1/* Motorola 68k series support for 32-bit ELF
2   Copyright (C) 1993-2022 Free Software Foundation, Inc.
3
4   This file is part of BFD, the Binary File Descriptor library.
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 3 of the License, or
9   (at your option) any later version.
10
11   This program is distributed in the hope that it will be useful,
12   but WITHOUT ANY WARRANTY; without even the implied warranty of
13   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   GNU General Public License for more details.
15
16   You should have received a copy of the GNU General Public License
17   along with this program; if not, write to the Free Software
18   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19   MA 02110-1301, USA.  */
20
21#include "sysdep.h"
22#include "bfd.h"
23#include "bfdlink.h"
24#include "libbfd.h"
25#include "elf-bfd.h"
26#include "elf/m68k.h"
27#include "opcode/m68k.h"
28#include "cpu-m68k.h"
29#include "elf32-m68k.h"
30
31static bool
32elf_m68k_discard_copies (struct elf_link_hash_entry *, void *);
33
34static reloc_howto_type howto_table[] =
35{
36  HOWTO(R_68K_NONE,	  0, 0, 0, false,0, complain_overflow_dont,	bfd_elf_generic_reloc, "R_68K_NONE",	  false, 0, 0x00000000,false),
37  HOWTO(R_68K_32,	  0, 4,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32",	  false, 0, 0xffffffff,false),
38  HOWTO(R_68K_16,	  0, 2,16, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16",	  false, 0, 0x0000ffff,false),
39  HOWTO(R_68K_8,	  0, 1, 8, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8",	  false, 0, 0x000000ff,false),
40  HOWTO(R_68K_PC32,	  0, 4,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32",	  false, 0, 0xffffffff,true),
41  HOWTO(R_68K_PC16,	  0, 2,16, true, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PC16",	  false, 0, 0x0000ffff,true),
42  HOWTO(R_68K_PC8,	  0, 1, 8, true, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PC8",	  false, 0, 0x000000ff,true),
43  HOWTO(R_68K_GOT32,	  0, 4,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32",	  false, 0, 0xffffffff,true),
44  HOWTO(R_68K_GOT16,	  0, 2,16, true, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_GOT16",	  false, 0, 0x0000ffff,true),
45  HOWTO(R_68K_GOT8,	  0, 1, 8, true, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_GOT8",	  false, 0, 0x000000ff,true),
46  HOWTO(R_68K_GOT32O,	  0, 4,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O",	  false, 0, 0xffffffff,false),
47  HOWTO(R_68K_GOT16O,	  0, 2,16, false,0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_GOT16O",	  false, 0, 0x0000ffff,false),
48  HOWTO(R_68K_GOT8O,	  0, 1, 8, false,0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_GOT8O",	  false, 0, 0x000000ff,false),
49  HOWTO(R_68K_PLT32,	  0, 4,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32",	  false, 0, 0xffffffff,true),
50  HOWTO(R_68K_PLT16,	  0, 2,16, true, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PLT16",	  false, 0, 0x0000ffff,true),
51  HOWTO(R_68K_PLT8,	  0, 1, 8, true, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PLT8",	  false, 0, 0x000000ff,true),
52  HOWTO(R_68K_PLT32O,	  0, 4,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O",	  false, 0, 0xffffffff,false),
53  HOWTO(R_68K_PLT16O,	  0, 2,16, false,0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PLT16O",	  false, 0, 0x0000ffff,false),
54  HOWTO(R_68K_PLT8O,	  0, 1, 8, false,0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PLT8O",	  false, 0, 0x000000ff,false),
55  HOWTO(R_68K_COPY,	  0, 0, 0, false,0, complain_overflow_dont,	bfd_elf_generic_reloc, "R_68K_COPY",	  false, 0, 0xffffffff,false),
56  HOWTO(R_68K_GLOB_DAT,	  0, 4,32, false,0, complain_overflow_dont,	bfd_elf_generic_reloc, "R_68K_GLOB_DAT",  false, 0, 0xffffffff,false),
57  HOWTO(R_68K_JMP_SLOT,	  0, 4,32, false,0, complain_overflow_dont,	bfd_elf_generic_reloc, "R_68K_JMP_SLOT",  false, 0, 0xffffffff,false),
58  HOWTO(R_68K_RELATIVE,	  0, 4,32, false,0, complain_overflow_dont,	bfd_elf_generic_reloc, "R_68K_RELATIVE",  false, 0, 0xffffffff,false),
59  /* GNU extension to record C++ vtable hierarchy.  */
60  HOWTO (R_68K_GNU_VTINHERIT,	/* type */
61	 0,			/* rightshift */
62	 4,			/* size */
63	 0,			/* bitsize */
64	 false,			/* pc_relative */
65	 0,			/* bitpos */
66	 complain_overflow_dont, /* complain_on_overflow */
67	 NULL,			/* special_function */
68	 "R_68K_GNU_VTINHERIT",	/* name */
69	 false,			/* partial_inplace */
70	 0,			/* src_mask */
71	 0,			/* dst_mask */
72	 false),
73  /* GNU extension to record C++ vtable member usage.  */
74  HOWTO (R_68K_GNU_VTENTRY,	/* type */
75	 0,			/* rightshift */
76	 4,			/* size */
77	 0,			/* bitsize */
78	 false,			/* pc_relative */
79	 0,			/* bitpos */
80	 complain_overflow_dont, /* complain_on_overflow */
81	 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
82	 "R_68K_GNU_VTENTRY",	/* name */
83	 false,			/* partial_inplace */
84	 0,			/* src_mask */
85	 0,			/* dst_mask */
86	 false),
87
88  /* TLS general dynamic variable reference.  */
89  HOWTO (R_68K_TLS_GD32,	/* type */
90	 0,			/* rightshift */
91	 4,			/* size */
92	 32,			/* bitsize */
93	 false,			/* pc_relative */
94	 0,			/* bitpos */
95	 complain_overflow_bitfield, /* complain_on_overflow */
96	 bfd_elf_generic_reloc, /* special_function */
97	 "R_68K_TLS_GD32",	/* name */
98	 false,			/* partial_inplace */
99	 0,			/* src_mask */
100	 0xffffffff,		/* dst_mask */
101	 false),		/* pcrel_offset */
102
103  HOWTO (R_68K_TLS_GD16,	/* type */
104	 0,			/* rightshift */
105	 2,			/* size */
106	 16,			/* bitsize */
107	 false,			/* pc_relative */
108	 0,			/* bitpos */
109	 complain_overflow_signed, /* complain_on_overflow */
110	 bfd_elf_generic_reloc, /* special_function */
111	 "R_68K_TLS_GD16",	/* name */
112	 false,			/* partial_inplace */
113	 0,			/* src_mask */
114	 0x0000ffff,		/* dst_mask */
115	 false),		/* pcrel_offset */
116
117  HOWTO (R_68K_TLS_GD8,		/* type */
118	 0,			/* rightshift */
119	 1,			/* size */
120	 8,			/* bitsize */
121	 false,			/* pc_relative */
122	 0,			/* bitpos */
123	 complain_overflow_signed, /* complain_on_overflow */
124	 bfd_elf_generic_reloc, /* special_function */
125	 "R_68K_TLS_GD8",	/* name */
126	 false,			/* partial_inplace */
127	 0,			/* src_mask */
128	 0x000000ff,		/* dst_mask */
129	 false),		/* pcrel_offset */
130
131  /* TLS local dynamic variable reference.  */
132  HOWTO (R_68K_TLS_LDM32,	/* type */
133	 0,			/* rightshift */
134	 4,			/* size */
135	 32,			/* bitsize */
136	 false,			/* pc_relative */
137	 0,			/* bitpos */
138	 complain_overflow_bitfield, /* complain_on_overflow */
139	 bfd_elf_generic_reloc, /* special_function */
140	 "R_68K_TLS_LDM32",	/* name */
141	 false,			/* partial_inplace */
142	 0,			/* src_mask */
143	 0xffffffff,		/* dst_mask */
144	 false),		/* pcrel_offset */
145
146  HOWTO (R_68K_TLS_LDM16,	/* type */
147	 0,			/* rightshift */
148	 2,			/* size */
149	 16,			/* bitsize */
150	 false,			/* pc_relative */
151	 0,			/* bitpos */
152	 complain_overflow_signed, /* complain_on_overflow */
153	 bfd_elf_generic_reloc, /* special_function */
154	 "R_68K_TLS_LDM16",	/* name */
155	 false,			/* partial_inplace */
156	 0,			/* src_mask */
157	 0x0000ffff,		/* dst_mask */
158	 false),		/* pcrel_offset */
159
160  HOWTO (R_68K_TLS_LDM8,		/* type */
161	 0,			/* rightshift */
162	 1,			/* size */
163	 8,			/* bitsize */
164	 false,			/* pc_relative */
165	 0,			/* bitpos */
166	 complain_overflow_signed, /* complain_on_overflow */
167	 bfd_elf_generic_reloc, /* special_function */
168	 "R_68K_TLS_LDM8",	/* name */
169	 false,			/* partial_inplace */
170	 0,			/* src_mask */
171	 0x000000ff,		/* dst_mask */
172	 false),		/* pcrel_offset */
173
174  HOWTO (R_68K_TLS_LDO32,	/* type */
175	 0,			/* rightshift */
176	 4,			/* size */
177	 32,			/* bitsize */
178	 false,			/* pc_relative */
179	 0,			/* bitpos */
180	 complain_overflow_bitfield, /* complain_on_overflow */
181	 bfd_elf_generic_reloc, /* special_function */
182	 "R_68K_TLS_LDO32",	/* name */
183	 false,			/* partial_inplace */
184	 0,			/* src_mask */
185	 0xffffffff,		/* dst_mask */
186	 false),		/* pcrel_offset */
187
188  HOWTO (R_68K_TLS_LDO16,	/* type */
189	 0,			/* rightshift */
190	 2,			/* size */
191	 16,			/* bitsize */
192	 false,			/* pc_relative */
193	 0,			/* bitpos */
194	 complain_overflow_signed, /* complain_on_overflow */
195	 bfd_elf_generic_reloc, /* special_function */
196	 "R_68K_TLS_LDO16",	/* name */
197	 false,			/* partial_inplace */
198	 0,			/* src_mask */
199	 0x0000ffff,		/* dst_mask */
200	 false),		/* pcrel_offset */
201
202  HOWTO (R_68K_TLS_LDO8,		/* type */
203	 0,			/* rightshift */
204	 1,			/* size */
205	 8,			/* bitsize */
206	 false,			/* pc_relative */
207	 0,			/* bitpos */
208	 complain_overflow_signed, /* complain_on_overflow */
209	 bfd_elf_generic_reloc, /* special_function */
210	 "R_68K_TLS_LDO8",	/* name */
211	 false,			/* partial_inplace */
212	 0,			/* src_mask */
213	 0x000000ff,		/* dst_mask */
214	 false),		/* pcrel_offset */
215
216  /* TLS initial execution variable reference.  */
217  HOWTO (R_68K_TLS_IE32,	/* type */
218	 0,			/* rightshift */
219	 4,			/* size */
220	 32,			/* bitsize */
221	 false,			/* pc_relative */
222	 0,			/* bitpos */
223	 complain_overflow_bitfield, /* complain_on_overflow */
224	 bfd_elf_generic_reloc, /* special_function */
225	 "R_68K_TLS_IE32",	/* name */
226	 false,			/* partial_inplace */
227	 0,			/* src_mask */
228	 0xffffffff,		/* dst_mask */
229	 false),		/* pcrel_offset */
230
231  HOWTO (R_68K_TLS_IE16,	/* type */
232	 0,			/* rightshift */
233	 2,			/* size */
234	 16,			/* bitsize */
235	 false,			/* pc_relative */
236	 0,			/* bitpos */
237	 complain_overflow_signed, /* complain_on_overflow */
238	 bfd_elf_generic_reloc, /* special_function */
239	 "R_68K_TLS_IE16",	/* name */
240	 false,			/* partial_inplace */
241	 0,			/* src_mask */
242	 0x0000ffff,		/* dst_mask */
243	 false),		/* pcrel_offset */
244
245  HOWTO (R_68K_TLS_IE8,		/* type */
246	 0,			/* rightshift */
247	 1,			/* size */
248	 8,			/* bitsize */
249	 false,			/* pc_relative */
250	 0,			/* bitpos */
251	 complain_overflow_signed, /* complain_on_overflow */
252	 bfd_elf_generic_reloc, /* special_function */
253	 "R_68K_TLS_IE8",	/* name */
254	 false,			/* partial_inplace */
255	 0,			/* src_mask */
256	 0x000000ff,		/* dst_mask */
257	 false),		/* pcrel_offset */
258
259  /* TLS local execution variable reference.  */
260  HOWTO (R_68K_TLS_LE32,	/* type */
261	 0,			/* rightshift */
262	 4,			/* size */
263	 32,			/* bitsize */
264	 false,			/* pc_relative */
265	 0,			/* bitpos */
266	 complain_overflow_bitfield, /* complain_on_overflow */
267	 bfd_elf_generic_reloc, /* special_function */
268	 "R_68K_TLS_LE32",	/* name */
269	 false,			/* partial_inplace */
270	 0,			/* src_mask */
271	 0xffffffff,		/* dst_mask */
272	 false),		/* pcrel_offset */
273
274  HOWTO (R_68K_TLS_LE16,	/* type */
275	 0,			/* rightshift */
276	 2,			/* size */
277	 16,			/* bitsize */
278	 false,			/* pc_relative */
279	 0,			/* bitpos */
280	 complain_overflow_signed, /* complain_on_overflow */
281	 bfd_elf_generic_reloc, /* special_function */
282	 "R_68K_TLS_LE16",	/* name */
283	 false,			/* partial_inplace */
284	 0,			/* src_mask */
285	 0x0000ffff,		/* dst_mask */
286	 false),		/* pcrel_offset */
287
288  HOWTO (R_68K_TLS_LE8,		/* type */
289	 0,			/* rightshift */
290	 1,			/* size */
291	 8,			/* bitsize */
292	 false,			/* pc_relative */
293	 0,			/* bitpos */
294	 complain_overflow_signed, /* complain_on_overflow */
295	 bfd_elf_generic_reloc, /* special_function */
296	 "R_68K_TLS_LE8",	/* name */
297	 false,			/* partial_inplace */
298	 0,			/* src_mask */
299	 0x000000ff,		/* dst_mask */
300	 false),		/* pcrel_offset */
301
302  /* TLS GD/LD dynamic relocations.  */
303  HOWTO (R_68K_TLS_DTPMOD32,	/* type */
304	 0,			/* rightshift */
305	 4,			/* size */
306	 32,			/* bitsize */
307	 false,			/* pc_relative */
308	 0,			/* bitpos */
309	 complain_overflow_dont, /* complain_on_overflow */
310	 bfd_elf_generic_reloc, /* special_function */
311	 "R_68K_TLS_DTPMOD32",	/* name */
312	 false,			/* partial_inplace */
313	 0,			/* src_mask */
314	 0xffffffff,		/* dst_mask */
315	 false),		/* pcrel_offset */
316
317  HOWTO (R_68K_TLS_DTPREL32,	/* type */
318	 0,			/* rightshift */
319	 4,			/* size */
320	 32,			/* bitsize */
321	 false,			/* pc_relative */
322	 0,			/* bitpos */
323	 complain_overflow_dont, /* complain_on_overflow */
324	 bfd_elf_generic_reloc, /* special_function */
325	 "R_68K_TLS_DTPREL32",	/* name */
326	 false,			/* partial_inplace */
327	 0,			/* src_mask */
328	 0xffffffff,		/* dst_mask */
329	 false),		/* pcrel_offset */
330
331  HOWTO (R_68K_TLS_TPREL32,	/* type */
332	 0,			/* rightshift */
333	 4,			/* size */
334	 32,			/* bitsize */
335	 false,			/* pc_relative */
336	 0,			/* bitpos */
337	 complain_overflow_dont, /* complain_on_overflow */
338	 bfd_elf_generic_reloc, /* special_function */
339	 "R_68K_TLS_TPREL32",	/* name */
340	 false,			/* partial_inplace */
341	 0,			/* src_mask */
342	 0xffffffff,		/* dst_mask */
343	 false),		/* pcrel_offset */
344};
345
346static bool
347rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
348{
349  unsigned int indx = ELF32_R_TYPE (dst->r_info);
350
351  if (indx >= (unsigned int) R_68K_max)
352    {
353      /* xgettext:c-format */
354      _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
355			  abfd, indx);
356      bfd_set_error (bfd_error_bad_value);
357      return false;
358    }
359  cache_ptr->howto = &howto_table[indx];
360  return true;
361}
362
363#define elf_info_to_howto rtype_to_howto
364
365static const struct
366{
367  bfd_reloc_code_real_type bfd_val;
368  int elf_val;
369}
370  reloc_map[] =
371{
372  { BFD_RELOC_NONE, R_68K_NONE },
373  { BFD_RELOC_32, R_68K_32 },
374  { BFD_RELOC_16, R_68K_16 },
375  { BFD_RELOC_8, R_68K_8 },
376  { BFD_RELOC_32_PCREL, R_68K_PC32 },
377  { BFD_RELOC_16_PCREL, R_68K_PC16 },
378  { BFD_RELOC_8_PCREL, R_68K_PC8 },
379  { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
380  { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
381  { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
382  { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
383  { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
384  { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
385  { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
386  { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
387  { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
388  { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
389  { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
390  { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
391  { BFD_RELOC_NONE, R_68K_COPY },
392  { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
393  { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
394  { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
395  { BFD_RELOC_CTOR, R_68K_32 },
396  { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
397  { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
398  { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
399  { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
400  { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
401  { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
402  { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
403  { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
404  { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
405  { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
406  { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
407  { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
408  { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
409  { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
410  { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
411  { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
412  { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
413};
414
415static reloc_howto_type *
416reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
417		   bfd_reloc_code_real_type code)
418{
419  unsigned int i;
420  for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
421    {
422      if (reloc_map[i].bfd_val == code)
423	return &howto_table[reloc_map[i].elf_val];
424    }
425  return 0;
426}
427
428static reloc_howto_type *
429reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
430{
431  unsigned int i;
432
433  for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
434    if (howto_table[i].name != NULL
435	&& strcasecmp (howto_table[i].name, r_name) == 0)
436      return &howto_table[i];
437
438  return NULL;
439}
440
441#define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
442#define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
443#define ELF_ARCH bfd_arch_m68k
444#define ELF_TARGET_ID M68K_ELF_DATA
445
446/* Functions for the m68k ELF linker.  */
447
448/* The name of the dynamic interpreter.  This is put in the .interp
449   section.  */
450
451#define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
452
453/* Describes one of the various PLT styles.  */
454
455struct elf_m68k_plt_info
456{
457  /* The size of each PLT entry.  */
458  bfd_vma size;
459
460  /* The template for the first PLT entry.  */
461  const bfd_byte *plt0_entry;
462
463  /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
464     The comments by each member indicate the value that the relocation
465     is against.  */
466  struct {
467    unsigned int got4; /* .got + 4 */
468    unsigned int got8; /* .got + 8 */
469  } plt0_relocs;
470
471  /* The template for a symbol's PLT entry.  */
472  const bfd_byte *symbol_entry;
473
474  /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
475     The comments by each member indicate the value that the relocation
476     is against.  */
477  struct {
478    unsigned int got; /* the symbol's .got.plt entry */
479    unsigned int plt; /* .plt */
480  } symbol_relocs;
481
482  /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
483     The stub starts with "move.l #relocoffset,%d0".  */
484  bfd_vma symbol_resolve_entry;
485};
486
487/* The size in bytes of an entry in the procedure linkage table.  */
488
489#define PLT_ENTRY_SIZE 20
490
491/* The first entry in a procedure linkage table looks like this.  See
492   the SVR4 ABI m68k supplement to see how this works.  */
493
494static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
495{
496  0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
497  0, 0, 0, 2,		  /* + (.got + 4) - . */
498  0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
499  0, 0, 0, 2,		  /* + (.got + 8) - . */
500  0, 0, 0, 0		  /* pad out to 20 bytes.  */
501};
502
503/* Subsequent entries in a procedure linkage table look like this.  */
504
