1// aarch64.cc -- aarch64 target support for gold.
2
3// Copyright (C) 2014-2020 Free Software Foundation, Inc.
4// Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstring>
26#include <map>
27#include <set>
28
29#include "elfcpp.h"
30#include "dwarf.h"
31#include "parameters.h"
32#include "reloc.h"
33#include "aarch64.h"
34#include "object.h"
35#include "symtab.h"
36#include "layout.h"
37#include "output.h"
38#include "copy-relocs.h"
39#include "target.h"
40#include "target-reloc.h"
41#include "target-select.h"
42#include "tls.h"
43#include "freebsd.h"
44#include "nacl.h"
45#include "gc.h"
46#include "icf.h"
47#include "aarch64-reloc-property.h"
48
49// The first three .got.plt entries are reserved.
50const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;
51
52
53namespace
54{
55
56using namespace gold;
57
58template<int size, bool big_endian>
59class Output_data_plt_aarch64;
60
61template<int size, bool big_endian>
62class Output_data_plt_aarch64_standard;
63
64template<int size, bool big_endian>
65class Target_aarch64;
66
67template<int size, bool big_endian>
68class AArch64_relocate_functions;
69
70// Utility class dealing with insns. This is ported from macros in
71// bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This
72// class is used in erratum sequence scanning.
73
74template<bool big_endian>
75class AArch64_insn_utilities
76{
77public:
78  typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
79
80  static const int BYTES_PER_INSN;
81
82  // Zero register encoding - 31.
83  static const unsigned int AARCH64_ZR;
84
85  static unsigned int
86  aarch64_bit(Insntype insn, int pos)
87  { return ((1 << pos)  & insn) >> pos; }
88
89  static unsigned int
90  aarch64_bits(Insntype insn, int pos, int l)
91  { return (insn >> pos) & ((1 << l) - 1); }
92
93  // Get the encoding field "op31" of 3-source data processing insns. "op31" is
94  // the name defined in armv8 insn manual C3.5.9.
95  static unsigned int
96  aarch64_op31(Insntype insn)
97  { return aarch64_bits(insn, 21, 3); }
98
99  // Get the encoding field "ra" of 3-source data processing insns. "ra" is the
100  // third source register. See armv8 insn manual C3.5.9.
101  static unsigned int
102  aarch64_ra(Insntype insn)
103  { return aarch64_bits(insn, 10, 5); }
104
105  static bool
106  is_adr(const Insntype insn)
107  { return (insn & 0x9F000000) == 0x10000000; }
108
109  static bool
110  is_adrp(const Insntype insn)
111  { return (insn & 0x9F000000) == 0x90000000; }
112
113  static bool
114  is_mrs_tpidr_el0(const Insntype insn)
115  { return (insn & 0xFFFFFFE0) == 0xd53bd040; }
116
117  static unsigned int
118  aarch64_rm(const Insntype insn)
119  { return aarch64_bits(insn, 16, 5); }
120
121  static unsigned int
122  aarch64_rn(const Insntype insn)
123  { return aarch64_bits(insn, 5, 5); }
124
125  static unsigned int
126  aarch64_rd(const Insntype insn)
127  { return aarch64_bits(insn, 0, 5); }
128
129  static unsigned int
130  aarch64_rt(const Insntype insn)
131  { return aarch64_bits(insn, 0, 5); }
132
133  static unsigned int
134  aarch64_rt2(const Insntype insn)
135  { return aarch64_bits(insn, 10, 5); }
136
137  // Encode imm21 into adr. Signed imm21 is in the range of [-1M, 1M).
138  static Insntype
139  aarch64_adr_encode_imm(Insntype adr, int imm21)
140  {
141    gold_assert(is_adr(adr));
142    gold_assert(-(1 << 20) <= imm21 && imm21 < (1 << 20));
143    const int mask19 = (1 << 19) - 1;
144    const int mask2 = 3;
145    adr &= ~((mask19 << 5) | (mask2 << 29));
146    adr |= ((imm21 & mask2) << 29) | (((imm21 >> 2) & mask19) << 5);
147    return adr;
148  }
149
150  // Retrieve encoded adrp 33-bit signed imm value. This value is obtained by
151  // 21-bit signed imm encoded in the insn multiplied by 4k (page size) and
152  // 64-bit sign-extended, resulting in [-4G, 4G) with 12-lsb being 0.
153  static int64_t
154  aarch64_adrp_decode_imm(const Insntype adrp)
155  {
156    const int mask19 = (1 << 19) - 1;
157    const int mask2 = 3;
158    gold_assert(is_adrp(adrp));
159    // 21-bit imm encoded in adrp.
160    uint64_t imm = ((adrp >> 29) & mask2) | (((adrp >> 5) & mask19) << 2);
161    // Retrieve msb of 21-bit-signed imm for sign extension.
162    uint64_t msbt = (imm >> 20) & 1;
163    // Real value is imm multiplied by 4k. Value now has 33-bit information.
164    int64_t value = imm << 12;
165    // Sign extend to 64-bit by repeating msbt 31 (64-33) times and merge it
166    // with value.
167    return ((((uint64_t)(1) << 32) - msbt) << 33) | value;
168  }
169
170  static bool
171  aarch64_b(const Insntype insn)
172  { return (insn & 0xFC000000) == 0x14000000; }
173
174  static bool
175  aarch64_bl(const Insntype insn)
176  { return (insn & 0xFC000000) == 0x94000000; }
177
178  static bool
179  aarch64_blr(const Insntype insn)
180  { return (insn & 0xFFFFFC1F) == 0xD63F0000; }
181
182  static bool
183  aarch64_br(const Insntype insn)
184  { return (insn & 0xFFFFFC1F) == 0xD61F0000; }
185
186  // All ld/st ops.  See C4-182 of the ARM ARM.  The encoding space for
187  // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.
188  static bool
189  aarch64_ld(Insntype insn) { return aarch64_bit(insn, 22) == 1; }
190
191  static bool
192  aarch64_ldst(Insntype insn)
193  { return (insn & 0x0a000000) == 0x08000000; }
194
195  static bool
196  aarch64_ldst_ex(Insntype insn)
197  { return (insn & 0x3f000000) == 0x08000000; }
198
199  static bool
200  aarch64_ldst_pcrel(Insntype insn)
201  { return (insn & 0x3b000000) == 0x18000000; }
202
203  static bool
204  aarch64_ldst_nap(Insntype insn)
205  { return (insn & 0x3b800000) == 0x28000000; }
206
207  static bool
208  aarch64_ldstp_pi(Insntype insn)
209  { return (insn & 0x3b800000) == 0x28800000; }
210
211  static bool
212  aarch64_ldstp_o(Insntype insn)
213  { return (insn & 0x3b800000) == 0x29000000; }
214
215  static bool
216  aarch64_ldstp_pre(Insntype insn)
217  { return (insn & 0x3b800000) == 0x29800000; }
218
219  static bool
220  aarch64_ldst_ui(Insntype insn)
221  { return (insn & 0x3b200c00) == 0x38000000; }
222
223  static bool
224  aarch64_ldst_piimm(Insntype insn)
225  { return (insn & 0x3b200c00) == 0x38000400; }
226
227  static bool
228  aarch64_ldst_u(Insntype insn)
229  { return (insn & 0x3b200c00) == 0x38000800; }
230
231  static bool
232  aarch64_ldst_preimm(Insntype insn)
233  { return (insn & 0x3b200c00) == 0x38000c00; }
234
235  static bool
236  aarch64_ldst_ro(Insntype insn)
237  { return (insn & 0x3b200c00) == 0x38200800; }
238
239  static bool
240  aarch64_ldst_uimm(Insntype insn)
241  { return (insn & 0x3b000000) == 0x39000000; }
242
243  static bool
244  aarch64_ldst_simd_m(Insntype insn)
245  { return (insn & 0xbfbf0000) == 0x0c000000; }
246
247  static bool
248  aarch64_ldst_simd_m_pi(Insntype insn)
249  { return (insn & 0xbfa00000) == 0x0c800000; }
250
251  static bool
252  aarch64_ldst_simd_s(Insntype insn)
253  { return (insn & 0xbf9f0000) == 0x0d000000; }
254
255  static bool
256  aarch64_ldst_simd_s_pi(Insntype insn)
257  { return (insn & 0xbf800000) == 0x0d800000; }
258
259  // Classify an INSN if it is indeed a load/store. Return true if INSN is a
260  // LD/ST instruction otherwise return false. For scalar LD/ST instructions
261  // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair
262  // instructions PAIR is TRUE, RT and RT2 are returned.
263  static bool
264  aarch64_mem_op_p(Insntype insn, unsigned int *rt, unsigned int *rt2,
265		   bool *pair, bool *load)
266  {
267    uint32_t opcode;
268    unsigned int r;
269    uint32_t opc = 0;
270    uint32_t v = 0;
271    uint32_t opc_v = 0;
272
273    /* Bail out quickly if INSN doesn't fall into the load-store
274       encoding space.  */
275    if (!aarch64_ldst (insn))
276      return false;
277
278    *pair = false;
279    *load = false;
280    if (aarch64_ldst_ex (insn))
281      {
282	*rt = aarch64_rt (insn);
283	*rt2 = *rt;
284	if (aarch64_bit (insn, 21) == 1)
285	  {
286	    *pair = true;
287	    *rt2 = aarch64_rt2 (insn);
288	  }
289	*load = aarch64_ld (insn);
290	return true;
291      }
292    else if (aarch64_ldst_nap (insn)
293	     || aarch64_ldstp_pi (insn)
294	     || aarch64_ldstp_o (insn)
295	     || aarch64_ldstp_pre (insn))
296      {
297	*pair = true;
298	*rt = aarch64_rt (insn);
299	*rt2 = aarch64_rt2 (insn);
300	*load = aarch64_ld (insn);
301	return true;
302      }
303    else if (aarch64_ldst_pcrel (insn)
304	     || aarch64_ldst_ui (insn)
305	     || aarch64_ldst_piimm (insn)
306	     || aarch64_ldst_u (insn)
307	     || aarch64_ldst_preimm (insn)
308	     || aarch64_ldst_ro (insn)
309	     || aarch64_ldst_uimm (insn))
310      {
311	*rt = aarch64_rt (insn);
312	*rt2 = *rt;
313	if (aarch64_ldst_pcrel (insn))
314	  *load = true;
315	opc = aarch64_bits (insn, 22, 2);
316	v = aarch64_bit (insn, 26);
317	opc_v = opc | (v << 2);
318	*load =  (opc_v == 1 || opc_v == 2 || opc_v == 3
319		  || opc_v == 5 || opc_v == 7);
320	return true;
321      }
322    else if (aarch64_ldst_simd_m (insn)
323	     || aarch64_ldst_simd_m_pi (insn))
324      {
325	*rt = aarch64_rt (insn);
326	*load = aarch64_bit (insn, 22);
327	opcode = (insn >> 12) & 0xf;
328	switch (opcode)
329	  {
330	  case 0:
331	  case 2:
332	    *rt2 = *rt + 3;
333	    break;
334
335	  case 4:
336	  case 6:
337	    *rt2 = *rt + 2;
338	    break;
339
340	  case 7:
341	    *rt2 = *rt;
342	    break;
343
344	  case 8:
345	  case 10:
346	    *rt2 = *rt + 1;
347	    break;
348
349	  default:
350	    return false;
351	  }
352	return true;
353      }
354    else if (aarch64_ldst_simd_s (insn)
355	     || aarch64_ldst_simd_s_pi (insn))
356      {
357	*rt = aarch64_rt (insn);
358	r = (insn >> 21) & 1;
359	*load = aarch64_bit (insn, 22);
360	opcode = (insn >> 13) & 0x7;
361	switch (opcode)
362	  {
363	  case 0:
364	  case 2:
365	  case 4:
366	    *rt2 = *rt + r;
367	    break;
368
369	  case 1:
370	  case 3:
371	  case 5:
372	    *rt2 = *rt + (r == 0 ? 2 : 3);
373	    break;
374
375	  case 6:
376	    *rt2 = *rt + r;
377	    break;
378
379	  case 7:
380	    *rt2 = *rt + (r == 0 ? 2 : 3);
381	    break;
382
383	  default:
384	    return false;
385	  }
386	return true;
387      }
388    return false;
389  }  // End of "aarch64_mem_op_p".
390
391  // Return true if INSN is mac insn.
392  static bool
393  aarch64_mac(Insntype insn)
394  { return (insn & 0xff000000) == 0x9b000000; }
395
396  // Return true if INSN is multiply-accumulate.
397  // (This is similar to implementaton in elfnn-aarch64.c.)
398  static bool
399  aarch64_mlxl(Insntype insn)
400  {
401    uint32_t op31 = aarch64_op31(insn);
402    if (aarch64_mac(insn)
403	&& (op31 == 0 || op31 == 1 || op31 == 5)
404	/* Exclude MUL instructions which are encoded as a multiple-accumulate
405	   with RA = XZR.  */
406	&& aarch64_ra(insn) != AARCH64_ZR)
407      {
408	return true;
409      }
410    return false;
411  }
412};  // End of "AArch64_insn_utilities".
413
414
415// Insn length in byte.
416
417template<bool big_endian>
418const int AArch64_insn_utilities<big_endian>::BYTES_PER_INSN = 4;
419
420
421// Zero register encoding - 31.
422
423template<bool big_endian>
424const unsigned int AArch64_insn_utilities<big_endian>::AARCH64_ZR = 0x1f;
425
426
427// Output_data_got_aarch64 class.
428
429template<int size, bool big_endian>
430class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
431{
432 public:
433  typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
434  Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
435    : Output_data_got<size, big_endian>(),
436      symbol_table_(symtab), layout_(layout)
437  { }
438
439  // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
440  // symbol and R_TYPE is the code of a dynamic relocation that needs to be
441  // applied in a static link.
442  void
443  add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
444  { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
445
446
447  // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
448  // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
449  // relocation that needs to be applied in a static link.
450  void
451  add_static_reloc(unsigned int got_offset, unsigned int r_type,
452		   Sized_relobj_file<size, big_endian>* relobj,
453		   unsigned int index)
454  {
455    this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
456						index));
457  }
458
459
460 protected:
461  // Write out the GOT table.
462  void
463  do_write(Output_file* of) {
464    // The first entry in the GOT is the address of the .dynamic section.
465    gold_assert(this->data_size() >= size / 8);
466    Output_section* dynamic = this->layout_->dynamic_section();
467    Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
468    this->replace_constant(0, dynamic_addr);
469    Output_data_got<size, big_endian>::do_write(of);
470
471    // Handling static relocs
472    if (this->static_relocs_.empty())
473      return;
474
475    typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
476
477    gold_assert(parameters->doing_static_link());
478    const off_t offset = this->offset();
479    const section_size_type oview_size =
480      convert_to_section_size_type(this->data_size());
481    unsigned char* const oview = of->get_output_view(offset, oview_size);
482
483    Output_segment* tls_segment = this->layout_->tls_segment();
484    gold_assert(tls_segment != NULL);
485
486    AArch64_address aligned_tcb_address =
487      align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
488		    tls_segment->maximum_alignment());
489
490    for (size_t i = 0; i < this->static_relocs_.size(); ++i)
491      {
492	Static_reloc& reloc(this->static_relocs_[i]);
493	AArch64_address value;
494
495	if (!reloc.symbol_is_global())
496	  {
497	    Sized_relobj_file<size, big_endian>* object = reloc.relobj();
498	    const Symbol_value<size>* psymval =
499	      reloc.relobj()->local_symbol(reloc.index());
500
501	    // We are doing static linking.  Issue an error and skip this
502	    // relocation if the symbol is undefined or in a discarded_section.
503	    bool is_ordinary;
504	    unsigned int shndx = psymval->input_shndx(&is_ordinary);
505	    if ((shndx == elfcpp::SHN_UNDEF)
506		|| (is_ordinary
507		    && shndx != elfcpp::SHN_UNDEF
508		    && !object->is_section_included(shndx)
509		    && !this->symbol_table_->is_section_folded(object, shndx)))
510	      {
511		gold_error(_("undefined or discarded local symbol %u from "
512			     " object %s in GOT"),
513			   reloc.index(), reloc.relobj()->name().c_str());
514		continue;
515	      }
516	    value = psymval->value(object, 0);
517	  }
518	else
519	  {
520	    const Symbol* gsym = reloc.symbol();
521	    gold_assert(gsym != NULL);
522	    if (gsym->is_forwarder())
523	      gsym = this->symbol_table_->resolve_forwards(gsym);
524
525	    // We are doing static linking.  Issue an error and skip this
526	    // relocation if the symbol is undefined or in a discarded_section
527	    // unless it is a weakly_undefined symbol.
528	    if ((gsym->is_defined_in_discarded_section()
529		 || gsym->is_undefined())
530		&& !gsym->is_weak_undefined())
531	      {
532		gold_error(_("undefined or discarded symbol %s in GOT"),
533			   gsym->name());
534		continue;
535	      }
536
537	    if (!gsym->is_weak_undefined())
538	      {
539		const Sized_symbol<size>* sym =
540		  static_cast<const Sized_symbol<size>*>(gsym);
541		value = sym->value();
542	      }
543	    else
544	      value = 0;
545	  }
546
547	unsigned got_offset = reloc.got_offset();
548	gold_assert(got_offset < oview_size);
549
550	typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
551	Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
552	Valtype x;
553	switch (reloc.r_type())
554	  {
555	  case elfcpp::R_AARCH64_TLS_DTPREL64:
556	    x = value;
557	    break;
558	  case elfcpp::R_AARCH64_TLS_TPREL64:
559	    x = value + aligned_tcb_address;
560	    break;
561	  default:
562	    gold_unreachable();
563	  }
564	elfcpp::Swap<size, big_endian>::writeval(wv, x);
565      }
566
567    of->write_output_view(offset, oview_size, oview);
568  }
569
570 private:
571  // Symbol table of the output object.
572  Symbol_table* symbol_table_;
573  // A pointer to the Layout class, so that we can find the .dynamic
574  // section when we write out the GOT section.
575  Layout* layout_;
576
577  // This class represent dynamic relocations that need to be applied by
578  // gold because we are using TLS relocations in a static link.
579  class Static_reloc
580  {
581   public:
582    Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
583      : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
584    { this->u_.global.symbol = gsym; }
585
586    Static_reloc(unsigned int got_offset, unsigned int r_type,
587	  Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
588      : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
589    {
590      this->u_.local.relobj = relobj;
591      this->u_.local.index = index;
592    }
593
594    // Return the GOT offset.
595    unsigned int
596    got_offset() const
597    { return this->got_offset_; }
598
599    // Relocation type.
600    unsigned int
601    r_type() const
602    { return this->r_type_; }
603
604    // Whether the symbol is global or not.
605    bool
606    symbol_is_global() const
607    { return this->symbol_is_global_; }
608
609    // For a relocation against a global symbol, the global symbol.
610    Symbol*
611    symbol() const
612    {
613      gold_assert(this->symbol_is_global_);
614      return this->u_.global.symbol;
615    }
616
617    // For a relocation against a local symbol, the defining object.
618    Sized_relobj_file<size, big_endian>*
619    relobj() const
620    {
621      gold_assert(!this->symbol_is_global_);
622      return this->u_.local.relobj;
623    }
624
625    // For a relocation against a local symbol, the local symbol index.
626    unsigned int
627    index() const
628    {
629      gold_assert(!this->symbol_is_global_);
630      return this->u_.local.index;
631    }
632
633   private:
634    // GOT offset of the entry to which this relocation is applied.
635    unsigned int got_offset_;
636    // Type of relocation.
637    unsigned int r_type_;
638    // Whether this relocation is against a global symbol.
639    bool symbol_is_global_;
640    // A global or local symbol.
641    union
642    {
643      struct
644      {
645	// For a global symbol, the symbol itself.
646	Symbol* symbol;
647      } global;
648      struct
649      {
650	// For a local symbol, the object defining the symbol.
651	Sized_relobj_file<size, big_endian>* relobj;
652	// For a local symbol, the symbol index.
653	unsigned int index;
654      } local;
655    } u_;
656  };  // End of inner class Static_reloc
657
658  std::vector<Static_reloc> static_relocs_;
659};  // End of Output_data_got_aarch64
660
661
662template<int size, bool big_endian>
663class AArch64_input_section;
664
665
666template<int size, bool big_endian>
667class AArch64_output_section;
668
669
670template<int size, bool big_endian>
671class AArch64_relobj;
672
673
674// Stub type enum constants.
