1/* A splay-tree datatype.
2   Copyright (C) 1998-2020 Free Software Foundation, Inc.
3   Contributed by Mark Mitchell (mark@markmitchell.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful, but
13WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING.  If not, write to
19the Free Software Foundation, 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA.  */
21
22/* For an easily readable description of splay-trees, see:
23
24     Lewis, Harry R. and Denenberg, Larry.  Data Structures and Their
25     Algorithms.  Harper-Collins, Inc.  1991.  */
26
27#ifdef HAVE_CONFIG_H
28#include "config.h"
29#endif
30
31#ifdef HAVE_STDLIB_H
32#include <stdlib.h>
33#endif
34#ifdef HAVE_STRING_H
35#include <string.h>
36#endif
37
38#include <stdio.h>
39
40#include "libiberty.h"
41#include "splay-tree.h"
42
43static void splay_tree_delete_helper (splay_tree, splay_tree_node);
44static inline void rotate_left (splay_tree_node *,
45				splay_tree_node, splay_tree_node);
46static inline void rotate_right (splay_tree_node *,
47				splay_tree_node, splay_tree_node);
48static void splay_tree_splay (splay_tree, splay_tree_key);
49static int splay_tree_foreach_helper (splay_tree_node,
50                                      splay_tree_foreach_fn, void*);
51
52/* Deallocate NODE (a member of SP), and all its sub-trees.  */
53
54static void
55splay_tree_delete_helper (splay_tree sp, splay_tree_node node)
56{
57  splay_tree_node pending = 0;
58  splay_tree_node active = 0;
59
60  if (!node)
61    return;
62
63#define KDEL(x)  if (sp->delete_key) (*sp->delete_key)(x);
64#define VDEL(x)  if (sp->delete_value) (*sp->delete_value)(x);
65
66  KDEL (node->key);
67  VDEL (node->value);
68
69  /* We use the "key" field to hold the "next" pointer.  */
70  node->key = (splay_tree_key)pending;
71  pending = (splay_tree_node)node;
72
73  /* Now, keep processing the pending list until there aren't any
74     more.  This is a little more complicated than just recursing, but
75     it doesn't toast the stack for large trees.  */
76
77  while (pending)
78    {
79      active = pending;
80      pending = 0;
81      while (active)
82	{
83	  splay_tree_node temp;
84
85	  /* active points to a node which has its key and value
86	     deallocated, we just need to process left and right.  */
87
88	  if (active->left)
89	    {
90	      KDEL (active->left->key);
91	      VDEL (active->left->value);
92	      active->left->key = (splay_tree_key)pending;
93	      pending = (splay_tree_node)(active->left);
94	    }
95	  if (active->right)
96	    {
97	      KDEL (active->right->key);
98	      VDEL (active->right->value);
99	      active->right->key = (splay_tree_key)pending;
100	      pending = (splay_tree_node)(active->right);
101	    }
102
103	  temp = active;
104	  active = (splay_tree_node)(temp->key);
105	  (*sp->deallocate) ((char*) temp, sp->allocate_data);
106	}
107    }
108#undef KDEL
109#undef VDEL
110}
111
112/* Rotate the edge joining the left child N with its parent P.  PP is the
113   grandparents' pointer to P.  */
114
115static inline void
116rotate_left (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
117{
118  splay_tree_node tmp;
119  tmp = n->right;
120  n->right = p;
121  p->left = tmp;
122  *pp = n;
123}
124
125/* Rotate the edge joining the right child N with its parent P.  PP is the
126   grandparents' pointer to P.  */
127
128static inline void
129rotate_right (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
130{
131  splay_tree_node tmp;
132  tmp = n->left;
133  n->left = p;
134  p->right = tmp;
135  *pp = n;
136}
137
138/* Bottom up splay of key.  */
139
140static void
141splay_tree_splay (splay_tree sp, splay_tree_key key)
142{
143  if (sp->root == 0)
144    return;
145
146  do {
147    int cmp1, cmp2;
148    splay_tree_node n, c;
149
150    n = sp->root;
151    cmp1 = (*sp->comp) (key, n->key);
152
153    /* Found.  */
154    if (cmp1 == 0)
155      return;
156
157    /* Left or right?  If no child, then we're done.  */
158    if (cmp1 < 0)
159      c = n->left;
160    else
161      c = n->right;
162    if (!c)
163      return;
164
165    /* Next one left or right?  If found or no child, we're done
166       after one rotation.  */
167    cmp2 = (*sp->comp) (key, c->key);
168    if (cmp2 == 0
169        || (cmp2 < 0 && !c->left)
170        || (cmp2 > 0 && !c->right))
171      {
172	if (cmp1 < 0)
173	  rotate_left (&sp->root, n, c);
174	else
175	  rotate_right (&sp->root, n, c);
