sim-fpu.h revision 1.6
1/* Simulator Floating-point support.
2
3   Copyright 1997-2016 Free Software Foundation, Inc.
4
5   Contributed by Cygnus Support.
6
7This file is part of GDB, the GNU debugger.
8
9This program is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 3 of the License, or
12(at your option) any later version.
13
14This program is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
22
23
24#ifndef SIM_FPU_H
25#define SIM_FPU_H
26
27
28
29/* The FPU intermediate type - this object, passed by reference,
30   should be treated as opaque.
31
32
33   Pragmatics - pass struct by ref:
34
35   The alternatives for this object/interface that were considered
36   were: a packed 64 bit value; an unpacked structure passed by value;
37   and an unpacked structure passed by reference.
38
39   The packed 64 bit value was rejected because: it limited the
40   precision of intermediate values; reasonable performance would only
41   be achieved when the sim_fpu package was in-lined allowing repeated
42   unpacking operations to be eliminated.
43
44   For unpacked structures (passed by value and reference), the code
45   quality of GCC-2.7 (on x86) for each alternative was compared.
46   Needless to say the results, while better than for a packed 64 bit
47   object, were still poor (GCC had only limited support for the
48   optimization of references to structure members).  Regardless, the
49   struct-by-ref alternative achieved better results when compiled
50   with (better speed) and without (better code density) in-lining.
51   Here's looking forward to an improved GCC optimizer.
52
53
54   Pragmatics - avoid host FP hardware:
55
56   FP operations can be implemented by either: the host's floating
57   point hardware; or by emulating the FP operations using integer
58   only routines.  This is direct tradeoff between speed, portability
59   and correctness.
60
61   The two principal reasons for selecting portability and correctness
62   over speed are:
63
64   1 - Correctness.  The assumption that FP correctness wasn't an
65   issue for code being run on simulators was wrong.  Instead of
66   running FP tolerant (?) code, simulator users instead typically run
67   very aggressive FP code sequences.  The sole purpose of those
68   sequences being to test the target ISA's FP implementation.
69
70   2 - Portability.  The host FP implementation is not predictable.  A
71   simulator modeling aggressive FP code sequences using the hosts FPU
72   relies heavily on the correctness of the hosts FP implementation.
73   It turns out that such trust can be misplaced.  The behavior of
74   host FP implementations when handling edge conditions such as SNaNs
75   and exceptions varied widely.
76
77
78   */
79
80
81typedef enum
82{
83  sim_fpu_class_zero,
84  sim_fpu_class_snan,
85  sim_fpu_class_qnan,
86  sim_fpu_class_number,
87  sim_fpu_class_denorm,
88  sim_fpu_class_infinity,
89} sim_fpu_class;
90
91typedef struct _sim_fpu {
92  sim_fpu_class class;
93  int sign;
94  unsigned64 fraction;
95  int normal_exp;
96} sim_fpu;
97
98
99
100/* Rounding options.
101
102   The value zero (sim_fpu_round_default) for ALU operations indicates
103   that, when possible, rounding should be avoided. */
104
105typedef enum
106{
107  sim_fpu_round_default = 0,
108  sim_fpu_round_near = 1,
109  sim_fpu_round_zero = 2,
110  sim_fpu_round_up = 3,
111  sim_fpu_round_down = 4,
112} sim_fpu_round;
113
114
115/* Options when handling denormalized numbers.  */
116
117typedef enum
118{
119  sim_fpu_denorm_default = 0,
120  sim_fpu_denorm_underflow_inexact = 1,
121  sim_fpu_denorm_zero = 2,
122} sim_fpu_denorm;
123
124
125
126/* Status values returned by FPU operators.
127
128   When checking the result of an FP sequence (ex 32to, add, single,
129   to32) the caller may either: check the return value of each FP
130   operator; or form the union (OR) of the returned values and examine
131   them once at the end.
132
133   FIXME: This facility is still being developed.  The choice of
134   status values returned and their exact meaning may changed in the
135   future.  */
136
137typedef enum
138{
139  sim_fpu_status_invalid_snan = 1,
140  sim_fpu_status_invalid_qnan = 2,
141  sim_fpu_status_invalid_isi = 4, /* (inf - inf) */
142  sim_fpu_status_invalid_idi = 8, /* (inf / inf) */
143  sim_fpu_status_invalid_zdz = 16, /* (0 / 0) */
144  sim_fpu_status_invalid_imz = 32, /* (inf * 0) */
145  sim_fpu_status_invalid_cvi = 64, /* convert to integer */
146  sim_fpu_status_invalid_div0 = 128, /* (X / 0) */
147  sim_fpu_status_invalid_cmp = 256, /* compare */
148  sim_fpu_status_invalid_sqrt = 512,
149  sim_fpu_status_rounded = 1024,
150  sim_fpu_status_inexact = 2048,
151  sim_fpu_status_overflow = 4096,
152  sim_fpu_status_underflow = 8192,
153  sim_fpu_status_denorm = 16384,
154} sim_fpu_status;
155
156
157
158
159/* Directly map between a 32/64 bit register and the sim_fpu internal
160   type.