505static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
506{
507  0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
508  0, 0, 0, 2,		  /* + (.got.plt entry) - . */
509  0x2f, 0x3c,		  /* move.l #offset,-(%sp) */
510  0, 0, 0, 0,		  /* + reloc index */
511  0x60, 0xff,		  /* bra.l .plt */
512  0, 0, 0, 0		  /* + .plt - . */
513};
514
515static const struct elf_m68k_plt_info elf_m68k_plt_info =
516{
517  PLT_ENTRY_SIZE,
518  elf_m68k_plt0_entry, { 4, 12 },
519  elf_m68k_plt_entry, { 4, 16 }, 8
520};
521
522#define ISAB_PLT_ENTRY_SIZE 24
523
524static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
525{
526  0x20, 0x3c,		  /* move.l #offset,%d0 */
527  0, 0, 0, 0,		  /* + (.got + 4) - . */
528  0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
529  0x20, 0x3c,		  /* move.l #offset,%d0 */
530  0, 0, 0, 0,		  /* + (.got + 8) - . */
531  0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
532  0x4e, 0xd0,		  /* jmp (%a0) */
533  0x4e, 0x71		  /* nop */
534};
535
536/* Subsequent entries in a procedure linkage table look like this.  */
537
538static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
539{
540  0x20, 0x3c,		  /* move.l #offset,%d0 */
541  0, 0, 0, 0,		  /* + (.got.plt entry) - . */
542  0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
543  0x4e, 0xd0,		  /* jmp (%a0) */
544  0x2f, 0x3c,		  /* move.l #offset,-(%sp) */
545  0, 0, 0, 0,		  /* + reloc index */
546  0x60, 0xff,		  /* bra.l .plt */
547  0, 0, 0, 0		  /* + .plt - . */
548};
549
550static const struct elf_m68k_plt_info elf_isab_plt_info =
551{
552  ISAB_PLT_ENTRY_SIZE,
553  elf_isab_plt0_entry, { 2, 12 },
554  elf_isab_plt_entry, { 2, 20 }, 12
555};
556
557#define ISAC_PLT_ENTRY_SIZE 24
558
559static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
560{
561  0x20, 0x3c,		  /* move.l #offset,%d0 */
562  0, 0, 0, 0,		  /* replaced with .got + 4 - . */
563  0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
564  0x20, 0x3c,		  /* move.l #offset,%d0 */
565  0, 0, 0, 0,		  /* replaced with .got + 8 - . */
566  0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
567  0x4e, 0xd0,		  /* jmp (%a0) */
568  0x4e, 0x71		  /* nop */
569};
570
571/* Subsequent entries in a procedure linkage table look like this.  */
572
573static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
574{
575  0x20, 0x3c,		  /* move.l #offset,%d0 */
576  0, 0, 0, 0,		  /* replaced with (.got entry) - . */
577  0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
578  0x4e, 0xd0,		  /* jmp (%a0) */
579  0x2f, 0x3c,		  /* move.l #offset,-(%sp) */
580  0, 0, 0, 0,		  /* replaced with offset into relocation table */
581  0x61, 0xff,		  /* bsr.l .plt */
582  0, 0, 0, 0		  /* replaced with .plt - . */
583};
584
585static const struct elf_m68k_plt_info elf_isac_plt_info =
586{
587  ISAC_PLT_ENTRY_SIZE,
588  elf_isac_plt0_entry, { 2, 12},
589  elf_isac_plt_entry, { 2, 20 }, 12
590};
591
592#define CPU32_PLT_ENTRY_SIZE 24
593/* Procedure linkage table entries for the cpu32 */
594static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
595{
596  0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
597  0, 0, 0, 2,		  /* + (.got + 4) - . */
598  0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
599  0, 0, 0, 2,		  /* + (.got + 8) - . */
600  0x4e, 0xd1,		  /* jmp %a1@ */
601  0, 0, 0, 0,		  /* pad out to 24 bytes.  */
602  0, 0
603};
604
605static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
606{
607  0x22, 0x7b, 0x01, 0x70,  /* moveal %pc@(0xc), %a1 */
608  0, 0, 0, 2,		   /* + (.got.plt entry) - . */
609  0x4e, 0xd1,		   /* jmp %a1@ */
610  0x2f, 0x3c,		   /* move.l #offset,-(%sp) */
611  0, 0, 0, 0,		   /* + reloc index */
612  0x60, 0xff,		   /* bra.l .plt */
613  0, 0, 0, 0,		   /* + .plt - . */
614  0, 0
615};
616
617static const struct elf_m68k_plt_info elf_cpu32_plt_info =
618{
619  CPU32_PLT_ENTRY_SIZE,
620  elf_cpu32_plt0_entry, { 4, 12 },
621  elf_cpu32_plt_entry, { 4, 18 }, 10
622};
623
624/* The m68k linker needs to keep track of the number of relocs that it
625   decides to copy in check_relocs for each symbol.  This is so that it
626   can discard PC relative relocs if it doesn't need them when linking
627   with -Bsymbolic.  We store the information in a field extending the
628   regular ELF linker hash table.  */
629
630/* This structure keeps track of the number of PC relative relocs we have
631   copied for a given symbol.  */
632
633struct elf_m68k_pcrel_relocs_copied
634{
635  /* Next section.  */
636  struct elf_m68k_pcrel_relocs_copied *next;
637  /* A section in dynobj.  */
638  asection *section;
639  /* Number of relocs copied in this section.  */
640  bfd_size_type count;
641};
642
643/* Forward declaration.  */
644struct elf_m68k_got_entry;
645
646/* m68k ELF linker hash entry.  */
647
648struct elf_m68k_link_hash_entry
649{
650  struct elf_link_hash_entry root;
651
652  /* Number of PC relative relocs copied for this symbol.  */
653  struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
654
655  /* Key to got_entries.  */
656  unsigned long got_entry_key;
657
658  /* List of GOT entries for this symbol.  This list is build during
659     offset finalization and is used within elf_m68k_finish_dynamic_symbol
660     to traverse all GOT entries for a particular symbol.
661
662     ??? We could've used root.got.glist field instead, but having
663     a separate field is cleaner.  */
664  struct elf_m68k_got_entry *glist;
665};
666
667#define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
668
669/* Key part of GOT entry in hashtable.  */
670struct elf_m68k_got_entry_key
671{
672  /* BFD in which this symbol was defined.  NULL for global symbols.  */
673  const bfd *bfd;
674
675  /* Symbol index.  Either local symbol index or h->got_entry_key.  */
676  unsigned long symndx;
677
678  /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
679     R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
680
681     From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
682     matters.  That is, we distinguish between, say, R_68K_GOT16O
683     and R_68K_GOT32O when allocating offsets, but they are considered to be
684     the same when searching got->entries.  */
685  enum elf_m68k_reloc_type type;
686};
687
688/* Size of the GOT offset suitable for relocation.  */
689enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
690
691/* Entry of the GOT.  */
692struct elf_m68k_got_entry
693{
694  /* GOT entries are put into a got->entries hashtable.  This is the key.  */
695  struct elf_m68k_got_entry_key key_;
696
697  /* GOT entry data.  We need s1 before offset finalization and s2 after.  */
698  union
699  {
700    struct
701    {
702      /* Number of times this entry is referenced.  */
703      bfd_vma refcount;
704    } s1;
705
706    struct
707    {
708      /* Offset from the start of .got section.  To calculate offset relative
709	 to GOT pointer one should subtract got->offset from this value.  */
710      bfd_vma offset;
711
712      /* Pointer to the next GOT entry for this global symbol.
713	 Symbols have at most one entry in one GOT, but might
714	 have entries in more than one GOT.
715	 Root of this list is h->glist.
716	 NULL for local symbols.  */
717      struct elf_m68k_got_entry *next;
718    } s2;
719  } u;
720};
721
722/* Return representative type for relocation R_TYPE.
723   This is used to avoid enumerating many relocations in comparisons,
724   switches etc.  */
725
726static enum elf_m68k_reloc_type
727elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
728{
729  switch (r_type)
730    {
731      /* In most cases R_68K_GOTx relocations require the very same
732	 handling as R_68K_GOT32O relocation.  In cases when we need
733	 to distinguish between the two, we use explicitly compare against
734	 r_type.  */
735    case R_68K_GOT32:
736    case R_68K_GOT16:
737    case R_68K_GOT8:
738    case R_68K_GOT32O:
739    case R_68K_GOT16O:
740    case R_68K_GOT8O:
741      return R_68K_GOT32O;
742
743    case R_68K_TLS_GD32:
744    case R_68K_TLS_GD16:
745    case R_68K_TLS_GD8:
746      return R_68K_TLS_GD32;
747
748    case R_68K_TLS_LDM32:
749    case R_68K_TLS_LDM16:
750    case R_68K_TLS_LDM8:
751      return R_68K_TLS_LDM32;
752
753    case R_68K_TLS_IE32:
754    case R_68K_TLS_IE16:
755    case R_68K_TLS_IE8:
756      return R_68K_TLS_IE32;
757
758    default:
759      BFD_ASSERT (false);
760      return 0;
761    }
762}
763
764/* Return size of the GOT entry offset for relocation R_TYPE.  */
765
766static enum elf_m68k_got_offset_size
767elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
768{
769  switch (r_type)
770    {
771    case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
772    case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
773    case R_68K_TLS_IE32:
774      return R_32;
775
776    case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
777    case R_68K_TLS_IE16:
778      return R_16;
779
780    case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
781    case R_68K_TLS_IE8:
782      return R_8;
783
784    default:
785      BFD_ASSERT (false);
786      return 0;
787    }
788}
789
790/* Return number of GOT entries we need to allocate in GOT for
791   relocation R_TYPE.  */
792
793static bfd_vma
794elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
795{
796  switch (elf_m68k_reloc_got_type (r_type))
797    {
798    case R_68K_GOT32O:
799    case R_68K_TLS_IE32:
800      return 1;
801
802    case R_68K_TLS_GD32:
803    case R_68K_TLS_LDM32:
804      return 2;
805
806    default:
807      BFD_ASSERT (false);
808      return 0;
809    }
810}
811
812/* Return TRUE if relocation R_TYPE is a TLS one.  */
813
814static bool
815elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
816{
817  switch (r_type)
818    {
819    case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
820    case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
821    case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
822    case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
823    case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
824    case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
825      return true;
826
827    default:
828      return false;
829    }
830}
831
832/* Data structure representing a single GOT.  */
833struct elf_m68k_got
834{
835  /* Hashtable of 'struct elf_m68k_got_entry's.
836     Starting size of this table is the maximum number of
837     R_68K_GOT8O entries.  */
838  htab_t entries;
839
840  /* Number of R_x slots in this GOT.  Some (e.g., TLS) entries require
841     several GOT slots.
842
843     n_slots[R_8] is the count of R_8 slots in this GOT.
844     n_slots[R_16] is the cumulative count of R_8 and R_16 slots
845     in this GOT.
846     n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
847     in this GOT.  This is the total number of slots.  */
848  bfd_vma n_slots[R_LAST];
849
850  /* Number of local (entry->key_.h == NULL) slots in this GOT.
851     This is only used to properly calculate size of .rela.got section;
852     see elf_m68k_partition_multi_got.  */
853  bfd_vma local_n_slots;
854
855  /* Offset of this GOT relative to beginning of .got section.  */
856  bfd_vma offset;
857};
858
859/* BFD and its GOT.  This is an entry in multi_got->bfd2got hashtable.  */
860struct elf_m68k_bfd2got_entry
861{
862  /* BFD.  */
863  const bfd *bfd;
864
865  /* Assigned GOT.  Before partitioning multi-GOT each BFD has its own
866     GOT structure.  After partitioning several BFD's might [and often do]
867     share a single GOT.  */
868  struct elf_m68k_got *got;
869};
870
871/* The main data structure holding all the pieces.  */
872struct elf_m68k_multi_got
873{
874  /* Hashtable mapping each BFD to its GOT.  If a BFD doesn't have an entry
875     here, then it doesn't need a GOT (this includes the case of a BFD
876     having an empty GOT).
877
878     ??? This hashtable can be replaced by an array indexed by bfd->id.  */
879  htab_t bfd2got;
880
881  /* Next symndx to assign a global symbol.
882     h->got_entry_key is initialized from this counter.  */
883  unsigned long global_symndx;
884};
885
886/* m68k ELF linker hash table.  */
887
888struct elf_m68k_link_hash_table
889{
890  struct elf_link_hash_table root;
891
892  /* The PLT format used by this link, or NULL if the format has not
893     yet been chosen.  */
894  const struct elf_m68k_plt_info *plt_info;
895
896  /* True, if GP is loaded within each function which uses it.
897     Set to TRUE when GOT negative offsets or multi-GOT is enabled.  */
898  bool local_gp_p;
899
900  /* Switch controlling use of negative offsets to double the size of GOTs.  */
901  bool use_neg_got_offsets_p;
902
903  /* Switch controlling generation of multiple GOTs.  */
904  bool allow_multigot_p;
905
906  /* Multi-GOT data structure.  */
907  struct elf_m68k_multi_got multi_got_;
908};
909
910/* Get the m68k ELF linker hash table from a link_info structure.  */
911
912#define elf_m68k_hash_table(p) \
913  ((is_elf_hash_table ((p)->hash)					\
914    && elf_hash_table_id (elf_hash_table (p)) == M68K_ELF_DATA)		\
915   ? (struct elf_m68k_link_hash_table *) (p)->hash : NULL)
916
917/* Shortcut to multi-GOT data.  */
918#define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
919
920/* Create an entry in an m68k ELF linker hash table.  */
921
922static struct bfd_hash_entry *
923elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
924			    struct bfd_hash_table *table,
925			    const char *string)
926{
927  struct bfd_hash_entry *ret = entry;
928
929  /* Allocate the structure if it has not already been allocated by a
930     subclass.  */
931  if (ret == NULL)
932    ret = bfd_hash_allocate (table,
933			     sizeof (struct elf_m68k_link_hash_entry));
934  if (ret == NULL)
935    return ret;
936
937  /* Call the allocation method of the superclass.  */
938  ret = _bfd_elf_link_hash_newfunc (ret, table, string);
939  if (ret != NULL)
940    {
941      elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
942      elf_m68k_hash_entry (ret)->got_entry_key = 0;
943      elf_m68k_hash_entry (ret)->glist = NULL;
944    }
945
946  return ret;
947}
948
949/* Destroy an m68k ELF linker hash table.  */
950
951static void
952elf_m68k_link_hash_table_free (bfd *obfd)
953{
954  struct elf_m68k_link_hash_table *htab;
955
956  htab = (struct elf_m68k_link_hash_table *) obfd->link.hash;
957
958  if (htab->multi_got_.bfd2got != NULL)
959    {
960      htab_delete (htab->multi_got_.bfd2got);
961      htab->multi_got_.bfd2got = NULL;
962    }
963  _bfd_elf_link_hash_table_free (obfd);
964}
965
966/* Create an m68k ELF linker hash table.  */
967
968static struct bfd_link_hash_table *
969elf_m68k_link_hash_table_create (bfd *abfd)
970{
971  struct elf_m68k_link_hash_table *ret;
972  size_t amt = sizeof (struct elf_m68k_link_hash_table);
973
974  ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt);
975  if (ret == (struct elf_m68k_link_hash_table *) NULL)
976    return NULL;
977
978  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
979				      elf_m68k_link_hash_newfunc,
980				      sizeof (struct elf_m68k_link_hash_entry),
981				      M68K_ELF_DATA))
982    {
983      free (ret);
984      return NULL;
985    }
986  ret->root.root.hash_table_free = elf_m68k_link_hash_table_free;
987
988  ret->multi_got_.global_symndx = 1;
989
990  return &ret->root.root;
991}
992
993/* Set the right machine number.  */
994
995static bool
996elf32_m68k_object_p (bfd *abfd)
997{
998  unsigned int mach = 0;
999  unsigned features = 0;
1000  flagword eflags = elf_elfheader (abfd)->e_flags;
1001
1002  if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1003    features |= m68000;
1004  else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1005    features |= cpu32;
1006  else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1007    features |= fido_a;
1008  else
1009    {
1010      switch (eflags & EF_M68K_CF_ISA_MASK)
1011	{
1012	case EF_M68K_CF_ISA_A_NODIV:
1013	  features |= mcfisa_a;
1014	  break;
1015	case EF_M68K_CF_ISA_A:
1016	  features |= mcfisa_a|mcfhwdiv;
1017	  break;
1018	case EF_M68K_CF_ISA_A_PLUS:
1019	  features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1020	  break;
1021	case EF_M68K_CF_ISA_B_NOUSP:
1022	  features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1023	  break;
1024	case EF_M68K_CF_ISA_B:
1025	  features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1026	  break;
1027	case EF_M68K_CF_ISA_C:
1028	  features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1029	  break;
1030	case EF_M68K_CF_ISA_C_NODIV:
1031	  features |= mcfisa_a|mcfisa_c|mcfusp;
1032	  break;
1033	}
1034      switch (eflags & EF_M68K_CF_MAC_MASK)
1035	{
1036	case EF_M68K_CF_MAC:
1037	  features |= mcfmac;
1038	  break;
1039	case EF_M68K_CF_EMAC:
1040	  features |= mcfemac;
1041	  break;
1042	}
1043      if (eflags & EF_M68K_CF_FLOAT)
1044	features |= cfloat;
1045    }
1046
1047  mach = bfd_m68k_features_to_mach (features);
1048  bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1049
1050  return true;
1051}
1052
1053/* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1054   field based on the machine number.  */
1055
1056static bool
1057elf_m68k_final_write_processing (bfd *abfd)
1058{
1059  int mach = bfd_get_mach (abfd);
1060  unsigned long e_flags = elf_elfheader (abfd)->e_flags;
1061
1062  if (!e_flags)
1063    {
1064      unsigned int arch_mask;
1065
1066      arch_mask = bfd_m68k_mach_to_features (mach);
1067
1068      if (arch_mask & m68000)
1069	e_flags = EF_M68K_M68000;
1070      else if (arch_mask & cpu32)
1071	e_flags = EF_M68K_CPU32;
1072      else if (arch_mask & fido_a)
1073	e_flags = EF_M68K_FIDO;
1074      else
1075	{
1076	  switch (arch_mask
1077		  & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
1078	    {
1079	    case mcfisa_a:
1080	      e_flags |= EF_M68K_CF_ISA_A_NODIV;
1081	      break;
1082	    case mcfisa_a | mcfhwdiv:
1083	      e_flags |= EF_M68K_CF_ISA_A;
1084	      break;
1085	    case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
1086	      e_flags |= EF_M68K_CF_ISA_A_PLUS;
1087	      break;
1088	    case mcfisa_a | mcfisa_b | mcfhwdiv:
1089	      e_flags |= EF_M68K_CF_ISA_B_NOUSP;
1090	      break;
1091	    case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
1092	      e_flags |= EF_M68K_CF_ISA_B;
1093	      break;
1094	    case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
1095	      e_flags |= EF_M68K_CF_ISA_C;
1096	      break;
1097	    case mcfisa_a | mcfisa_c | mcfusp:
1098	      e_flags |= EF_M68K_CF_ISA_C_NODIV;
1099	      break;
1100	    }
1101	  if (arch_mask & mcfmac)
1102	    e_flags |= EF_M68K_CF_MAC;
1103	  else if (arch_mask & mcfemac)
1104	    e_flags |= EF_M68K_CF_EMAC;
1105	  if (arch_mask & cfloat)
1106	    e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
1107	}