675
676enum
677{
678  ST_NONE = 0,
679
680  // Using adrp/add pair, 4 insns (including alignment) without mem access,
681  // the fastest stub. This has a limited jump distance, which is tested by
682  // aarch64_valid_for_adrp_p.
683  ST_ADRP_BRANCH = 1,
684
685  // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
686  // unlimited in jump distance.
687  ST_LONG_BRANCH_ABS = 2,
688
689  // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1
690  // mem access, slowest one. Only used in position independent executables.
691  ST_LONG_BRANCH_PCREL = 3,
692
693  // Stub for erratum 843419 handling.
694  ST_E_843419 = 4,
695
696  // Stub for erratum 835769 handling.
697  ST_E_835769 = 5,
698
699  // Number of total stub types.
700  ST_NUMBER = 6
701};
702
703
704// Struct that wraps insns for a particular stub. All stub templates are
705// created/initialized as constants by Stub_template_repertoire.
706
707template<bool big_endian>
708struct Stub_template
709{
710  const typename AArch64_insn_utilities<big_endian>::Insntype* insns;
711  const int insn_num;
712};
713
714
715// Simple singleton class that creates/initializes/stores all types of stub
716// templates.
717
718template<bool big_endian>
719class Stub_template_repertoire
720{
721public:
722  typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
723
724  // Single static method to get stub template for a given stub type.
725  static const Stub_template<big_endian>*
726  get_stub_template(int type)
727  {
728    static Stub_template_repertoire<big_endian> singleton;
729    return singleton.stub_templates_[type];
730  }
731
732private:
733  // Constructor - creates/initializes all stub templates.
734  Stub_template_repertoire();
735  ~Stub_template_repertoire()
736  { }
737
738  // Disallowing copy ctor and copy assignment operator.
739  Stub_template_repertoire(Stub_template_repertoire&);
740  Stub_template_repertoire& operator=(Stub_template_repertoire&);
741
742  // Data that stores all insn templates.
743  const Stub_template<big_endian>* stub_templates_[ST_NUMBER];
744};  // End of "class Stub_template_repertoire".
745
746
747// Constructor - creates/initilizes all stub templates.
748
749template<bool big_endian>
750Stub_template_repertoire<big_endian>::Stub_template_repertoire()
751{
752  // Insn array definitions.
753  const static Insntype ST_NONE_INSNS[] = {};
754
755  const static Insntype ST_ADRP_BRANCH_INSNS[] =
756    {
757      0x90000010,	/*	adrp	ip0, X		   */
758			/*	  ADR_PREL_PG_HI21(X)	   */
759      0x91000210,	/*	add	ip0, ip0, :lo12:X  */
760			/*	  ADD_ABS_LO12_NC(X)	   */
761      0xd61f0200,	/*	br	ip0		   */
762      0x00000000,	/*	alignment padding	   */
763    };
764
765  const static Insntype ST_LONG_BRANCH_ABS_INSNS[] =
766    {
767      0x58000050,	/*	ldr   ip0, 0x8		   */
768      0xd61f0200,	/*	br    ip0		   */
769      0x00000000,	/*	address field		   */
770      0x00000000,	/*	address fields		   */
771    };
772
773  const static Insntype ST_LONG_BRANCH_PCREL_INSNS[] =
774    {
775      0x58000090,	/*	ldr   ip0, 0x10            */
776      0x10000011,	/*	adr   ip1, #0		   */
777      0x8b110210,	/*	add   ip0, ip0, ip1	   */
778      0xd61f0200,	/*	br    ip0		   */
779      0x00000000,	/*	address field		   */
780      0x00000000,	/*	address field		   */
781      0x00000000,	/*	alignment padding	   */
782      0x00000000,	/*	alignment padding	   */
783    };
784
785  const static Insntype ST_E_843419_INSNS[] =
786    {
787      0x00000000,    /* Placeholder for erratum insn. */
788      0x14000000,    /* b <label> */
789    };
790
791  // ST_E_835769 has the same stub template as ST_E_843419
792  // but we reproduce the array here so that the sizeof
793  // expressions in install_insn_template will work.
794  const static Insntype ST_E_835769_INSNS[] =
795    {
796      0x00000000,    /* Placeholder for erratum insn. */
797      0x14000000,    /* b <label> */
798    };
799
800#define install_insn_template(T) \
801  const static Stub_template<big_endian> template_##T = {  \
802    T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \
803  this->stub_templates_[T] = &template_##T
804
805  install_insn_template(ST_NONE);
806  install_insn_template(ST_ADRP_BRANCH);
807  install_insn_template(ST_LONG_BRANCH_ABS);
808  install_insn_template(ST_LONG_BRANCH_PCREL);
809  install_insn_template(ST_E_843419);
810  install_insn_template(ST_E_835769);
811
812#undef install_insn_template
813}
814
815
816// Base class for stubs.
817
818template<int size, bool big_endian>
819class Stub_base
820{
821public:
822  typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
823  typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
824
825  static const AArch64_address invalid_address =
826    static_cast<AArch64_address>(-1);
827
828  static const section_offset_type invalid_offset =
829    static_cast<section_offset_type>(-1);
830
831  Stub_base(int type)
832    : destination_address_(invalid_address),
833      offset_(invalid_offset),
834      type_(type)
835  {}
836
837  ~Stub_base()
838  {}
839
840  // Get stub type.
841  int
842  type() const
843  { return this->type_; }
844
845  // Get stub template that provides stub insn information.
846  const Stub_template<big_endian>*
847  stub_template() const
848  {
849    return Stub_template_repertoire<big_endian>::
850      get_stub_template(this->type());
851  }
852
853  // Get destination address.
854  AArch64_address
855  destination_address() const
856  {
857    gold_assert(this->destination_address_ != this->invalid_address);
858    return this->destination_address_;
859  }
860
861  // Set destination address.
862  void
863  set_destination_address(AArch64_address address)
864  {
865    gold_assert(address != this->invalid_address);
866    this->destination_address_ = address;
867  }
868
869  // Reset the destination address.
870  void
871  reset_destination_address()
872  { this->destination_address_ = this->invalid_address; }
873
874  // Get offset of code stub. For Reloc_stub, it is the offset from the
875  // beginning of its containing stub table; for Erratum_stub, it is the offset
876  // from the end of reloc_stubs.
877  section_offset_type
878  offset() const
879  {
880    gold_assert(this->offset_ != this->invalid_offset);
881    return this->offset_;
882  }
883
884  // Set stub offset.
885  void
886  set_offset(section_offset_type offset)
887  { this->offset_ = offset; }
888
889  // Return the stub insn.
890  const Insntype*
891  insns() const
892  { return this->stub_template()->insns; }
893
894  // Return num of stub insns.
895  unsigned int
896  insn_num() const
897  { return this->stub_template()->insn_num; }
898
899  // Get size of the stub.
900  int
901  stub_size() const
902  {
903    return this->insn_num() *
904      AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
905  }
906
907  // Write stub to output file.
908  void
909  write(unsigned char* view, section_size_type view_size)
910  { this->do_write(view, view_size); }
911
912protected:
913  // Abstract method to be implemented by sub-classes.
914  virtual void
915  do_write(unsigned char*, section_size_type) = 0;
916
917private:
918  // The last insn of a stub is a jump to destination insn. This field records
919  // the destination address.
920  AArch64_address destination_address_;
921  // The stub offset. Note this has difference interpretations between an
922  // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the
923  // beginning of the containing stub_table, whereas for Erratum_stub, this is
924  // the offset from the end of reloc_stubs.
925  section_offset_type offset_;
926  // Stub type.
927  const int type_;
928};  // End of "Stub_base".
929
930
931// Erratum stub class. An erratum stub differs from a reloc stub in that for
932// each erratum occurrence, we generate an erratum stub. We never share erratum
933// stubs, whereas for reloc stubs, different branch insns share a single reloc
934// stub as long as the branch targets are the same. (More to the point, reloc
935// stubs can be shared because they're used to reach a specific target, whereas
936// erratum stubs branch back to the original control flow.)
937
938template<int size, bool big_endian>
939class Erratum_stub : public Stub_base<size, big_endian>
940{
941public:
942  typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
943  typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
944  typedef AArch64_insn_utilities<big_endian> Insn_utilities;
945  typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
946
947  static const int STUB_ADDR_ALIGN;
948
949  static const Insntype invalid_insn = static_cast<Insntype>(-1);
950
951  Erratum_stub(The_aarch64_relobj* relobj, int type,
952	       unsigned shndx, unsigned int sh_offset)
953    : Stub_base<size, big_endian>(type), relobj_(relobj),
954      shndx_(shndx), sh_offset_(sh_offset),
955      erratum_insn_(invalid_insn),
956      erratum_address_(this->invalid_address)
957  {}
958
959  ~Erratum_stub() {}
960
961  // Return the object that contains the erratum.
962  The_aarch64_relobj*
963  relobj()
964  { return this->relobj_; }
965
966  // Get section index of the erratum.
967  unsigned int
968  shndx() const
969  { return this->shndx_; }
970
971  // Get section offset of the erratum.
972  unsigned int
973  sh_offset() const
974  { return this->sh_offset_; }
975
976  // Get the erratum insn. This is the insn located at erratum_insn_address.
977  Insntype
978  erratum_insn() const
979  {
980    gold_assert(this->erratum_insn_ != this->invalid_insn);
981    return this->erratum_insn_;
982  }
983
984  // Set the insn that the erratum happens to.
985  void
986  set_erratum_insn(Insntype insn)
987  { this->erratum_insn_ = insn; }
988
989  // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a
990  // relocation spot, in this case, the erratum_insn_ recorded at scanning phase
991  // is no longer the one we want to write out to the stub, update erratum_insn_
992  // with relocated version. Also note that in this case xn must not be "PC", so
993  // it is safe to move the erratum insn from the origin place to the stub. For
994  // 835769, the erratum insn is multiply-accumulate insn, which could not be a
995  // relocation spot (assertion added though).
996  void
997  update_erratum_insn(Insntype insn)
998  {
999    gold_assert(this->erratum_insn_ != this->invalid_insn);
1000    switch (this->type())
1001      {
1002      case ST_E_843419:
1003	gold_assert(Insn_utilities::aarch64_ldst_uimm(insn));
1004	gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn()));
1005	gold_assert(Insn_utilities::aarch64_rd(insn) ==
1006		    Insn_utilities::aarch64_rd(this->erratum_insn()));
1007	gold_assert(Insn_utilities::aarch64_rn(insn) ==
1008		    Insn_utilities::aarch64_rn(this->erratum_insn()));
1009	// Update plain ld/st insn with relocated insn.
1010	this->erratum_insn_ = insn;
1011	break;
1012      case ST_E_835769:
1013	gold_assert(insn == this->erratum_insn());
1014	break;
1015      default:
1016	gold_unreachable();
1017      }
1018  }
1019
1020
1021  // Return the address where an erratum must be done.
1022  AArch64_address
1023  erratum_address() const
1024  {
1025    gold_assert(this->erratum_address_ != this->invalid_address);
1026    return this->erratum_address_;
1027  }
1028
1029  // Set the address where an erratum must be done.
1030  void
1031  set_erratum_address(AArch64_address addr)
1032  { this->erratum_address_ = addr; }
1033
1034  // Later relaxation passes of may alter the recorded erratum and destination
1035  // address. Given an up to date output section address of shidx_ in
1036  // relobj_ we can derive the erratum_address and destination address.
1037  void
1038  update_erratum_address(AArch64_address output_section_addr)
1039  {
1040    const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1041    AArch64_address updated_addr = output_section_addr + this->sh_offset_;
1042    this->set_erratum_address(updated_addr);
1043    this->set_destination_address(updated_addr + BPI);
1044  }
1045
1046  // Comparator used to group Erratum_stubs in a set by (obj, shndx,
1047  // sh_offset). We do not include 'type' in the calculation, because there is
1048  // at most one stub type at (obj, shndx, sh_offset).
1049  bool
1050  operator<(const Erratum_stub<size, big_endian>& k) const
1051  {
1052    if (this == &k)
1053      return false;
1054    // We group stubs by relobj.
1055    if (this->relobj_ != k.relobj_)
1056      return this->relobj_ < k.relobj_;
1057    // Then by section index.
1058    if (this->shndx_ != k.shndx_)
1059      return this->shndx_ < k.shndx_;
1060    // Lastly by section offset.
1061    return this->sh_offset_ < k.sh_offset_;
1062  }
1063
1064  void
1065  invalidate_erratum_stub()
1066  {
1067     gold_assert(this->erratum_insn_ != invalid_insn);
1068     this->erratum_insn_ = invalid_insn;
1069  }
1070
1071  bool
1072  is_invalidated_erratum_stub()
1073  { return this->erratum_insn_ == invalid_insn; }
1074
1075protected:
1076  virtual void
1077  do_write(unsigned char*, section_size_type);
1078
1079private:
1080  // The object that needs to be fixed.
1081  The_aarch64_relobj* relobj_;
1082  // The shndx in the object that needs to be fixed.
1083  const unsigned int shndx_;
1084  // The section offset in the obejct that needs to be fixed.
1085  const unsigned int sh_offset_;
1086  // The insn to be fixed.
1087  Insntype erratum_insn_;
1088  // The address of the above insn.
1089  AArch64_address erratum_address_;
1090};  // End of "Erratum_stub".
1091
1092
1093// Erratum sub class to wrap additional info needed by 843419.  In fixing this
1094// erratum, we may choose to replace 'adrp' with 'adr', in this case, we need
1095// adrp's code position (two or three insns before erratum insn itself).
1096
1097template<int size, bool big_endian>
1098class E843419_stub : public Erratum_stub<size, big_endian>
1099{
1100public:
1101  typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
1102
1103  E843419_stub(AArch64_relobj<size, big_endian>* relobj,
1104		      unsigned int shndx, unsigned int sh_offset,
1105		      unsigned int adrp_sh_offset)
1106    : Erratum_stub<size, big_endian>(relobj, ST_E_843419, shndx, sh_offset),
1107      adrp_sh_offset_(adrp_sh_offset)
1108  {}
1109
1110  unsigned int
1111  adrp_sh_offset() const
1112  { return this->adrp_sh_offset_; }
1113
1114private:
1115  // Section offset of "adrp". (We do not need a "adrp_shndx_" field, because we
1116  // can obtain it from its parent.)
1117  const unsigned int adrp_sh_offset_;
1118};
1119
1120
1121template<int size, bool big_endian>
1122const int Erratum_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1123
1124// Comparator used in set definition.
1125template<int size, bool big_endian>
1126struct Erratum_stub_less
1127{
1128  bool
1129  operator()(const Erratum_stub<size, big_endian>* s1,
1130	     const Erratum_stub<size, big_endian>* s2) const
1131  { return *s1 < *s2; }
1132};
1133
1134// Erratum_stub implementation for writing stub to output file.
1135
1136template<int size, bool big_endian>
1137void
1138Erratum_stub<size, big_endian>::do_write(unsigned char* view, section_size_type)
1139{
1140  typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1141  const Insntype* insns = this->insns();
1142  uint32_t num_insns = this->insn_num();
1143  Insntype* ip = reinterpret_cast<Insntype*>(view);
1144  // For current implemented erratum 843419 and 835769, the first insn in the
1145  // stub is always a copy of the problematic insn (in 843419, the mem access
1146  // insn, in 835769, the mac insn), followed by a jump-back.
1147  elfcpp::Swap<32, big_endian>::writeval(ip, this->erratum_insn());
1148  for (uint32_t i = 1; i < num_insns; ++i)
1149    elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1150}
1151
1152
1153// Reloc stub class.
1154
1155template<int size, bool big_endian>
1156class Reloc_stub : public Stub_base<size, big_endian>
1157{
1158 public:
1159  typedef Reloc_stub<size, big_endian> This;
1160  typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1161
1162  // Branch range. This is used to calculate the section group size, as well as
1163  // determine whether a stub is needed.
1164  static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
1165  static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);
1166
1167  // Constant used to determine if an offset fits in the adrp instruction
1168  // encoding.
1169  static const int MAX_ADRP_IMM = (1 << 20) - 1;
1170  static const int MIN_ADRP_IMM = -(1 << 20);
1171
1172  static const int BYTES_PER_INSN = 4;
1173  static const int STUB_ADDR_ALIGN;
1174
1175  // Determine whether the offset fits in the jump/branch instruction.
1176  static bool
1177  aarch64_valid_branch_offset_p(int64_t offset)
1178  { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }
1179
1180  // Determine whether the offset fits in the adrp immediate field.
1181  static bool
1182  aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
1183  {
1184    typedef AArch64_relocate_functions<size, big_endian> Reloc;
1185    int64_t adrp_imm = (Reloc::Page(dest) - Reloc::Page(location)) >> 12;
1186    return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
1187  }
1188
1189  // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1190  // needed.
1191  static int
1192  stub_type_for_reloc(unsigned int r_type, AArch64_address address,
1193		      AArch64_address target);
1194
1195  Reloc_stub(int type)
1196    : Stub_base<size, big_endian>(type)
1197  { }
1198
1199  ~Reloc_stub()
1200  { }
1201
1202  // The key class used to index the stub instance in the stub table's stub map.
1203  class Key
1204  {
1205   public:
1206    Key(int type, const Symbol* symbol, const Relobj* relobj,
1207	unsigned int r_sym, int32_t addend)
1208      : type_(type), addend_(addend)
1209    {
1210      if (symbol != NULL)
1211	{
1212	  this->r_sym_ = Reloc_stub::invalid_index;
1213	  this->u_.symbol = symbol;
1214	}
1215      else
1216	{
1217	  gold_assert(relobj != NULL && r_sym != invalid_index);
1218	  this->r_sym_ = r_sym;
1219	  this->u_.relobj = relobj;
1220	}
1221    }
1222
1223    ~Key()
1224    { }
1225
1226    // Return stub type.
1227    int
1228    type() const
1229    { return this->type_; }
1230
1231    // Return the local symbol index or invalid_index.
1232    unsigned int
1233    r_sym() const
1234    { return this->r_sym_; }
1235
1236    // Return the symbol if there is one.
1237    const Symbol*
1238    symbol() const
1239    { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
1240
1241    // Return the relobj if there is one.
1242    const Relobj*
1243    relobj() const
1244    { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
1245
1246    // Whether this equals to another key k.
1247    bool
1248    eq(const Key& k) const
1249    {
1250      return ((this->type_ == k.type_)
1251	      && (this->r_sym_ == k.r_sym_)
1252	      && ((this->r_sym_ != Reloc_stub::invalid_index)
1253		  ? (this->u_.relobj == k.u_.relobj)
1254		  : (this->u_.symbol == k.u_.symbol))
1255	      && (this->addend_ == k.addend_));
1256    }
1257
1258    // Return a hash value.
1259    size_t
1260    hash_value() const
1261    {
1262      size_t name_hash_value = gold::string_hash<char>(
1263	  (this->r_sym_ != Reloc_stub::invalid_index)
1264	  ? this->u_.relobj->name().c_str()
1265	  : this->u_.symbol->name());
1266      // We only have 4 stub types.
1267      size_t stub_type_hash_value = 0x03 & this->type_;
1268      return (name_hash_value
1269	      ^ stub_type_hash_value
1270	      ^ ((this->r_sym_ & 0x3fff) << 2)
1271	      ^ ((this->addend_ & 0xffff) << 16));
1272    }
1273
1274    // Functors for STL associative containers.
1275    struct hash
1276    {
1277      size_t
1278      operator()(const Key& k) const
1279      { return k.hash_value(); }
1280    };
1281
1282    struct equal_to
1283    {
1284      bool
1285      operator()(const Key& k1, const Key& k2) const
1286      { return k1.eq(k2); }
1287    };
1288
1289   private:
1290    // Stub type.
1291    const int type_;
1292    // If this is a local symbol, this is the index in the defining object.
1293    // Otherwise, it is invalid_index for a global symbol.
1294    unsigned int r_sym_;
1295    // If r_sym_ is an invalid index, this points to a global symbol.
1296    // Otherwise, it points to a relobj.  We used the unsized and target
1297    // independent Symbol and Relobj classes instead of Sized_symbol<32> and
1298    // Arm_relobj, in order to avoid making the stub class a template
1299    // as most of the stub machinery is endianness-neutral.  However, it
1300    // may require a bit of casting done by users of this class.