161
162   When converting from the 32/64 bit packed format to the sim_fpu
163   internal type, the operation is exact.
164
165   When converting from the sim_fpu internal type to 32/64 bit packed
166   format, the operation may result in a loss of precision. The
167   configuration macro WITH_FPU_CONVERSION controls this.  By default,
168   silent round to nearest is performed.  Alternatively, round up,
169   round down and round to zero can be performed.  In a simulator
170   emulating exact FPU behavior, sim_fpu_round_{32,64} should be
171   called before packing the sim_fpu value.  */
172
173INLINE_SIM_FPU (void) sim_fpu_32to (sim_fpu *f, unsigned32 s);
174INLINE_SIM_FPU (void) sim_fpu_232to (sim_fpu *f, unsigned32 h, unsigned32 l);
175INLINE_SIM_FPU (void) sim_fpu_64to (sim_fpu *f, unsigned64 d);
176
177INLINE_SIM_FPU (void) sim_fpu_to32 (unsigned32 *s, const sim_fpu *f);
178INLINE_SIM_FPU (void) sim_fpu_to232 (unsigned32 *h, unsigned32 *l, const sim_fpu *f);
179INLINE_SIM_FPU (void) sim_fpu_to64 (unsigned64 *d, const sim_fpu *f);
180
181
182/* Create a sim_fpu struct using raw information.  (FRACTION & LSMASK
183   (PRECISION-1, 0)) is assumed to contain the fraction part of the
184   floating-point number.  The leading bit LSBIT (PRECISION) is always
185   implied.  The number created can be represented by:
186
187   (SIGN ? "-" : "+") "1." FRACTION{PRECISION-1,0} X 2 ^ NORMAL_EXP>
188
189   You can not specify zero using this function. */
190
191INLINE_SIM_FPU (void) sim_fpu_fractionto (sim_fpu *f, int sign, int normal_exp, unsigned64 fraction, int precision);
192
193/* Reverse operation.  If S is a non-zero number, discards the implied
194   leading one and returns PRECISION fraction bits.  No rounding is
195   performed. */
196INLINE_SIM_FPU (unsigned64) sim_fpu_tofraction (const sim_fpu *s, int precision);
197
198
199
200/* Rounding operators.
201
202   Force an intermediate result to an exact 32/64 bit
203   representation. */
204
205INLINE_SIM_FPU (int) sim_fpu_round_32 (sim_fpu *f,
206				       sim_fpu_round round,
207				       sim_fpu_denorm denorm);
208INLINE_SIM_FPU (int) sim_fpu_round_64 (sim_fpu *f,
209				       sim_fpu_round round,
210				       sim_fpu_denorm denorm);
211
212
213
214/* Arithmetic operators.
215
216   FIXME: In the future, additional arguments ROUNDING and BITSIZE may
217   be added. */
218
219typedef int (sim_fpu_op1) (sim_fpu *f,
220			   const sim_fpu *l);
221typedef int (sim_fpu_op2) (sim_fpu *f,
222			   const sim_fpu *l,
223			   const sim_fpu *r);
224
225INLINE_SIM_FPU (int) sim_fpu_add (sim_fpu *f,
226				  const sim_fpu *l, const sim_fpu *r);
227INLINE_SIM_FPU (int) sim_fpu_sub (sim_fpu *f,
228				  const sim_fpu *l, const sim_fpu *r);
229INLINE_SIM_FPU (int) sim_fpu_mul (sim_fpu *f,
230				  const sim_fpu *l, const sim_fpu *r);
231INLINE_SIM_FPU (int) sim_fpu_div (sim_fpu *f,
232				  const sim_fpu *l, const sim_fpu *r);
233INLINE_SIM_FPU (int) sim_fpu_max (sim_fpu *f,
234				  const sim_fpu *l, const sim_fpu *r);
235INLINE_SIM_FPU (int) sim_fpu_min (sim_fpu *f,
236				  const sim_fpu *l, const sim_fpu *r);
237INLINE_SIM_FPU (int) sim_fpu_neg (sim_fpu *f,
238				  const sim_fpu *a);
239INLINE_SIM_FPU (int) sim_fpu_abs (sim_fpu *f,
240				  const sim_fpu *a);
241INLINE_SIM_FPU (int) sim_fpu_inv (sim_fpu *f,
242				  const sim_fpu *a);
243INLINE_SIM_FPU (int) sim_fpu_sqrt (sim_fpu *f,
244				   const sim_fpu *sqr);
245
246
247
248/* Conversion of integer <-> floating point. */
249
250INLINE_SIM_FPU (int) sim_fpu_i32to (sim_fpu *f, signed32 i,
251				    sim_fpu_round round);
252INLINE_SIM_FPU (int) sim_fpu_u32to (sim_fpu *f, unsigned32 u,
253				    sim_fpu_round round);
254INLINE_SIM_FPU (int) sim_fpu_i64to (sim_fpu *f, signed64 i,
255				    sim_fpu_round round);