1108      elf_elfheader (abfd)->e_flags = e_flags;
1109    }
1110  return _bfd_elf_final_write_processing (abfd);
1111}
1112
1113/* Keep m68k-specific flags in the ELF header.  */
1114
1115static bool
1116elf32_m68k_set_private_flags (bfd *abfd, flagword flags)
1117{
1118  elf_elfheader (abfd)->e_flags = flags;
1119  elf_flags_init (abfd) = true;
1120  return true;
1121}
1122
1123/* Merge object attributes from IBFD into OBFD.  Warn if
1124   there are conflicting attributes. */
1125static bool
1126m68k_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
1127{
1128  bfd *obfd = info->output_bfd;
1129  obj_attribute *in_attr, *in_attrs;
1130  obj_attribute *out_attr, *out_attrs;
1131  bool ret = true;
1132
1133  in_attrs = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
1134  out_attrs = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
1135
1136  in_attr = &in_attrs[Tag_GNU_M68K_ABI_FP];
1137  out_attr = &out_attrs[Tag_GNU_M68K_ABI_FP];
1138
1139  if (in_attr->i != out_attr->i)
1140    {
1141      int in_fp = in_attr->i & 3;
1142      int out_fp = out_attr->i & 3;
1143      static bfd *last_fp;
1144
1145      if (in_fp == 0)
1146	;
1147      else if (out_fp == 0)
1148	{
1149	  out_attr->type = ATTR_TYPE_FLAG_INT_VAL;
1150	  out_attr->i ^= in_fp;
1151	  last_fp = ibfd;
1152	}
1153      else if (out_fp == 1 && in_fp == 2)
1154	{
1155	  _bfd_error_handler
1156	    /* xgettext:c-format */
1157	    (_("%pB uses hard float, %pB uses soft float"),
1158	     last_fp, ibfd);
1159	  ret = false;
1160	}
1161      else if (out_fp == 2 && in_fp == 1)
1162	{
1163	  _bfd_error_handler
1164	    /* xgettext:c-format */
1165	    (_("%pB uses hard float, %pB uses soft float"),
1166	     ibfd, last_fp);
1167	  ret = false;
1168	}
1169    }
1170
1171  if (!ret)
1172    {
1173      out_attr->type = ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_ERROR;
1174      bfd_set_error (bfd_error_bad_value);
1175      return false;
1176    }
1177
1178  /* Merge Tag_compatibility attributes and any common GNU ones.  */
1179  return _bfd_elf_merge_object_attributes (ibfd, info);
1180}
1181
1182/* Merge backend specific data from an object file to the output
1183   object file when linking.  */
1184static bool
1185elf32_m68k_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
1186{
1187  bfd *obfd = info->output_bfd;
1188  flagword out_flags;
1189  flagword in_flags;
1190  flagword out_isa;
1191  flagword in_isa;
1192  const bfd_arch_info_type *arch_info;
1193
1194  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1195      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1196    /* PR 24523: For non-ELF files do not try to merge any private
1197       data, but also do not prevent the link from succeeding.  */
1198    return true;
1199
1200  /* Get the merged machine.  This checks for incompatibility between
1201     Coldfire & non-Coldfire flags, incompability between different
1202     Coldfire ISAs, and incompability between different MAC types.  */
1203  arch_info = bfd_arch_get_compatible (ibfd, obfd, false);
1204  if (!arch_info)
1205    return false;
1206
1207  bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1208
1209  if (!m68k_elf_merge_obj_attributes (ibfd, info))
1210    return false;
1211
1212  in_flags = elf_elfheader (ibfd)->e_flags;
1213  if (!elf_flags_init (obfd))
1214    {
1215      elf_flags_init (obfd) = true;
1216      out_flags = in_flags;
1217    }
1218  else
1219    {
1220      out_flags = elf_elfheader (obfd)->e_flags;
1221      unsigned int variant_mask;
1222
1223      if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1224	variant_mask = 0;
1225      else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1226	variant_mask = 0;
1227      else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1228	variant_mask = 0;
1229      else
1230	variant_mask = EF_M68K_CF_ISA_MASK;
1231
1232      in_isa = (in_flags & variant_mask);
1233      out_isa = (out_flags & variant_mask);
1234      if (in_isa > out_isa)
1235	out_flags ^= in_isa ^ out_isa;
1236      if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1237	   && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1238	  || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1239	      && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1240	out_flags = EF_M68K_FIDO;
1241      else
1242      out_flags |= in_flags ^ in_isa;
1243    }
1244  elf_elfheader (obfd)->e_flags = out_flags;
1245
1246  return true;
1247}
1248
1249/* Display the flags field.  */
1250
1251static bool
1252elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1253{
1254  FILE *file = (FILE *) ptr;
1255  flagword eflags = elf_elfheader (abfd)->e_flags;
1256
1257  BFD_ASSERT (abfd != NULL && ptr != NULL);
1258
1259  /* Print normal ELF private data.  */
1260  _bfd_elf_print_private_bfd_data (abfd, ptr);
1261
1262  /* Ignore init flag - it may not be set, despite the flags field containing valid data.  */
1263
1264  /* xgettext:c-format */
1265  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1266
1267  if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1268    fprintf (file, " [m68000]");
1269  else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1270    fprintf (file, " [cpu32]");
1271  else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1272    fprintf (file, " [fido]");
1273  else
1274    {
1275      if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1276	fprintf (file, " [cfv4e]");
1277
1278      if (eflags & EF_M68K_CF_ISA_MASK)
1279	{
1280	  char const *isa = _("unknown");
1281	  char const *mac = _("unknown");
1282	  char const *additional = "";
1283
1284	  switch (eflags & EF_M68K_CF_ISA_MASK)
1285	    {
1286	    case EF_M68K_CF_ISA_A_NODIV:
1287	      isa = "A";
1288	      additional = " [nodiv]";
1289	      break;
1290	    case EF_M68K_CF_ISA_A:
1291	      isa = "A";
1292	      break;
1293	    case EF_M68K_CF_ISA_A_PLUS:
1294	      isa = "A+";
1295	      break;
1296	    case EF_M68K_CF_ISA_B_NOUSP:
1297	      isa = "B";
1298	      additional = " [nousp]";
1299	      break;
1300	    case EF_M68K_CF_ISA_B:
1301	      isa = "B";
1302	      break;
1303	    case EF_M68K_CF_ISA_C:
1304	      isa = "C";
1305	      break;
1306	    case EF_M68K_CF_ISA_C_NODIV:
1307	      isa = "C";
1308	      additional = " [nodiv]";
1309	      break;
1310	    }
1311	  fprintf (file, " [isa %s]%s", isa, additional);
1312
1313	  if (eflags & EF_M68K_CF_FLOAT)
1314	    fprintf (file, " [float]");
1315
1316	  switch (eflags & EF_M68K_CF_MAC_MASK)
1317	    {
1318	    case 0:
1319	      mac = NULL;
1320	      break;
1321	    case EF_M68K_CF_MAC:
1322	      mac = "mac";
1323	      break;
1324	    case EF_M68K_CF_EMAC:
1325	      mac = "emac";
1326	      break;
1327	    case EF_M68K_CF_EMAC_B:
1328	      mac = "emac_b";
1329	      break;
1330	    }
1331	  if (mac)
1332	    fprintf (file, " [%s]", mac);
1333	}
1334    }
1335
1336  fputc ('\n', file);
1337
1338  return true;
1339}
1340
1341/* Multi-GOT support implementation design:
1342
1343   Multi-GOT starts in check_relocs hook.  There we scan all
1344   relocations of a BFD and build a local GOT (struct elf_m68k_got)
1345   for it.  If a single BFD appears to require too many GOT slots with
1346   R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1347   to user.
1348   After check_relocs has been invoked for each input BFD, we have
1349   constructed a GOT for each input BFD.
1350
1351   To minimize total number of GOTs required for a particular output BFD
1352   (as some environments support only 1 GOT per output object) we try
1353   to merge some of the GOTs to share an offset space.  Ideally [and in most
1354   cases] we end up with a single GOT.  In cases when there are too many
1355   restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1356   several GOTs, assuming the environment can handle them.
1357
1358   Partitioning is done in elf_m68k_partition_multi_got.  We start with
1359   an empty GOT and traverse bfd2got hashtable putting got_entries from
1360   local GOTs to the new 'big' one.  We do that by constructing an
1361   intermediate GOT holding all the entries the local GOT has and the big
1362   GOT lacks.  Then we check if there is room in the big GOT to accomodate
1363   all the entries from diff.  On success we add those entries to the big
1364   GOT; on failure we start the new 'big' GOT and retry the adding of
1365   entries from the local GOT.  Note that this retry will always succeed as
1366   each local GOT doesn't overflow the limits.  After partitioning we
1367   end up with each bfd assigned one of the big GOTs.  GOT entries in the
1368   big GOTs are initialized with GOT offsets.  Note that big GOTs are
1369   positioned consequently in program space and represent a single huge GOT
1370   to the outside world.
1371
1372   After that we get to elf_m68k_relocate_section.  There we
1373   adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1374   relocations to refer to appropriate [assigned to current input_bfd]
1375   big GOT.
1376
1377   Notes:
1378
1379   GOT entry type: We have several types of GOT entries.
1380   * R_8 type is used in entries for symbols that have at least one
1381   R_68K_GOT8O or R_68K_TLS_*8 relocation.  We can have at most 0x40
1382   such entries in one GOT.
1383   * R_16 type is used in entries for symbols that have at least one
1384   R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
1385   We can have at most 0x4000 such entries in one GOT.
1386   * R_32 type is used in all other cases.  We can have as many
1387   such entries in one GOT as we'd like.
1388   When counting relocations we have to include the count of the smaller
1389   ranged relocations in the counts of the larger ranged ones in order
1390   to correctly detect overflow.
1391
1392   Sorting the GOT: In each GOT starting offsets are assigned to
1393   R_8 entries, which are followed by R_16 entries, and
1394   R_32 entries go at the end.  See finalize_got_offsets for details.
1395
1396   Negative GOT offsets: To double usable offset range of GOTs we use
1397   negative offsets.  As we assign entries with GOT offsets relative to
1398   start of .got section, the offset values are positive.  They become
1399   negative only in relocate_section where got->offset value is
1400   subtracted from them.
1401
1402   3 special GOT entries: There are 3 special GOT entries used internally
1403   by loader.  These entries happen to be placed to .got.plt section,
1404   so we don't do anything about them in multi-GOT support.
1405
1406   Memory management: All data except for hashtables
1407   multi_got->bfd2got and got->entries are allocated on
1408   elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1409   to most functions), so we don't need to care to free them.  At the
1410   moment of allocation hashtables are being linked into main data
1411   structure (multi_got), all pieces of which are reachable from
1412   elf_m68k_multi_got (info).  We deallocate them in
1413   elf_m68k_link_hash_table_free.  */
1414
1415/* Initialize GOT.  */
1416
1417static void
1418elf_m68k_init_got (struct elf_m68k_got *got)
1419{
1420  got->entries = NULL;
1421  got->n_slots[R_8] = 0;
1422  got->n_slots[R_16] = 0;
1423  got->n_slots[R_32] = 0;
1424  got->local_n_slots = 0;
1425  got->offset = (bfd_vma) -1;
1426}
1427
1428/* Destruct GOT.  */
1429
1430static void
1431elf_m68k_clear_got (struct elf_m68k_got *got)
1432{
1433  if (got->entries != NULL)
1434    {
1435      htab_delete (got->entries);
1436      got->entries = NULL;
1437    }
1438}
1439
1440/* Create and empty GOT structure.  INFO is the context where memory
1441   should be allocated.  */
1442
1443static struct elf_m68k_got *
1444elf_m68k_create_empty_got (struct bfd_link_info *info)
1445{
1446  struct elf_m68k_got *got;
1447
1448  got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1449  if (got == NULL)
1450    return NULL;
1451
1452  elf_m68k_init_got (got);
1453
1454  return got;
1455}
1456
1457/* Initialize KEY.  */
1458
1459static void
1460elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1461			     struct elf_link_hash_entry *h,
1462			     const bfd *abfd, unsigned long symndx,
1463			     enum elf_m68k_reloc_type reloc_type)
1464{
1465  if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1466    /* All TLS_LDM relocations share a single GOT entry.  */
1467    {
1468      key->bfd = NULL;
1469      key->symndx = 0;
1470    }
1471  else if (h != NULL)
1472    /* Global symbols are identified with their got_entry_key.  */
1473    {
1474      key->bfd = NULL;
1475      key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1476      BFD_ASSERT (key->symndx != 0);
1477    }
1478  else
1479    /* Local symbols are identified by BFD they appear in and symndx.  */
1480    {
1481      key->bfd = abfd;
1482      key->symndx = symndx;
1483    }
1484
1485  key->type = reloc_type;
1486}
1487
1488/* Calculate hash of got_entry.
1489   ??? Is it good?  */
1490
1491static hashval_t
1492elf_m68k_got_entry_hash (const void *_entry)
1493{
1494  const struct elf_m68k_got_entry_key *key;
1495
1496  key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1497
1498  return (key->symndx
1499	  + (key->bfd != NULL ? (int) key->bfd->id : -1)
1500	  + elf_m68k_reloc_got_type (key->type));
1501}
1502
1503/* Check if two got entries are equal.  */
1504
1505static int
1506elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1507{
1508  const struct elf_m68k_got_entry_key *key1;
1509  const struct elf_m68k_got_entry_key *key2;
1510
1511  key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1512  key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1513
1514  return (key1->bfd == key2->bfd
1515	  && key1->symndx == key2->symndx
1516	  && (elf_m68k_reloc_got_type (key1->type)
1517	      == elf_m68k_reloc_got_type (key2->type)));
1518}
1519
1520/* When using negative offsets, we allocate one extra R_8, one extra R_16
1521   and one extra R_32 slots to simplify handling of 2-slot entries during
1522   offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots.  */
1523
1524/* Maximal number of R_8 slots in a single GOT.  */
1525#define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO)		\
1526  (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p		\
1527   ? (0x40 - 1)							\
1528   : 0x20)
1529
1530/* Maximal number of R_8 and R_16 slots in a single GOT.  */
1531#define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO)		\
1532  (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p		\
1533   ? (0x4000 - 2)						\
1534   : 0x2000)
1535
1536/* SEARCH - simply search the hashtable, don't insert new entries or fail when
1537   the entry cannot be found.
1538   FIND_OR_CREATE - search for an existing entry, but create new if there's
1539   no such.
1540   MUST_FIND - search for an existing entry and assert that it exist.
1541   MUST_CREATE - assert that there's no such entry and create new one.  */
1542enum elf_m68k_get_entry_howto
1543  {
1544    SEARCH,
1545    FIND_OR_CREATE,
1546    MUST_FIND,
1547    MUST_CREATE
1548  };
1549
1550/* Get or create (depending on HOWTO) entry with KEY in GOT.
1551   INFO is context in which memory should be allocated (can be NULL if
1552   HOWTO is SEARCH or MUST_FIND).  */
1553
1554static struct elf_m68k_got_entry *
1555elf_m68k_get_got_entry (struct elf_m68k_got *got,
1556			const struct elf_m68k_got_entry_key *key,
1557			enum elf_m68k_get_entry_howto howto,
1558			struct bfd_link_info *info)
1559{
1560  struct elf_m68k_got_entry entry_;
1561  struct elf_m68k_got_entry *entry;
1562  void **ptr;
1563
1564  BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1565
1566  if (got->entries == NULL)
1567    /* This is the first entry in ABFD.  Initialize hashtable.  */
1568    {
1569      if (howto == SEARCH)
1570	return NULL;
1571
1572      got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
1573				      (info),
1574				      elf_m68k_got_entry_hash,
1575				      elf_m68k_got_entry_eq, NULL);
1576      if (got->entries == NULL)
1577	{
1578	  bfd_set_error (bfd_error_no_memory);
1579	  return NULL;
1580	}
1581    }
1582
1583  entry_.key_ = *key;
1584  ptr = htab_find_slot (got->entries, &entry_,
1585			(howto == SEARCH || howto == MUST_FIND ? NO_INSERT
1586			 : INSERT));
1587  if (ptr == NULL)
1588    {
1589      if (howto == SEARCH)
1590	/* Entry not found.  */
1591	return NULL;
1592
1593      if (howto == MUST_FIND)
1594	abort ();
1595
1596      /* We're out of memory.  */
1597      bfd_set_error (bfd_error_no_memory);
1598      return NULL;
1599    }
1600
1601  if (*ptr == NULL)
1602    /* We didn't find the entry and we're asked to create a new one.  */
1603    {
1604      if (howto == MUST_FIND)
1605	abort ();
1606
1607      BFD_ASSERT (howto != SEARCH);
1608
1609      entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1610      if (entry == NULL)
1611	return NULL;
1612
1613      /* Initialize new entry.  */
1614      entry->key_ = *key;
1615
1616      entry->u.s1.refcount = 0;
1617
1618      /* Mark the entry as not initialized.  */
1619      entry->key_.type = R_68K_max;
1620
1621      *ptr = entry;
1622    }
1623  else
1624    /* We found the entry.  */
1625    {
1626      BFD_ASSERT (howto != MUST_CREATE);
1627
1628      entry = *ptr;
1629    }
1630
1631  return entry;
1632}
1633
1634/* Update GOT counters when merging entry of WAS type with entry of NEW type.
1635   Return the value to which ENTRY's type should be set.  */
1636
1637static enum elf_m68k_reloc_type
1638elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1639				enum elf_m68k_reloc_type was,
1640				enum elf_m68k_reloc_type new_reloc)
1641{
1642  enum elf_m68k_got_offset_size was_size;
1643  enum elf_m68k_got_offset_size new_size;
1644  bfd_vma n_slots;
1645
1646  if (was == R_68K_max)
1647    /* The type of the entry is not initialized yet.  */
1648    {
1649      /* Update all got->n_slots counters, including n_slots[R_32].  */
1650      was_size = R_LAST;
1651
1652      was = new_reloc;
1653    }
1654  else
1655    {
1656      /* !!! We, probably, should emit an error rather then fail on assert
1657	 in such a case.  */
1658      BFD_ASSERT (elf_m68k_reloc_got_type (was)
1659		  == elf_m68k_reloc_got_type (new_reloc));
1660
1661      was_size = elf_m68k_reloc_got_offset_size (was);
1662    }
1663
1664  new_size = elf_m68k_reloc_got_offset_size (new_reloc);
1665  n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
1666
1667  while (was_size > new_size)
1668    {
1669      --was_size;
1670      got->n_slots[was_size] += n_slots;
1671    }
1672
1673  if (new_reloc > was)
1674    /* Relocations are ordered from bigger got offset size to lesser,
1675       so choose the relocation type with lesser offset size.  */
1676    was = new_reloc;
1677
1678  return was;
1679}
1680
1681/* Add new or update existing entry to GOT.