1301    union
1302    {
1303      const Symbol* symbol;
1304      const Relobj* relobj;
1305    } u_;
1306    // Addend associated with a reloc.
1307    int32_t addend_;
1308  };  // End of inner class Reloc_stub::Key
1309
1310 protected:
1311  // This may be overridden in the child class.
1312  virtual void
1313  do_write(unsigned char*, section_size_type);
1314
1315 private:
1316  static const unsigned int invalid_index = static_cast<unsigned int>(-1);
1317};  // End of Reloc_stub
1318
1319template<int size, bool big_endian>
1320const int Reloc_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1321
1322// Write data to output file.
1323
1324template<int size, bool big_endian>
1325void
1326Reloc_stub<size, big_endian>::
1327do_write(unsigned char* view, section_size_type)
1328{
1329  typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1330  const uint32_t* insns = this->insns();
1331  uint32_t num_insns = this->insn_num();
1332  Insntype* ip = reinterpret_cast<Insntype*>(view);
1333  for (uint32_t i = 0; i < num_insns; ++i)
1334    elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1335}
1336
1337
1338// Determine the stub type for a certain relocation or ST_NONE, if no stub is
1339// needed.
1340
1341template<int size, bool big_endian>
1342inline int
1343Reloc_stub<size, big_endian>::stub_type_for_reloc(
1344    unsigned int r_type, AArch64_address location, AArch64_address dest)
1345{
1346  int64_t branch_offset = 0;
1347  switch(r_type)
1348    {
1349    case elfcpp::R_AARCH64_CALL26:
1350    case elfcpp::R_AARCH64_JUMP26:
1351      branch_offset = dest - location;
1352      break;
1353    default:
1354      gold_unreachable();
1355    }
1356
1357  if (aarch64_valid_branch_offset_p(branch_offset))
1358    return ST_NONE;
1359
1360  if (aarch64_valid_for_adrp_p(location, dest))
1361    return ST_ADRP_BRANCH;
1362
1363  // Always use PC-relative addressing in case of -shared or -pie.
1364  if (parameters->options().output_is_position_independent())
1365    return ST_LONG_BRANCH_PCREL;
1366
1367  // This saves 2 insns per stub, compared to ST_LONG_BRANCH_PCREL.
1368  // But is only applicable to non-shared or non-pie.
1369  return ST_LONG_BRANCH_ABS;
1370}
1371
1372// A class to hold stubs for the ARM target. This contains 2 different types of
1373// stubs - reloc stubs and erratum stubs.
1374
1375template<int size, bool big_endian>
1376class Stub_table : public Output_data
1377{
1378 public:
1379  typedef Target_aarch64<size, big_endian> The_target_aarch64;
1380  typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1381  typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1382  typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1383  typedef Reloc_stub<size, big_endian> The_reloc_stub;
1384  typedef typename The_reloc_stub::Key The_reloc_stub_key;
1385  typedef Erratum_stub<size, big_endian> The_erratum_stub;
1386  typedef Erratum_stub_less<size, big_endian> The_erratum_stub_less;
1387  typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
1388  typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
1389  typedef Stub_table<size, big_endian> The_stub_table;
1390  typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
1391			The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
1392			Reloc_stub_map;
1393  typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
1394  typedef Relocate_info<size, big_endian> The_relocate_info;
1395
1396  typedef std::set<The_erratum_stub*, The_erratum_stub_less> Erratum_stub_set;
1397  typedef typename Erratum_stub_set::iterator Erratum_stub_set_iter;
1398
1399  Stub_table(The_aarch64_input_section* owner)
1400    : Output_data(), owner_(owner), reloc_stubs_size_(0),
1401      erratum_stubs_size_(0), prev_data_size_(0)
1402  { }
1403
1404  ~Stub_table()
1405  { }
1406
1407  The_aarch64_input_section*
1408  owner() const
1409  { return owner_; }
1410
1411  // Whether this stub table is empty.
1412  bool
1413  empty() const
1414  { return reloc_stubs_.empty() && erratum_stubs_.empty(); }
1415
1416  // Return the current data size.
1417  off_t
1418  current_data_size() const
1419  { return this->current_data_size_for_child(); }
1420
1421  // Add a STUB using KEY.  The caller is responsible for avoiding addition
1422  // if a STUB with the same key has already been added.
1423  void
1424  add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);
1425
1426  // Add an erratum stub into the erratum stub set. The set is ordered by
1427  // (relobj, shndx, sh_offset).
1428  void
1429  add_erratum_stub(The_erratum_stub* stub);
1430
1431  // Find if such erratum exists for any given (obj, shndx, sh_offset).
1432  The_erratum_stub*
1433  find_erratum_stub(The_aarch64_relobj* a64relobj,
1434		    unsigned int shndx, unsigned int sh_offset);
1435
1436  // Find all the erratums for a given input section. The return value is a pair
1437  // of iterators [begin, end).
1438  std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1439  find_erratum_stubs_for_input_section(The_aarch64_relobj* a64relobj,
1440				       unsigned int shndx);
1441
1442  // Compute the erratum stub address.
1443  AArch64_address
1444  erratum_stub_address(The_erratum_stub* stub) const
1445  {
1446    AArch64_address r = align_address(this->address() + this->reloc_stubs_size_,
1447				      The_erratum_stub::STUB_ADDR_ALIGN);
1448    r += stub->offset();
1449    return r;
1450  }
1451
1452  // Finalize stubs. No-op here, just for completeness.
1453  void
1454  finalize_stubs()
1455  { }
1456
1457  // Look up a relocation stub using KEY. Return NULL if there is none.
1458  The_reloc_stub*
1459  find_reloc_stub(The_reloc_stub_key& key)
1460  {
1461    Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
1462    return (p != this->reloc_stubs_.end()) ? p->second : NULL;
1463  }
1464
1465  // Relocate reloc stubs in this stub table. This does not relocate erratum stubs.
1466  void
1467  relocate_reloc_stubs(const The_relocate_info*,
1468                       The_target_aarch64*,
1469                       Output_section*,
1470                       unsigned char*,
1471                       AArch64_address,
1472                       section_size_type);
1473
1474  // Relocate an erratum stub.
1475  void
1476  relocate_erratum_stub(The_erratum_stub*, unsigned char*);
1477
1478  // Update data size at the end of a relaxation pass.  Return true if data size
1479  // is different from that of the previous relaxation pass.
1480  bool
1481  update_data_size_changed_p()
1482  {
1483    // No addralign changed here.
1484    off_t s = align_address(this->reloc_stubs_size_,
1485			    The_erratum_stub::STUB_ADDR_ALIGN)
1486	      + this->erratum_stubs_size_;
1487    bool changed = (s != this->prev_data_size_);
1488    this->prev_data_size_ = s;
1489    return changed;
1490  }
1491
1492 protected:
1493  // Write out section contents.
1494  void
1495  do_write(Output_file*);
1496
1497  // Return the required alignment.
1498  uint64_t
1499  do_addralign() const
1500  {
1501    return std::max(The_reloc_stub::STUB_ADDR_ALIGN,
1502		    The_erratum_stub::STUB_ADDR_ALIGN);
1503  }
1504
1505  // Reset address and file offset.
1506  void
1507  do_reset_address_and_file_offset()
1508  { this->set_current_data_size_for_child(this->prev_data_size_); }
1509
1510  // Set final data size.
1511  void
1512  set_final_data_size()
1513  { this->set_data_size(this->current_data_size()); }
1514
1515 private:
1516  // Relocate one reloc stub.
1517  void
1518  relocate_reloc_stub(The_reloc_stub*,
1519                      const The_relocate_info*,
1520                      The_target_aarch64*,
1521                      Output_section*,
1522                      unsigned char*,
1523                      AArch64_address,
1524                      section_size_type);
1525
1526 private:
1527  // Owner of this stub table.
1528  The_aarch64_input_section* owner_;
1529  // The relocation stubs.
1530  Reloc_stub_map reloc_stubs_;
1531  // The erratum stubs.
1532  Erratum_stub_set erratum_stubs_;
1533  // Size of reloc stubs.
1534  off_t reloc_stubs_size_;
1535  // Size of erratum stubs.
1536  off_t erratum_stubs_size_;
1537  // data size of this in the previous pass.
1538  off_t prev_data_size_;
1539};  // End of Stub_table
1540
1541
1542// Add an erratum stub into the erratum stub set. The set is ordered by
1543// (relobj, shndx, sh_offset).
1544
1545template<int size, bool big_endian>
1546void
1547Stub_table<size, big_endian>::add_erratum_stub(The_erratum_stub* stub)
1548{
1549  std::pair<Erratum_stub_set_iter, bool> ret =
1550    this->erratum_stubs_.insert(stub);
1551  gold_assert(ret.second);
1552  this->erratum_stubs_size_ = align_address(
1553	this->erratum_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1554  stub->set_offset(this->erratum_stubs_size_);
1555  this->erratum_stubs_size_ += stub->stub_size();
1556}
1557
1558
1559// Find if such erratum exists for given (obj, shndx, sh_offset).
1560
1561template<int size, bool big_endian>
1562Erratum_stub<size, big_endian>*
1563Stub_table<size, big_endian>::find_erratum_stub(
1564    The_aarch64_relobj* a64relobj, unsigned int shndx, unsigned int sh_offset)
1565{
1566  // A dummy object used as key to search in the set.
1567  The_erratum_stub key(a64relobj, ST_NONE,
1568			 shndx, sh_offset);
1569  Erratum_stub_set_iter i = this->erratum_stubs_.find(&key);
1570  if (i != this->erratum_stubs_.end())
1571    {
1572	The_erratum_stub* stub(*i);
1573	gold_assert(stub->erratum_insn() != 0);
1574	return stub;
1575    }
1576  return NULL;
1577}
1578
1579
1580// Find all the errata for a given input section. The return value is a pair of
1581// iterators [begin, end).
1582
1583template<int size, bool big_endian>
1584std::pair<typename Stub_table<size, big_endian>::Erratum_stub_set_iter,
1585	  typename Stub_table<size, big_endian>::Erratum_stub_set_iter>
1586Stub_table<size, big_endian>::find_erratum_stubs_for_input_section(
1587    The_aarch64_relobj* a64relobj, unsigned int shndx)
1588{
1589  typedef std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> Result_pair;
1590  Erratum_stub_set_iter start, end;
1591  The_erratum_stub low_key(a64relobj, ST_NONE, shndx, 0);
1592  start = this->erratum_stubs_.lower_bound(&low_key);
1593  if (start == this->erratum_stubs_.end())
1594    return Result_pair(this->erratum_stubs_.end(),
1595		       this->erratum_stubs_.end());
1596  end = start;
1597  while (end != this->erratum_stubs_.end() &&
1598	 (*end)->relobj() == a64relobj && (*end)->shndx() == shndx)
1599    ++end;
1600  return Result_pair(start, end);
1601}
1602
1603
1604// Add a STUB using KEY.  The caller is responsible for avoiding addition
1605// if a STUB with the same key has already been added.
1606
1607template<int size, bool big_endian>
1608void
1609Stub_table<size, big_endian>::add_reloc_stub(
1610    The_reloc_stub* stub, const The_reloc_stub_key& key)
1611{
1612  gold_assert(stub->type() == key.type());
1613  this->reloc_stubs_[key] = stub;
1614
1615  // Assign stub offset early.  We can do this because we never remove
1616  // reloc stubs and they are in the beginning of the stub table.
1617  this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
1618					  The_reloc_stub::STUB_ADDR_ALIGN);
1619  stub->set_offset(this->reloc_stubs_size_);
1620  this->reloc_stubs_size_ += stub->stub_size();
1621}
1622
1623
1624// Relocate an erratum stub.
1625
1626template<int size, bool big_endian>
1627void
1628Stub_table<size, big_endian>::
1629relocate_erratum_stub(The_erratum_stub* estub,
1630                      unsigned char* view)
1631{
1632  // Just for convenience.
1633  const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1634
1635  gold_assert(!estub->is_invalidated_erratum_stub());
1636  AArch64_address stub_address = this->erratum_stub_address(estub);
1637  // The address of "b" in the stub that is to be "relocated".
1638  AArch64_address stub_b_insn_address;
1639  // Branch offset that is to be filled in "b" insn.
1640  int b_offset = 0;
1641  switch (estub->type())
1642    {
1643    case ST_E_843419:
1644    case ST_E_835769:
1645      // The 1st insn of the erratum could be a relocation spot,
1646      // in this case we need to fix it with
1647      // "(*i)->erratum_insn()".
1648      elfcpp::Swap<32, big_endian>::writeval(
1649          view + (stub_address - this->address()),
1650          estub->erratum_insn());
1651      // For the erratum, the 2nd insn is a b-insn to be patched
1652      // (relocated).
1653      stub_b_insn_address = stub_address + 1 * BPI;
1654      b_offset = estub->destination_address() - stub_b_insn_address;
1655      AArch64_relocate_functions<size, big_endian>::construct_b(
1656          view + (stub_b_insn_address - this->address()),
1657          ((unsigned int)(b_offset)) & 0xfffffff);
1658      break;
1659    default:
1660      gold_unreachable();
1661      break;
1662    }
1663  estub->invalidate_erratum_stub();
1664}
1665
1666
1667// Relocate only reloc stubs in this stub table. This does not relocate erratum
1668// stubs.
1669
1670template<int size, bool big_endian>
1671void
1672Stub_table<size, big_endian>::
1673relocate_reloc_stubs(const The_relocate_info* relinfo,
1674                     The_target_aarch64* target_aarch64,
1675                     Output_section* output_section,
1676                     unsigned char* view,
1677                     AArch64_address address,
1678                     section_size_type view_size)
1679{
1680  // "view_size" is the total size of the stub_table.
1681  gold_assert(address == this->address() &&
1682	      view_size == static_cast<section_size_type>(this->data_size()));
1683  for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
1684      p != this->reloc_stubs_.end(); ++p)
1685    relocate_reloc_stub(p->second, relinfo, target_aarch64, output_section,
1686                        view, address, view_size);
1687}
1688
1689
1690// Relocate one reloc stub. This is a helper for
1691// Stub_table::relocate_reloc_stubs().
1692
1693template<int size, bool big_endian>
1694void
1695Stub_table<size, big_endian>::
1696relocate_reloc_stub(The_reloc_stub* stub,
1697                    const The_relocate_info* relinfo,
1698                    The_target_aarch64* target_aarch64,
1699                    Output_section* output_section,
1700                    unsigned char* view,
1701                    AArch64_address address,
1702                    section_size_type view_size)
1703{
1704  // "offset" is the offset from the beginning of the stub_table.
1705  section_size_type offset = stub->offset();
1706  section_size_type stub_size = stub->stub_size();
1707  // "view_size" is the total size of the stub_table.
1708  gold_assert(offset + stub_size <= view_size);
1709
1710  target_aarch64->relocate_reloc_stub(stub, relinfo, output_section,
1711                                      view + offset, address + offset, view_size);
1712}
1713
1714
1715// Write out the stubs to file.
1716
1717template<int size, bool big_endian>
1718void
1719Stub_table<size, big_endian>::do_write(Output_file* of)
1720{
1721  off_t offset = this->offset();
1722  const section_size_type oview_size =
1723    convert_to_section_size_type(this->data_size());
1724  unsigned char* const oview = of->get_output_view(offset, oview_size);
1725
1726  // Write relocation stubs.
1727  for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
1728      p != this->reloc_stubs_.end(); ++p)
1729    {
1730      The_reloc_stub* stub = p->second;
1731      AArch64_address address = this->address() + stub->offset();
1732      gold_assert(address ==
1733		  align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
1734      stub->write(oview + stub->offset(), stub->stub_size());
1735    }
1736
1737  // Write erratum stubs.
1738  unsigned int erratum_stub_start_offset =
1739    align_address(this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1740  for (typename Erratum_stub_set::iterator p = this->erratum_stubs_.begin();
1741       p != this->erratum_stubs_.end(); ++p)
1742    {
1743      The_erratum_stub* stub(*p);
1744      stub->write(oview + erratum_stub_start_offset + stub->offset(),
1745		  stub->stub_size());
1746    }
1747
1748  of->write_output_view(this->offset(), oview_size, oview);
1749}
1750
1751
1752// AArch64_relobj class.
1753
1754template<int size, bool big_endian>
1755class AArch64_relobj : public Sized_relobj_file<size, big_endian>
1756{
1757 public:
1758  typedef AArch64_relobj<size, big_endian> This;
1759  typedef Target_aarch64<size, big_endian> The_target_aarch64;
1760  typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1761  typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1762  typedef Stub_table<size, big_endian> The_stub_table;
1763  typedef Erratum_stub<size, big_endian> The_erratum_stub;
1764  typedef typename The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter;
1765  typedef std::vector<The_stub_table*> Stub_table_list;
1766  static const AArch64_address invalid_address =
1767      static_cast<AArch64_address>(-1);
1768
1769  AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
1770		 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1771    : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1772      stub_tables_()
1773  { }
1774
1775  ~AArch64_relobj()
1776  { }
1777
1778  // Return the stub table of the SHNDX-th section if there is one.
1779  The_stub_table*
1780  stub_table(unsigned int shndx) const
1781  {
1782    gold_assert(shndx < this->stub_tables_.size());
1783    return this->stub_tables_[shndx];
1784  }
1785
1786  // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1787  void
1788  set_stub_table(unsigned int shndx, The_stub_table* stub_table)
1789  {
1790    gold_assert(shndx < this->stub_tables_.size());
1791    this->stub_tables_[shndx] = stub_table;
1792  }
1793
1794  // Entrance to errata scanning.
1795  void
1796  scan_errata(unsigned int shndx,
1797	      const elfcpp::Shdr<size, big_endian>&,
1798	      Output_section*, const Symbol_table*,
1799	      The_target_aarch64*);
1800
1801  // Scan all relocation sections for stub generation.
1802  void
1803  scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
1804			  const Layout*);
1805
1806  // Whether a section is a scannable text section.
1807  bool
1808  text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
1809			    const Output_section*, const Symbol_table*);
1810
1811  // Convert regular input section with index SHNDX to a relaxed section.
1812  void
1813  convert_input_section_to_relaxed_section(unsigned shndx)
1814  {
1815    // The stubs have relocations and we need to process them after writing
1816    // out the stubs.  So relocation now must follow section write.
1817    this->set_section_offset(shndx, -1ULL);
1818    this->set_relocs_must_follow_section_writes();
1819  }
1820
1821  // Structure for mapping symbol position.
1822  struct Mapping_symbol_position
1823  {
1824    Mapping_symbol_position(unsigned int shndx, AArch64_address offset):
1825      shndx_(shndx), offset_(offset)
1826    {}
1827
1828    // "<" comparator used in ordered_map container.
1829    bool
1830    operator<(const Mapping_symbol_position& p) const
1831    {
1832      return (this->shndx_ < p.shndx_
1833	      || (this->shndx_ == p.shndx_ && this->offset_ < p.offset_));
1834    }
1835
1836    // Section index.
1837    unsigned int shndx_;
1838
1839    // Section offset.
1840    AArch64_address offset_;
1841  };
1842
1843  typedef std::map<Mapping_symbol_position, char> Mapping_symbol_info;
1844
1845 protected:
1846  // Post constructor setup.
1847  void
1848  do_setup()
1849  {
1850    // Call parent's setup method.
1851    Sized_relobj_file<size, big_endian>::do_setup();
1852
1853    // Initialize look-up tables.
1854    this->stub_tables_.resize(this->shnum());
1855  }
1856
1857  virtual void
1858  do_relocate_sections(
1859      const Symbol_table* symtab, const Layout* layout,
1860      const unsigned char* pshdrs, Output_file* of,
1861      typename Sized_relobj_file<size, big_endian>::Views* pviews);
1862
1863  // Count local symbols and (optionally) record mapping info.
1864  virtual void
1865  do_count_local_symbols(Stringpool_template<char>*,
1866			 Stringpool_template<char>*);
1867
1868 private:
1869  // Fix all errata in the object, and for each erratum, relocate corresponding
1870  // erratum stub.
1871  void
1872  fix_errata_and_relocate_erratum_stubs(
1873      typename Sized_relobj_file<size, big_endian>::Views* pviews);
1874
1875  // Try to fix erratum 843419 in an optimized way. Return true if patch is
1876  // applied.