176        return;
177      }
178
179    /* Now we have the four cases of double-rotation.  */
180    if (cmp1 < 0 && cmp2 < 0)
181      {
182	rotate_left (&n->left, c, c->left);
183	rotate_left (&sp->root, n, n->left);
184      }
185    else if (cmp1 > 0 && cmp2 > 0)
186      {
187	rotate_right (&n->right, c, c->right);
188	rotate_right (&sp->root, n, n->right);
189      }
190    else if (cmp1 < 0 && cmp2 > 0)
191      {
192	rotate_right (&n->left, c, c->right);
193	rotate_left (&sp->root, n, n->left);
194      }
195    else if (cmp1 > 0 && cmp2 < 0)
196      {
197	rotate_left (&n->right, c, c->left);
198	rotate_right (&sp->root, n, n->right);
199      }
200  } while (1);
201}
202
203/* Call FN, passing it the DATA, for every node below NODE, all of
204   which are from SP, following an in-order traversal.  If FN every
205   returns a non-zero value, the iteration ceases immediately, and the
206   value is returned.  Otherwise, this function returns 0.  */
207
208static int
209splay_tree_foreach_helper (splay_tree_node node,
210                           splay_tree_foreach_fn fn, void *data)
211{
212  int val;
213  splay_tree_node *stack;
214  int stack_ptr, stack_size;
215
216  /* A non-recursive implementation is used to avoid filling the stack
217     for large trees.  Splay trees are worst case O(n) in the depth of
218     the tree.  */
219
220#define INITIAL_STACK_SIZE 100
221  stack_size = INITIAL_STACK_SIZE;
222  stack_ptr = 0;
223  stack = XNEWVEC (splay_tree_node, stack_size);
224  val = 0;
225
226  for (;;)
227    {
228      while (node != NULL)
229	{
230	  if (stack_ptr == stack_size)
231	    {
232	      stack_size *= 2;
233	      stack = XRESIZEVEC (splay_tree_node, stack, stack_size);
234	    }
235	  stack[stack_ptr++] = node;
236	  node = node->left;
237	}
238
239      if (stack_ptr == 0)
240	break;
241
242      node = stack[--stack_ptr];
243
244      val = (*fn) (node, data);
245      if (val)
246	break;
247
248      node = node->right;
249    }
250
251  XDELETEVEC (stack);
252  return val;
253}
254
255/* An allocator and deallocator based on xmalloc.  */
256static void *
257splay_tree_xmalloc_allocate (int size, void *data ATTRIBUTE_UNUSED)
258{
259  return (void *) xmalloc (size);
260}
261
262static void
263splay_tree_xmalloc_deallocate (void *object, void *data ATTRIBUTE_UNUSED)
264{
265  free (object);
266}
267
268
269/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
270   DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
271   values.  Use xmalloc to allocate the splay tree structure, and any
272   nodes added.  */
273
274splay_tree
275splay_tree_new (splay_tree_compare_fn compare_fn,
276                splay_tree_delete_key_fn delete_key_fn,
277                splay_tree_delete_value_fn delete_value_fn)
278{
279  return (splay_tree_new_with_allocator
280          (compare_fn, delete_key_fn, delete_value_fn,
281           splay_tree_xmalloc_allocate, splay_tree_xmalloc_deallocate, 0));
282}
283
284
285/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
286   DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
287   values.  */
288
289splay_tree
290splay_tree_new_with_allocator (splay_tree_compare_fn compare_fn,
291                               splay_tree_delete_key_fn delete_key_fn,
292                               splay_tree_delete_value_fn delete_value_fn,
293                               splay_tree_allocate_fn allocate_fn,
294                               splay_tree_deallocate_fn deallocate_fn,
295                               void *allocate_data)
296{
297  return
298    splay_tree_new_typed_alloc (compare_fn, delete_key_fn, delete_value_fn,
299				allocate_fn, allocate_fn, deallocate_fn,
300				allocate_data);
301}
302
303/*
304
305@deftypefn Supplemental splay_tree splay_tree_new_with_typed_alloc @
306(splay_tree_compare_fn @var{compare_fn}, @
307splay_tree_delete_key_fn @var{delete_key_fn}, @
308splay_tree_delete_value_fn @var{delete_value_fn}, @
309splay_tree_allocate_fn @var{tree_allocate_fn}, @
310splay_tree_allocate_fn @var{node_allocate_fn}, @
311splay_tree_deallocate_fn @var{deallocate_fn}, @
312void * @var{allocate_data})
313
314This function creates a splay tree that uses two different allocators
315@var{tree_allocate_fn} and @var{node_allocate_fn} to use for allocating the
316tree itself and its nodes respectively.  This is useful when variables of
317different types need to be allocated with different allocators.