256INLINE_SIM_FPU (int) sim_fpu_u64to (sim_fpu *f, unsigned64 u,
257				    sim_fpu_round round);
258#if 0
259INLINE_SIM_FPU (int) sim_fpu_i232to (sim_fpu *f, signed32 h, signed32 l,
260				     sim_fpu_round round);
261#endif
262#if 0
263INLINE_SIM_FPU (int) sim_fpu_u232to (sim_fpu *f, unsigned32 h, unsigned32 l,
264				     sim_fpu_round round);
265#endif
266
267INLINE_SIM_FPU (int) sim_fpu_to32i (signed32 *i, const sim_fpu *f,
268				    sim_fpu_round round);
269INLINE_SIM_FPU (int) sim_fpu_to32u (unsigned32 *u, const sim_fpu *f,
270				    sim_fpu_round round);
271INLINE_SIM_FPU (int) sim_fpu_to64i (signed64 *i, const sim_fpu *f,
272				    sim_fpu_round round);
273INLINE_SIM_FPU (int) sim_fpu_to64u (unsigned64 *u, const sim_fpu *f,
274				    sim_fpu_round round);
275#if 0
276INLINE_SIM_FPU (int) sim_fpu_to232i (signed64 *h, signed64 *l, const sim_fpu *f,
277				     sim_fpu_round round);
278#endif
279#if 0
280INLINE_SIM_FPU (int) sim_fpu_to232u (unsigned64 *h, unsigned64 *l, const sim_fpu *f,
281				     sim_fpu_round round);
282#endif
283
284
285/* Conversion of internal sim_fpu type to host double format.
286
287   For debugging/tracing only.  A SNaN is never returned. */
288
289/* INLINE_SIM_FPU (float) sim_fpu_2f (const sim_fpu *f); */
290INLINE_SIM_FPU (double) sim_fpu_2d (const sim_fpu *d);
291
292/* INLINE_SIM_FPU (void) sim_fpu_f2 (sim_fpu *f, float s); */
293INLINE_SIM_FPU (void) sim_fpu_d2 (sim_fpu *f, double d);
294
295
296
297/* Specific number classes.
298
299   NB: When either, a 32/64 bit floating points is converted to
300   internal format, or an internal format number is rounded to 32/64
301   bit precision, a special marker is retained that indicates that the
302   value was normalized.  For such numbers both is_number and
303   is_denorm return true. */
304
305INLINE_SIM_FPU (int) sim_fpu_is_nan (const sim_fpu *s); /* 1 => SNaN or QNaN */
306INLINE_SIM_FPU (int) sim_fpu_is_snan (const sim_fpu *s); /* 1 => SNaN */
307INLINE_SIM_FPU (int) sim_fpu_is_qnan (const sim_fpu *s); /* 1 => QNaN */
308
309INLINE_SIM_FPU (int) sim_fpu_is_zero (const sim_fpu *s);
310INLINE_SIM_FPU (int) sim_fpu_is_infinity (const sim_fpu *s);
311INLINE_SIM_FPU (int) sim_fpu_is_number (const sim_fpu *s); /* !zero */
312INLINE_SIM_FPU (int) sim_fpu_is_denorm (const sim_fpu *s); /* !zero */
313
314
315
316/* Floating point fields */
317
318INLINE_SIM_FPU (int) sim_fpu_sign (const sim_fpu *s);
319INLINE_SIM_FPU (int) sim_fpu_exp (const sim_fpu *s);
320INLINE_SIM_FPU (unsigned64) sim_fpu_fraction (const sim_fpu *s);
321INLINE_SIM_FPU (unsigned64) sim_fpu_guard (const sim_fpu *s, int is_double);
322
323
324
325/* Specific comparison operators
326
327   For NaNs et al., the comparison operators will set IS to zero and
328   return a nonzero result. */
329
330INLINE_SIM_FPU (int) sim_fpu_lt (int *is, const sim_fpu *l, const sim_fpu *r);
331INLINE_SIM_FPU (int) sim_fpu_le (int *is, const sim_fpu *l, const sim_fpu *r);
332INLINE_SIM_FPU (int) sim_fpu_eq (int *is, const sim_fpu *l, const sim_fpu *r);
333INLINE_SIM_FPU (int) sim_fpu_ne (int *is, const sim_fpu *l, const sim_fpu *r);
334INLINE_SIM_FPU (int) sim_fpu_ge (int *is, const sim_fpu *l, const sim_fpu *r);
335INLINE_SIM_FPU (int) sim_fpu_gt (int *is, const sim_fpu *l, const sim_fpu *r);
336
337INLINE_SIM_FPU (int) sim_fpu_is_lt (const sim_fpu *l, const sim_fpu *r);
338INLINE_SIM_FPU (int) sim_fpu_is_le (const sim_fpu *l, const sim_fpu *r);
339INLINE_SIM_FPU (int) sim_fpu_is_eq (const sim_fpu *l, const sim_fpu *r);
340INLINE_SIM_FPU (int) sim_fpu_is_ne (const sim_fpu *l, const sim_fpu *r);
341INLINE_SIM_FPU (int) sim_fpu_is_ge (const sim_fpu *l, const sim_fpu *r);
342INLINE_SIM_FPU (int) sim_fpu_is_gt (const sim_fpu *l, const sim_fpu *r);
343
344
345
346/* General number class and comparison operators.