1877  bool
1878  try_fix_erratum_843419_optimized(
1879      The_erratum_stub*, AArch64_address,
1880      typename Sized_relobj_file<size, big_endian>::View_size&);
1881
1882  // Whether a section needs to be scanned for relocation stubs.
1883  bool
1884  section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
1885				    const Relobj::Output_sections&,
1886				    const Symbol_table*, const unsigned char*);
1887
1888  // List of stub tables.
1889  Stub_table_list stub_tables_;
1890
1891  // Mapping symbol information sorted by (section index, section_offset).
1892  Mapping_symbol_info mapping_symbol_info_;
1893};  // End of AArch64_relobj
1894
1895
1896// Override to record mapping symbol information.
1897template<int size, bool big_endian>
1898void
1899AArch64_relobj<size, big_endian>::do_count_local_symbols(
1900    Stringpool_template<char>* pool, Stringpool_template<char>* dynpool)
1901{
1902  Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
1903
1904  // Only erratum-fixing work needs mapping symbols, so skip this time consuming
1905  // processing if not fixing erratum.
1906  if (!parameters->options().fix_cortex_a53_843419()
1907      && !parameters->options().fix_cortex_a53_835769())
1908    return;
1909
1910  const unsigned int loccount = this->local_symbol_count();
1911  if (loccount == 0)
1912    return;
1913
1914  // Read the symbol table section header.
1915  const unsigned int symtab_shndx = this->symtab_shndx();
1916  elfcpp::Shdr<size, big_endian>
1917      symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
1918  gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1919
1920  // Read the local symbols.
1921  const int sym_size =elfcpp::Elf_sizes<size>::sym_size;
1922  gold_assert(loccount == symtabshdr.get_sh_info());
1923  off_t locsize = loccount * sym_size;
1924  const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1925					      locsize, true, true);
1926
1927  // For mapping symbol processing, we need to read the symbol names.
1928  unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
1929  if (strtab_shndx >= this->shnum())
1930    {
1931      this->error(_("invalid symbol table name index: %u"), strtab_shndx);
1932      return;
1933    }
1934
1935  elfcpp::Shdr<size, big_endian>
1936    strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
1937  if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
1938    {
1939      this->error(_("symbol table name section has wrong type: %u"),
1940		  static_cast<unsigned int>(strtabshdr.get_sh_type()));
1941      return;
1942    }
1943
1944  const char* pnames =
1945    reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
1946						 strtabshdr.get_sh_size(),
1947						 false, false));
1948
1949  // Skip the first dummy symbol.
1950  psyms += sym_size;
1951  typename Sized_relobj_file<size, big_endian>::Local_values*
1952    plocal_values = this->local_values();
1953  for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1954    {
1955      elfcpp::Sym<size, big_endian> sym(psyms);
1956      Symbol_value<size>& lv((*plocal_values)[i]);
1957      AArch64_address input_value = lv.input_value();
1958
1959      // Check to see if this is a mapping symbol. AArch64 mapping symbols are
1960      // defined in "ELF for the ARM 64-bit Architecture", Table 4-4, Mapping
1961      // symbols.
1962      // Mapping symbols could be one of the following 4 forms -
1963      //   a) $x
1964      //   b) $x.<any...>
1965      //   c) $d
1966      //   d) $d.<any...>
1967      const char* sym_name = pnames + sym.get_st_name();
1968      if (sym_name[0] == '$' && (sym_name[1] == 'x' || sym_name[1] == 'd')
1969	  && (sym_name[2] == '\0' || sym_name[2] == '.'))
1970	{
1971	  bool is_ordinary;
1972	  unsigned int input_shndx =
1973	    this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
1974	  gold_assert(is_ordinary);
1975
1976	  Mapping_symbol_position msp(input_shndx, input_value);
1977	  // Insert mapping_symbol_info into map whose ordering is defined by
1978	  // (shndx, offset_within_section).
1979	  this->mapping_symbol_info_[msp] = sym_name[1];
1980	}
1981   }
1982}
1983
1984
1985// Fix all errata in the object and for each erratum, we relocate the
1986// corresponding erratum stub (by calling Stub_table::relocate_erratum_stub).
1987
1988template<int size, bool big_endian>
1989void
1990AArch64_relobj<size, big_endian>::fix_errata_and_relocate_erratum_stubs(
1991    typename Sized_relobj_file<size, big_endian>::Views* pviews)
1992{
1993  typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
1994  unsigned int shnum = this->shnum();
1995  const Relobj::Output_sections& out_sections(this->output_sections());
1996  for (unsigned int i = 1; i < shnum; ++i)
1997    {
1998      The_stub_table* stub_table = this->stub_table(i);
1999      if (!stub_table)
2000	continue;
2001      std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
2002	ipair(stub_table->find_erratum_stubs_for_input_section(this, i));
2003      Erratum_stub_set_iter p = ipair.first, end = ipair.second;
2004      typename Sized_relobj_file<size, big_endian>::View_size&
2005	pview((*pviews)[i]);
2006      AArch64_address view_offset = 0;
2007      if (pview.is_input_output_view)
2008	{
2009	  // In this case, write_sections has not added the output offset to
2010	  // the view's address, so we must do so. Currently this only happens
2011	  // for a relaxed section.
2012	  unsigned int index = this->adjust_shndx(i);
2013	  const Output_relaxed_input_section* poris =
2014	      out_sections[index]->find_relaxed_input_section(this, index);
2015	  gold_assert(poris != NULL);
2016	  view_offset = poris->address() - pview.address;
2017	}
2018
2019      while (p != end)
2020	{
2021	  The_erratum_stub* stub = *p;
2022
2023	  // Double check data before fix.
2024	  gold_assert(pview.address + view_offset + stub->sh_offset()
2025		      == stub->erratum_address());
2026
2027	  // Update previously recorded erratum insn with relocated
2028	  // version.
2029	  Insntype* ip =
2030	    reinterpret_cast<Insntype*>(
2031	      pview.view + view_offset + stub->sh_offset());
2032	  Insntype insn_to_fix = ip[0];
2033	  stub->update_erratum_insn(insn_to_fix);
2034
2035	  // First try to see if erratum is 843419 and if it can be fixed
2036	  // without using branch-to-stub.
2037	  if (!try_fix_erratum_843419_optimized(stub, view_offset, pview))
2038	    {
2039	      // Replace the erratum insn with a branch-to-stub.
2040	      AArch64_address stub_address =
2041		stub_table->erratum_stub_address(stub);
2042	      unsigned int b_offset = stub_address - stub->erratum_address();
2043	      AArch64_relocate_functions<size, big_endian>::construct_b(
2044		pview.view + view_offset + stub->sh_offset(),
2045		b_offset & 0xfffffff);
2046	    }
2047
2048          // Erratum fix is done (or skipped), continue to relocate erratum
2049          // stub. Note, when erratum fix is skipped (either because we
2050          // proactively change the code sequence or the code sequence is
2051          // changed by relaxation, etc), we can still safely relocate the
2052          // erratum stub, ignoring the fact the erratum could never be
2053          // executed.
2054          stub_table->relocate_erratum_stub(
2055	    stub,
2056	    pview.view + (stub_table->address() - pview.address));
2057
2058          // Next erratum stub.
2059	  ++p;
2060	}
2061    }
2062}
2063
2064
2065// This is an optimization for 843419. This erratum requires the sequence begin
2066// with 'adrp', when final value calculated by adrp fits in adr, we can just
2067// replace 'adrp' with 'adr', so we save 2 jumps per occurrence. (Note, however,
2068// in this case, we do not delete the erratum stub (too late to do so), it is
2069// merely generated without ever being called.)
2070
2071template<int size, bool big_endian>
2072bool
2073AArch64_relobj<size, big_endian>::try_fix_erratum_843419_optimized(
2074    The_erratum_stub* stub, AArch64_address view_offset,
2075    typename Sized_relobj_file<size, big_endian>::View_size& pview)
2076{
2077  if (stub->type() != ST_E_843419)
2078    return false;
2079
2080  typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2081  typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
2082  E843419_stub<size, big_endian>* e843419_stub =
2083    reinterpret_cast<E843419_stub<size, big_endian>*>(stub);
2084  AArch64_address pc =
2085    pview.address + view_offset + e843419_stub->adrp_sh_offset();
2086  unsigned int adrp_offset = e843419_stub->adrp_sh_offset ();
2087  Insntype* adrp_view =
2088    reinterpret_cast<Insntype*>(pview.view + view_offset + adrp_offset);
2089  Insntype adrp_insn = adrp_view[0];
2090
2091  // If the instruction at adrp_sh_offset is "mrs R, tpidr_el0", it may come
2092  // from IE -> LE relaxation etc.  This is a side-effect of TLS relaxation that
2093  // ADRP has been turned into MRS, there is no erratum risk anymore.
2094  // Therefore, we return true to avoid doing unnecessary branch-to-stub.
2095  if (Insn_utilities::is_mrs_tpidr_el0(adrp_insn))
2096    return true;
2097
2098  // If the instruction at adrp_sh_offset is not ADRP and the instruction before
2099  // it is "mrs R, tpidr_el0", it may come from LD -> LE relaxation etc.
2100  // Like the above case, there is no erratum risk any more, we can safely
2101  // return true.
2102  if (!Insn_utilities::is_adrp(adrp_insn) && adrp_offset)
2103    {
2104      Insntype* prev_view =
2105	reinterpret_cast<Insntype*>(
2106	  pview.view + view_offset + adrp_offset - 4);
2107      Insntype prev_insn = prev_view[0];
2108
2109      if (Insn_utilities::is_mrs_tpidr_el0(prev_insn))
2110	return true;
2111    }
2112
2113  /* If we reach here, the first instruction must be ADRP.  */
2114  gold_assert(Insn_utilities::is_adrp(adrp_insn));
2115  // Get adrp 33-bit signed imm value.
2116  int64_t adrp_imm = Insn_utilities::
2117    aarch64_adrp_decode_imm(adrp_insn);
2118  // adrp - final value transferred to target register is calculated as:
2119  //     PC[11:0] = Zeros(12)
2120  //     adrp_dest_value = PC + adrp_imm;
2121  int64_t adrp_dest_value = (pc & ~((1 << 12) - 1)) + adrp_imm;
2122  // adr -final value transferred to target register is calucalted as:
2123  //     PC + adr_imm
2124  // So we have:
2125  //     PC + adr_imm = adrp_dest_value
2126  //   ==>
2127  //     adr_imm = adrp_dest_value - PC
2128  int64_t adr_imm = adrp_dest_value - pc;
2129  // Check if imm fits in adr (21-bit signed).
2130  if (-(1 << 20) <= adr_imm && adr_imm < (1 << 20))
2131    {
2132      // Convert 'adrp' into 'adr'.
2133      Insntype adr_insn = adrp_insn & ((1u << 31) - 1);
2134      adr_insn = Insn_utilities::
2135	aarch64_adr_encode_imm(adr_insn, adr_imm);
2136      elfcpp::Swap<32, big_endian>::writeval(adrp_view, adr_insn);
2137      return true;
2138    }
2139  return false;
2140}
2141
2142
2143// Relocate sections.
2144
2145template<int size, bool big_endian>
2146void
2147AArch64_relobj<size, big_endian>::do_relocate_sections(
2148    const Symbol_table* symtab, const Layout* layout,
2149    const unsigned char* pshdrs, Output_file* of,
2150    typename Sized_relobj_file<size, big_endian>::Views* pviews)
2151{
2152  // Relocate the section data.
2153  this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2154			       1, this->shnum() - 1);
2155
2156  // We do not generate stubs if doing a relocatable link.
2157  if (parameters->options().relocatable())
2158    return;
2159
2160  // This part only relocates erratum stubs that belong to input sections of this
2161  // object file.
2162  if (parameters->options().fix_cortex_a53_843419()
2163      || parameters->options().fix_cortex_a53_835769())
2164    this->fix_errata_and_relocate_erratum_stubs(pviews);
2165
2166  Relocate_info<size, big_endian> relinfo;
2167  relinfo.symtab = symtab;
2168  relinfo.layout = layout;
2169  relinfo.object = this;
2170
2171  // This part relocates all reloc stubs that are contained in stub_tables of
2172  // this object file.
2173  unsigned int shnum = this->shnum();
2174  The_target_aarch64* target = The_target_aarch64::current_target();
2175
2176  for (unsigned int i = 1; i < shnum; ++i)
2177    {
2178      The_aarch64_input_section* aarch64_input_section =
2179	  target->find_aarch64_input_section(this, i);
2180      if (aarch64_input_section != NULL
2181	  && aarch64_input_section->is_stub_table_owner()
2182	  && !aarch64_input_section->stub_table()->empty())
2183	{
2184	  Output_section* os = this->output_section(i);
2185	  gold_assert(os != NULL);
2186
2187	  relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
2188	  relinfo.reloc_shdr = NULL;
2189	  relinfo.data_shndx = i;
2190	  relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;
2191
2192	  typename Sized_relobj_file<size, big_endian>::View_size&
2193	      view_struct = (*pviews)[i];
2194	  gold_assert(view_struct.view != NULL);
2195
2196	  The_stub_table* stub_table = aarch64_input_section->stub_table();
2197	  off_t offset = stub_table->address() - view_struct.address;
2198	  unsigned char* view = view_struct.view + offset;
2199	  AArch64_address address = stub_table->address();
2200	  section_size_type view_size = stub_table->data_size();
2201	  stub_table->relocate_reloc_stubs(&relinfo, target, os, view, address,
2202					   view_size);
2203	}
2204    }
2205}
2206
2207
2208// Determine if an input section is scannable for stub processing.  SHDR is
2209// the header of the section and SHNDX is the section index.  OS is the output
2210// section for the input section and SYMTAB is the global symbol table used to
2211// look up ICF information.
2212
2213template<int size, bool big_endian>
2214bool
2215AArch64_relobj<size, big_endian>::text_section_is_scannable(
2216    const elfcpp::Shdr<size, big_endian>& text_shdr,
2217    unsigned int text_shndx,
2218    const Output_section* os,
2219    const Symbol_table* symtab)
2220{
2221  // Skip any empty sections, unallocated sections or sections whose
2222  // type are not SHT_PROGBITS.
2223  if (text_shdr.get_sh_size() == 0
2224      || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
2225      || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2226    return false;
2227
2228  // Skip any discarded or ICF'ed sections.
2229  if (os == NULL || symtab->is_section_folded(this, text_shndx))
2230    return false;
2231
2232  // Skip exception frame.
2233  if (strcmp(os->name(), ".eh_frame") == 0)
2234    return false ;
2235
2236  gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
2237	      os->find_relaxed_input_section(this, text_shndx) != NULL);
2238
2239  return true;
2240}
2241
2242
2243// Determine if we want to scan the SHNDX-th section for relocation stubs.
2244// This is a helper for AArch64_relobj::scan_sections_for_stubs().
2245
2246template<int size, bool big_endian>
2247bool
2248AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
2249    const elfcpp::Shdr<size, big_endian>& shdr,
2250    const Relobj::Output_sections& out_sections,
2251    const Symbol_table* symtab,
2252    const unsigned char* pshdrs)
2253{
2254  unsigned int sh_type = shdr.get_sh_type();
2255  if (sh_type != elfcpp::SHT_RELA)
2256    return false;
2257
2258  // Ignore empty section.
2259  off_t sh_size = shdr.get_sh_size();
2260  if (sh_size == 0)
2261    return false;
2262
2263  // Ignore reloc section with unexpected symbol table.  The
2264  // error will be reported in the final link.
2265  if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
2266    return false;
2267
2268  gold_assert(sh_type == elfcpp::SHT_RELA);
2269  unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2270
2271  // Ignore reloc section with unexpected entsize or uneven size.
2272  // The error will be reported in the final link.
2273  if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
2274    return false;
2275
2276  // Ignore reloc section with bad info.  This error will be
2277  // reported in the final link.
2278  unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
2279  if (text_shndx >= this->shnum())
2280    return false;
2281
2282  const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2283  const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
2284						 text_shndx * shdr_size);
2285  return this->text_section_is_scannable(text_shdr, text_shndx,
2286					 out_sections[text_shndx], symtab);
2287}
2288
2289
2290// Scan section SHNDX for erratum 843419 and 835769.
2291
2292template<int size, bool big_endian>
2293void
2294AArch64_relobj<size, big_endian>::scan_errata(
2295    unsigned int shndx, const elfcpp::Shdr<size, big_endian>& shdr,
2296    Output_section* os, const Symbol_table* symtab,
2297    The_target_aarch64* target)
2298{
2299  if (shdr.get_sh_size() == 0
2300      || (shdr.get_sh_flags() &
2301	  (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == 0
2302      || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2303    return;
2304
2305  if (!os || symtab->is_section_folded(this, shndx)) return;
2306
2307  AArch64_address output_offset = this->get_output_section_offset(shndx);
2308  AArch64_address output_address;
2309  if (output_offset != invalid_address)
2310    output_address = os->address() + output_offset;
2311  else
2312    {
2313      const Output_relaxed_input_section* poris =
2314	os->find_relaxed_input_section(this, shndx);
2315      if (!poris) return;
2316      output_address = poris->address();
2317    }
2318
2319  // Update the addresses in previously generated erratum stubs. Unlike when
2320  // we scan relocations for stubs, if section addresses have changed due to
2321  // other relaxations we are unlikely to scan the same erratum instances
2322  // again.
2323  The_stub_table* stub_table = this->stub_table(shndx);
2324  if (stub_table)
2325    {
2326      std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
2327	  ipair(stub_table->find_erratum_stubs_for_input_section(this, shndx));
2328      for (Erratum_stub_set_iter p = ipair.first;  p != ipair.second; ++p)
2329          (*p)->update_erratum_address(output_address);
2330    }
2331
2332  section_size_type input_view_size = 0;
2333  const unsigned char* input_view =
2334    this->section_contents(shndx, &input_view_size, false);
2335
2336  Mapping_symbol_position section_start(shndx, 0);
2337  // Find the first mapping symbol record within section shndx.
2338  typename Mapping_symbol_info::const_iterator p =
2339    this->mapping_symbol_info_.lower_bound(section_start);
2340  while (p != this->mapping_symbol_info_.end() &&
2341	 p->first.shndx_ == shndx)
2342    {
2343      typename Mapping_symbol_info::const_iterator prev = p;
2344      ++p;
2345      if (prev->second == 'x')
2346	{
2347	  section_size_type span_start =
2348	    convert_to_section_size_type(prev->first.offset_);
2349	  section_size_type span_end;
2350	  if (p != this->mapping_symbol_info_.end()
2351	      && p->first.shndx_ == shndx)
2352	    span_end = convert_to_section_size_type(p->first.offset_);
2353	  else
2354	    span_end = convert_to_section_size_type(shdr.get_sh_size());
2355
2356	  // Here we do not share the scanning code of both errata. For 843419,
2357	  // only the last few insns of each page are examined, which is fast,
2358	  // whereas, for 835769, every insn pair needs to be checked.
2359
2360	  if (parameters->options().fix_cortex_a53_843419())
2361	    target->scan_erratum_843419_span(
2362	      this, shndx, span_start, span_end,
2363	      const_cast<unsigned char*>(input_view), output_address);
2364
2365	  if (parameters->options().fix_cortex_a53_835769())
2366	    target->scan_erratum_835769_span(
2367	      this, shndx, span_start, span_end,
2368	      const_cast<unsigned char*>(input_view), output_address);
2369	}
2370    }
2371}
2372
2373
2374// Scan relocations for stub generation.
2375
2376template<int size, bool big_endian>
2377void
2378AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
2379    The_target_aarch64* target,
2380    const Symbol_table* symtab,
2381    const Layout* layout)
2382{
2383  unsigned int shnum = this->shnum();
2384  const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2385
2386  // Read the section headers.
2387  const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2388					       shnum * shdr_size,
2389					       true, true);
2390
2391  // To speed up processing, we set up hash tables for fast lookup of
2392  // input offsets to output addresses.
2393  this->initialize_input_to_output_maps();
2394
2395  const Relobj::Output_sections& out_sections(this->output_sections());
2396
2397  Relocate_info<size, big_endian> relinfo;
2398  relinfo.symtab = symtab;
2399  relinfo.layout = layout;
2400  relinfo.object = this;
2401
2402  // Do relocation stubs scanning.