1682   H, ABFD, TYPE and SYMNDX is data for the entry.
1683   INFO is a context where memory should be allocated.  */
1684
1685static struct elf_m68k_got_entry *
1686elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1687			   struct elf_link_hash_entry *h,
1688			   const bfd *abfd,
1689			   enum elf_m68k_reloc_type reloc_type,
1690			   unsigned long symndx,
1691			   struct bfd_link_info *info)
1692{
1693  struct elf_m68k_got_entry_key key_;
1694  struct elf_m68k_got_entry *entry;
1695
1696  if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1697    elf_m68k_hash_entry (h)->got_entry_key
1698      = elf_m68k_multi_got (info)->global_symndx++;
1699
1700  elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
1701
1702  entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1703  if (entry == NULL)
1704    return NULL;
1705
1706  /* Determine entry's type and update got->n_slots counters.  */
1707  entry->key_.type = elf_m68k_update_got_entry_type (got,
1708						     entry->key_.type,
1709						     reloc_type);
1710
1711  /* Update refcount.  */
1712  ++entry->u.s1.refcount;
1713
1714  if (entry->u.s1.refcount == 1)
1715    /* We see this entry for the first time.  */
1716    {
1717      if (entry->key_.bfd != NULL)
1718	got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
1719    }
1720
1721  BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
1722
1723  if ((got->n_slots[R_8]
1724       > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1725      || (got->n_slots[R_16]
1726	  > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1727    /* This BFD has too many relocation.  */
1728    {
1729      if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1730	/* xgettext:c-format */
1731	_bfd_error_handler (_("%pB: GOT overflow: "
1732			      "number of relocations with 8-bit "
1733			      "offset > %d"),
1734			    abfd,
1735			    ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
1736      else
1737	/* xgettext:c-format */
1738	_bfd_error_handler (_("%pB: GOT overflow: "
1739			      "number of relocations with 8- or 16-bit "
1740			      "offset > %d"),
1741			    abfd,
1742			    ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
1743
1744      return NULL;
1745    }
1746
1747  return entry;
1748}
1749
1750/* Compute the hash value of the bfd in a bfd2got hash entry.  */
1751
1752static hashval_t
1753elf_m68k_bfd2got_entry_hash (const void *entry)
1754{
1755  const struct elf_m68k_bfd2got_entry *e;
1756
1757  e = (const struct elf_m68k_bfd2got_entry *) entry;
1758
1759  return e->bfd->id;
1760}
1761
1762/* Check whether two hash entries have the same bfd.  */
1763
1764static int
1765elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1766{
1767  const struct elf_m68k_bfd2got_entry *e1;
1768  const struct elf_m68k_bfd2got_entry *e2;
1769
1770  e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1771  e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1772
1773  return e1->bfd == e2->bfd;
1774}
1775
1776/* Destruct a bfd2got entry.  */
1777
1778static void
1779elf_m68k_bfd2got_entry_del (void *_entry)
1780{
1781  struct elf_m68k_bfd2got_entry *entry;
1782
1783  entry = (struct elf_m68k_bfd2got_entry *) _entry;
1784
1785  BFD_ASSERT (entry->got != NULL);
1786  elf_m68k_clear_got (entry->got);
1787}
1788
1789/* Find existing or create new (depending on HOWTO) bfd2got entry in
1790   MULTI_GOT.  ABFD is the bfd we need a GOT for.  INFO is a context where
1791   memory should be allocated.  */
1792
1793static struct elf_m68k_bfd2got_entry *
1794elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1795			    const bfd *abfd,
1796			    enum elf_m68k_get_entry_howto howto,
1797			    struct bfd_link_info *info)
1798{
1799  struct elf_m68k_bfd2got_entry entry_;
1800  void **ptr;
1801  struct elf_m68k_bfd2got_entry *entry;
1802
1803  BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1804
1805  if (multi_got->bfd2got == NULL)
1806    /* This is the first GOT.  Initialize bfd2got.  */
1807    {
1808      if (howto == SEARCH)
1809	return NULL;
1810
1811      multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1812					    elf_m68k_bfd2got_entry_eq,
1813					    elf_m68k_bfd2got_entry_del);
1814      if (multi_got->bfd2got == NULL)
1815	{
1816	  bfd_set_error (bfd_error_no_memory);
1817	  return NULL;
1818	}
1819    }
1820
1821  entry_.bfd = abfd;
1822  ptr = htab_find_slot (multi_got->bfd2got, &entry_,
1823			(howto == SEARCH || howto == MUST_FIND ? NO_INSERT
1824			 : INSERT));
1825  if (ptr == NULL)
1826    {
1827      if (howto == SEARCH)
1828	/* Entry not found.  */
1829	return NULL;
1830
1831      if (howto == MUST_FIND)
1832	abort ();
1833
1834      /* We're out of memory.  */
1835      bfd_set_error (bfd_error_no_memory);
1836      return NULL;
1837    }
1838
1839  if (*ptr == NULL)
1840    /* Entry was not found.  Create new one.  */
1841    {
1842      if (howto == MUST_FIND)
1843	abort ();
1844
1845      BFD_ASSERT (howto != SEARCH);
1846
1847      entry = ((struct elf_m68k_bfd2got_entry *)
1848	       bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1849      if (entry == NULL)
1850	return NULL;
1851
1852      entry->bfd = abfd;
1853
1854      entry->got = elf_m68k_create_empty_got (info);
1855      if (entry->got == NULL)
1856	return NULL;
1857
1858      *ptr = entry;
1859    }
1860  else
1861    {
1862      BFD_ASSERT (howto != MUST_CREATE);
1863
1864      /* Return existing entry.  */
1865      entry = *ptr;
1866    }
1867
1868  return entry;
1869}
1870
1871struct elf_m68k_can_merge_gots_arg
1872{
1873  /* A current_got that we constructing a DIFF against.  */
1874  struct elf_m68k_got *big;
1875
1876  /* GOT holding entries not present or that should be changed in
1877     BIG.  */
1878  struct elf_m68k_got *diff;
1879
1880  /* Context where to allocate memory.  */
1881  struct bfd_link_info *info;
1882
1883  /* Error flag.  */
1884  bool error_p;
1885};
1886
1887/* Process a single entry from the small GOT to see if it should be added
1888   or updated in the big GOT.  */
1889
1890static int
1891elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1892{
1893  const struct elf_m68k_got_entry *entry1;
1894  struct elf_m68k_can_merge_gots_arg *arg;
1895  const struct elf_m68k_got_entry *entry2;
1896  enum elf_m68k_reloc_type type;
1897
1898  entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1899  arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1900
1901  entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1902
1903  if (entry2 != NULL)
1904    /* We found an existing entry.  Check if we should update it.  */
1905    {
1906      type = elf_m68k_update_got_entry_type (arg->diff,
1907					     entry2->key_.type,
1908					     entry1->key_.type);
1909
1910      if (type == entry2->key_.type)
1911	/* ENTRY1 doesn't update data in ENTRY2.  Skip it.
1912	   To skip creation of difference entry we use the type,
1913	   which we won't see in GOT entries for sure.  */
1914	type = R_68K_max;
1915    }
1916  else
1917    /* We didn't find the entry.  Add entry1 to DIFF.  */
1918    {
1919      BFD_ASSERT (entry1->key_.type != R_68K_max);
1920
1921      type = elf_m68k_update_got_entry_type (arg->diff,
1922					     R_68K_max, entry1->key_.type);
1923
1924      if (entry1->key_.bfd != NULL)
1925	arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
1926    }
1927
1928  if (type != R_68K_max)
1929    /* Create an entry in DIFF.  */
1930    {
1931      struct elf_m68k_got_entry *entry;
1932
1933      entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1934				      arg->info);
1935      if (entry == NULL)
1936	{
1937	  arg->error_p = true;
1938	  return 0;
1939	}
1940
1941      entry->key_.type = type;
1942    }
1943
1944  return 1;
1945}
1946
1947/* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1948   Construct DIFF GOT holding the entries which should be added or updated
1949   in BIG GOT to accumulate information from SMALL.
1950   INFO is the context where memory should be allocated.  */
1951
1952static bool
1953elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1954			 const struct elf_m68k_got *small,
1955			 struct bfd_link_info *info,
1956			 struct elf_m68k_got *diff)
1957{
1958  struct elf_m68k_can_merge_gots_arg arg_;
1959
1960  BFD_ASSERT (small->offset == (bfd_vma) -1);
1961
1962  arg_.big = big;
1963  arg_.diff = diff;
1964  arg_.info = info;
1965  arg_.error_p = false;
1966  htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1967  if (arg_.error_p)
1968    {
1969      diff->offset = 0;
1970      return false;
1971    }
1972
1973  /* Check for overflow.  */
1974  if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1975       > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1976      || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1977	  > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1978    return false;
1979
1980  return true;
1981}
1982
1983struct elf_m68k_merge_gots_arg
1984{
1985  /* The BIG got.  */
1986  struct elf_m68k_got *big;
1987
1988  /* Context where memory should be allocated.  */
1989  struct bfd_link_info *info;
1990
1991  /* Error flag.  */
1992  bool error_p;
1993};
1994
1995/* Process a single entry from DIFF got.  Add or update corresponding
1996   entry in the BIG got.  */
1997
1998static int
1999elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
2000{
2001  const struct elf_m68k_got_entry *from;
2002  struct elf_m68k_merge_gots_arg *arg;
2003  struct elf_m68k_got_entry *to;
2004
2005  from = (const struct elf_m68k_got_entry *) *entry_ptr;
2006  arg = (struct elf_m68k_merge_gots_arg *) _arg;
2007
2008  to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
2009			       arg->info);
2010  if (to == NULL)
2011    {
2012      arg->error_p = true;
2013      return 0;
2014    }
2015
2016  BFD_ASSERT (to->u.s1.refcount == 0);
2017  /* All we need to merge is TYPE.  */
2018  to->key_.type = from->key_.type;
2019
2020  return 1;
2021}
2022
2023/* Merge data from DIFF to BIG.  INFO is context where memory should be
2024   allocated.  */
2025
2026static bool
2027elf_m68k_merge_gots (struct elf_m68k_got *big,
2028		     struct elf_m68k_got *diff,
2029		     struct bfd_link_info *info)
2030{
2031  if (diff->entries != NULL)
2032    /* DIFF is not empty.  Merge it into BIG GOT.  */
2033    {
2034      struct elf_m68k_merge_gots_arg arg_;
2035
2036      /* Merge entries.  */
2037      arg_.big = big;
2038      arg_.info = info;
2039      arg_.error_p = false;
2040      htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
2041      if (arg_.error_p)
2042	return false;
2043
2044      /* Merge counters.  */
2045      big->n_slots[R_8] += diff->n_slots[R_8];
2046      big->n_slots[R_16] += diff->n_slots[R_16];
2047      big->n_slots[R_32] += diff->n_slots[R_32];
2048      big->local_n_slots += diff->local_n_slots;
2049    }
2050  else
2051    /* DIFF is empty.  */
2052    {
2053      BFD_ASSERT (diff->n_slots[R_8] == 0);
2054      BFD_ASSERT (diff->n_slots[R_16] == 0);
2055      BFD_ASSERT (diff->n_slots[R_32] == 0);
2056      BFD_ASSERT (diff->local_n_slots == 0);
2057    }
2058
2059  BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
2060	      || ((big->n_slots[R_8]
2061		   <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
2062		  && (big->n_slots[R_16]
2063		      <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
2064
2065  return true;
2066}
2067
2068struct elf_m68k_finalize_got_offsets_arg
2069{
2070  /* Ranges of the offsets for GOT entries.
2071     R_x entries receive offsets between offset1[R_x] and offset2[R_x].
2072     R_x is R_8, R_16 and R_32.  */
2073  bfd_vma *offset1;
2074  bfd_vma *offset2;
2075
2076  /* Mapping from global symndx to global symbols.
2077     This is used to build lists of got entries for global symbols.  */
2078  struct elf_m68k_link_hash_entry **symndx2h;
2079
2080  bfd_vma n_ldm_entries;
2081};
2082
2083/* Assign ENTRY an offset.  Build list of GOT entries for global symbols
2084   along the way.  */
2085
2086static int
2087elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
2088{
2089  struct elf_m68k_got_entry *entry;
2090  struct elf_m68k_finalize_got_offsets_arg *arg;
2091
2092  enum elf_m68k_got_offset_size got_offset_size;
2093  bfd_vma entry_size;
2094
2095  entry = (struct elf_m68k_got_entry *) *entry_ptr;
2096  arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2097
2098  /* This should be a fresh entry created in elf_m68k_can_merge_gots.  */
2099  BFD_ASSERT (entry->u.s1.refcount == 0);
2100
2101  /* Get GOT offset size for the entry .  */
2102  got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
2103
2104  /* Calculate entry size in bytes.  */
2105  entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
2106
2107  /* Check if we should switch to negative range of the offsets. */
2108  if (arg->offset1[got_offset_size] + entry_size
2109      > arg->offset2[got_offset_size])
2110    {
2111      /* Verify that this is the only switch to negative range for
2112	 got_offset_size.  If this assertion fails, then we've miscalculated
2113	 range for got_offset_size entries in
2114	 elf_m68k_finalize_got_offsets.  */
2115      BFD_ASSERT (arg->offset2[got_offset_size]
2116		  != arg->offset2[-(int) got_offset_size - 1]);
2117
2118      /* Switch.  */
2119      arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2120      arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2121
2122      /* Verify that now we have enough room for the entry.  */
2123      BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2124		  <= arg->offset2[got_offset_size]);
2125    }
2126
2127  /* Assign offset to entry.  */
2128  entry->u.s2.offset = arg->offset1[got_offset_size];
2129  arg->offset1[got_offset_size] += entry_size;
2130
2131  if (entry->key_.bfd == NULL)
2132    /* Hook up this entry into the list of got_entries of H.  */
2133    {
2134      struct elf_m68k_link_hash_entry *h;
2135
2136      h = arg->symndx2h[entry->key_.symndx];
2137      if (h != NULL)
2138	{
2139	  entry->u.s2.next = h->glist;
2140	  h->glist = entry;
2141	}
2142      else
2143	/* This should be the entry for TLS_LDM relocation then.  */
2144	{
2145	  BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2146		       == R_68K_TLS_LDM32)
2147		      && entry->key_.symndx == 0);
2148
2149	  ++arg->n_ldm_entries;
2150	}
2151    }
2152  else
2153    /* This entry is for local symbol.  */
2154    entry->u.s2.next = NULL;
2155
2156  return 1;
2157}
2158
2159/* Assign offsets within GOT.  USE_NEG_GOT_OFFSETS_P indicates if we
2160   should use negative offsets.
2161   Build list of GOT entries for global symbols along the way.
2162   SYMNDX2H is mapping from global symbol indices to actual
2163   global symbols.
2164   Return offset at which next GOT should start.  */
2165
2166static void
2167elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2168			       bool use_neg_got_offsets_p,
2169			       struct elf_m68k_link_hash_entry **symndx2h,
2170			       bfd_vma *final_offset, bfd_vma *n_ldm_entries)
2171{
2172  struct elf_m68k_finalize_got_offsets_arg arg_;
2173  bfd_vma offset1_[2 * R_LAST];
2174  bfd_vma offset2_[2 * R_LAST];
2175  int i;
2176  bfd_vma start_offset;
2177
2178  BFD_ASSERT (got->offset != (bfd_vma) -1);
2179
2180  /* We set entry offsets relative to the .got section (and not the
2181     start of a particular GOT), so that we can use them in
2182     finish_dynamic_symbol without needing to know the GOT which they come
2183     from.  */
2184
2185  /* Put offset1 in the middle of offset1_, same for offset2.  */
2186  arg_.offset1 = offset1_ + R_LAST;
2187  arg_.offset2 = offset2_ + R_LAST;
2188
2189  start_offset = got->offset;
2190
2191  if (use_neg_got_offsets_p)
2192    /* Setup both negative and positive ranges for R_8, R_16 and R_32.  */
2193    i = -(int) R_32 - 1;
2194  else
2195    /* Setup positives ranges for R_8, R_16 and R_32.  */
2196    i = (int) R_8;
2197
2198  for (; i <= (int) R_32; ++i)
2199    {
2200      int j;
2201      size_t n;
2202
2203      /* Set beginning of the range of offsets I.  */
2204      arg_.offset1[i] = start_offset;
2205
2206      /* Calculate number of slots that require I offsets.  */
2207      j = (i >= 0) ? i : -i - 1;
2208      n = (j >= 1) ? got->n_slots[j - 1] : 0;
2209      n = got->n_slots[j] - n;
2210
2211      if (use_neg_got_offsets_p && n != 0)
2212	{
2213	  if (i < 0)
2214	    /* We first fill the positive side of the range, so we might
2215	       end up with one empty slot at that side when we can't fit
2216	       whole 2-slot entry.  Account for that at negative side of
2217	       the interval with one additional entry.  */
2218	    n = n / 2 + 1;
2219	  else
2220	    /* When the number of slots is odd, make positive side of the
2221	       range one entry bigger.  */
2222	    n = (n + 1) / 2;
2223	}
2224
2225      /* N is the number of slots that require I offsets.
2226	 Calculate length of the range for I offsets.  */
2227      n = 4 * n;
2228
2229      /* Set end of the range.  */
2230      arg_.offset2[i] = start_offset + n;
2231
2232      start_offset = arg_.offset2[i];
2233    }
2234
2235  if (!use_neg_got_offsets_p)
2236    /* Make sure that if we try to switch to negative offsets in
2237       elf_m68k_finalize_got_offsets_1, the assert therein will catch
2238       the bug.  */
2239    for (i = R_8; i <= R_32; ++i)
2240      arg_.offset2[-i - 1] = arg_.offset2[i];
2241
2242  /* Setup got->offset.  offset1[R_8] is either in the middle or at the
2243     beginning of GOT depending on use_neg_got_offsets_p.  */
2244  got->offset = arg_.offset1[R_8];
2245
2246  arg_.symndx2h = symndx2h;
2247  arg_.n_ldm_entries = 0;
2248
2249  /* Assign offsets.  */
2250  htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
2251
2252  /* Check offset ranges we have actually assigned.  */
2253  for (i = (int) R_8; i <= (int) R_32; ++i)
2254    BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
2255
2256  *final_offset = start_offset;
2257  *n_ldm_entries = arg_.n_ldm_entries;
2258}
2259
2260struct elf_m68k_partition_multi_got_arg
2261{
2262  /* The GOT we are adding entries to.  Aka big got.  */
2263  struct elf_m68k_got *current_got;
2264
2265  /* Offset to assign the next CURRENT_GOT.  */
2266  bfd_vma offset;
2267
2268  /* Context where memory should be allocated.  */
2269  struct bfd_link_info *info;
2270
2271  /* Total number of slots in the .got section.