318
319The splay tree will use @var{compare_fn} to compare nodes,
320@var{delete_key_fn} to deallocate keys, and @var{delete_value_fn} to
321deallocate values.  Keys and values will be deallocated when the
322tree is deleted using splay_tree_delete or when a node is removed
323using splay_tree_remove.  splay_tree_insert will release the previously
324inserted key and value using @var{delete_key_fn} and @var{delete_value_fn}
325if the inserted key is already found in the tree.
326
327@end deftypefn
328
329*/
330
331splay_tree
332splay_tree_new_typed_alloc (splay_tree_compare_fn compare_fn,
333			    splay_tree_delete_key_fn delete_key_fn,
334			    splay_tree_delete_value_fn delete_value_fn,
335			    splay_tree_allocate_fn tree_allocate_fn,
336			    splay_tree_allocate_fn node_allocate_fn,
337			    splay_tree_deallocate_fn deallocate_fn,
338			    void * allocate_data)
339{
340  splay_tree sp = (splay_tree) (*tree_allocate_fn)
341    (sizeof (struct splay_tree_s), allocate_data);
342
343  sp->root = 0;
344  sp->comp = compare_fn;
345  sp->delete_key = delete_key_fn;
346  sp->delete_value = delete_value_fn;
347  sp->allocate = node_allocate_fn;
348  sp->deallocate = deallocate_fn;
349  sp->allocate_data = allocate_data;
350
351  return sp;
352}
353
354/* Deallocate SP.  */
355
356void
357splay_tree_delete (splay_tree sp)
358{
359  splay_tree_delete_helper (sp, sp->root);
360  (*sp->deallocate) ((char*) sp, sp->allocate_data);
361}
362
363/* Insert a new node (associating KEY with DATA) into SP.  If a
364   previous node with the indicated KEY exists, its data is replaced
365   with the new value.  Returns the new node.  */
366
367splay_tree_node
368splay_tree_insert (splay_tree sp, splay_tree_key key, splay_tree_value value)
369{
370  int comparison = 0;
371
372  splay_tree_splay (sp, key);
373
374  if (sp->root)
375    comparison = (*sp->comp)(sp->root->key, key);
376
377  if (sp->root && comparison == 0)
378    {
379      /* If the root of the tree already has the indicated KEY, delete
380         the old key and old value, and replace them with KEY and  VALUE.  */
381      if (sp->delete_key)
382	(*sp->delete_key) (sp->root->key);
383      if (sp->delete_value)
384	(*sp->delete_value)(sp->root->value);
385      sp->root->key = key;
386      sp->root->value = value;
387    }
388  else
389    {
390      /* Create a new node, and insert it at the root.  */
391      splay_tree_node node;
392
393      node = ((splay_tree_node)
394	      (*sp->allocate) (sizeof (struct splay_tree_node_s),
395			       sp->allocate_data));
396      node->key = key;
397      node->value = value;
398
399      if (!sp->root)
400	node->left = node->right = 0;
401      else if (comparison < 0)
402	{
403	  node->left = sp->root;
404	  node->right = node->left->right;
405	  node->left->right = 0;
406	}
407      else
408	{
409	  node->right = sp->root;
410	  node->left = node->right->left;
411	  node->right->left = 0;
412	}
413
414      sp->root = node;
415    }
416
417  return sp->root;
418}
419
420/* Remove KEY from SP.  It is not an error if it did not exist.  */
421
422void
423splay_tree_remove (splay_tree sp, splay_tree_key key)
424{
425  splay_tree_splay (sp, key);
426
427  if (sp->root && (*sp->comp) (sp->root->key, key) == 0)
428    {
429      splay_tree_node left, right;
430
431      left = sp->root->left;
432      right = sp->root->right;
433
434      /* Delete the root node itself.  */
435      if (sp->delete_key)
436	(*sp->delete_key) (sp->root->key);
437      if (sp->delete_value)
438	(*sp->delete_value) (sp->root->value);
439      (*sp->deallocate) (sp->root, sp->allocate_data);
440
441      /* One of the children is now the root.  Doesn't matter much
442	 which, so long as we preserve the properties of the tree.  */
443      if (left)
444	{
445	  sp->root = left;
446
447	  /* If there was a right child as well, hang it off the
448	     right-most leaf of the left child.  */
449	  if (right)
450	    {
451	      while (left->right)
452		left = left->right;
453	      left->right = right;
454	    }
455	}
456      else
457	sp->root = right;