2403  const unsigned char* p = pshdrs + shdr_size;
2404  for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
2405    {
2406      const elfcpp::Shdr<size, big_endian> shdr(p);
2407      if (parameters->options().fix_cortex_a53_843419()
2408	  || parameters->options().fix_cortex_a53_835769())
2409	scan_errata(i, shdr, out_sections[i], symtab, target);
2410      if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
2411						  pshdrs))
2412	{
2413	  unsigned int index = this->adjust_shndx(shdr.get_sh_info());
2414	  AArch64_address output_offset =
2415	      this->get_output_section_offset(index);
2416	  AArch64_address output_address;
2417	  if (output_offset != invalid_address)
2418	    {
2419	      output_address = out_sections[index]->address() + output_offset;
2420	    }
2421	  else
2422	    {
2423	      // Currently this only happens for a relaxed section.
2424	      const Output_relaxed_input_section* poris =
2425		  out_sections[index]->find_relaxed_input_section(this, index);
2426	      gold_assert(poris != NULL);
2427	      output_address = poris->address();
2428	    }
2429
2430	  // Get the relocations.
2431	  const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
2432							shdr.get_sh_size(),
2433							true, false);
2434
2435	  // Get the section contents.
2436	  section_size_type input_view_size = 0;
2437	  const unsigned char* input_view =
2438	      this->section_contents(index, &input_view_size, false);
2439
2440	  relinfo.reloc_shndx = i;
2441	  relinfo.data_shndx = index;
2442	  unsigned int sh_type = shdr.get_sh_type();
2443	  unsigned int reloc_size;
2444	  gold_assert (sh_type == elfcpp::SHT_RELA);
2445	  reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2446
2447	  Output_section* os = out_sections[index];
2448	  target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
2449					 shdr.get_sh_size() / reloc_size,
2450					 os,
2451					 output_offset == invalid_address,
2452					 input_view, output_address,
2453					 input_view_size);
2454	}
2455    }
2456}
2457
2458
2459// A class to wrap an ordinary input section containing executable code.
2460
2461template<int size, bool big_endian>
2462class AArch64_input_section : public Output_relaxed_input_section
2463{
2464 public:
2465  typedef Stub_table<size, big_endian> The_stub_table;
2466
2467  AArch64_input_section(Relobj* relobj, unsigned int shndx)
2468    : Output_relaxed_input_section(relobj, shndx, 1),
2469      stub_table_(NULL),
2470      original_contents_(NULL), original_size_(0),
2471      original_addralign_(1)
2472  { }
2473
2474  ~AArch64_input_section()
2475  { delete[] this->original_contents_; }
2476
2477  // Initialize.
2478  void
2479  init();
2480
2481  // Set the stub_table.
2482  void
2483  set_stub_table(The_stub_table* st)
2484  { this->stub_table_ = st; }
2485
2486  // Whether this is a stub table owner.
2487  bool
2488  is_stub_table_owner() const
2489  { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
2490
2491  // Return the original size of the section.
2492  uint32_t
2493  original_size() const
2494  { return this->original_size_; }
2495
2496  // Return the stub table.
2497  The_stub_table*
2498  stub_table()
2499  { return stub_table_; }
2500
2501 protected:
2502  // Write out this input section.
2503  void
2504  do_write(Output_file*);
2505
2506  // Return required alignment of this.
2507  uint64_t
2508  do_addralign() const
2509  {
2510    if (this->is_stub_table_owner())
2511      return std::max(this->stub_table_->addralign(),
2512		      static_cast<uint64_t>(this->original_addralign_));
2513    else
2514      return this->original_addralign_;
2515  }
2516
2517  // Finalize data size.
2518  void
2519  set_final_data_size();
2520
2521  // Reset address and file offset.
2522  void
2523  do_reset_address_and_file_offset();
2524
2525  // Output offset.
2526  bool
2527  do_output_offset(const Relobj* object, unsigned int shndx,
2528		   section_offset_type offset,
2529		   section_offset_type* poutput) const
2530  {
2531    if ((object == this->relobj())
2532	&& (shndx == this->shndx())
2533	&& (offset >= 0)
2534	&& (offset <=
2535	    convert_types<section_offset_type, uint32_t>(this->original_size_)))
2536      {
2537	*poutput = offset;
2538	return true;
2539      }
2540    else
2541      return false;
2542  }
2543
2544 private:
2545  // Copying is not allowed.
2546  AArch64_input_section(const AArch64_input_section&);
2547  AArch64_input_section& operator=(const AArch64_input_section&);
2548
2549  // The relocation stubs.
2550  The_stub_table* stub_table_;
2551  // Original section contents.  We have to make a copy here since the file
2552  // containing the original section may not be locked when we need to access
2553  // the contents.
2554  unsigned char* original_contents_;
2555  // Section size of the original input section.
2556  uint32_t original_size_;
2557  // Address alignment of the original input section.
2558  uint32_t original_addralign_;
2559};  // End of AArch64_input_section
2560
2561
2562// Finalize data size.
2563
2564template<int size, bool big_endian>
2565void
2566AArch64_input_section<size, big_endian>::set_final_data_size()
2567{
2568  off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2569
2570  if (this->is_stub_table_owner())
2571    {
2572      this->stub_table_->finalize_data_size();
2573      off = align_address(off, this->stub_table_->addralign());
2574      off += this->stub_table_->data_size();
2575    }
2576  this->set_data_size(off);
2577}
2578
2579
2580// Reset address and file offset.
2581
2582template<int size, bool big_endian>
2583void
2584AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
2585{
2586  // Size of the original input section contents.
2587  off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2588
2589  // If this is a stub table owner, account for the stub table size.
2590  if (this->is_stub_table_owner())
2591    {
2592      The_stub_table* stub_table = this->stub_table_;
2593
2594      // Reset the stub table's address and file offset.  The
2595      // current data size for child will be updated after that.
2596      stub_table_->reset_address_and_file_offset();
2597      off = align_address(off, stub_table_->addralign());
2598      off += stub_table->current_data_size();
2599    }
2600
2601  this->set_current_data_size(off);
2602}
2603
2604
2605// Initialize an Arm_input_section.
2606
2607template<int size, bool big_endian>
2608void
2609AArch64_input_section<size, big_endian>::init()
2610{
2611  Relobj* relobj = this->relobj();
2612  unsigned int shndx = this->shndx();
2613
2614  // We have to cache original size, alignment and contents to avoid locking
2615  // the original file.
2616  this->original_addralign_ =
2617      convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
2618
2619  // This is not efficient but we expect only a small number of relaxed
2620  // input sections for stubs.
2621  section_size_type section_size;
2622  const unsigned char* section_contents =
2623      relobj->section_contents(shndx, &section_size, false);
2624  this->original_size_ =
2625      convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
2626
2627  gold_assert(this->original_contents_ == NULL);
2628  this->original_contents_ = new unsigned char[section_size];
2629  memcpy(this->original_contents_, section_contents, section_size);
2630
2631  // We want to make this look like the original input section after
2632  // output sections are finalized.
2633  Output_section* os = relobj->output_section(shndx);
2634  off_t offset = relobj->output_section_offset(shndx);
2635  gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
2636  this->set_address(os->address() + offset);
2637  this->set_file_offset(os->offset() + offset);
2638  this->set_current_data_size(this->original_size_);
2639  this->finalize_data_size();
2640}
2641
2642
2643// Write data to output file.
2644
2645template<int size, bool big_endian>
2646void
2647AArch64_input_section<size, big_endian>::do_write(Output_file* of)
2648{
2649  // We have to write out the original section content.
2650  gold_assert(this->original_contents_ != NULL);
2651  of->write(this->offset(), this->original_contents_,
2652	    this->original_size_);
2653
2654  // If this owns a stub table and it is not empty, write it.
2655  if (this->is_stub_table_owner() && !this->stub_table_->empty())
2656    this->stub_table_->write(of);
2657}
2658
2659
2660// Arm output section class.  This is defined mainly to add a number of stub
2661// generation methods.
2662
2663template<int size, bool big_endian>
2664class AArch64_output_section : public Output_section
2665{
2666 public:
2667  typedef Target_aarch64<size, big_endian> The_target_aarch64;
2668  typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2669  typedef Stub_table<size, big_endian> The_stub_table;
2670  typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2671
2672 public:
2673  AArch64_output_section(const char* name, elfcpp::Elf_Word type,
2674			 elfcpp::Elf_Xword flags)
2675    : Output_section(name, type, flags)
2676  { }
2677
2678  ~AArch64_output_section() {}
2679
2680  // Group input sections for stub generation.
2681  void
2682  group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
2683		 const Task*);
2684
2685 private:
2686  typedef Output_section::Input_section Input_section;
2687  typedef Output_section::Input_section_list Input_section_list;
2688
2689  // Create a stub group.
2690  void
2691  create_stub_group(Input_section_list::const_iterator,
2692		    Input_section_list::const_iterator,
2693		    Input_section_list::const_iterator,
2694		    The_target_aarch64*,
2695		    std::vector<Output_relaxed_input_section*>&,
2696		    const Task*);
2697};  // End of AArch64_output_section
2698
2699
2700// Create a stub group for input sections from FIRST to LAST. OWNER points to
2701// the input section that will be the owner of the stub table.
2702
2703template<int size, bool big_endian> void
2704AArch64_output_section<size, big_endian>::create_stub_group(
2705    Input_section_list::const_iterator first,
2706    Input_section_list::const_iterator last,
2707    Input_section_list::const_iterator owner,
2708    The_target_aarch64* target,
2709    std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
2710    const Task* task)
2711{
2712  // Currently we convert ordinary input sections into relaxed sections only
2713  // at this point.
2714  The_aarch64_input_section* input_section;
2715  if (owner->is_relaxed_input_section())
2716    gold_unreachable();
2717  else
2718    {
2719      gold_assert(owner->is_input_section());
2720      // Create a new relaxed input section.  We need to lock the original
2721      // file.
2722      Task_lock_obj<Object> tl(task, owner->relobj());
2723      input_section =
2724	  target->new_aarch64_input_section(owner->relobj(), owner->shndx());
2725      new_relaxed_sections.push_back(input_section);
2726    }
2727
2728  // Create a stub table.
2729  The_stub_table* stub_table =
2730      target->new_stub_table(input_section);
2731
2732  input_section->set_stub_table(stub_table);
2733
2734  Input_section_list::const_iterator p = first;
2735  // Look for input sections or relaxed input sections in [first ... last].
2736  do
2737    {
2738      if (p->is_input_section() || p->is_relaxed_input_section())
2739	{
2740	  // The stub table information for input sections live
2741	  // in their objects.
2742	  The_aarch64_relobj* aarch64_relobj =
2743	      static_cast<The_aarch64_relobj*>(p->relobj());
2744	  aarch64_relobj->set_stub_table(p->shndx(), stub_table);
2745	}
2746    }
2747  while (p++ != last);
2748}
2749
2750
2751// Group input sections for stub generation. GROUP_SIZE is roughly the limit of
2752// stub groups. We grow a stub group by adding input section until the size is
2753// just below GROUP_SIZE. The last input section will be converted into a stub
2754// table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
2755// after the stub table, effectively doubling the group size.
2756//
2757// This is similar to the group_sections() function in elf32-arm.c but is
2758// implemented differently.
2759
2760template<int size, bool big_endian>
2761void AArch64_output_section<size, big_endian>::group_sections(
2762    section_size_type group_size,
2763    bool stubs_always_after_branch,
2764    Target_aarch64<size, big_endian>* target,
2765    const Task* task)
2766{
2767  typedef enum
2768  {
2769    NO_GROUP,
2770    FINDING_STUB_SECTION,
2771    HAS_STUB_SECTION
2772  } State;
2773
2774  std::vector<Output_relaxed_input_section*> new_relaxed_sections;
2775
2776  State state = NO_GROUP;
2777  section_size_type off = 0;
2778  section_size_type group_begin_offset = 0;
2779  section_size_type group_end_offset = 0;
2780  section_size_type stub_table_end_offset = 0;
2781  Input_section_list::const_iterator group_begin =
2782      this->input_sections().end();
2783  Input_section_list::const_iterator stub_table =
2784      this->input_sections().end();
2785  Input_section_list::const_iterator group_end = this->input_sections().end();
2786  for (Input_section_list::const_iterator p = this->input_sections().begin();
2787       p != this->input_sections().end();
2788       ++p)
2789    {
2790      section_size_type section_begin_offset =
2791	align_address(off, p->addralign());
2792      section_size_type section_end_offset =
2793	section_begin_offset + p->data_size();
2794
2795      // Check to see if we should group the previously seen sections.
2796      switch (state)
2797	{
2798	case NO_GROUP:
2799	  break;
2800
2801	case FINDING_STUB_SECTION:
2802	  // Adding this section makes the group larger than GROUP_SIZE.
2803	  if (section_end_offset - group_begin_offset >= group_size)
2804	    {
2805	      if (stubs_always_after_branch)
2806		{
2807		  gold_assert(group_end != this->input_sections().end());
2808		  this->create_stub_group(group_begin, group_end, group_end,
2809					  target, new_relaxed_sections,
2810					  task);
2811		  state = NO_GROUP;
2812		}
2813	      else
2814		{
2815		  // Input sections up to stub_group_size bytes after the stub
2816		  // table can be handled by it too.
2817		  state = HAS_STUB_SECTION;
2818		  stub_table = group_end;
2819		  stub_table_end_offset = group_end_offset;
2820		}
2821	    }
2822	    break;
2823
2824	case HAS_STUB_SECTION:
2825	  // Adding this section makes the post stub-section group larger
2826	  // than GROUP_SIZE.
2827	  gold_unreachable();
2828	  // NOT SUPPORTED YET. For completeness only.
2829	  if (section_end_offset - stub_table_end_offset >= group_size)
2830	   {
2831	     gold_assert(group_end != this->input_sections().end());
2832	     this->create_stub_group(group_begin, group_end, stub_table,
2833				     target, new_relaxed_sections, task);
2834	     state = NO_GROUP;
2835	   }
2836	   break;
2837
2838	  default:
2839	    gold_unreachable();
2840	}
2841
2842      // If we see an input section and currently there is no group, start
2843      // a new one.  Skip any empty sections.  We look at the data size
2844      // instead of calling p->relobj()->section_size() to avoid locking.
2845      if ((p->is_input_section() || p->is_relaxed_input_section())
2846	  && (p->data_size() != 0))
2847	{
2848	  if (state == NO_GROUP)
2849	    {
2850	      state = FINDING_STUB_SECTION;
2851	      group_begin = p;
2852	      group_begin_offset = section_begin_offset;
2853	    }
2854
2855	  // Keep track of the last input section seen.
2856	  group_end = p;
2857	  group_end_offset = section_end_offset;
2858	}
2859
2860      off = section_end_offset;
2861    }
2862
2863  // Create a stub group for any ungrouped sections.
2864  if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
2865    {
2866      gold_assert(group_end != this->input_sections().end());
2867      this->create_stub_group(group_begin, group_end,
2868			      (state == FINDING_STUB_SECTION
2869			       ? group_end
2870			       : stub_table),
2871			      target, new_relaxed_sections, task);
2872    }
2873
2874  if (!new_relaxed_sections.empty())
2875    this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
2876
2877  // Update the section offsets
2878  for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
2879    {
2880      The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
2881	  new_relaxed_sections[i]->relobj());
2882      unsigned int shndx = new_relaxed_sections[i]->shndx();
2883      // Tell AArch64_relobj that this input section is converted.
2884      relobj->convert_input_section_to_relaxed_section(shndx);
2885    }
2886}  // End of AArch64_output_section::group_sections
2887
2888
2889AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;
2890
2891
2892// The aarch64 target class.
2893// See the ABI at
2894// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
2895template<int size, bool big_endian>
2896class Target_aarch64 : public Sized_target<size, big_endian>
2897{
2898 public:
2899  typedef Target_aarch64<size, big_endian> This;
2900  typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2901      Reloc_section;
2902  typedef Relocate_info<size, big_endian> The_relocate_info;
2903  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2904  typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2905  typedef Reloc_stub<size, big_endian> The_reloc_stub;
2906  typedef Erratum_stub<size, big_endian> The_erratum_stub;
2907  typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
2908  typedef Stub_table<size, big_endian> The_stub_table;
2909  typedef std::vector<The_stub_table*> Stub_table_list;
2910  typedef typename Stub_table_list::iterator Stub_table_iterator;
2911  typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2912  typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
2913  typedef Unordered_map<Section_id,
2914			AArch64_input_section<size, big_endian>*,
2915			Section_id_hash> AArch64_input_section_map;
2916  typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2917  const static int TCB_SIZE = size / 8 * 2;
2918
2919  Target_aarch64(const Target::Target_info* info = &aarch64_info)
2920    : Sized_target<size, big_endian>(info),
2921      got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2922      got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
2923      rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
2924      got_mod_index_offset_(-1U),
2925      tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
2926      stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
2927  { }
2928
2929  // Scan the relocations to determine unreferenced sections for
2930  // garbage collection.
2931  void
2932  gc_process_relocs(Symbol_table* symtab,
2933		    Layout* layout,
2934		    Sized_relobj_file<size, big_endian>* object,
2935		    unsigned int data_shndx,
2936		    unsigned int sh_type,
2937		    const unsigned char* prelocs,
2938		    size_t reloc_count,
2939		    Output_section* output_section,
2940		    bool needs_special_offset_handling,
2941		    size_t local_symbol_count,
2942		    const unsigned char* plocal_symbols);
2943
2944  // Scan the relocations to look for symbol adjustments.
2945  void
2946  scan_relocs(Symbol_table* symtab,
2947	      Layout* layout,
2948	      Sized_relobj_file<size, big_endian>* object,
2949	      unsigned int data_shndx,
2950	      unsigned int sh_type,
2951	      const unsigned char* prelocs,
2952	      size_t reloc_count,
2953	      Output_section* output_section,
2954	      bool needs_special_offset_handling,
2955	      size_t local_symbol_count,
2956	      const unsigned char* plocal_symbols);
2957
2958  // Finalize the sections.
2959  void
2960  do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2961
2962  // Return the value to use for a dynamic which requires special
2963  // treatment.
2964  uint64_t
2965  do_dynsym_value(const Symbol*) const;
2966
2967  // Relocate a section.
2968  void
2969  relocate_section(const Relocate_info<size, big_endian>*,
2970		   unsigned int sh_type,
2971		   const unsigned char* prelocs,
2972		   size_t reloc_count,
2973		   Output_section* output_section,
2974		   bool needs_special_offset_handling,
2975		   unsigned char* view,
2976		   typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2977		   section_size_type view_size,
2978		   const Reloc_symbol_changes*);
2979
2980  // Scan the relocs during a relocatable link.
2981  void
2982  scan_relocatable_relocs(Symbol_table* symtab,
2983			  Layout* layout,
2984			  Sized_relobj_file<size, big_endian>* object,
2985			  unsigned int data_shndx,
2986			  unsigned int sh_type,
2987			  const unsigned char* prelocs,
2988			  size_t reloc_count,
2989			  Output_section* output_section,
2990			  bool needs_special_offset_handling,
2991			  size_t local_symbol_count,
2992			  const unsigned char* plocal_symbols,
2993			  Relocatable_relocs*);
2994
2995  // Scan the relocs for --emit-relocs.
2996  void
2997  emit_relocs_scan(Symbol_table* symtab,
2998		   Layout* layout,
2999		   Sized_relobj_file<size, big_endian>* object,
3000		   unsigned int data_shndx,
3001		   unsigned int sh_type,
3002		   const unsigned char* prelocs,
3003		   size_t reloc_count,
3004		   Output_section* output_section,
3005		   bool needs_special_offset_handling,
3006		   size_t local_symbol_count,
3007		   const unsigned char* plocal_syms,
3008		   Relocatable_relocs* rr);
3009
3010  // Relocate a section during a relocatable link.
3011  void
3012  relocate_relocs(
3013      const Relocate_info<size, big_endian>*,
3014      unsigned int sh_type,
3015      const unsigned char* prelocs,
3016      size_t reloc_count,
3017      Output_section* output_section,
3018      typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
3019      unsigned char* view,
3020      typename elfcpp::Elf_types<size>::Elf_Addr view_address,
3021      section_size_type view_size,
3022      unsigned char* reloc_view,
3023      section_size_type reloc_view_size);
3024
3025  // Return the symbol index to use for a target specific relocation.