2272     This is used to calculate size of the .got and .rela.got sections.  */
2273  bfd_vma n_slots;
2274
2275  /* Difference in numbers of allocated slots in the .got section
2276     and necessary relocations in the .rela.got section.
2277     This is used to calculate size of the .rela.got section.  */
2278  bfd_vma slots_relas_diff;
2279
2280  /* Error flag.  */
2281  bool error_p;
2282
2283  /* Mapping from global symndx to global symbols.
2284     This is used to build lists of got entries for global symbols.  */
2285  struct elf_m68k_link_hash_entry **symndx2h;
2286};
2287
2288static void
2289elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2290{
2291  bfd_vma n_ldm_entries;
2292
2293  elf_m68k_finalize_got_offsets (arg->current_got,
2294				 (elf_m68k_hash_table (arg->info)
2295				  ->use_neg_got_offsets_p),
2296				 arg->symndx2h,
2297				 &arg->offset, &n_ldm_entries);
2298
2299  arg->n_slots += arg->current_got->n_slots[R_32];
2300
2301  if (!bfd_link_pic (arg->info))
2302    /* If we are generating a shared object, we need to
2303       output a R_68K_RELATIVE reloc so that the dynamic
2304       linker can adjust this GOT entry.  Overwise we
2305       don't need space in .rela.got for local symbols.  */
2306    arg->slots_relas_diff += arg->current_got->local_n_slots;
2307
2308  /* @LDM relocations require a 2-slot GOT entry, but only
2309     one relocation.  Account for that.  */
2310  arg->slots_relas_diff += n_ldm_entries;
2311
2312  BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2313}
2314
2315
2316/* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2317   or start a new CURRENT_GOT.  */
2318
2319static int
2320elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2321{
2322  struct elf_m68k_bfd2got_entry *entry;
2323  struct elf_m68k_partition_multi_got_arg *arg;
2324  struct elf_m68k_got *got;
2325  struct elf_m68k_got diff_;
2326  struct elf_m68k_got *diff;
2327
2328  entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2329  arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2330
2331  got = entry->got;
2332  BFD_ASSERT (got != NULL);
2333  BFD_ASSERT (got->offset == (bfd_vma) -1);
2334
2335  diff = NULL;
2336
2337  if (arg->current_got != NULL)
2338    /* Construct diff.  */
2339    {
2340      diff = &diff_;
2341      elf_m68k_init_got (diff);
2342
2343      if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2344	{
2345	  if (diff->offset == 0)
2346	    /* Offset set to 0 in the diff_ indicates an error.  */
2347	    {
2348	      arg->error_p = true;
2349	      goto final_return;
2350	    }
2351
2352	  if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2353	    {
2354	      elf_m68k_clear_got (diff);
2355	      /* Schedule to finish up current_got and start new one.  */
2356	      diff = NULL;
2357	    }
2358	  /* else
2359	     Merge GOTs no matter what.  If big GOT overflows,
2360	     we'll fail in relocate_section due to truncated relocations.
2361
2362	     ??? May be fail earlier?  E.g., in can_merge_gots.  */
2363	}
2364    }
2365  else
2366    /* Diff of got against empty current_got is got itself.  */
2367    {
2368      /* Create empty current_got to put subsequent GOTs to.  */
2369      arg->current_got = elf_m68k_create_empty_got (arg->info);
2370      if (arg->current_got == NULL)
2371	{
2372	  arg->error_p = true;
2373	  goto final_return;
2374	}
2375
2376      arg->current_got->offset = arg->offset;
2377
2378      diff = got;
2379    }
2380
2381  if (diff != NULL)
2382    {
2383      if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
2384	{
2385	  arg->error_p = true;
2386	  goto final_return;
2387	}
2388
2389      /* Now we can free GOT.  */
2390      elf_m68k_clear_got (got);
2391
2392      entry->got = arg->current_got;
2393    }
2394  else
2395    {
2396      /* Finish up current_got.  */
2397      elf_m68k_partition_multi_got_2 (arg);
2398
2399      /* Schedule to start a new current_got.  */
2400      arg->current_got = NULL;
2401
2402      /* Retry.  */
2403      if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2404	{
2405	  BFD_ASSERT (arg->error_p);
2406	  goto final_return;
2407	}
2408    }
2409
2410 final_return:
2411  if (diff != NULL)
2412    elf_m68k_clear_got (diff);
2413
2414  return !arg->error_p;
2415}
2416
2417/* Helper function to build symndx2h mapping.  */
2418
2419static bool
2420elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2421			  void *_arg)
2422{
2423  struct elf_m68k_link_hash_entry *h;
2424
2425  h = elf_m68k_hash_entry (_h);
2426
2427  if (h->got_entry_key != 0)
2428    /* H has at least one entry in the GOT.  */
2429    {
2430      struct elf_m68k_partition_multi_got_arg *arg;
2431
2432      arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2433
2434      BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2435      arg->symndx2h[h->got_entry_key] = h;
2436    }
2437
2438  return true;
2439}
2440
2441/* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2442   lists of GOT entries for global symbols.
2443   Calculate sizes of .got and .rela.got sections.  */
2444
2445static bool
2446elf_m68k_partition_multi_got (struct bfd_link_info *info)
2447{
2448  struct elf_m68k_multi_got *multi_got;
2449  struct elf_m68k_partition_multi_got_arg arg_;
2450
2451  multi_got = elf_m68k_multi_got (info);
2452
2453  arg_.current_got = NULL;
2454  arg_.offset = 0;
2455  arg_.info = info;
2456  arg_.n_slots = 0;
2457  arg_.slots_relas_diff = 0;
2458  arg_.error_p = false;
2459
2460  if (multi_got->bfd2got != NULL)
2461    {
2462      /* Initialize symndx2h mapping.  */
2463      {
2464	arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2465				     * sizeof (*arg_.symndx2h));
2466	if (arg_.symndx2h == NULL)
2467	  return false;
2468
2469	elf_link_hash_traverse (elf_hash_table (info),
2470				elf_m68k_init_symndx2h_1, &arg_);
2471      }
2472
2473      /* Partition.  */
2474      htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2475		     &arg_);
2476      if (arg_.error_p)
2477	{
2478	  free (arg_.symndx2h);
2479	  arg_.symndx2h = NULL;
2480
2481	  return false;
2482	}
2483
2484      /* Finish up last current_got.  */
2485      elf_m68k_partition_multi_got_2 (&arg_);
2486
2487      free (arg_.symndx2h);
2488    }
2489
2490  if (elf_hash_table (info)->dynobj != NULL)
2491    /* Set sizes of .got and .rela.got sections.  */
2492    {
2493      asection *s;
2494
2495      s = elf_hash_table (info)->sgot;
2496      if (s != NULL)
2497	s->size = arg_.offset;
2498      else
2499	BFD_ASSERT (arg_.offset == 0);
2500
2501      BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2502      arg_.n_slots -= arg_.slots_relas_diff;
2503
2504      s = elf_hash_table (info)->srelgot;
2505      if (s != NULL)
2506	s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
2507      else
2508	BFD_ASSERT (arg_.n_slots == 0);
2509    }
2510  else
2511    BFD_ASSERT (multi_got->bfd2got == NULL);
2512
2513  return true;
2514}
2515
2516/* Copy any information related to dynamic linking from a pre-existing
2517   symbol to a newly created symbol.  Also called to copy flags and
2518   other back-end info to a weakdef, in which case the symbol is not
2519   newly created and plt/got refcounts and dynamic indices should not
2520   be copied.  */
2521
2522static void
2523elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2524			       struct elf_link_hash_entry *_dir,
2525			       struct elf_link_hash_entry *_ind)
2526{
2527  struct elf_m68k_link_hash_entry *dir;
2528  struct elf_m68k_link_hash_entry *ind;
2529
2530  _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2531
2532  if (_ind->root.type != bfd_link_hash_indirect)
2533    return;
2534
2535  dir = elf_m68k_hash_entry (_dir);
2536  ind = elf_m68k_hash_entry (_ind);
2537
2538  /* Any absolute non-dynamic relocations against an indirect or weak
2539     definition will be against the target symbol.  */
2540  _dir->non_got_ref |= _ind->non_got_ref;
2541
2542  /* We might have a direct symbol already having entries in the GOTs.
2543     Update its key only in case indirect symbol has GOT entries and
2544     assert that both indirect and direct symbols don't have GOT entries
2545     at the same time.  */
2546  if (ind->got_entry_key != 0)
2547    {
2548      BFD_ASSERT (dir->got_entry_key == 0);
2549      /* Assert that GOTs aren't partioned yet.  */
2550      BFD_ASSERT (ind->glist == NULL);
2551
2552      dir->got_entry_key = ind->got_entry_key;
2553      ind->got_entry_key = 0;
2554    }
2555}
2556
2557/* Look through the relocs for a section during the first phase, and
2558   allocate space in the global offset table or procedure linkage
2559   table.  */
2560
2561static bool
2562elf_m68k_check_relocs (bfd *abfd,
2563		       struct bfd_link_info *info,
2564		       asection *sec,
2565		       const Elf_Internal_Rela *relocs)
2566{
2567  bfd *dynobj;
2568  Elf_Internal_Shdr *symtab_hdr;
2569  struct elf_link_hash_entry **sym_hashes;
2570  const Elf_Internal_Rela *rel;
2571  const Elf_Internal_Rela *rel_end;
2572  asection *sreloc;
2573  struct elf_m68k_got *got;
2574
2575  if (bfd_link_relocatable (info))
2576    return true;
2577
2578  dynobj = elf_hash_table (info)->dynobj;
2579  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2580  sym_hashes = elf_sym_hashes (abfd);
2581
2582  sreloc = NULL;
2583
2584  got = NULL;
2585
2586  rel_end = relocs + sec->reloc_count;
2587  for (rel = relocs; rel < rel_end; rel++)
2588    {
2589      unsigned long r_symndx;
2590      struct elf_link_hash_entry *h;
2591
2592      r_symndx = ELF32_R_SYM (rel->r_info);
2593
2594      if (r_symndx < symtab_hdr->sh_info)
2595	h = NULL;
2596      else
2597	{
2598	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2599	  while (h->root.type == bfd_link_hash_indirect
2600		 || h->root.type == bfd_link_hash_warning)
2601	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2602	}
2603
2604      switch (ELF32_R_TYPE (rel->r_info))
2605	{
2606	case R_68K_GOT8:
2607	case R_68K_GOT16:
2608	case R_68K_GOT32:
2609	  if (h != NULL
2610	      && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2611	    break;
2612	  /* Fall through.  */
2613
2614	  /* Relative GOT relocations.  */
2615	case R_68K_GOT8O:
2616	case R_68K_GOT16O:
2617	case R_68K_GOT32O:
2618	  /* Fall through.  */
2619
2620	  /* TLS relocations.  */
2621	case R_68K_TLS_GD8:
2622	case R_68K_TLS_GD16:
2623	case R_68K_TLS_GD32:
2624	case R_68K_TLS_LDM8:
2625	case R_68K_TLS_LDM16:
2626	case R_68K_TLS_LDM32:
2627	case R_68K_TLS_IE8:
2628	case R_68K_TLS_IE16:
2629	case R_68K_TLS_IE32:
2630
2631	case R_68K_TLS_TPREL32:
2632	case R_68K_TLS_DTPREL32:
2633
2634	  if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
2635	      && bfd_link_pic (info))
2636	    /* Do the special chorus for libraries with static TLS.  */
2637	    info->flags |= DF_STATIC_TLS;
2638
2639	  /* This symbol requires a global offset table entry.  */
2640
2641	  if (dynobj == NULL)
2642	    {
2643	      /* Create the .got section.  */
2644	      elf_hash_table (info)->dynobj = dynobj = abfd;
2645	      if (!_bfd_elf_create_got_section (dynobj, info))
2646		return false;
2647	    }
2648
2649	  if (got == NULL)
2650	    {
2651	      struct elf_m68k_bfd2got_entry *bfd2got_entry;
2652
2653	      bfd2got_entry
2654		= elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2655					      abfd, FIND_OR_CREATE, info);
2656	      if (bfd2got_entry == NULL)
2657		return false;
2658
2659	      got = bfd2got_entry->got;
2660	      BFD_ASSERT (got != NULL);
2661	    }
2662
2663	  {
2664	    struct elf_m68k_got_entry *got_entry;
2665
2666	    /* Add entry to got.  */
2667	    got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2668						   ELF32_R_TYPE (rel->r_info),
2669						   r_symndx, info);
2670	    if (got_entry == NULL)
2671	      return false;
2672
2673	    if (got_entry->u.s1.refcount == 1)
2674	      {
2675		/* Make sure this symbol is output as a dynamic symbol.  */
2676		if (h != NULL
2677		    && h->dynindx == -1
2678		    && !h->forced_local)
2679		  {
2680		    if (!bfd_elf_link_record_dynamic_symbol (info, h))
2681		      return false;
2682		  }
2683	      }
2684	  }
2685
2686	  break;
2687
2688	case R_68K_PLT8:
2689	case R_68K_PLT16:
2690	case R_68K_PLT32:
2691	  /* This symbol requires a procedure linkage table entry.  We
2692	     actually build the entry in adjust_dynamic_symbol,
2693	     because this might be a case of linking PIC code which is
2694	     never referenced by a dynamic object, in which case we
2695	     don't need to generate a procedure linkage table entry
2696	     after all.  */
2697
2698	  /* If this is a local symbol, we resolve it directly without
2699	     creating a procedure linkage table entry.  */
2700	  if (h == NULL)
2701	    continue;
2702
2703	  h->needs_plt = 1;
2704	  h->plt.refcount++;
2705	  break;
2706
2707	case R_68K_PLT8O:
2708	case R_68K_PLT16O:
2709	case R_68K_PLT32O:
2710	  /* This symbol requires a procedure linkage table entry.  */
2711
2712	  if (h == NULL)
2713	    {
2714	      /* It does not make sense to have this relocation for a
2715		 local symbol.  FIXME: does it?  How to handle it if
2716		 it does make sense?  */
2717	      bfd_set_error (bfd_error_bad_value);
2718	      return false;
2719	    }
2720
2721	  /* Make sure this symbol is output as a dynamic symbol.  */
2722	  if (h->dynindx == -1
2723	      && !h->forced_local)
2724	    {
2725	      if (!bfd_elf_link_record_dynamic_symbol (info, h))
2726		return false;
2727	    }
2728
2729	  h->needs_plt = 1;
2730	  h->plt.refcount++;
2731	  break;
2732
2733	case R_68K_PC8:
2734	case R_68K_PC16:
2735	case R_68K_PC32:
2736	  /* If we are creating a shared library and this is not a local
2737	     symbol, we need to copy the reloc into the shared library.
2738	     However when linking with -Bsymbolic and this is a global
2739	     symbol which is defined in an object we are including in the
2740	     link (i.e., DEF_REGULAR is set), then we can resolve the
2741	     reloc directly.  At this point we have not seen all the input
2742	     files, so it is possible that DEF_REGULAR is not set now but
2743	     will be set later (it is never cleared).  We account for that
2744	     possibility below by storing information in the
2745	     pcrel_relocs_copied field of the hash table entry.  */
2746	  if (!(bfd_link_pic (info)
2747		&& (sec->flags & SEC_ALLOC) != 0
2748		&& h != NULL
2749		&& (!SYMBOLIC_BIND (info, h)
2750		    || h->root.type == bfd_link_hash_defweak
2751		    || !h->def_regular)))
2752	    {
2753	      if (h != NULL)
2754		{
2755		  /* Make sure a plt entry is created for this symbol if
2756		     it turns out to be a function defined by a dynamic
2757		     object.  */
2758		  h->plt.refcount++;
2759		}
2760	      break;
2761	    }
2762	  /* Fall through.  */
2763	case R_68K_8:
2764	case R_68K_16:
2765	case R_68K_32:
2766	  /* We don't need to handle relocs into sections not going into
2767	     the "real" output.  */
2768	  if ((sec->flags & SEC_ALLOC) == 0)
2769	      break;
2770
2771	  if (h != NULL)
2772	    {
2773	      /* Make sure a plt entry is created for this symbol if it
2774		 turns out to be a function defined by a dynamic object.  */
2775	      h->plt.refcount++;
2776
2777	      if (bfd_link_executable (info))
2778		/* This symbol needs a non-GOT reference.  */
2779		h->non_got_ref = 1;
2780	    }
2781
2782	  /* If we are creating a shared library, we need to copy the
2783	     reloc into the shared library.  */
2784	  if (bfd_link_pic (info)
2785	      && (h == NULL
2786		  || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)))
2787	    {
2788	      /* When creating a shared object, we must copy these
2789		 reloc types into the output file.  We create a reloc
2790		 section in dynobj and make room for this reloc.  */
2791	      if (sreloc == NULL)
2792		{
2793		  sreloc = _bfd_elf_make_dynamic_reloc_section
2794		    (sec, dynobj, 2, abfd, /*rela?*/ true);
2795
2796		  if (sreloc == NULL)
2797		    return false;
2798		}
2799
2800	      if (sec->flags & SEC_READONLY
2801		  /* Don't set DF_TEXTREL yet for PC relative
2802		     relocations, they might be discarded later.  */
2803		  && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2804		       || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2805		       || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2806		    info->flags |= DF_TEXTREL;
2807
2808	      sreloc->size += sizeof (Elf32_External_Rela);
2809
2810	      /* We count the number of PC relative relocations we have
2811		 entered for this symbol, so that we can discard them
2812		 again if, in the -Bsymbolic case, the symbol is later
2813		 defined by a regular object, or, in the normal shared
2814		 case, the symbol is forced to be local.  Note that this
2815		 function is only called if we are using an m68kelf linker
2816		 hash table, which means that h is really a pointer to an
2817		 elf_m68k_link_hash_entry.  */
2818	      if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2819		  || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2820		  || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
2821		{
2822		  struct elf_m68k_pcrel_relocs_copied *p;
2823		  struct elf_m68k_pcrel_relocs_copied **head;
2824
2825		  if (h != NULL)
2826		    {
2827		      struct elf_m68k_link_hash_entry *eh
2828			= elf_m68k_hash_entry (h);
2829		      head = &eh->pcrel_relocs_copied;
2830		    }
2831		  else
2832		    {
2833		      asection *s;
2834		      void *vpp;
2835		      Elf_Internal_Sym *isym;
2836
2837		      isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->root.sym_cache,
2838						    abfd, r_symndx);
2839		      if (isym == NULL)
2840			return false;
2841
2842		      s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2843		      if (s == NULL)
2844			s = sec;
2845
2846		      vpp = &elf_section_data (s)->local_dynrel;
2847		      head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
2848		    }
2849
2850		  for (p = *head; p != NULL; p = p->next)
2851		    if (p->section == sreloc)
2852		      break;
2853
2854		  if (p == NULL)
2855		    {
2856		      p = ((struct elf_m68k_pcrel_relocs_copied *)
2857			   bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
2858		      if (p == NULL)
2859			return false;
2860		      p->next = *head;
2861		      *head = p;
2862		      p->section = sreloc;
2863		      p->count = 0;
2864		    }
2865
2866		  ++p->count;
2867		}
2868	    }
2869
2870	  break;
2871
2872	  /* This relocation describes the C++ object vtable hierarchy.