458    }
459}
460
461/* Lookup KEY in SP, returning VALUE if present, and NULL
462   otherwise.  */
463
464splay_tree_node
465splay_tree_lookup (splay_tree sp, splay_tree_key key)
466{
467  splay_tree_splay (sp, key);
468
469  if (sp->root && (*sp->comp)(sp->root->key, key) == 0)
470    return sp->root;
471  else
472    return 0;
473}
474
475/* Return the node in SP with the greatest key.  */
476
477splay_tree_node
478splay_tree_max (splay_tree sp)
479{
480  splay_tree_node n = sp->root;
481
482  if (!n)
483    return NULL;
484
485  while (n->right)
486    n = n->right;
487
488  return n;
489}
490
491/* Return the node in SP with the smallest key.  */
492
493splay_tree_node
494splay_tree_min (splay_tree sp)
495{
496  splay_tree_node n = sp->root;
497
498  if (!n)
499    return NULL;
500
501  while (n->left)
502    n = n->left;
503
504  return n;
505}
506
507/* Return the immediate predecessor KEY, or NULL if there is no
508   predecessor.  KEY need not be present in the tree.  */
509
510splay_tree_node
511splay_tree_predecessor (splay_tree sp, splay_tree_key key)
512{
513  int comparison;
514  splay_tree_node node;
515
516  /* If the tree is empty, there is certainly no predecessor.  */
517  if (!sp->root)
518    return NULL;
519
520  /* Splay the tree around KEY.  That will leave either the KEY
521     itself, its predecessor, or its successor at the root.  */
522  splay_tree_splay (sp, key);
523  comparison = (*sp->comp)(sp->root->key, key);
524
525  /* If the predecessor is at the root, just return it.  */
526  if (comparison < 0)
527    return sp->root;
528
529  /* Otherwise, find the rightmost element of the left subtree.  */
530  node = sp->root->left;
531  if (node)
532    while (node->right)
533      node = node->right;
534
535  return node;
536}
537
538/* Return the immediate successor KEY, or NULL if there is no
539   successor.  KEY need not be present in the tree.  */
540
541splay_tree_node
542splay_tree_successor (splay_tree sp, splay_tree_key key)
543{
544  int comparison;
545  splay_tree_node node;
546
547  /* If the tree is empty, there is certainly no successor.  */
548  if (!sp->root)
549    return NULL;
550
551  /* Splay the tree around KEY.  That will leave either the KEY
552     itself, its predecessor, or its successor at the root.  */
553  splay_tree_splay (sp, key);
554  comparison = (*sp->comp)(sp->root->key, key);
555
556  /* If the successor is at the root, just return it.  */
557  if (comparison > 0)
558    return sp->root;
559
560  /* Otherwise, find the leftmost element of the right subtree.  */
561  node = sp->root->right;
562  if (node)
563    while (node->left)
564      node = node->left;
565
566  return node;
567}
568
569/* Call FN, passing it the DATA, for every node in SP, following an
570   in-order traversal.  If FN every returns a non-zero value, the
571   iteration ceases immediately, and the value is returned.
572   Otherwise, this function returns 0.  */
573
574int
575splay_tree_foreach (splay_tree sp, splay_tree_foreach_fn fn, void *data)
576{
577  return splay_tree_foreach_helper (sp->root, fn, data);
578}
579
580/* Splay-tree comparison function, treating the keys as ints.  */
581
582int
583splay_tree_compare_ints (splay_tree_key k1, splay_tree_key k2)
584{
585  if ((int) k1 < (int) k2)
586    return -1;
587  else if ((int) k1 > (int) k2)
588    return 1;
589  else
590    return 0;
591}
592
593/* Splay-tree comparison function, treating the keys as pointers.  */
594
595int
596splay_tree_compare_pointers (splay_tree_key k1, splay_tree_key k2)
597{
598  if ((char*) k1 < (char*) k2)
599    return -1;
600  else if ((char*) k1 > (char*) k2)
601    return 1;
602  else
603    return 0;
604}
605
606/* Splay-tree comparison function, treating the keys as strings.  */
607
608int
609splay_tree_compare_strings (splay_tree_key k1, splay_tree_key k2)
610{
611  return strcmp ((char *) k1, (char *) k2);
612}
613
614/* Splay-tree delete function, simply using free.  */
615
616void
617splay_tree_delete_pointers (splay_tree_value value)
618{
619  free ((void *) value);
620}
621