3026  // The only target specific relocation is R_AARCH64_TLSDESC for a
3027  // local symbol, which is an absolute reloc.
3028  unsigned int
3029  do_reloc_symbol_index(void*, unsigned int r_type) const
3030  {
3031    gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
3032    return 0;
3033  }
3034
3035  // Return the addend to use for a target specific relocation.
3036  uint64_t
3037  do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
3038
3039  // Return the PLT section.
3040  uint64_t
3041  do_plt_address_for_global(const Symbol* gsym) const
3042  { return this->plt_section()->address_for_global(gsym); }
3043
3044  uint64_t
3045  do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
3046  { return this->plt_section()->address_for_local(relobj, symndx); }
3047
3048  // This function should be defined in targets that can use relocation
3049  // types to determine (implemented in local_reloc_may_be_function_pointer
3050  // and global_reloc_may_be_function_pointer)
3051  // if a function's pointer is taken.  ICF uses this in safe mode to only
3052  // fold those functions whose pointer is defintely not taken.
3053  bool
3054  do_can_check_for_function_pointers() const
3055  { return true; }
3056
3057  // Return the number of entries in the PLT.
3058  unsigned int
3059  plt_entry_count() const;
3060
3061  //Return the offset of the first non-reserved PLT entry.
3062  unsigned int
3063  first_plt_entry_offset() const;
3064
3065  // Return the size of each PLT entry.
3066  unsigned int
3067  plt_entry_size() const;
3068
3069  // Create a stub table.
3070  The_stub_table*
3071  new_stub_table(The_aarch64_input_section*);
3072
3073  // Create an aarch64 input section.
3074  The_aarch64_input_section*
3075  new_aarch64_input_section(Relobj*, unsigned int);
3076
3077  // Find an aarch64 input section instance for a given OBJ and SHNDX.
3078  The_aarch64_input_section*
3079  find_aarch64_input_section(Relobj*, unsigned int) const;
3080
3081  // Return the thread control block size.
3082  unsigned int
3083  tcb_size() const { return This::TCB_SIZE; }
3084
3085  // Scan a section for stub generation.
3086  void
3087  scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
3088			 const unsigned char*, size_t, Output_section*,
3089			 bool, const unsigned char*,
3090			 Address,
3091			 section_size_type);
3092
3093  // Scan a relocation section for stub.
3094  template<int sh_type>
3095  void
3096  scan_reloc_section_for_stubs(
3097      const The_relocate_info* relinfo,
3098      const unsigned char* prelocs,
3099      size_t reloc_count,
3100      Output_section* output_section,
3101      bool needs_special_offset_handling,
3102      const unsigned char* view,
3103      Address view_address,
3104      section_size_type);
3105
3106  // Relocate a single reloc stub.
3107  void
3108  relocate_reloc_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
3109                      Output_section*, unsigned char*, Address,
3110                      section_size_type);
3111
3112  // Get the default AArch64 target.
3113  static This*
3114  current_target()
3115  {
3116    gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
3117		&& parameters->target().get_size() == size
3118		&& parameters->target().is_big_endian() == big_endian);
3119    return static_cast<This*>(parameters->sized_target<size, big_endian>());
3120  }
3121
3122
3123  // Scan erratum 843419 for a part of a section.
3124  void
3125  scan_erratum_843419_span(
3126    AArch64_relobj<size, big_endian>*,
3127    unsigned int,
3128    const section_size_type,
3129    const section_size_type,
3130    unsigned char*,
3131    Address);
3132
3133  // Scan erratum 835769 for a part of a section.
3134  void
3135  scan_erratum_835769_span(
3136    AArch64_relobj<size, big_endian>*,
3137    unsigned int,
3138    const section_size_type,
3139    const section_size_type,
3140    unsigned char*,
3141    Address);
3142
3143 protected:
3144  void
3145  do_select_as_default_target()
3146  {
3147    gold_assert(aarch64_reloc_property_table == NULL);
3148    aarch64_reloc_property_table = new AArch64_reloc_property_table();
3149  }
3150
3151  // Add a new reloc argument, returning the index in the vector.
3152  size_t
3153  add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
3154		   unsigned int r_sym)
3155  {
3156    this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
3157    return this->tlsdesc_reloc_info_.size() - 1;
3158  }
3159
3160  virtual Output_data_plt_aarch64<size, big_endian>*
3161  do_make_data_plt(Layout* layout,
3162		   Output_data_got_aarch64<size, big_endian>* got,
3163		   Output_data_space* got_plt,
3164		   Output_data_space* got_irelative)
3165  {
3166    return new Output_data_plt_aarch64_standard<size, big_endian>(
3167      layout, got, got_plt, got_irelative);
3168  }
3169
3170
3171  // do_make_elf_object to override the same function in the base class.
3172  Object*
3173  do_make_elf_object(const std::string&, Input_file*, off_t,
3174		     const elfcpp::Ehdr<size, big_endian>&);
3175
3176  Output_data_plt_aarch64<size, big_endian>*
3177  make_data_plt(Layout* layout,
3178		Output_data_got_aarch64<size, big_endian>* got,
3179		Output_data_space* got_plt,
3180		Output_data_space* got_irelative)
3181  {
3182    return this->do_make_data_plt(layout, got, got_plt, got_irelative);
3183  }
3184
3185  // We only need to generate stubs, and hence perform relaxation if we are
3186  // not doing relocatable linking.
3187  virtual bool
3188  do_may_relax() const
3189  { return !parameters->options().relocatable(); }
3190
3191  // Relaxation hook.  This is where we do stub generation.
3192  virtual bool
3193  do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
3194
3195  void
3196  group_sections(Layout* layout,
3197		 section_size_type group_size,
3198		 bool stubs_always_after_branch,
3199		 const Task* task);
3200
3201  void
3202  scan_reloc_for_stub(const The_relocate_info*, unsigned int,
3203		      const Sized_symbol<size>*, unsigned int,
3204		      const Symbol_value<size>*,
3205		      typename elfcpp::Elf_types<size>::Elf_Swxword,
3206		      Address Elf_Addr);
3207
3208  // Make an output section.
3209  Output_section*
3210  do_make_output_section(const char* name, elfcpp::Elf_Word type,
3211			 elfcpp::Elf_Xword flags)
3212  { return new The_aarch64_output_section(name, type, flags); }
3213
3214 private:
3215  // The class which scans relocations.
3216  class Scan
3217  {
3218  public:
3219    Scan()
3220      : issued_non_pic_error_(false)
3221    { }
3222
3223    inline void
3224    local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3225	  Sized_relobj_file<size, big_endian>* object,
3226	  unsigned int data_shndx,
3227	  Output_section* output_section,
3228	  const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3229	  const elfcpp::Sym<size, big_endian>& lsym,
3230	  bool is_discarded);
3231
3232    inline void
3233    global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3234	   Sized_relobj_file<size, big_endian>* object,
3235	   unsigned int data_shndx,
3236	   Output_section* output_section,
3237	   const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3238	   Symbol* gsym);
3239
3240    inline bool
3241    local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3242					Target_aarch64<size, big_endian>* ,
3243					Sized_relobj_file<size, big_endian>* ,
3244					unsigned int ,
3245					Output_section* ,
3246					const elfcpp::Rela<size, big_endian>& ,
3247					unsigned int r_type,
3248					const elfcpp::Sym<size, big_endian>&);
3249
3250    inline bool
3251    global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3252					 Target_aarch64<size, big_endian>* ,
3253					 Sized_relobj_file<size, big_endian>* ,
3254					 unsigned int ,
3255					 Output_section* ,
3256					 const elfcpp::Rela<size, big_endian>& ,
3257					 unsigned int r_type,
3258					 Symbol* gsym);
3259
3260  private:
3261    static void
3262    unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3263			    unsigned int r_type);
3264
3265    static void
3266    unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3267			     unsigned int r_type, Symbol*);
3268
3269    inline bool
3270    possible_function_pointer_reloc(unsigned int r_type);
3271
3272    void
3273    check_non_pic(Relobj*, unsigned int r_type);
3274
3275    bool
3276    reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
3277			      unsigned int r_type);
3278
3279    // Whether we have issued an error about a non-PIC compilation.
3280    bool issued_non_pic_error_;
3281  };
3282
3283  // The class which implements relocation.
3284  class Relocate
3285  {
3286   public:
3287    Relocate()
3288      : skip_call_tls_get_addr_(false)
3289    { }
3290
3291    ~Relocate()
3292    { }
3293
3294    // Do a relocation.  Return false if the caller should not issue
3295    // any warnings about this relocation.
3296    inline bool
3297    relocate(const Relocate_info<size, big_endian>*, unsigned int,
3298	     Target_aarch64*, Output_section*, size_t, const unsigned char*,
3299	     const Sized_symbol<size>*, const Symbol_value<size>*,
3300	     unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
3301	     section_size_type);
3302
3303  private:
3304    inline typename AArch64_relocate_functions<size, big_endian>::Status
3305    relocate_tls(const Relocate_info<size, big_endian>*,
3306		 Target_aarch64<size, big_endian>*,
3307		 size_t,
3308		 const elfcpp::Rela<size, big_endian>&,
3309		 unsigned int r_type, const Sized_symbol<size>*,
3310		 const Symbol_value<size>*,
3311		 unsigned char*,
3312		 typename elfcpp::Elf_types<size>::Elf_Addr);
3313
3314    inline typename AArch64_relocate_functions<size, big_endian>::Status
3315    tls_gd_to_le(
3316		 const Relocate_info<size, big_endian>*,
3317		 Target_aarch64<size, big_endian>*,
3318		 const elfcpp::Rela<size, big_endian>&,
3319		 unsigned int,
3320		 unsigned char*,
3321		 const Symbol_value<size>*);
3322
3323    inline typename AArch64_relocate_functions<size, big_endian>::Status
3324    tls_ld_to_le(
3325		 const Relocate_info<size, big_endian>*,
3326		 Target_aarch64<size, big_endian>*,
3327		 const elfcpp::Rela<size, big_endian>&,
3328		 unsigned int,
3329		 unsigned char*,
3330		 const Symbol_value<size>*);
3331
3332    inline typename AArch64_relocate_functions<size, big_endian>::Status
3333    tls_ie_to_le(
3334		 const Relocate_info<size, big_endian>*,
3335		 Target_aarch64<size, big_endian>*,
3336		 const elfcpp::Rela<size, big_endian>&,
3337		 unsigned int,
3338		 unsigned char*,
3339		 const Symbol_value<size>*);
3340
3341    inline typename AArch64_relocate_functions<size, big_endian>::Status
3342    tls_desc_gd_to_le(
3343		 const Relocate_info<size, big_endian>*,
3344		 Target_aarch64<size, big_endian>*,
3345		 const elfcpp::Rela<size, big_endian>&,
3346		 unsigned int,
3347		 unsigned char*,
3348		 const Symbol_value<size>*);
3349
3350    inline typename AArch64_relocate_functions<size, big_endian>::Status
3351    tls_desc_gd_to_ie(
3352		 const Relocate_info<size, big_endian>*,
3353		 Target_aarch64<size, big_endian>*,
3354		 const elfcpp::Rela<size, big_endian>&,
3355		 unsigned int,
3356		 unsigned char*,
3357		 const Symbol_value<size>*,
3358		 typename elfcpp::Elf_types<size>::Elf_Addr,
3359		 typename elfcpp::Elf_types<size>::Elf_Addr);
3360
3361    bool skip_call_tls_get_addr_;
3362
3363  };  // End of class Relocate
3364
3365  // Adjust TLS relocation type based on the options and whether this
3366  // is a local symbol.
3367  static tls::Tls_optimization
3368  optimize_tls_reloc(bool is_final, int r_type);
3369
3370  // Get the GOT section, creating it if necessary.
3371  Output_data_got_aarch64<size, big_endian>*
3372  got_section(Symbol_table*, Layout*);
3373
3374  // Get the GOT PLT section.
3375  Output_data_space*
3376  got_plt_section() const
3377  {
3378    gold_assert(this->got_plt_ != NULL);
3379    return this->got_plt_;
3380  }
3381
3382  // Get the GOT section for TLSDESC entries.
3383  Output_data_got<size, big_endian>*
3384  got_tlsdesc_section() const
3385  {
3386    gold_assert(this->got_tlsdesc_ != NULL);
3387    return this->got_tlsdesc_;
3388  }
3389
3390  // Create the PLT section.
3391  void
3392  make_plt_section(Symbol_table* symtab, Layout* layout);
3393
3394  // Create a PLT entry for a global symbol.
3395  void
3396  make_plt_entry(Symbol_table*, Layout*, Symbol*);
3397
3398  // Create a PLT entry for a local STT_GNU_IFUNC symbol.
3399  void
3400  make_local_ifunc_plt_entry(Symbol_table*, Layout*,
3401			     Sized_relobj_file<size, big_endian>* relobj,
3402			     unsigned int local_sym_index);
3403
3404  // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3405  void
3406  define_tls_base_symbol(Symbol_table*, Layout*);
3407
3408  // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3409  void
3410  reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
3411
3412  // Create a GOT entry for the TLS module index.
3413  unsigned int
3414  got_mod_index_entry(Symbol_table* symtab, Layout* layout,
3415		      Sized_relobj_file<size, big_endian>* object);
3416
3417  // Get the PLT section.
3418  Output_data_plt_aarch64<size, big_endian>*
3419  plt_section() const
3420  {
3421    gold_assert(this->plt_ != NULL);
3422    return this->plt_;
3423  }
3424
3425  // Helper method to create erratum stubs for ST_E_843419 and ST_E_835769. For
3426  // ST_E_843419, we need an additional field for adrp offset.
3427  void create_erratum_stub(
3428    AArch64_relobj<size, big_endian>* relobj,
3429    unsigned int shndx,
3430    section_size_type erratum_insn_offset,
3431    Address erratum_address,
3432    typename Insn_utilities::Insntype erratum_insn,
3433    int erratum_type,
3434    unsigned int e843419_adrp_offset=0);
3435
3436  // Return whether this is a 3-insn erratum sequence.
3437  bool is_erratum_843419_sequence(
3438      typename elfcpp::Swap<32,big_endian>::Valtype insn1,
3439      typename elfcpp::Swap<32,big_endian>::Valtype insn2,
3440      typename elfcpp::Swap<32,big_endian>::Valtype insn3);
3441
3442  // Return whether this is a 835769 sequence.
3443  // (Similarly implemented as in elfnn-aarch64.c.)
3444  bool is_erratum_835769_sequence(
3445      typename elfcpp::Swap<32,big_endian>::Valtype,
3446      typename elfcpp::Swap<32,big_endian>::Valtype);
3447
3448  // Get the dynamic reloc section, creating it if necessary.
3449  Reloc_section*
3450  rela_dyn_section(Layout*);
3451
3452  // Get the section to use for TLSDESC relocations.
3453  Reloc_section*
3454  rela_tlsdesc_section(Layout*) const;
3455
3456  // Get the section to use for IRELATIVE relocations.
3457  Reloc_section*
3458  rela_irelative_section(Layout*);
3459
3460  // Add a potential copy relocation.
3461  void
3462  copy_reloc(Symbol_table* symtab, Layout* layout,
3463	     Sized_relobj_file<size, big_endian>* object,
3464	     unsigned int shndx, Output_section* output_section,
3465	     Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
3466  {
3467    unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
3468    this->copy_relocs_.copy_reloc(symtab, layout,
3469				  symtab->get_sized_symbol<size>(sym),
3470				  object, shndx, output_section,
3471				  r_type, reloc.get_r_offset(),
3472				  reloc.get_r_addend(),
3473				  this->rela_dyn_section(layout));
3474  }
3475
3476  // Information about this specific target which we pass to the
3477  // general Target structure.
3478  static const Target::Target_info aarch64_info;
3479
3480  // The types of GOT entries needed for this platform.
3481  // These values are exposed to the ABI in an incremental link.
3482  // Do not renumber existing values without changing the version
3483  // number of the .gnu_incremental_inputs section.
3484  enum Got_type
3485  {
3486    GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
3487    GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
3488    GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
3489    GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
3490  };
3491
3492  // This type is used as the argument to the target specific
3493  // relocation routines.  The only target specific reloc is
3494  // R_AARCh64_TLSDESC against a local symbol.
3495  struct Tlsdesc_info
3496  {
3497    Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
3498		 unsigned int a_r_sym)
3499      : object(a_object), r_sym(a_r_sym)
3500    { }
3501
3502    // The object in which the local symbol is defined.
3503    Sized_relobj_file<size, big_endian>* object;
3504    // The local symbol index in the object.
3505    unsigned int r_sym;
3506  };
3507
3508  // The GOT section.
3509  Output_data_got_aarch64<size, big_endian>* got_;
3510  // The PLT section.
3511  Output_data_plt_aarch64<size, big_endian>* plt_;
3512  // The GOT PLT section.
3513  Output_data_space* got_plt_;
3514  // The GOT section for IRELATIVE relocations.
3515  Output_data_space* got_irelative_;
3516  // The GOT section for TLSDESC relocations.
3517  Output_data_got<size, big_endian>* got_tlsdesc_;
3518  // The _GLOBAL_OFFSET_TABLE_ symbol.
3519  Symbol* global_offset_table_;
3520  // The dynamic reloc section.
3521  Reloc_section* rela_dyn_;
3522  // The section to use for IRELATIVE relocs.
3523  Reloc_section* rela_irelative_;
3524  // Relocs saved to avoid a COPY reloc.
3525  Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
3526  // Offset of the GOT entry for the TLS module index.
3527  unsigned int got_mod_index_offset_;
3528  // We handle R_AARCH64_TLSDESC against a local symbol as a target
3529  // specific relocation. Here we store the object and local symbol
3530  // index for the relocation.
3531  std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
3532  // True if the _TLS_MODULE_BASE_ symbol has been defined.