2873	     Reconstruct it for later use during GC.  */
2874	case R_68K_GNU_VTINHERIT:
2875	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2876	    return false;
2877	  break;
2878
2879	  /* This relocation describes which C++ vtable entries are actually
2880	     used.  Record for later use during GC.  */
2881	case R_68K_GNU_VTENTRY:
2882	  if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2883	    return false;
2884	  break;
2885
2886	default:
2887	  break;
2888	}
2889    }
2890
2891  return true;
2892}
2893
2894/* Return the section that should be marked against GC for a given
2895   relocation.  */
2896
2897static asection *
2898elf_m68k_gc_mark_hook (asection *sec,
2899		       struct bfd_link_info *info,
2900		       Elf_Internal_Rela *rel,
2901		       struct elf_link_hash_entry *h,
2902		       Elf_Internal_Sym *sym)
2903{
2904  if (h != NULL)
2905    switch (ELF32_R_TYPE (rel->r_info))
2906      {
2907      case R_68K_GNU_VTINHERIT:
2908      case R_68K_GNU_VTENTRY:
2909	return NULL;
2910      }
2911
2912  return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2913}
2914
2915/* Return the type of PLT associated with OUTPUT_BFD.  */
2916
2917static const struct elf_m68k_plt_info *
2918elf_m68k_get_plt_info (bfd *output_bfd)
2919{
2920  unsigned int features;
2921
2922  features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
2923  if (features & cpu32)
2924    return &elf_cpu32_plt_info;
2925  if (features & mcfisa_b)
2926    return &elf_isab_plt_info;
2927  if (features & mcfisa_c)
2928    return &elf_isac_plt_info;
2929  return &elf_m68k_plt_info;
2930}
2931
2932/* This function is called after all the input files have been read,
2933   and the input sections have been assigned to output sections.
2934   It's a convenient place to determine the PLT style.  */
2935
2936static bool
2937elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
2938{
2939  /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
2940     sections.  */
2941  if (!elf_m68k_partition_multi_got (info))
2942    return false;
2943
2944  elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
2945  return true;
2946}
2947
2948/* Adjust a symbol defined by a dynamic object and referenced by a
2949   regular object.  The current definition is in some section of the
2950   dynamic object, but we're not including those sections.  We have to
2951   change the definition to something the rest of the link can
2952   understand.  */
2953
2954static bool
2955elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info,
2956				struct elf_link_hash_entry *h)
2957{
2958  struct elf_m68k_link_hash_table *htab;
2959  bfd *dynobj;
2960  asection *s;
2961
2962  htab = elf_m68k_hash_table (info);
2963  dynobj = htab->root.dynobj;
2964
2965  /* Make sure we know what is going on here.  */
2966  BFD_ASSERT (dynobj != NULL
2967	      && (h->needs_plt
2968		  || h->is_weakalias
2969		  || (h->def_dynamic
2970		      && h->ref_regular
2971		      && !h->def_regular)));
2972
2973  /* If this is a function, put it in the procedure linkage table.  We
2974     will fill in the contents of the procedure linkage table later,
2975     when we know the address of the .got section.  */
2976  if (h->type == STT_FUNC
2977      || h->needs_plt)
2978    {
2979      if ((h->plt.refcount <= 0
2980	   || SYMBOL_CALLS_LOCAL (info, h)
2981	   || ((ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2982		|| UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
2983	       && h->root.type == bfd_link_hash_undefweak))
2984	  /* We must always create the plt entry if it was referenced
2985	     by a PLTxxO relocation.  In this case we already recorded
2986	     it as a dynamic symbol.  */
2987	  && h->dynindx == -1)
2988	{
2989	  /* This case can occur if we saw a PLTxx reloc in an input
2990	     file, but the symbol was never referred to by a dynamic
2991	     object, or if all references were garbage collected.  In
2992	     such a case, we don't actually need to build a procedure
2993	     linkage table, and we can just do a PCxx reloc instead.  */
2994	  h->plt.offset = (bfd_vma) -1;
2995	  h->needs_plt = 0;
2996	  return true;
2997	}
2998
2999      /* Make sure this symbol is output as a dynamic symbol.  */
3000      if (h->dynindx == -1
3001	  && !h->forced_local)
3002	{
3003	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
3004	    return false;
3005	}
3006
3007      s = htab->root.splt;
3008      BFD_ASSERT (s != NULL);
3009
3010      /* If this is the first .plt entry, make room for the special
3011	 first entry.  */
3012      if (s->size == 0)
3013	s->size = htab->plt_info->size;
3014
3015      /* If this symbol is not defined in a regular file, and we are
3016	 not generating a shared library, then set the symbol to this
3017	 location in the .plt.  This is required to make function
3018	 pointers compare as equal between the normal executable and
3019	 the shared library.  */
3020      if (!bfd_link_pic (info)
3021	  && !h->def_regular)
3022	{
3023	  h->root.u.def.section = s;
3024	  h->root.u.def.value = s->size;
3025	}
3026
3027      h->plt.offset = s->size;
3028
3029      /* Make room for this entry.  */
3030      s->size += htab->plt_info->size;
3031
3032      /* We also need to make an entry in the .got.plt section, which
3033	 will be placed in the .got section by the linker script.  */
3034      s = htab->root.sgotplt;
3035      BFD_ASSERT (s != NULL);
3036      s->size += 4;
3037
3038      /* We also need to make an entry in the .rela.plt section.  */
3039      s = htab->root.srelplt;
3040      BFD_ASSERT (s != NULL);
3041      s->size += sizeof (Elf32_External_Rela);
3042
3043      return true;
3044    }
3045
3046  /* Reinitialize the plt offset now that it is not used as a reference
3047     count any more.  */
3048  h->plt.offset = (bfd_vma) -1;
3049
3050  /* If this is a weak symbol, and there is a real definition, the
3051     processor independent code will have arranged for us to see the
3052     real definition first, and we can just use the same value.  */
3053  if (h->is_weakalias)
3054    {
3055      struct elf_link_hash_entry *def = weakdef (h);
3056      BFD_ASSERT (def->root.type == bfd_link_hash_defined);
3057      h->root.u.def.section = def->root.u.def.section;
3058      h->root.u.def.value = def->root.u.def.value;
3059      return true;
3060    }
3061
3062  /* This is a reference to a symbol defined by a dynamic object which
3063     is not a function.  */
3064
3065  /* If we are creating a shared library, we must presume that the
3066     only references to the symbol are via the global offset table.
3067     For such cases we need not do anything here; the relocations will
3068     be handled correctly by relocate_section.  */
3069  if (bfd_link_pic (info))
3070    return true;
3071
3072  /* If there are no references to this symbol that do not use the
3073     GOT, we don't need to generate a copy reloc.  */
3074  if (!h->non_got_ref)
3075    return true;
3076
3077  /* We must allocate the symbol in our .dynbss section, which will
3078     become part of the .bss section of the executable.  There will be
3079     an entry for this symbol in the .dynsym section.  The dynamic
3080     object will contain position independent code, so all references
3081     from the dynamic object to this symbol will go through the global
3082     offset table.  The dynamic linker will use the .dynsym entry to
3083     determine the address it must put in the global offset table, so
3084     both the dynamic object and the regular object will refer to the
3085     same memory location for the variable.  */
3086
3087  s = bfd_get_linker_section (dynobj, ".dynbss");
3088  BFD_ASSERT (s != NULL);
3089
3090  /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3091     copy the initial value out of the dynamic object and into the
3092     runtime process image.  We need to remember the offset into the
3093     .rela.bss section we are going to use.  */
3094  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
3095    {
3096      asection *srel;
3097
3098      srel = bfd_get_linker_section (dynobj, ".rela.bss");
3099      BFD_ASSERT (srel != NULL);
3100      srel->size += sizeof (Elf32_External_Rela);
3101      h->needs_copy = 1;
3102    }
3103
3104  return _bfd_elf_adjust_dynamic_copy (info, h, s);
3105}
3106
3107/* Set the sizes of the dynamic sections.  */
3108
3109static bool
3110elf_m68k_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3111				struct bfd_link_info *info)
3112{
3113  bfd *dynobj;
3114  asection *s;
3115  bool relocs;
3116
3117  dynobj = elf_hash_table (info)->dynobj;
3118  BFD_ASSERT (dynobj != NULL);
3119
3120  if (elf_hash_table (info)->dynamic_sections_created)
3121    {
3122      /* Set the contents of the .interp section to the interpreter.  */
3123      if (bfd_link_executable (info) && !info->nointerp)
3124	{
3125	  s = bfd_get_linker_section (dynobj, ".interp");
3126	  BFD_ASSERT (s != NULL);
3127	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3128	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3129	}
3130    }
3131  else
3132    {
3133      /* We may have created entries in the .rela.got section.
3134	 However, if we are not creating the dynamic sections, we will
3135	 not actually use these entries.  Reset the size of .rela.got,
3136	 which will cause it to get stripped from the output file
3137	 below.  */
3138      s = elf_hash_table (info)->srelgot;
3139      if (s != NULL)
3140	s->size = 0;
3141    }
3142
3143  /* If this is a -Bsymbolic shared link, then we need to discard all
3144     PC relative relocs against symbols defined in a regular object.
3145     For the normal shared case we discard the PC relative relocs
3146     against symbols that have become local due to visibility changes.
3147     We allocated space for them in the check_relocs routine, but we
3148     will not fill them in in the relocate_section routine.  */
3149  if (bfd_link_pic (info))
3150    elf_link_hash_traverse (elf_hash_table (info),
3151			    elf_m68k_discard_copies,
3152			    info);
3153
3154  /* The check_relocs and adjust_dynamic_symbol entry points have
3155     determined the sizes of the various dynamic sections.  Allocate
3156     memory for them.  */
3157  relocs = false;
3158  for (s = dynobj->sections; s != NULL; s = s->next)
3159    {
3160      const char *name;
3161
3162      if ((s->flags & SEC_LINKER_CREATED) == 0)
3163	continue;
3164
3165      /* It's OK to base decisions on the section name, because none
3166	 of the dynobj section names depend upon the input files.  */
3167      name = bfd_section_name (s);
3168
3169      if (strcmp (name, ".plt") == 0)
3170	{
3171	  /* Remember whether there is a PLT.  */
3172	  ;
3173	}
3174      else if (startswith (name, ".rela"))
3175	{
3176	  if (s->size != 0)
3177	    {
3178	      relocs = true;
3179
3180	      /* We use the reloc_count field as a counter if we need
3181		 to copy relocs into the output file.  */
3182	      s->reloc_count = 0;
3183	    }
3184	}
3185      else if (! startswith (name, ".got")
3186	       && strcmp (name, ".dynbss") != 0)
3187	{
3188	  /* It's not one of our sections, so don't allocate space.  */
3189	  continue;
3190	}
3191
3192      if (s->size == 0)
3193	{
3194	  /* If we don't need this section, strip it from the
3195	     output file.  This is mostly to handle .rela.bss and
3196	     .rela.plt.  We must create both sections in
3197	     create_dynamic_sections, because they must be created
3198	     before the linker maps input sections to output
3199	     sections.  The linker does that before
3200	     adjust_dynamic_symbol is called, and it is that
3201	     function which decides whether anything needs to go
3202	     into these sections.  */
3203	  s->flags |= SEC_EXCLUDE;
3204	  continue;
3205	}
3206
3207      if ((s->flags & SEC_HAS_CONTENTS) == 0)
3208	continue;
3209
3210      /* Allocate memory for the section contents.  */
3211      /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3212	 Unused entries should be reclaimed before the section's contents
3213	 are written out, but at the moment this does not happen.  Thus in
3214	 order to prevent writing out garbage, we initialise the section's
3215	 contents to zero.  */
3216      s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3217      if (s->contents == NULL)
3218	return false;
3219    }
3220
3221  return _bfd_elf_add_dynamic_tags (output_bfd, info, relocs);
3222}
3223
3224/* This function is called via elf_link_hash_traverse if we are
3225   creating a shared object.  In the -Bsymbolic case it discards the
3226   space allocated to copy PC relative relocs against symbols which
3227   are defined in regular objects.  For the normal shared case, it
3228   discards space for pc-relative relocs that have become local due to
3229   symbol visibility changes.  We allocated space for them in the
3230   check_relocs routine, but we won't fill them in in the
3231   relocate_section routine.
3232
3233   We also check whether any of the remaining relocations apply
3234   against a readonly section, and set the DF_TEXTREL flag in this
3235   case.  */
3236
3237static bool
3238elf_m68k_discard_copies (struct elf_link_hash_entry *h,
3239			 void * inf)
3240{
3241  struct bfd_link_info *info = (struct bfd_link_info *) inf;
3242  struct elf_m68k_pcrel_relocs_copied *s;
3243
3244  if (!SYMBOL_CALLS_LOCAL (info, h))
3245    {
3246      if ((info->flags & DF_TEXTREL) == 0)
3247	{
3248	  /* Look for relocations against read-only sections.  */
3249	  for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3250	       s != NULL;
3251	       s = s->next)
3252	    if ((s->section->flags & SEC_READONLY) != 0)
3253	      {
3254		info->flags |= DF_TEXTREL;
3255		break;
3256	      }
3257	}
3258
3259      /* Make sure undefined weak symbols are output as a dynamic symbol
3260	 in PIEs.  */
3261      if (h->non_got_ref
3262	  && h->root.type == bfd_link_hash_undefweak
3263	  && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3264	  && h->dynindx == -1
3265	  && !h->forced_local)
3266	{
3267	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
3268	    return false;
3269	}
3270
3271      return true;
3272    }
3273
3274  for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3275       s != NULL;
3276       s = s->next)
3277    s->section->size -= s->count * sizeof (Elf32_External_Rela);
3278
3279  return true;
3280}
3281
3282
3283/* Install relocation RELA.  */
3284
3285static void
3286elf_m68k_install_rela (bfd *output_bfd,
3287		       asection *srela,
3288		       Elf_Internal_Rela *rela)
3289{
3290  bfd_byte *loc;
3291
3292  loc = srela->contents;
3293  loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3294  bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3295}
3296
3297/* Find the base offsets for thread-local storage in this object,
3298   for GD/LD and IE/LE respectively.  */
3299
3300#define DTP_OFFSET 0x8000
3301#define TP_OFFSET  0x7000
3302
3303static bfd_vma
3304dtpoff_base (struct bfd_link_info *info)
3305{
3306  /* If tls_sec is NULL, we should have signalled an error already.  */
3307  if (elf_hash_table (info)->tls_sec == NULL)
3308    return 0;
3309  return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
3310}
3311
3312static bfd_vma
3313tpoff_base (struct bfd_link_info *info)
3314{
3315  /* If tls_sec is NULL, we should have signalled an error already.  */
3316  if (elf_hash_table (info)->tls_sec == NULL)
3317    return 0;
3318  return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
3319}
3320
3321/* Output necessary relocation to handle a symbol during static link.
3322   This function is called from elf_m68k_relocate_section.  */
3323
3324static void
3325elf_m68k_init_got_entry_static (struct bfd_link_info *info,
3326				bfd *output_bfd,
3327				enum elf_m68k_reloc_type r_type,
3328				asection *sgot,
3329				bfd_vma got_entry_offset,
3330				bfd_vma relocation)
3331{
3332  switch (elf_m68k_reloc_got_type (r_type))
3333    {
3334    case R_68K_GOT32O:
3335      bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
3336      break;
3337
3338    case R_68K_TLS_GD32:
3339      /* We know the offset within the module,
3340	 put it into the second GOT slot.  */
3341      bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3342		  sgot->contents + got_entry_offset + 4);
3343      /* FALLTHRU */
3344
3345    case R_68K_TLS_LDM32:
3346      /* Mark it as belonging to module 1, the executable.  */
3347      bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
3348      break;
3349
3350    case R_68K_TLS_IE32:
3351      bfd_put_32 (output_bfd, relocation - tpoff_base (info),
3352		  sgot->contents + got_entry_offset);
3353      break;
3354
3355    default:
3356      BFD_ASSERT (false);
3357    }
3358}
3359
3360/* Output necessary relocation to handle a local symbol
3361   during dynamic link.
3362   This function is called either from elf_m68k_relocate_section
3363   or from elf_m68k_finish_dynamic_symbol.  */
3364
3365static void
3366elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
3367				      bfd *output_bfd,
3368				      enum elf_m68k_reloc_type r_type,
3369				      asection *sgot,
3370				      bfd_vma got_entry_offset,
3371				      bfd_vma relocation,
3372				      asection *srela)
3373{
3374  Elf_Internal_Rela outrel;
3375
3376  switch (elf_m68k_reloc_got_type (r_type))
3377    {
3378    case R_68K_GOT32O:
3379      /* Emit RELATIVE relocation to initialize GOT slot
3380	 at run-time.  */
3381      outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3382      outrel.r_addend = relocation;
3383      break;
3384
3385    case R_68K_TLS_GD32:
3386      /* We know the offset within the module,
3387	 put it into the second GOT slot.  */
3388      bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3389		  sgot->contents + got_entry_offset + 4);
3390      /* FALLTHRU */
3391
3392    case R_68K_TLS_LDM32:
3393      /* We don't know the module number,
3394	 create a relocation for it.  */
3395      outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3396      outrel.r_addend = 0;
3397      break;
3398
3399    case R_68K_TLS_IE32:
3400      /* Emit TPREL relocation to initialize GOT slot
3401	 at run-time.  */
3402      outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3403      outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
3404      break;
3405
3406    default:
3407      BFD_ASSERT (false);
3408    }
3409
3410  /* Offset of the GOT entry.  */
3411  outrel.r_offset = (sgot->output_section->vma
3412		     + sgot->output_offset
3413		     + got_entry_offset);
3414
3415  /* Install one of the above relocations.  */
3416  elf_m68k_install_rela (output_bfd, srela, &outrel);
3417
3418  bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
3419}
3420
3421/* Relocate an M68K ELF section.  */
3422
3423static int
3424elf_m68k_relocate_section (bfd *output_bfd,
3425			   struct bfd_link_info *info,
3426			   bfd *input_bfd,
3427			   asection *input_section,
3428			   bfd_byte *contents,
3429			   Elf_Internal_Rela *relocs,
3430			   Elf_Internal_Sym *local_syms,
3431			   asection **local_sections)
3432{
3433  Elf_Internal_Shdr *symtab_hdr;
3434  struct elf_link_hash_entry **sym_hashes;
3435  asection *sgot;
3436  asection *splt;
3437  asection *sreloc;
3438  asection *srela;
3439  struct elf_m68k_got *got;
3440  Elf_Internal_Rela *rel;
3441  Elf_Internal_Rela *relend;
3442
3443  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3444  sym_hashes = elf_sym_hashes (input_bfd);
3445
3446  sgot = NULL;
3447  splt = NULL;
3448  sreloc = NULL;
3449  srela = NULL;
3450
3451  got = NULL;
3452
3453  rel = relocs;
3454  relend = relocs + input_section->reloc_count;
3455  for (; rel < relend; rel++)
3456    {
3457      int r_type;
3458      reloc_howto_type *howto;
3459      unsigned long r_symndx;
3460      struct elf_link_hash_entry *h;
3461      Elf_Internal_Sym *sym;
3462      asection *sec;
3463      bfd_vma relocation;
3464      bool unresolved_reloc;
3465      bfd_reloc_status_type r;
3466      bool resolved_to_zero;
3467
3468      r_type = ELF32_R_TYPE (rel->r_info);
3469      if (r_type < 0 || r_type >= (int) R_68K_max)
3470	{
3471	  bfd_set_error (bfd_error_bad_value);
3472	  return false;
3473	}
3474      howto = howto_table + r_type;
3475
3476      r_symndx = ELF32_R_SYM (rel->r_info);
3477
3478      h = NULL;
3479      sym = NULL;
3480      sec = NULL;
3481      unresolved_reloc = false;
3482
3483      if (r_symndx < symtab_hdr->sh_info)
3484	{
3485	  sym = local_syms + r_symndx;
3486	  sec = local_sections[r_symndx];
3487	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3488	}
3489      else
3490	{
3491	  bool warned, ignored;
3492
3493	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3494				   r_symndx, symtab_hdr, sym_hashes,
3495				   h, sec, relocation,
3496				   unresolved_reloc, warned, ignored);
3497	}
3498
3499      if (sec != NULL && discarded_section (sec))
3500	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3501					 rel, 1, relend, howto, 0, contents);
3502
3503      if (bfd_link_relocatable (info))
3504	continue;
3505
3506      resolved_to_zero = (h != NULL
3507			  && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
3508
3509      switch (r_type)
3510	{
3511	case R_68K_GOT8:
3512	case R_68K_GOT16:
3513	case R_68K_GOT32:
3514	  /* Relocation is to the address of the entry for this symbol
3515	     in the global offset table.  */
3516	  if (h != NULL
3517	      && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3518	    {
3519	      if (elf_m68k_hash_table (info)->local_gp_p)
3520		{
3521		  bfd_vma sgot_output_offset;
3522		  bfd_vma got_offset;
3523
3524		  sgot = elf_hash_table (info)->sgot;
3525
3526		  if (sgot != NULL)
3527		    sgot_output_offset = sgot->output_offset;
3528		  else
3529		    /* In this case we have a reference to
3530		       _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3531		       empty.