347
348   The result of the comparison is indicated by returning one of the
349   values below.  Efficient emulation of a target FP compare
350   instruction can be achieved by redefining the values below to match
351   corresponding target FP status bits.
352
353   For instance.  SIM_FPU_QNAN may be redefined to be the bit
354   `INVALID' while SIM_FPU_NINF might be redefined as the bits
355   `NEGATIVE | INFINITY | VALID'. */
356
357#ifndef SIM_FPU_IS_SNAN
358enum {
359  SIM_FPU_IS_SNAN = 1, /* Noisy not-a-number */
360  SIM_FPU_IS_QNAN = 2, /* Quiet not-a-number */
361  SIM_FPU_IS_NINF = 3, /* -infinity */
362  SIM_FPU_IS_PINF = 4, /* +infinity */
363  SIM_FPU_IS_NNUMBER = 5, /* -number - [ -MAX .. -MIN ] */
364  SIM_FPU_IS_PNUMBER = 6, /* +number - [ +MIN .. +MAX ] */
365  SIM_FPU_IS_NDENORM = 7, /* -denorm - ( MIN .. 0 ) */
366  SIM_FPU_IS_PDENORM = 8, /* +denorm - ( 0 .. MIN ) */
367  SIM_FPU_IS_NZERO = 9, /* -0 */
368  SIM_FPU_IS_PZERO = 10, /* +0 */
369};
370#endif
371
372INLINE_SIM_FPU (int) sim_fpu_is (const sim_fpu *l);
373INLINE_SIM_FPU (int) sim_fpu_cmp (const sim_fpu *l, const sim_fpu *r);
374
375
376
377/* A number of useful constants.  */
378
379extern const sim_fpu sim_fpu_zero;
380extern const sim_fpu sim_fpu_one;
381extern const sim_fpu sim_fpu_two;
382extern const sim_fpu sim_fpu_qnan;
383extern const sim_fpu sim_fpu_max32;
384extern const sim_fpu sim_fpu_max64;
385
386
387/* Select the applicable functions for the fp_word type */
388
389#if WITH_TARGET_FLOATING_POINT_BITSIZE == 32
390#define sim_fpu_tofp sim_fpu_to32
391#define sim_fpu_fpto sim_fpu_32to
392#define sim_fpu_round_fp sim_fpu_round_32
393#define sim_fpu_maxfp sim_fpu_max32
394#endif
395#if WITH_TARGET_FLOATING_POINT_BITSIZE == 64
396#define sim_fpu_tofp sim_fpu_to64
397#define sim_fpu_fpto sim_fpu_64to
398#define sim_fpu_round_fp sim_fpu_round_64
399#define sim_fpu_maxfp sim_fpu_max64
400#endif
401
402
403
404/* For debugging */
405
406typedef void sim_fpu_print_func (void *, const char *, ...);
407
408/* Print a sim_fpu with full precision.  */
409INLINE_SIM_FPU (void) sim_fpu_print_fpu (const sim_fpu *f,
410					 sim_fpu_print_func *print,
411					 void *arg);
412
413/* Print a sim_fpu with `n' trailing digits.  */
414INLINE_SIM_FPU (void) sim_fpu_printn_fpu (const sim_fpu *f,
415					  sim_fpu_print_func *print,
416					  int digits,
417					  void *arg);
418
419INLINE_SIM_FPU (void) sim_fpu_print_status (int status,
420					    sim_fpu_print_func *print,
421					    void *arg);
422
423#if H_REVEALS_MODULE_P (SIM_FPU_INLINE)
424#include "sim-fpu.c"
425#endif
426
427#endif
428