3533  bool tls_base_symbol_defined_;
3534  // List of stub_tables
3535  Stub_table_list stub_tables_;
3536  // Actual stub group size
3537  section_size_type stub_group_size_;
3538  AArch64_input_section_map aarch64_input_section_map_;
3539};  // End of Target_aarch64
3540
3541
3542template<>
3543const Target::Target_info Target_aarch64<64, false>::aarch64_info =
3544{
3545  64,			// size
3546  false,		// is_big_endian
3547  elfcpp::EM_AARCH64,	// machine_code
3548  false,		// has_make_symbol
3549  false,		// has_resolve
3550  false,		// has_code_fill
3551  false,		// is_default_stack_executable
3552  true,			// can_icf_inline_merge_sections
3553  '\0',			// wrap_char
3554  "/lib/ld.so.1",	// program interpreter
3555  0x400000,		// default_text_segment_address
3556  0x10000,		// abi_pagesize (overridable by -z max-page-size)
3557  0x1000,		// common_pagesize (overridable by -z common-page-size)
3558  false,                // isolate_execinstr
3559  0,                    // rosegment_gap
3560  elfcpp::SHN_UNDEF,	// small_common_shndx
3561  elfcpp::SHN_UNDEF,	// large_common_shndx
3562  0,			// small_common_section_flags
3563  0,			// large_common_section_flags
3564  NULL,			// attributes_section
3565  NULL,			// attributes_vendor
3566  "_start",		// entry_symbol_name
3567  32,			// hash_entry_size
3568  elfcpp::SHT_PROGBITS,	// unwind_section_type
3569};
3570
3571template<>
3572const Target::Target_info Target_aarch64<32, false>::aarch64_info =
3573{
3574  32,			// size
3575  false,		// is_big_endian
3576  elfcpp::EM_AARCH64,	// machine_code
3577  false,		// has_make_symbol
3578  false,		// has_resolve
3579  false,		// has_code_fill
3580  false,		// is_default_stack_executable
3581  false,		// can_icf_inline_merge_sections
3582  '\0',			// wrap_char
3583  "/lib/ld.so.1",	// program interpreter
3584  0x400000,		// default_text_segment_address
3585  0x10000,		// abi_pagesize (overridable by -z max-page-size)
3586  0x1000,		// common_pagesize (overridable by -z common-page-size)
3587  false,                // isolate_execinstr
3588  0,                    // rosegment_gap
3589  elfcpp::SHN_UNDEF,	// small_common_shndx
3590  elfcpp::SHN_UNDEF,	// large_common_shndx
3591  0,			// small_common_section_flags
3592  0,			// large_common_section_flags
3593  NULL,			// attributes_section
3594  NULL,			// attributes_vendor
3595  "_start",		// entry_symbol_name
3596  32,			// hash_entry_size
3597  elfcpp::SHT_PROGBITS,	// unwind_section_type
3598};
3599
3600template<>
3601const Target::Target_info Target_aarch64<64, true>::aarch64_info =
3602{
3603  64,			// size
3604  true,			// is_big_endian
3605  elfcpp::EM_AARCH64,	// machine_code
3606  false,		// has_make_symbol
3607  false,		// has_resolve
3608  false,		// has_code_fill
3609  false,		// is_default_stack_executable
3610  true,			// can_icf_inline_merge_sections
3611  '\0',			// wrap_char
3612  "/lib/ld.so.1",	// program interpreter
3613  0x400000,		// default_text_segment_address
3614  0x10000,		// abi_pagesize (overridable by -z max-page-size)
3615  0x1000,		// common_pagesize (overridable by -z common-page-size)
3616  false,                // isolate_execinstr
3617  0,                    // rosegment_gap
3618  elfcpp::SHN_UNDEF,	// small_common_shndx
3619  elfcpp::SHN_UNDEF,	// large_common_shndx
3620  0,			// small_common_section_flags
3621  0,			// large_common_section_flags
3622  NULL,			// attributes_section
3623  NULL,			// attributes_vendor
3624  "_start",		// entry_symbol_name
3625  32,			// hash_entry_size
3626  elfcpp::SHT_PROGBITS,	// unwind_section_type
3627};
3628
3629template<>
3630const Target::Target_info Target_aarch64<32, true>::aarch64_info =
3631{
3632  32,			// size
3633  true,			// is_big_endian
3634  elfcpp::EM_AARCH64,	// machine_code
3635  false,		// has_make_symbol
3636  false,		// has_resolve
3637  false,		// has_code_fill
3638  false,		// is_default_stack_executable
3639  false,		// can_icf_inline_merge_sections
3640  '\0',			// wrap_char
3641  "/lib/ld.so.1",	// program interpreter
3642  0x400000,		// default_text_segment_address
3643  0x10000,		// abi_pagesize (overridable by -z max-page-size)
3644  0x1000,		// common_pagesize (overridable by -z common-page-size)
3645  false,                // isolate_execinstr
3646  0,                    // rosegment_gap
3647  elfcpp::SHN_UNDEF,	// small_common_shndx
3648  elfcpp::SHN_UNDEF,	// large_common_shndx
3649  0,			// small_common_section_flags
3650  0,			// large_common_section_flags
3651  NULL,			// attributes_section
3652  NULL,			// attributes_vendor
3653  "_start",		// entry_symbol_name
3654  32,			// hash_entry_size
3655  elfcpp::SHT_PROGBITS,	// unwind_section_type
3656};
3657
3658// Get the GOT section, creating it if necessary.
3659
3660template<int size, bool big_endian>
3661Output_data_got_aarch64<size, big_endian>*
3662Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
3663					      Layout* layout)
3664{
3665  if (this->got_ == NULL)
3666    {
3667      gold_assert(symtab != NULL && layout != NULL);
3668
3669      // When using -z now, we can treat .got.plt as a relro section.
3670      // Without -z now, it is modified after program startup by lazy
3671      // PLT relocations.
3672      bool is_got_plt_relro = parameters->options().now();
3673      Output_section_order got_order = (is_got_plt_relro
3674					? ORDER_RELRO
3675					: ORDER_RELRO_LAST);
3676      Output_section_order got_plt_order = (is_got_plt_relro
3677					    ? ORDER_RELRO
3678					    : ORDER_NON_RELRO_FIRST);
3679
3680      // Layout of .got and .got.plt sections.
3681      // .got[0] &_DYNAMIC                          <-_GLOBAL_OFFSET_TABLE_
3682      // ...
3683      // .gotplt[0] reserved for ld.so (&linkmap)   <--DT_PLTGOT
3684      // .gotplt[1] reserved for ld.so (resolver)
3685      // .gotplt[2] reserved
3686
3687      // Generate .got section.
3688      this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
3689								 layout);
3690      layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3691				      (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
3692				      this->got_, got_order, true);
3693      // The first word of GOT is reserved for the address of .dynamic.
3694      // We put 0 here now. The value will be replaced later in
3695      // Output_data_got_aarch64::do_write.
3696      this->got_->add_constant(0);
3697
3698      // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3699      // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
3700      // even if there is a .got.plt section.
3701      this->global_offset_table_ =
3702	symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3703				      Symbol_table::PREDEFINED,
3704				      this->got_,
3705				      0, 0, elfcpp::STT_OBJECT,
3706				      elfcpp::STB_LOCAL,
3707				      elfcpp::STV_HIDDEN, 0,
3708				      false, false);
3709
3710      // Generate .got.plt section.
3711      this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
3712      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3713				      (elfcpp::SHF_ALLOC
3714				       | elfcpp::SHF_WRITE),
3715				      this->got_plt_, got_plt_order,
3716				      is_got_plt_relro);
3717
3718      // The first three entries are reserved.
3719      this->got_plt_->set_current_data_size(
3720	AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3721
3722      // If there are any IRELATIVE relocations, they get GOT entries
3723      // in .got.plt after the jump slot entries.
3724      this->got_irelative_ = new Output_data_space(size / 8,
3725						   "** GOT IRELATIVE PLT");
3726      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3727				      (elfcpp::SHF_ALLOC
3728				       | elfcpp::SHF_WRITE),
3729				      this->got_irelative_,
3730				      got_plt_order,
3731				      is_got_plt_relro);
3732
3733      // If there are any TLSDESC relocations, they get GOT entries in
3734      // .got.plt after the jump slot and IRELATIVE entries.
3735      this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
3736      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3737				      (elfcpp::SHF_ALLOC
3738				       | elfcpp::SHF_WRITE),
3739				      this->got_tlsdesc_,
3740				      got_plt_order,
3741				      is_got_plt_relro);
3742
3743      if (!is_got_plt_relro)
3744	{
3745	  // Those bytes can go into the relro segment.
3746	  layout->increase_relro(
3747	    AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3748	}
3749
3750    }
3751  return this->got_;
3752}
3753
3754// Get the dynamic reloc section, creating it if necessary.
3755
3756template<int size, bool big_endian>
3757typename Target_aarch64<size, big_endian>::Reloc_section*
3758Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
3759{
3760  if (this->rela_dyn_ == NULL)
3761    {
3762      gold_assert(layout != NULL);
3763      this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
3764      layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3765				      elfcpp::SHF_ALLOC, this->rela_dyn_,
3766				      ORDER_DYNAMIC_RELOCS, false);
3767    }
3768  return this->rela_dyn_;
3769}
3770
3771// Get the section to use for IRELATIVE relocs, creating it if
3772// necessary.  These go in .rela.dyn, but only after all other dynamic
3773// relocations.  They need to follow the other dynamic relocations so
3774// that they can refer to global variables initialized by those
3775// relocs.
3776
3777template<int size, bool big_endian>
3778typename Target_aarch64<size, big_endian>::Reloc_section*
3779Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
3780{
3781  if (this->rela_irelative_ == NULL)
3782    {
3783      // Make sure we have already created the dynamic reloc section.
3784      this->rela_dyn_section(layout);
3785      this->rela_irelative_ = new Reloc_section(false);
3786      layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3787				      elfcpp::SHF_ALLOC, this->rela_irelative_,
3788				      ORDER_DYNAMIC_RELOCS, false);
3789      gold_assert(this->rela_dyn_->output_section()
3790		  == this->rela_irelative_->output_section());
3791    }
3792  return this->rela_irelative_;
3793}
3794
3795
3796// do_make_elf_object to override the same function in the base class.  We need
3797// to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
3798// store backend specific information. Hence we need to have our own ELF object
3799// creation.
3800
3801template<int size, bool big_endian>
3802Object*
3803Target_aarch64<size, big_endian>::do_make_elf_object(
3804    const std::string& name,
3805    Input_file* input_file,
3806    off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
3807{
3808  int et = ehdr.get_e_type();
3809  // ET_EXEC files are valid input for --just-symbols/-R,
3810  // and we treat them as relocatable objects.
3811  if (et == elfcpp::ET_EXEC && input_file->just_symbols())
3812    return Sized_target<size, big_endian>::do_make_elf_object(
3813	name, input_file, offset, ehdr);
3814  else if (et == elfcpp::ET_REL)
3815    {
3816      AArch64_relobj<size, big_endian>* obj =
3817	new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
3818      obj->setup();
3819      return obj;
3820    }
3821  else if (et == elfcpp::ET_DYN)
3822    {
3823      // Keep base implementation.
3824      Sized_dynobj<size, big_endian>* obj =
3825	  new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
3826      obj->setup();
3827      return obj;
3828    }
3829  else
3830    {
3831      gold_error(_("%s: unsupported ELF file type %d"),
3832		 name.c_str(), et);
3833      return NULL;
3834    }
3835}
3836
3837
3838// Scan a relocation for stub generation.
3839
3840template<int size, bool big_endian>
3841void
3842Target_aarch64<size, big_endian>::scan_reloc_for_stub(
3843    const Relocate_info<size, big_endian>* relinfo,
3844    unsigned int r_type,
3845    const Sized_symbol<size>* gsym,
3846    unsigned int r_sym,
3847    const Symbol_value<size>* psymval,
3848    typename elfcpp::Elf_types<size>::Elf_Swxword addend,
3849    Address address)
3850{
3851  const AArch64_relobj<size, big_endian>* aarch64_relobj =
3852      static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3853
3854  Symbol_value<size> symval;
3855  if (gsym != NULL)
3856    {
3857      const AArch64_reloc_property* arp = aarch64_reloc_property_table->
3858	get_reloc_property(r_type);
3859      if (gsym->use_plt_offset(arp->reference_flags()))
3860	{
3861	  // This uses a PLT, change the symbol value.
3862	  symval.set_output_value(this->plt_address_for_global(gsym));
3863	  psymval = &symval;
3864	}
3865      else if (gsym->is_undefined())
3866	{
3867          // There is no need to generate a stub symbol if the original symbol
3868          // is undefined.
3869          gold_debug(DEBUG_TARGET,
3870                     "stub: not creating a stub for undefined symbol %s in file %s",
3871                     gsym->name(), aarch64_relobj->name().c_str());
3872          return;
3873	}
3874    }
3875
3876  // Get the symbol value.
3877  typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);
3878
3879  // Owing to pipelining, the PC relative branches below actually skip
3880  // two instructions when the branch offset is 0.
3881  Address destination = static_cast<Address>(-1);
3882  switch (r_type)
3883    {
3884    case elfcpp::R_AARCH64_CALL26:
3885    case elfcpp::R_AARCH64_JUMP26:
3886      destination = value + addend;
3887      break;
3888    default:
3889      gold_unreachable();
3890    }
3891
3892  int stub_type = The_reloc_stub::
3893      stub_type_for_reloc(r_type, address, destination);
3894  if (stub_type == ST_NONE)
3895    return;
3896
3897  The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
3898  gold_assert(stub_table != NULL);
3899
3900  The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
3901  The_reloc_stub* stub = stub_table->find_reloc_stub(key);
3902  if (stub == NULL)
3903    {
3904      stub = new The_reloc_stub(stub_type);
3905      stub_table->add_reloc_stub(stub, key);
3906    }
3907  stub->set_destination_address(destination);
3908}  // End of Target_aarch64::scan_reloc_for_stub
3909
3910
3911// This function scans a relocation section for stub generation.
3912// The template parameter Relocate must be a class type which provides
3913// a single function, relocate(), which implements the machine
3914// specific part of a relocation.
3915
3916// BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
3917// SHT_REL or SHT_RELA.
3918
3919// PRELOCS points to the relocation data.  RELOC_COUNT is the number
3920// of relocs.  OUTPUT_SECTION is the output section.
3921// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
3922// mapped to output offsets.
3923
3924// VIEW is the section data, VIEW_ADDRESS is its memory address, and
3925// VIEW_SIZE is the size.  These refer to the input section, unless
3926// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
3927// the output section.
3928
3929template<int size, bool big_endian>
3930template<int sh_type>
3931void inline
3932Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
3933    const Relocate_info<size, big_endian>* relinfo,
3934    const unsigned char* prelocs,
3935    size_t reloc_count,
3936    Output_section* /*output_section*/,
3937    bool /*needs_special_offset_handling*/,
3938    const unsigned char* /*view*/,
3939    Address view_address,
3940    section_size_type)
3941{
3942  typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;
3943
3944  const int reloc_size =
3945      Reloc_types<sh_type,size,big_endian>::reloc_size;
3946  AArch64_relobj<size, big_endian>* object =
3947      static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3948  unsigned int local_count = object->local_symbol_count();
3949
3950  gold::Default_comdat_behavior default_comdat_behavior;
3951  Comdat_behavior comdat_behavior = CB_UNDETERMINED;
3952
3953  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
3954    {
3955      Reltype reloc(prelocs);
3956      typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
3957      unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
3958      unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
3959      if (r_type != elfcpp::R_AARCH64_CALL26
3960	  && r_type != elfcpp::R_AARCH64_JUMP26)
3961	continue;
3962
3963      section_offset_type offset =
3964	  convert_to_section_size_type(reloc.get_r_offset());
3965
3966      // Get the addend.
3967      typename elfcpp::Elf_types<size>::Elf_Swxword addend =
3968	  reloc.get_r_addend();
3969
3970      const Sized_symbol<size>* sym;
3971      Symbol_value<size> symval;
3972      const Symbol_value<size> *psymval;
3973      bool is_defined_in_discarded_section;
3974      unsigned int shndx;
3975      const Symbol* gsym = NULL;
3976      if (r_sym < local_count)
3977	{
3978	  sym = NULL;
3979	  psymval = object->local_symbol(r_sym);
3980
3981	  // If the local symbol belongs to a section we are discarding,
3982	  // and that section is a debug section, try to find the
3983	  // corresponding kept section and map this symbol to its
3984	  // counterpart in the kept section.  The symbol must not
3985	  // correspond to a section we are folding.
3986	  bool is_ordinary;
3987	  shndx = psymval->input_shndx(&is_ordinary);
3988	  is_defined_in_discarded_section =
3989	    (is_ordinary
3990	     && shndx != elfcpp::SHN_UNDEF
3991	     && !object->is_section_included(shndx)
3992	     && !relinfo->symtab->is_section_folded(object, shndx));
3993
3994	  // We need to compute the would-be final value of this local
3995	  // symbol.
3996	  if (!is_defined_in_discarded_section)
3997	    {
3998	      typedef Sized_relobj_file<size, big_endian> ObjType;
3999	      if (psymval->is_section_symbol())
4000		symval.set_is_section_symbol();
4001	      typename ObjType::Compute_final_local_value_status status =
4002		object->compute_final_local_value(r_sym, psymval, &symval,
4003						  relinfo->symtab);
4004	      if (status == ObjType::CFLV_OK)
4005		{
4006		  // Currently we cannot handle a branch to a target in
4007		  // a merged section.  If this is the case, issue an error
4008		  // and also free the merge symbol value.
4009		  if (!symval.has_output_value())
4010		    {
4011		      const std::string& section_name =
4012			object->section_name(shndx);
4013		      object->error(_("cannot handle branch to local %u "
4014					  "in a merged section %s"),
4015					r_sym, section_name.c_str());
4016		    }
4017		  psymval = &symval;
4018		}
4019	      else
4020		{
4021		  // We cannot determine the final value.
4022		  continue;
4023		}
4024	    }
4025	}
4026      else
4027	{
4028	  gsym = object->global_symbol(r_sym);
4029	  gold_assert(gsym != NULL);
4030	  if (gsym->is_forwarder())
4031	    gsym = relinfo->symtab->resolve_forwards(gsym);
4032
4033	  sym = static_cast<const Sized_symbol<size>*>(gsym);
4034	  if (sym->has_symtab_index() && sym->symtab_index() != -1U)
4035	    symval.set_output_symtab_index(sym->symtab_index());
4036	  else
4037	    symval.set_no_output_symtab_entry();
4038
4039	  // We need to compute the would-be final value of this global
4040	  // symbol.
4041	  const Symbol_table* symtab = relinfo->symtab;
4042	  const Sized_symbol<size>* sized_symbol =
4043	      symtab->get_sized_symbol<size>(gsym);
4044	  Symbol_table::Compute_final_value_status status;
4045	  typename elfcpp::Elf_types<size>::Elf_Addr value =
4046	      symtab->compute_final_value<size>(sized_symbol, &status);
4047
4048	  // Skip this if the symbol has not output section.
4049	  if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
4050	    continue;
4051	  symval.set_output_value(value);
4052
4053	  if (gsym->type() == elfcpp::STT_TLS)
4054	    symval.set_is_tls_symbol();
4055	  else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
4056	    symval.set_is_ifunc_symbol();
4057	  psymval = &symval;
4058
4059	  is_defined_in_discarded_section =
4060	      (gsym->is_defined_in_discarded_section()
4061	       && gsym->is_undefined());
4062	  shndx = 0;
4063	}
4064
4065      Symbol_value<size> symval2;
4066      if (is_defined_in_discarded_section)
4067	{
4068	  std::string name = object->section_name(relinfo->data_shndx);
4069
4070	  if (comdat_behavior == CB_UNDETERMINED)
4071	      comdat_behavior = default_comdat_behavior.get(name.c_str());
4072
4073	  if (comdat_behavior == CB_PRETEND)
4074	    {
4075	      bool found;
4076	      typename elfcpp::Elf_types<size>::Elf_Addr value =
4077		object->map_to_kept_section(shndx, name, &found);
4078	      if (found)
4079		symval2.set_output_value(value + psymval->input_value());
4080	      else
4081		symval2.set_output_value(0);
4082	    }
4083	  else
4084	    {
4085	      if (comdat_behavior == CB_ERROR)
4086	        issue_discarded_error(relinfo, i, offset, r_sym, gsym);
4087	      symval2.set_output_value(0);
4088	    }
4089	  symval2.set_no_output_symtab_entry();
4090	  psymval = &symval2;
4091	}
4092
4093      this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
4094				addend, view_address + offset);
4095    }  // End of iterating relocs in a section
4096}  // End of Target_aarch64::scan_reloc_section_for_stubs
4097
4098
4099// Scan an input section for stub generation.
4100
4101template<int size, bool big_endian>
4102void
4103Target_aarch64<size, big_endian>::scan_section_for_stubs(
4104    const Relocate_info<size, big_endian>* relinfo,
4105    unsigned int sh_type,
4106    const unsigned char* prelocs,
4107    size_t reloc_count,
4108    Output_section* output_section,
4109    bool needs_special_offset_handling,
4110    const unsigned char* view,
4111    Address view_address,
4112    section_size_type view_size)
4113{
4114  gold_assert(sh_type == elfcpp::SHT_RELA);
4115  this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
4116      relinfo,
4117      prelocs,
4118      reloc_count,
4119      output_section,
4120      needs_special_offset_handling,
4121      view,
4122      view_address,
4123      view_size);
4124}
4125
4126
4127// Relocate a single reloc stub.
4128
4129template<int size, bool big_endian>
4130void Target_aarch64<size, big_endian>::
4131relocate_reloc_stub(The_reloc_stub* stub,
4132                    const The_relocate_info*,
4133                    Output_section*,
4134                    unsigned char* view,
4135                    Address address,
4136                    section_size_type)
4137{
4138  typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
4139  typedef typename The_reloc_functions::Status The_reloc_functions_status;
4140  typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
4141
4142  Insntype* ip = reinterpret_cast<Insntype*>(view);
4143  int insn_number = stub->insn_num();
4144  const uint32_t* insns = stub->insns();
4145  // Check the insns are really those stub insns.
4146  for (int i = 0; i < insn_number; ++i)
4147    {
4148      Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
4149      gold_assert(((uint32_t)insn == insns[i]));
4150    }
4151
4152  Address dest = stub->destination_address();
4153
4154  switch(stub->type())
4155    {
4156    case ST_ADRP_BRANCH:
4157      {
4158	// 1st reloc is ADR_PREL_PG_HI21
4159	The_reloc_functions_status status =
4160	    The_reloc_functions::adrp(view, dest, address);
4161	// An error should never arise in the above step. If so, please
4162	// check 'aarch64_valid_for_adrp_p'.