3532		       ??? Issue a warning?  */
3533		    sgot_output_offset = 0;
3534
3535		  if (got == NULL)
3536		    {
3537		      struct elf_m68k_bfd2got_entry *bfd2got_entry;
3538
3539		      bfd2got_entry
3540			= elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3541						      input_bfd, SEARCH, NULL);
3542
3543		      if (bfd2got_entry != NULL)
3544			{
3545			  got = bfd2got_entry->got;
3546			  BFD_ASSERT (got != NULL);
3547
3548			  got_offset = got->offset;
3549			}
3550		      else
3551			/* In this case we have a reference to
3552			   _GLOBAL_OFFSET_TABLE_, but no other references
3553			   accessing any GOT entries.
3554			   ??? Issue a warning?  */
3555			got_offset = 0;
3556		    }
3557		  else
3558		    got_offset = got->offset;
3559
3560		  /* Adjust GOT pointer to point to the GOT
3561		     assigned to input_bfd.  */
3562		  rel->r_addend += sgot_output_offset + got_offset;
3563		}
3564	      else
3565		BFD_ASSERT (got == NULL || got->offset == 0);
3566
3567	      break;
3568	    }
3569	  /* Fall through.  */
3570	case R_68K_GOT8O:
3571	case R_68K_GOT16O:
3572	case R_68K_GOT32O:
3573
3574	case R_68K_TLS_LDM32:
3575	case R_68K_TLS_LDM16:
3576	case R_68K_TLS_LDM8:
3577
3578	case R_68K_TLS_GD8:
3579	case R_68K_TLS_GD16:
3580	case R_68K_TLS_GD32:
3581
3582	case R_68K_TLS_IE8:
3583	case R_68K_TLS_IE16:
3584	case R_68K_TLS_IE32:
3585
3586	  /* Relocation is the offset of the entry for this symbol in
3587	     the global offset table.  */
3588
3589	  {
3590	    struct elf_m68k_got_entry_key key_;
3591	    bfd_vma *off_ptr;
3592	    bfd_vma off;
3593
3594	    sgot = elf_hash_table (info)->sgot;
3595	    BFD_ASSERT (sgot != NULL);
3596
3597	    if (got == NULL)
3598	      got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3599						input_bfd, MUST_FIND,
3600						NULL)->got;
3601
3602	    /* Get GOT offset for this symbol.  */
3603	    elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3604					 r_type);
3605	    off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3606					       NULL)->u.s2.offset;
3607	    off = *off_ptr;
3608
3609	    /* The offset must always be a multiple of 4.  We use
3610	       the least significant bit to record whether we have
3611	       already generated the necessary reloc.  */
3612	    if ((off & 1) != 0)
3613	      off &= ~1;
3614	    else
3615	      {
3616		if (h != NULL
3617		    /* @TLSLDM relocations are bounded to the module, in
3618		       which the symbol is defined -- not to the symbol
3619		       itself.  */
3620		    && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
3621		  {
3622		    bool dyn;
3623
3624		    dyn = elf_hash_table (info)->dynamic_sections_created;
3625		    if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3626							  bfd_link_pic (info),
3627							  h)
3628			|| (bfd_link_pic (info)
3629			    && SYMBOL_REFERENCES_LOCAL (info, h))
3630			|| ((ELF_ST_VISIBILITY (h->other)
3631			     || resolved_to_zero)
3632			    && h->root.type == bfd_link_hash_undefweak))
3633		      {
3634			/* This is actually a static link, or it is a
3635			   -Bsymbolic link and the symbol is defined
3636			   locally, or the symbol was forced to be local
3637			   because of a version file.  We must initialize
3638			   this entry in the global offset table.  Since
3639			   the offset must always be a multiple of 4, we
3640			   use the least significant bit to record whether
3641			   we have initialized it already.
3642
3643			   When doing a dynamic link, we create a .rela.got
3644			   relocation entry to initialize the value.  This
3645			   is done in the finish_dynamic_symbol routine.  */
3646
3647			elf_m68k_init_got_entry_static (info,
3648							output_bfd,
3649							r_type,
3650							sgot,
3651							off,
3652							relocation);
3653
3654			*off_ptr |= 1;
3655		      }
3656		    else
3657		      unresolved_reloc = false;
3658		  }
3659		else if (bfd_link_pic (info)) /* && h == NULL */
3660		  /* Process local symbol during dynamic link.  */
3661		  {
3662		    srela = elf_hash_table (info)->srelgot;
3663		    BFD_ASSERT (srela != NULL);
3664
3665		    elf_m68k_init_got_entry_local_shared (info,
3666							  output_bfd,
3667							  r_type,
3668							  sgot,
3669							  off,
3670							  relocation,
3671							  srela);
3672
3673		    *off_ptr |= 1;
3674		  }
3675		else /* h == NULL && !bfd_link_pic (info) */
3676		  {
3677		    elf_m68k_init_got_entry_static (info,
3678						    output_bfd,
3679						    r_type,
3680						    sgot,
3681						    off,
3682						    relocation);
3683
3684		    *off_ptr |= 1;
3685		  }
3686	      }
3687
3688	    /* We don't use elf_m68k_reloc_got_type in the condition below
3689	       because this is the only place where difference between
3690	       R_68K_GOTx and R_68K_GOTxO relocations matters.  */
3691	    if (r_type == R_68K_GOT32O
3692		|| r_type == R_68K_GOT16O
3693		|| r_type == R_68K_GOT8O
3694		|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3695		|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3696		|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
3697	      {
3698		/* GOT pointer is adjusted to point to the start/middle
3699		   of local GOT.  Adjust the offset accordingly.  */
3700		BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3701			    || off >= got->offset);
3702
3703		if (elf_m68k_hash_table (info)->local_gp_p)
3704		  relocation = off - got->offset;
3705		else
3706		  {
3707		    BFD_ASSERT (got->offset == 0);
3708		    relocation = sgot->output_offset + off;
3709		  }
3710
3711		/* This relocation does not use the addend.  */
3712		rel->r_addend = 0;
3713	      }
3714	    else
3715	      relocation = (sgot->output_section->vma + sgot->output_offset
3716			    + off);
3717	  }
3718	  break;
3719
3720	case R_68K_TLS_LDO32:
3721	case R_68K_TLS_LDO16:
3722	case R_68K_TLS_LDO8:
3723	  relocation -= dtpoff_base (info);
3724	  break;
3725
3726	case R_68K_TLS_LE32:
3727	case R_68K_TLS_LE16:
3728	case R_68K_TLS_LE8:
3729	  if (bfd_link_dll (info))
3730	    {
3731	      _bfd_error_handler
3732		/* xgettext:c-format */
3733		(_("%pB(%pA+%#" PRIx64 "): "
3734		   "%s relocation not permitted in shared object"),
3735		 input_bfd, input_section, (uint64_t) rel->r_offset,
3736		 howto->name);
3737
3738	      return false;
3739	    }
3740	  else
3741	    relocation -= tpoff_base (info);
3742
3743	  break;
3744
3745	case R_68K_PLT8:
3746	case R_68K_PLT16:
3747	case R_68K_PLT32:
3748	  /* Relocation is to the entry for this symbol in the
3749	     procedure linkage table.  */
3750
3751	  /* Resolve a PLTxx reloc against a local symbol directly,
3752	     without using the procedure linkage table.  */
3753	  if (h == NULL)
3754	    break;
3755
3756	  if (h->plt.offset == (bfd_vma) -1
3757	      || !elf_hash_table (info)->dynamic_sections_created)
3758	    {
3759	      /* We didn't make a PLT entry for this symbol.  This
3760		 happens when statically linking PIC code, or when
3761		 using -Bsymbolic.  */
3762	      break;
3763	    }
3764
3765	  splt = elf_hash_table (info)->splt;
3766	  BFD_ASSERT (splt != NULL);
3767
3768	  relocation = (splt->output_section->vma
3769			+ splt->output_offset
3770			+ h->plt.offset);
3771	  unresolved_reloc = false;
3772	  break;
3773
3774	case R_68K_PLT8O:
3775	case R_68K_PLT16O:
3776	case R_68K_PLT32O:
3777	  /* Relocation is the offset of the entry for this symbol in
3778	     the procedure linkage table.  */
3779	  BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
3780
3781	  splt = elf_hash_table (info)->splt;
3782	  BFD_ASSERT (splt != NULL);
3783
3784	  relocation = h->plt.offset;
3785	  unresolved_reloc = false;
3786
3787	  /* This relocation does not use the addend.  */
3788	  rel->r_addend = 0;
3789
3790	  break;
3791
3792	case R_68K_8:
3793	case R_68K_16:
3794	case R_68K_32:
3795	case R_68K_PC8:
3796	case R_68K_PC16:
3797	case R_68K_PC32:
3798	  if (bfd_link_pic (info)
3799	      && r_symndx != STN_UNDEF
3800	      && (input_section->flags & SEC_ALLOC) != 0
3801	      && (h == NULL
3802		  || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3803		      && !resolved_to_zero)
3804		  || h->root.type != bfd_link_hash_undefweak)
3805	      && ((r_type != R_68K_PC8
3806		   && r_type != R_68K_PC16
3807		   && r_type != R_68K_PC32)
3808		  || !SYMBOL_CALLS_LOCAL (info, h)))
3809	    {
3810	      Elf_Internal_Rela outrel;
3811	      bfd_byte *loc;
3812	      bool skip, relocate;
3813
3814	      /* When generating a shared object, these relocations
3815		 are copied into the output file to be resolved at run
3816		 time.  */
3817
3818	      skip = false;
3819	      relocate = false;
3820
3821	      outrel.r_offset =
3822		_bfd_elf_section_offset (output_bfd, info, input_section,
3823					 rel->r_offset);
3824	      if (outrel.r_offset == (bfd_vma) -1)
3825		skip = true;
3826	      else if (outrel.r_offset == (bfd_vma) -2)
3827		skip = true, relocate = true;
3828	      outrel.r_offset += (input_section->output_section->vma
3829				  + input_section->output_offset);
3830
3831	      if (skip)
3832		memset (&outrel, 0, sizeof outrel);
3833	      else if (h != NULL
3834		       && h->dynindx != -1
3835		       && (r_type == R_68K_PC8
3836			   || r_type == R_68K_PC16
3837			   || r_type == R_68K_PC32
3838			   || !bfd_link_pic (info)
3839			   || !SYMBOLIC_BIND (info, h)
3840			   || !h->def_regular))
3841		{
3842		  outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
3843		  outrel.r_addend = rel->r_addend;
3844		}
3845	      else
3846		{
3847		  /* This symbol is local, or marked to become local.  */
3848		  outrel.r_addend = relocation + rel->r_addend;
3849
3850		  if (r_type == R_68K_32)
3851		    {
3852		      relocate = true;
3853		      outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3854		    }
3855		  else
3856		    {
3857		      long indx;
3858
3859		      if (bfd_is_abs_section (sec))
3860			indx = 0;
3861		      else if (sec == NULL || sec->owner == NULL)
3862			{
3863			  bfd_set_error (bfd_error_bad_value);
3864			  return false;
3865			}
3866		      else
3867			{
3868			  asection *osec;
3869
3870			  /* We are turning this relocation into one
3871			     against a section symbol.  It would be
3872			     proper to subtract the symbol's value,
3873			     osec->vma, from the emitted reloc addend,
3874			     but ld.so expects buggy relocs.  */
3875			  osec = sec->output_section;
3876			  indx = elf_section_data (osec)->dynindx;
3877			  if (indx == 0)
3878			    {
3879			      struct elf_link_hash_table *htab;
3880			      htab = elf_hash_table (info);
3881			      osec = htab->text_index_section;
3882			      indx = elf_section_data (osec)->dynindx;
3883			    }
3884			  BFD_ASSERT (indx != 0);
3885			}
3886
3887		      outrel.r_info = ELF32_R_INFO (indx, r_type);
3888		    }
3889		}
3890
3891	      sreloc = elf_section_data (input_section)->sreloc;
3892	      if (sreloc == NULL)
3893		abort ();
3894
3895	      loc = sreloc->contents;
3896	      loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3897	      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3898
3899	      /* This reloc will be computed at runtime, so there's no
3900		 need to do anything now, except for R_68K_32
3901		 relocations that have been turned into
3902		 R_68K_RELATIVE.  */
3903	      if (!relocate)
3904		continue;
3905	    }
3906
3907	  break;
3908
3909	case R_68K_GNU_VTINHERIT:
3910	case R_68K_GNU_VTENTRY:
3911	  /* These are no-ops in the end.  */
3912	  continue;
3913
3914	default:
3915	  break;
3916	}
3917
3918      /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3919	 because such sections are not SEC_ALLOC and thus ld.so will
3920	 not process them.  */
3921      if (unresolved_reloc
3922	  && !((input_section->flags & SEC_DEBUGGING) != 0
3923	       && h->def_dynamic)
3924	  && _bfd_elf_section_offset (output_bfd, info, input_section,
3925				      rel->r_offset) != (bfd_vma) -1)
3926	{
3927	  _bfd_error_handler
3928	    /* xgettext:c-format */
3929	    (_("%pB(%pA+%#" PRIx64 "): "
3930	       "unresolvable %s relocation against symbol `%s'"),
3931	     input_bfd,
3932	     input_section,
3933	     (uint64_t) rel->r_offset,
3934	     howto->name,
3935	     h->root.root.string);
3936	  return false;
3937	}
3938
3939      if (r_symndx != STN_UNDEF
3940	  && r_type != R_68K_NONE
3941	  && (h == NULL
3942	      || h->root.type == bfd_link_hash_defined
3943	      || h->root.type == bfd_link_hash_defweak))
3944	{
3945	  char sym_type;
3946
3947	  sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
3948
3949	  if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
3950	    {
3951	      const char *name;
3952
3953	      if (h != NULL)
3954		name = h->root.root.string;
3955	      else
3956		{
3957		  name = (bfd_elf_string_from_elf_section
3958			  (input_bfd, symtab_hdr->sh_link, sym->st_name));
3959		  if (name == NULL || *name == '\0')
3960		    name = bfd_section_name (sec);
3961		}
3962
3963	      _bfd_error_handler
3964		((sym_type == STT_TLS
3965		  /* xgettext:c-format */
3966		  ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
3967		  /* xgettext:c-format */
3968		  : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
3969		 input_bfd,
3970		 input_section,
3971		 (uint64_t) rel->r_offset,
3972		 howto->name,
3973		 name);
3974	    }
3975	}
3976
3977      r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3978				    contents, rel->r_offset,
3979				    relocation, rel->r_addend);
3980
3981      if (r != bfd_reloc_ok)
3982	{
3983	  const char *name;
3984
3985	  if (h != NULL)
3986	    name = h->root.root.string;
3987	  else
3988	    {
3989	      name = bfd_elf_string_from_elf_section (input_bfd,
3990						      symtab_hdr->sh_link,
3991						      sym->st_name);
3992	      if (name == NULL)
3993		return false;
3994	      if (*name == '\0')
3995		name = bfd_section_name (sec);
3996	    }
3997
3998	  if (r == bfd_reloc_overflow)
3999	    (*info->callbacks->reloc_overflow)
4000	      (info, (h ? &h->root : NULL), name, howto->name,
4001	       (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
4002	  else
4003	    {
4004	      _bfd_error_handler
4005		/* xgettext:c-format */
4006		(_("%pB(%pA+%#" PRIx64 "): reloc against `%s': error %d"),
4007		 input_bfd, input_section,
4008		 (uint64_t) rel->r_offset, name, (int) r);
4009	      return false;
4010	    }
4011	}
4012    }
4013
4014  return true;
4015}
4016
4017/* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
4018   into section SEC.  */
4019
4020static void
4021elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
4022{
4023  /* Make VALUE PC-relative.  */
4024  value -= sec->output_section->vma + offset;
4025
4026  /* Apply any in-place addend.  */
4027  value += bfd_get_32 (sec->owner, sec->contents + offset);
4028
4029  bfd_put_32 (sec->owner, value, sec->contents + offset);
4030}
4031
4032/* Finish up dynamic symbol handling.  We set the contents of various
4033   dynamic sections here.  */
4034
4035static bool
4036elf_m68k_finish_dynamic_symbol (bfd *output_bfd,
4037				struct bfd_link_info *info,
4038				struct elf_link_hash_entry *h,
4039				Elf_Internal_Sym *sym)
4040{
4041  bfd *dynobj;
4042
4043  dynobj = elf_hash_table (info)->dynobj;
4044
4045  if (h->plt.offset != (bfd_vma) -1)
4046    {
4047      const struct elf_m68k_plt_info *plt_info;
4048      asection *splt;
4049      asection *sgot;
4050      asection *srela;
4051      bfd_vma plt_index;
4052      bfd_vma got_offset;
4053      Elf_Internal_Rela rela;
4054      bfd_byte *loc;
4055
4056      /* This symbol has an entry in the procedure linkage table.  Set
4057	 it up.  */
4058
4059      BFD_ASSERT (h->dynindx != -1);
4060
4061      plt_info = elf_m68k_hash_table (info)->plt_info;
4062      splt = elf_hash_table (info)->splt;
4063      sgot = elf_hash_table (info)->sgotplt;
4064      srela = elf_hash_table (info)->srelplt;
4065      BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4066
4067      /* Get the index in the procedure linkage table which
4068	 corresponds to this symbol.  This is the index of this symbol
4069	 in all the symbols for which we are making plt entries.  The
4070	 first entry in the procedure linkage table is reserved.  */
4071      plt_index = (h->plt.offset / plt_info->size) - 1;
4072
4073      /* Get the offset into the .got table of the entry that
4074	 corresponds to this function.  Each .got entry is 4 bytes.
