *);
2820
2821extern int type_not_allocated (const struct type *type);
2822
2823extern int type_not_associated (const struct type *type);
2824
2825/* Return True if TYPE is a TYPE_CODE_FIXED_POINT or if TYPE is
2826   a range type whose base type is a TYPE_CODE_FIXED_POINT.  */
2827extern bool is_fixed_point_type (struct type *type);
2828
2829/* Allocate a fixed-point type info for TYPE.  This should only be
2830   called by INIT_FIXED_POINT_SPECIFIC.  */
2831extern void allocate_fixed_point_type_info (struct type *type);
2832
2833/* * When the type includes explicit byte ordering, return that.
2834   Otherwise, the byte ordering from gdbarch_byte_order for
2835   the type's arch is returned.  */
2836
2837extern enum bfd_endian type_byte_order (const struct type *type);
2838
2839/* A flag to enable printing of debugging information of C++
2840   overloading.  */
2841
2842extern unsigned int overload_debug;
2843
2844/* Return whether the function type represented by TYPE is marked as unsafe
2845   to call by the debugger.
2846
2847   This usually indicates that the function does not follow the target's
2848   standard calling convention.  */
2849
2850extern bool is_nocall_function (const struct type *type);
2851
2852#endif /* GDBTYPES_H */
2853