4075	 The first three are reserved.  */
4076      got_offset = (plt_index + 3) * 4;
4077
4078      memcpy (splt->contents + h->plt.offset,
4079	      plt_info->symbol_entry,
4080	      plt_info->size);
4081
4082      elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4083			     (sgot->output_section->vma
4084			      + sgot->output_offset
4085			      + got_offset));
4086
4087      bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
4088		  splt->contents
4089		  + h->plt.offset
4090		  + plt_info->symbol_resolve_entry + 2);
4091
4092      elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4093			     splt->output_section->vma);
4094
4095      /* Fill in the entry in the global offset table.  */
4096      bfd_put_32 (output_bfd,
4097		  (splt->output_section->vma
4098		   + splt->output_offset
4099		   + h->plt.offset
4100		   + plt_info->symbol_resolve_entry),
4101		  sgot->contents + got_offset);
4102
4103      /* Fill in the entry in the .rela.plt section.  */
4104      rela.r_offset = (sgot->output_section->vma
4105		       + sgot->output_offset
4106		       + got_offset);
4107      rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4108      rela.r_addend = 0;
4109      loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4110      bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4111
4112      if (!h->def_regular)
4113	{
4114	  /* Mark the symbol as undefined, rather than as defined in
4115	     the .plt section.  Leave the value alone.  */
4116	  sym->st_shndx = SHN_UNDEF;
4117	}
4118    }
4119
4120  if (elf_m68k_hash_entry (h)->glist != NULL)
4121    {
4122      asection *sgot;
4123      asection *srela;
4124      struct elf_m68k_got_entry *got_entry;
4125
4126      /* This symbol has an entry in the global offset table.  Set it
4127	 up.  */
4128
4129      sgot = elf_hash_table (info)->sgot;
4130      srela = elf_hash_table (info)->srelgot;
4131      BFD_ASSERT (sgot != NULL && srela != NULL);
4132
4133      got_entry = elf_m68k_hash_entry (h)->glist;
4134
4135      while (got_entry != NULL)
4136	{
4137	  enum elf_m68k_reloc_type r_type;
4138	  bfd_vma got_entry_offset;
4139
4140	  r_type = got_entry->key_.type;
4141	  got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
4142
4143	  /* If this is a -Bsymbolic link, and the symbol is defined
4144	     locally, we just want to emit a RELATIVE reloc.  Likewise if
4145	     the symbol was forced to be local because of a version file.
4146	     The entry in the global offset table already have been
4147	     initialized in the relocate_section function.  */
4148	  if (bfd_link_pic (info)
4149	      && SYMBOL_REFERENCES_LOCAL (info, h))
4150	    {
4151	      bfd_vma relocation;
4152
4153	      relocation = bfd_get_signed_32 (output_bfd,
4154					      (sgot->contents
4155					       + got_entry_offset));
4156
4157	      /* Undo TP bias.  */
4158	      switch (elf_m68k_reloc_got_type (r_type))
4159		{
4160		case R_68K_GOT32O:
4161		case R_68K_TLS_LDM32:
4162		  break;
4163
4164		case R_68K_TLS_GD32:
4165		  /* The value for this relocation is actually put in
4166		     the second GOT slot.  */
4167		  relocation = bfd_get_signed_32 (output_bfd,
4168						  (sgot->contents
4169						   + got_entry_offset + 4));
4170		  relocation += dtpoff_base (info);
4171		  break;
4172
4173		case R_68K_TLS_IE32:
4174		  relocation += tpoff_base (info);
4175		  break;
4176
4177		default:
4178		  BFD_ASSERT (false);
4179		}
4180
4181	      elf_m68k_init_got_entry_local_shared (info,
4182						    output_bfd,
4183						    r_type,
4184						    sgot,
4185						    got_entry_offset,
4186						    relocation,
4187						    srela);
4188	    }
4189	  else
4190	    {
4191	      Elf_Internal_Rela rela;
4192
4193	      /* Put zeros to GOT slots that will be initialized
4194		 at run-time.  */
4195	      {
4196		bfd_vma n_slots;
4197
4198		n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4199		while (n_slots--)
4200		  bfd_put_32 (output_bfd, (bfd_vma) 0,
4201			      (sgot->contents + got_entry_offset
4202			       + 4 * n_slots));
4203	      }
4204
4205	      rela.r_addend = 0;
4206	      rela.r_offset = (sgot->output_section->vma
4207			       + sgot->output_offset
4208			       + got_entry_offset);
4209
4210	      switch (elf_m68k_reloc_got_type (r_type))
4211		{
4212		case R_68K_GOT32O:
4213		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4214		  elf_m68k_install_rela (output_bfd, srela, &rela);
4215		  break;
4216
4217		case R_68K_TLS_GD32:
4218		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4219		  elf_m68k_install_rela (output_bfd, srela, &rela);
4220
4221		  rela.r_offset += 4;
4222		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4223		  elf_m68k_install_rela (output_bfd, srela, &rela);
4224		  break;
4225
4226		case R_68K_TLS_IE32:
4227		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4228		  elf_m68k_install_rela (output_bfd, srela, &rela);
4229		  break;
4230
4231		default:
4232		  BFD_ASSERT (false);
4233		  break;
4234		}
4235	    }
4236
4237	  got_entry = got_entry->u.s2.next;
4238	}
4239    }
4240
4241  if (h->needs_copy)
4242    {
4243      asection *s;
4244      Elf_Internal_Rela rela;
4245      bfd_byte *loc;
4246
4247      /* This symbol needs a copy reloc.  Set it up.  */
4248
4249      BFD_ASSERT (h->dynindx != -1
4250		  && (h->root.type == bfd_link_hash_defined
4251		      || h->root.type == bfd_link_hash_defweak));
4252
4253      s = bfd_get_linker_section (dynobj, ".rela.bss");
4254      BFD_ASSERT (s != NULL);
4255
4256      rela.r_offset = (h->root.u.def.value
4257		       + h->root.u.def.section->output_section->vma
4258		       + h->root.u.def.section->output_offset);
4259      rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4260      rela.r_addend = 0;
4261      loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4262      bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4263    }
4264
4265  return true;
4266}
4267
4268/* Finish up the dynamic sections.  */
4269
4270static bool
4271elf_m68k_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
4272{
4273  bfd *dynobj;
4274  asection *sgot;
4275  asection *sdyn;
4276
4277  dynobj = elf_hash_table (info)->dynobj;
4278
4279  sgot = elf_hash_table (info)->sgotplt;
4280  BFD_ASSERT (sgot != NULL);
4281  sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4282
4283  if (elf_hash_table (info)->dynamic_sections_created)
4284    {
4285      asection *splt;
4286      Elf32_External_Dyn *dyncon, *dynconend;
4287
4288      splt = elf_hash_table (info)->splt;
4289      BFD_ASSERT (splt != NULL && sdyn != NULL);
4290
4291      dyncon = (Elf32_External_Dyn *) sdyn->contents;
4292      dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4293      for (; dyncon < dynconend; dyncon++)
4294	{
4295	  Elf_Internal_Dyn dyn;
4296	  asection *s;
4297
4298	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4299
4300	  switch (dyn.d_tag)
4301	    {
4302	    default:
4303	      break;
4304
4305	    case DT_PLTGOT:
4306	      s = elf_hash_table (info)->sgotplt;
4307	      goto get_vma;
4308	    case DT_JMPREL:
4309	      s = elf_hash_table (info)->srelplt;
4310	    get_vma:
4311	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4312	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4313	      break;
4314
4315	    case DT_PLTRELSZ:
4316	      s = elf_hash_table (info)->srelplt;
4317	      dyn.d_un.d_val = s->size;
4318	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4319	      break;
4320	    }
4321	}
4322
4323      /* Fill in the first entry in the procedure linkage table.  */
4324      if (splt->size > 0)
4325	{
4326	  const struct elf_m68k_plt_info *plt_info;
4327
4328	  plt_info = elf_m68k_hash_table (info)->plt_info;
4329	  memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4330
4331	  elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4332				 (sgot->output_section->vma
4333				  + sgot->output_offset
4334				  + 4));
4335
4336	  elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4337				 (sgot->output_section->vma
4338				  + sgot->output_offset
4339				  + 8));
4340
4341	  elf_section_data (splt->output_section)->this_hdr.sh_entsize
4342	    = plt_info->size;
4343	}
4344    }
4345
4346  /* Fill in the first three entries in the global offset table.  */
4347  if (sgot->size > 0)
4348    {
4349      if (sdyn == NULL)
4350	bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4351      else
4352	bfd_put_32 (output_bfd,
4353		    sdyn->output_section->vma + sdyn->output_offset,
4354		    sgot->contents);
4355      bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4356      bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4357    }
4358
4359  elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4360
4361  return true;
4362}
4363
4364/* Given a .data section and a .emreloc in-memory section, store
4365   relocation information into the .emreloc section which can be
4366   used at runtime to relocate the section.  This is called by the
4367   linker when the --embedded-relocs switch is used.  This is called
4368   after the add_symbols entry point has been called for all the
4369   objects, and before the final_link entry point is called.  */
4370
4371bool
4372bfd_m68k_elf32_create_embedded_relocs (bfd *abfd, struct bfd_link_info *info,
4373				       asection *datasec, asection *relsec,
4374				       char **errmsg)
4375{
4376  Elf_Internal_Shdr *symtab_hdr;
4377  Elf_Internal_Sym *isymbuf = NULL;
4378  Elf_Internal_Rela *internal_relocs = NULL;
4379  Elf_Internal_Rela *irel, *irelend;
4380  bfd_byte *p;
4381  bfd_size_type amt;
4382
4383  BFD_ASSERT (! bfd_link_relocatable (info));
4384
4385  *errmsg = NULL;
4386
4387  if (datasec->reloc_count == 0)
4388    return true;
4389
4390  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4391
4392  /* Get a copy of the native relocations.  */
4393  internal_relocs = (_bfd_elf_link_read_relocs
4394		     (abfd, datasec, NULL, (Elf_Internal_Rela *) NULL,
4395		      info->keep_memory));
4396  if (internal_relocs == NULL)
4397    goto error_return;
4398
4399  amt = (bfd_size_type) datasec->reloc_count * 12;
4400  relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
4401  if (relsec->contents == NULL)
4402    goto error_return;
4403
4404  p = relsec->contents;
4405
4406  irelend = internal_relocs + datasec->reloc_count;
4407  for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4408    {
4409      asection *targetsec;
4410
4411      /* We are going to write a four byte longword into the runtime
4412       reloc section.  The longword will be the address in the data
4413       section which must be relocated.  It is followed by the name
4414       of the target section NUL-padded or truncated to 8
4415       characters.  */
4416
4417      /* We can only relocate absolute longword relocs at run time.  */
4418      if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4419	{
4420	  *errmsg = _("unsupported relocation type");
4421	  bfd_set_error (bfd_error_bad_value);
4422	  goto error_return;
4423	}
4424
4425      /* Get the target section referred to by the reloc.  */
4426      if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4427	{
4428	  /* A local symbol.  */
4429	  Elf_Internal_Sym *isym;
4430
4431	  /* Read this BFD's local symbols if we haven't done so already.  */
4432	  if (isymbuf == NULL)
4433	    {
4434	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4435	      if (isymbuf == NULL)
4436		isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4437						symtab_hdr->sh_info, 0,
4438						NULL, NULL, NULL);
4439	      if (isymbuf == NULL)
4440		goto error_return;
4441	    }
4442
4443	  isym = isymbuf + ELF32_R_SYM (irel->r_info);
4444	  targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4445	}
4446      else
4447	{
4448	  unsigned long indx;
4449	  struct elf_link_hash_entry *h;
4450
4451	  /* An external symbol.  */
4452	  indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4453	  h = elf_sym_hashes (abfd)[indx];
4454	  BFD_ASSERT (h != NULL);
4455	  if (h->root.type == bfd_link_hash_defined
4456	      || h->root.type == bfd_link_hash_defweak)
4457	    targetsec = h->root.u.def.section;
4458	  else
4459	    targetsec = NULL;
4460	}
4461
4462      bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4463      memset (p + 4, 0, 8);
4464      if (targetsec != NULL)
4465	strncpy ((char *) p + 4, targetsec->output_section->name, 8);
4466    }
4467
4468  if (symtab_hdr->contents != (unsigned char *) isymbuf)
4469    free (isymbuf);
4470  if (elf_section_data (datasec)->relocs != internal_relocs)
4471    free (internal_relocs);
4472  return true;
4473
4474 error_return:
4475  if (symtab_hdr->contents != (unsigned char *) isymbuf)
4476    free (isymbuf);
4477  if (elf_section_data (datasec)->relocs != internal_relocs)
4478    free (internal_relocs);
4479  return false;
4480}
4481
4482/* Set target options.  */
4483
4484void
4485bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4486{
4487  struct elf_m68k_link_hash_table *htab;
4488  bool use_neg_got_offsets_p;
4489  bool allow_multigot_p;
4490  bool local_gp_p;
4491
4492  switch (got_handling)
4493    {
4494    case 0:
4495      /* --got=single.  */
4496      local_gp_p = false;
4497      use_neg_got_offsets_p = false;
4498      allow_multigot_p = false;
4499      break;
4500
4501    case 1:
4502      /* --got=negative.  */
4503      local_gp_p = true;
4504      use_neg_got_offsets_p = true;
4505      allow_multigot_p = false;
4506      break;
4507
4508    case 2:
4509      /* --got=multigot.  */
4510      local_gp_p = true;
4511      use_neg_got_offsets_p = true;
4512      allow_multigot_p = true;
4513      break;
4514
4515    default:
4516      BFD_ASSERT (false);
4517      return;
4518    }
4519
4520  htab = elf_m68k_hash_table (info);
4521  if (htab != NULL)
4522    {
4523      htab->local_gp_p = local_gp_p;
4524      htab->use_neg_got_offsets_p = use_neg_got_offsets_p;
4525      htab->allow_multigot_p = allow_multigot_p;
4526    }
4527}
4528
4529static enum elf_reloc_type_class
4530elf32_m68k_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4531			     const asection *rel_sec ATTRIBUTE_UNUSED,
4532			     const Elf_Internal_Rela *rela)
4533{
4534  switch ((int) ELF32_R_TYPE (rela->r_info))
4535    {
4536    case R_68K_RELATIVE:
4537      return reloc_class_relative;
4538    case R_68K_JMP_SLOT:
4539      return reloc_class_plt;
4540    case R_68K_COPY:
4541      return reloc_class_copy;
4542    default:
4543      return reloc_class_normal;
4544    }
4545}
4546
4547/* Return address for Ith PLT stub in section PLT, for relocation REL
4548   or (bfd_vma) -1 if it should not be included.  */
4549
4550static bfd_vma
4551elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4552		      const arelent *rel ATTRIBUTE_UNUSED)
4553{
4554  return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
4555}
4556
4557/* Support for core dump NOTE sections.  */
4558
4559static bool
4560elf_m68k_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4561{
4562  int offset;
4563  size_t size;
4564
4565  switch (note->descsz)
4566    {
4567    default:
4568      return false;
4569
4570    case 154:		/* Linux/m68k */
4571      /* pr_cursig */
4572      elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
4573
4574      /* pr_pid */
4575      elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 22);
4576
4577      /* pr_reg */
4578      offset = 70;
4579      size = 80;
4580
4581      break;
4582    }
4583
4584  /* Make a ".reg/999" section.  */
4585  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
4586					  size, note->descpos + offset);
4587}
4588
4589static bool
4590elf_m68k_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4591{
4592  switch (note->descsz)
4593    {
4594    default:
4595      return false;
4596
4597    case 124:		/* Linux/m68k elf_prpsinfo.  */
4598      elf_tdata (abfd)->core->pid
4599	= bfd_get_32 (abfd, note->descdata + 12);
4600      elf_tdata (abfd)->core->program
4601	= _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
4602      elf_tdata (abfd)->core->command
4603	= _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
4604    }
4605
4606  /* Note that for some reason, a spurious space is tacked
4607     onto the end of the args in some (at least one anyway)
4608     implementations, so strip it off if it exists.  */
4609  {
4610    char *command = elf_tdata (abfd)->core->command;
4611    int n = strlen (command);
4612
4613    if (n > 0 && command[n - 1] == ' ')
4614      command[n - 1] = '\0';
4615  }
4616
4617  return true;
4618}
4619
4620#define TARGET_BIG_SYM			m68k_elf32_vec
4621#define TARGET_BIG_NAME			"elf32-m68k"
4622#define ELF_MACHINE_CODE		EM_68K
4623#define ELF_MAXPAGESIZE			0x2000
4624#define elf_backend_create_dynamic_sections \
4625					_bfd_elf_create_dynamic_sections
4626#define bfd_elf32_bfd_link_hash_table_create \
4627					elf_m68k_link_hash_table_create
4628#define bfd_elf32_bfd_final_link	bfd_elf_final_link
4629
4630#define elf_backend_check_relocs	elf_m68k_check_relocs
4631#define elf_backend_always_size_sections \
4632					elf_m68k_always_size_sections
4633#define elf_backend_adjust_dynamic_symbol \
4634					elf_m68k_adjust_dynamic_symbol
4635#define elf_backend_size_dynamic_sections \
4636					elf_m68k_size_dynamic_sections
4637#define elf_backend_final_write_processing	elf_m68k_final_write_processing
4638#define elf_backend_init_index_section	_bfd_elf_init_1_index_section
4639#define elf_backend_relocate_section	elf_m68k_relocate_section
4640#define elf_backend_finish_dynamic_symbol \
4641					elf_m68k_finish_dynamic_symbol
4642#define elf_backend_finish_dynamic_sections \
4643					elf_m68k_finish_dynamic_sections
4644#define elf_backend_gc_mark_hook	elf_m68k_gc_mark_hook
4645#define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
4646#define bfd_elf32_bfd_merge_private_bfd_data \
4647					elf32_m68k_merge_private_bfd_data
4648#define bfd_elf32_bfd_set_private_flags \
4649					elf32_m68k_set_private_flags
4650#define bfd_elf32_bfd_print_private_bfd_data \
4651					elf32_m68k_print_private_bfd_data
4652#define elf_backend_reloc_type_class	elf32_m68k_reloc_type_class
4653#define elf_backend_plt_sym_val		elf_m68k_plt_sym_val
4654#define elf_backend_object_p		elf32_m68k_object_p
4655#define elf_backend_grok_prstatus	elf_m68k_grok_prstatus
4656#define elf_backend_grok_psinfo		elf_m68k_grok_psinfo
4657
4658#define elf_backend_can_gc_sections 1
4659#define elf_backend_can_refcount 1
4660#define elf_backend_want_got_plt 1
4661#define elf_backend_plt_readonly 1
4662#define elf_backend_want_plt_sym 0
4663#define elf_backend_got_header_size	12
4664#define elf_backend_rela_normal		1
4665#define elf_backend_dtrel_excludes_plt	1
4666
4667#define elf_backend_linux_prpsinfo32_ugid16	true
4668
4669#include "elf32-target.h"
4670