4163	gold_assert(status == The_reloc_functions::STATUS_OKAY);
4164
4165	// 2nd reloc is ADD_ABS_LO12_NC
4166	const AArch64_reloc_property* arp =
4167	    aarch64_reloc_property_table->get_reloc_property(
4168		elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
4169	gold_assert(arp != NULL);
4170	status = The_reloc_functions::template
4171	    rela_general<32>(view + 4, dest, 0, arp);
4172	// An error should never arise, it is an "_NC" relocation.
4173	gold_assert(status == The_reloc_functions::STATUS_OKAY);
4174      }
4175      break;
4176
4177    case ST_LONG_BRANCH_ABS:
4178      // 1st reloc is R_AARCH64_PREL64, at offset 8
4179      elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
4180      break;
4181
4182    case ST_LONG_BRANCH_PCREL:
4183      {
4184	// "PC" calculation is the 2nd insn in the stub.
4185	uint64_t offset = dest - (address + 4);
4186	// Offset is placed at offset 4 and 5.
4187	elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
4188      }
4189      break;
4190
4191    default:
4192      gold_unreachable();
4193    }
4194}
4195
4196
4197// A class to handle the PLT data.
4198// This is an abstract base class that handles most of the linker details
4199// but does not know the actual contents of PLT entries.  The derived
4200// classes below fill in those details.
4201
4202template<int size, bool big_endian>
4203class Output_data_plt_aarch64 : public Output_section_data
4204{
4205 public:
4206  typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
4207      Reloc_section;
4208  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4209
4210  Output_data_plt_aarch64(Layout* layout,
4211			  uint64_t addralign,
4212			  Output_data_got_aarch64<size, big_endian>* got,
4213			  Output_data_space* got_plt,
4214			  Output_data_space* got_irelative)
4215    : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
4216      got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
4217      count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
4218  { this->init(layout); }
4219
4220  // Initialize the PLT section.
4221  void
4222  init(Layout* layout);
4223
4224  // Add an entry to the PLT.
4225  void
4226  add_entry(Symbol_table*, Layout*, Symbol* gsym);
4227
4228  // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
4229  unsigned int
4230  add_local_ifunc_entry(Symbol_table* symtab, Layout*,
4231			Sized_relobj_file<size, big_endian>* relobj,
4232			unsigned int local_sym_index);
4233
4234  // Add the relocation for a PLT entry.
4235  void
4236  add_relocation(Symbol_table*, Layout*, Symbol* gsym,
4237		 unsigned int got_offset);
4238
4239  // Add the reserved TLSDESC_PLT entry to the PLT.
4240  void
4241  reserve_tlsdesc_entry(unsigned int got_offset)
4242  { this->tlsdesc_got_offset_ = got_offset; }
4243
4244  // Return true if a TLSDESC_PLT entry has been reserved.
4245  bool
4246  has_tlsdesc_entry() const
4247  { return this->tlsdesc_got_offset_ != -1U; }
4248
4249  // Return the GOT offset for the reserved TLSDESC_PLT entry.
4250  unsigned int
4251  get_tlsdesc_got_offset() const
4252  { return this->tlsdesc_got_offset_; }
4253
4254  // Return the PLT offset of the reserved TLSDESC_PLT entry.
4255  unsigned int
4256  get_tlsdesc_plt_offset() const
4257  {
4258    return (this->first_plt_entry_offset() +
4259	    (this->count_ + this->irelative_count_)
4260	    * this->get_plt_entry_size());
4261  }
4262
4263  // Return the .rela.plt section data.
4264  Reloc_section*
4265  rela_plt()
4266  { return this->rel_; }
4267
4268  // Return where the TLSDESC relocations should go.
4269  Reloc_section*
4270  rela_tlsdesc(Layout*);
4271
4272  // Return where the IRELATIVE relocations should go in the PLT
4273  // relocations.
4274  Reloc_section*
4275  rela_irelative(Symbol_table*, Layout*);
4276
4277  // Return whether we created a section for IRELATIVE relocations.
4278  bool
4279  has_irelative_section() const
4280  { return this->irelative_rel_ != NULL; }
4281
4282  // Return the number of PLT entries.
4283  unsigned int
4284  entry_count() const
4285  { return this->count_ + this->irelative_count_; }
4286
4287  // Return the offset of the first non-reserved PLT entry.
4288  unsigned int
4289  first_plt_entry_offset() const
4290  { return this->do_first_plt_entry_offset(); }
4291
4292  // Return the size of a PLT entry.
4293  unsigned int
4294  get_plt_entry_size() const
4295  { return this->do_get_plt_entry_size(); }
4296
4297  // Return the reserved tlsdesc entry size.
4298  unsigned int
4299  get_plt_tlsdesc_entry_size() const
4300  { return this->do_get_plt_tlsdesc_entry_size(); }
4301
4302  // Return the PLT address to use for a global symbol.
4303  uint64_t
4304  address_for_global(const Symbol*);
4305
4306  // Return the PLT address to use for a local symbol.
4307  uint64_t
4308  address_for_local(const Relobj*, unsigned int symndx);
4309
4310 protected:
4311  // Fill in the first PLT entry.
4312  void
4313  fill_first_plt_entry(unsigned char* pov,
4314		       Address got_address,
4315		       Address plt_address)
4316  { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
4317
4318  // Fill in a normal PLT entry.
4319  void
4320  fill_plt_entry(unsigned char* pov,
4321		 Address got_address,
4322		 Address plt_address,
4323		 unsigned int got_offset,
4324		 unsigned int plt_offset)
4325  {
4326    this->do_fill_plt_entry(pov, got_address, plt_address,
4327			    got_offset, plt_offset);
4328  }
4329
4330  // Fill in the reserved TLSDESC PLT entry.
4331  void
4332  fill_tlsdesc_entry(unsigned char* pov,
4333		     Address gotplt_address,
4334		     Address plt_address,
4335		     Address got_base,
4336		     unsigned int tlsdesc_got_offset,
4337		     unsigned int plt_offset)
4338  {
4339    this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4340				tlsdesc_got_offset, plt_offset);
4341  }
4342
4343  virtual unsigned int
4344  do_first_plt_entry_offset() const = 0;
4345
4346  virtual unsigned int
4347  do_get_plt_entry_size() const = 0;
4348
4349  virtual unsigned int
4350  do_get_plt_tlsdesc_entry_size() const = 0;
4351
4352  virtual void
4353  do_fill_first_plt_entry(unsigned char* pov,
4354			  Address got_addr,
4355			  Address plt_addr) = 0;
4356
4357  virtual void
4358  do_fill_plt_entry(unsigned char* pov,
4359		    Address got_address,
4360		    Address plt_address,
4361		    unsigned int got_offset,
4362		    unsigned int plt_offset) = 0;
4363
4364  virtual void
4365  do_fill_tlsdesc_entry(unsigned char* pov,
4366			Address gotplt_address,
4367			Address plt_address,
4368			Address got_base,
4369			unsigned int tlsdesc_got_offset,
4370			unsigned int plt_offset) = 0;
4371
4372  void
4373  do_adjust_output_section(Output_section* os);
4374
4375  // Write to a map file.
4376  void
4377  do_print_to_mapfile(Mapfile* mapfile) const
4378  { mapfile->print_output_data(this, _("** PLT")); }
4379
4380 private:
4381  // Set the final size.
4382  void
4383  set_final_data_size();
4384
4385  // Write out the PLT data.
4386  void
4387  do_write(Output_file*);
4388
4389  // The reloc section.
4390  Reloc_section* rel_;
4391
4392  // The TLSDESC relocs, if necessary.  These must follow the regular
4393  // PLT relocs.
4394  Reloc_section* tlsdesc_rel_;
4395
4396  // The IRELATIVE relocs, if necessary.  These must follow the
4397  // regular PLT relocations.
4398  Reloc_section* irelative_rel_;
4399
4400  // The .got section.
4401  Output_data_got_aarch64<size, big_endian>* got_;
4402
4403  // The .got.plt section.
4404  Output_data_space* got_plt_;
4405
4406  // The part of the .got.plt section used for IRELATIVE relocs.
4407  Output_data_space* got_irelative_;
4408
4409  // The number of PLT entries.
4410  unsigned int count_;
4411
4412  // Number of PLT entries with R_AARCH64_IRELATIVE relocs.  These
4413  // follow the regular PLT entries.
4414  unsigned int irelative_count_;
4415
4416  // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
4417  // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
4418  // indicates an offset is not allocated.
4419  unsigned int tlsdesc_got_offset_;
4420};
4421
4422// Initialize the PLT section.
4423
4424template<int size, bool big_endian>
4425void
4426Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
4427{
4428  this->rel_ = new Reloc_section(false);
4429  layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4430				  elfcpp::SHF_ALLOC, this->rel_,
4431				  ORDER_DYNAMIC_PLT_RELOCS, false);
4432}
4433
4434template<int size, bool big_endian>
4435void
4436Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
4437    Output_section* os)
4438{
4439  os->set_entsize(this->get_plt_entry_size());
4440}
4441
4442// Add an entry to the PLT.
4443
4444template<int size, bool big_endian>
4445void
4446Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
4447    Layout* layout, Symbol* gsym)
4448{
4449  gold_assert(!gsym->has_plt_offset());
4450
4451  unsigned int* pcount;
4452  unsigned int plt_reserved;
4453  Output_section_data_build* got;
4454
4455  if (gsym->type() == elfcpp::STT_GNU_IFUNC
4456      && gsym->can_use_relative_reloc(false))
4457    {
4458      pcount = &this->irelative_count_;
4459      plt_reserved = 0;
4460      got = this->got_irelative_;
4461    }
4462  else
4463    {
4464      pcount = &this->count_;
4465      plt_reserved = this->first_plt_entry_offset();
4466      got = this->got_plt_;
4467    }
4468
4469  gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
4470		       + plt_reserved);
4471
4472  ++*pcount;
4473
4474  section_offset_type got_offset = got->current_data_size();
4475
4476  // Every PLT entry needs a GOT entry which points back to the PLT
4477  // entry (this will be changed by the dynamic linker, normally
4478  // lazily when the function is called).
4479  got->set_current_data_size(got_offset + size / 8);
4480
4481  // Every PLT entry needs a reloc.
4482  this->add_relocation(symtab, layout, gsym, got_offset);
4483
4484  // Note that we don't need to save the symbol. The contents of the
4485  // PLT are independent of which symbols are used. The symbols only
4486  // appear in the relocations.
4487}
4488
4489// Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
4490// the PLT offset.
4491
4492template<int size, bool big_endian>
4493unsigned int
4494Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
4495    Symbol_table* symtab,
4496    Layout* layout,
4497    Sized_relobj_file<size, big_endian>* relobj,
4498    unsigned int local_sym_index)
4499{
4500  unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
4501  ++this->irelative_count_;
4502
4503  section_offset_type got_offset = this->got_irelative_->current_data_size();
4504
4505  // Every PLT entry needs a GOT entry which points back to the PLT
4506  // entry.
4507  this->got_irelative_->set_current_data_size(got_offset + size / 8);
4508
4509  // Every PLT entry needs a reloc.
4510  Reloc_section* rela = this->rela_irelative(symtab, layout);
4511  rela->add_symbolless_local_addend(relobj, local_sym_index,
4512				    elfcpp::R_AARCH64_IRELATIVE,
4513				    this->got_irelative_, got_offset, 0);
4514
4515  return plt_offset;
4516}
4517
4518// Add the relocation for a PLT entry.
4519
4520template<int size, bool big_endian>
4521void
4522Output_data_plt_aarch64<size, big_endian>::add_relocation(
4523    Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
4524{
4525  if (gsym->type() == elfcpp::STT_GNU_IFUNC
4526      && gsym->can_use_relative_reloc(false))
4527    {
4528      Reloc_section* rela = this->rela_irelative(symtab, layout);
4529      rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
4530					 this->got_irelative_, got_offset, 0);
4531    }
4532  else
4533    {
4534      gsym->set_needs_dynsym_entry();
4535      this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
4536			     got_offset, 0);
4537    }
4538}
4539
4540// Return where the TLSDESC relocations should go, creating it if
4541// necessary.  These follow the JUMP_SLOT relocations.
4542
4543template<int size, bool big_endian>
4544typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4545Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
4546{
4547  if (this->tlsdesc_rel_ == NULL)
4548    {
4549      this->tlsdesc_rel_ = new Reloc_section(false);
4550      layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4551				      elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
4552				      ORDER_DYNAMIC_PLT_RELOCS, false);
4553      gold_assert(this->tlsdesc_rel_->output_section()
4554		  == this->rel_->output_section());
4555    }
4556  return this->tlsdesc_rel_;
4557}
4558
4559// Return where the IRELATIVE relocations should go in the PLT.  These
4560// follow the JUMP_SLOT and the TLSDESC relocations.
4561
4562template<int size, bool big_endian>
4563typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4564Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
4565							  Layout* layout)
4566{
4567  if (this->irelative_rel_ == NULL)
4568    {
4569      // Make sure we have a place for the TLSDESC relocations, in
4570      // case we see any later on.
4571      this->rela_tlsdesc(layout);
4572      this->irelative_rel_ = new Reloc_section(false);
4573      layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4574				      elfcpp::SHF_ALLOC, this->irelative_rel_,
4575				      ORDER_DYNAMIC_PLT_RELOCS, false);
4576      gold_assert(this->irelative_rel_->output_section()
4577		  == this->rel_->output_section());
4578
4579      if (parameters->doing_static_link())
4580	{
4581	  // A statically linked executable will only have a .rela.plt
4582	  // section to hold R_AARCH64_IRELATIVE relocs for
4583	  // STT_GNU_IFUNC symbols.  The library will use these
4584	  // symbols to locate the IRELATIVE relocs at program startup
4585	  // time.
4586	  symtab->define_in_output_data("__rela_iplt_start", NULL,
4587					Symbol_table::PREDEFINED,
4588					this->irelative_rel_, 0, 0,
4589					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4590					elfcpp::STV_HIDDEN, 0, false, true);
4591	  symtab->define_in_output_data("__rela_iplt_end", NULL,
4592					Symbol_table::PREDEFINED,
4593					this->irelative_rel_, 0, 0,
4594					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4595					elfcpp::STV_HIDDEN, 0, true, true);
4596	}
4597    }
4598  return this->irelative_rel_;
4599}
4600
4601// Return the PLT address to use for a global symbol.
4602
4603template<int size, bool big_endian>
4604uint64_t
4605Output_data_plt_aarch64<size, big_endian>::address_for_global(
4606  const Symbol* gsym)
4607{
4608  uint64_t offset = 0;
4609  if (gsym->type() == elfcpp::STT_GNU_IFUNC
4610      && gsym->can_use_relative_reloc(false))
4611    offset = (this->first_plt_entry_offset() +
4612	      this->count_ * this->get_plt_entry_size());
4613  return this->address() + offset + gsym->plt_offset();
4614}
4615
4616// Return the PLT address to use for a local symbol.  These are always
4617// IRELATIVE relocs.
4618
4619template<int size, bool big_endian>
4620uint64_t
4621Output_data_plt_aarch64<size, big_endian>::address_for_local(
4622    const Relobj* object,
4623    unsigned int r_sym)
4624{
4625  return (this->address()
4626	  + this->first_plt_entry_offset()
4627	  + this->count_ * this->get_plt_entry_size()
4628	  + object->local_plt_offset(r_sym));
4629}
4630
4631// Set the final size.
4632
4633template<int size, bool big_endian>
4634void
4635Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
4636{
4637  unsigned int count = this->count_ + this->irelative_count_;
4638  unsigned int extra_size = 0;
4639  if (this->has_tlsdesc_entry())
4640    extra_size += this->get_plt_tlsdesc_entry_size();
4641  this->set_data_size(this->first_plt_entry_offset()
4642		      + count * this->get_plt_entry_size()
4643		      + extra_size);
4644}
4645
4646template<int size, bool big_endian>
4647class Output_data_plt_aarch64_standard :
4648  public Output_data_plt_aarch64<size, big_endian>
4649{
4650 public:
4651  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4652  Output_data_plt_aarch64_standard(
4653      Layout* layout,
4654      Output_data_got_aarch64<size, big_endian>* got,
4655      Output_data_space* got_plt,
4656      Output_data_space* got_irelative)
4657    : Output_data_plt_aarch64<size, big_endian>(layout,
4658						size == 32 ? 4 : 8,
4659						got, got_plt,
4660						got_irelative)
4661  { }
4662
4663 protected:
4664  // Return the offset of the first non-reserved PLT entry.
4665  virtual unsigned int
4666  do_first_plt_entry_offset() const
4667  { return this->first_plt_entry_size; }
4668
4669  // Return the size of a PLT entry
4670  virtual unsigned int
4671  do_get_plt_entry_size() const
4672  { return this->plt_entry_size; }
4673
4674  // Return the size of a tlsdesc entry
4675  virtual unsigned int
4676  do_get_plt_tlsdesc_entry_size() const
4677  { return this->plt_tlsdesc_entry_size; }
4678
4679  virtual void
4680  do_fill_first_plt_entry(unsigned char* pov,
4681			  Address got_address,
4682			  Address plt_address);
4683
4684  virtual void
4685  do_fill_plt_entry(unsigned char* pov,
4686		    Address got_address,
4687		    Address plt_address,
4688		    unsigned int got_offset,
4689		    unsigned int plt_offset);
4690
4691  virtual void
4692  do_fill_tlsdesc_entry(unsigned char* pov,
4693			Address gotplt_address,
4694			Address plt_address,
4695			Address got_base,
4696			unsigned int tlsdesc_got_offset,
4697			unsigned int plt_offset);
4698
4699 private:
4700  // The size of the first plt entry size.
4701  static const int first_plt_entry_size = 32;
4702  // The size of the plt entry size.
4703  static const int plt_entry_size = 16;
4704  // The size of the plt tlsdesc entry size.
4705  static const int plt_tlsdesc_entry_size = 32;
4706  // Template for the first PLT entry.
4707  static const uint32_t first_plt_entry[first_plt_entry_size / 4];
4708  // Template for subsequent PLT entries.
4709  static const uint32_t plt_entry[plt_entry_size / 4];
4710  // The reserved TLSDESC entry in the PLT for an executable.
4711  static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
4712};
4713
4714// The first entry in the PLT for an executable.
4715
4716template<>
4717const uint32_t
4718Output_data_plt_aarch64_standard<32, false>::
4719    first_plt_entry[first_plt_entry_size / 4] =
4720{
4721  0xa9bf7bf0,	/* stp x16, x30, [sp, #-16]!  */
4722  0x90000010,	/* adrp x16, PLT_GOT+0x8  */
4723  0xb9400A11,	/* ldr w17, [x16, #PLT_GOT+0x8]  */
4724  0x11002210,	/* add w16, w16,#PLT_GOT+0x8   */
4725  0xd61f0220,	/* br x17  */
4726  0xd503201f,	/* nop */
4727  0xd503201f,	/* nop */
4728  0xd503201f,	/* nop */
4729};
4730
4731
4732template<>
4733const uint32_t
4734Output_data_plt_aarch64_standard<32, true>::
4735    first_plt_entry[first_plt_entry_size / 4] =
4736{
4737  0xa9bf7bf0,	/* stp x16, x30, [sp, #-16]!  */
4738  0x90000010,	/* adrp x16, PLT_GOT+0x8  */
4739  0xb9400A11,	/* ldr w17, [x16, #PLT_GOT+0x8]  */
4740  0x11002210,	/* add w16, w16,#PLT_GOT+0x8   */
4741  0xd61f0220,	/* br x17  */
4742  0xd503201f,	/* nop */
4743  0xd503201f,	/* nop */
4744  0xd503201f,	/* nop */
4745};
4746
4747
4748template<>
4749const uint32_t
4750Output_data_plt_aarch64_standard<64, false>::
4751    first_plt_entry[first_plt_entry_size / 4] =
4752{
4753  0xa9bf7bf0,	/* stp x16, x30, [sp, #-16]!  */
4754  0x90000010,	/* adrp x16, PLT_GOT+16  */
4755  0xf9400A11,	/* ldr x17, [x16, #PLT_GOT+0x10]  */
4756  0x91004210,	/* add x16, x16,#PLT_GOT+0x10   */
4757  0xd61f0220,	/* br x17  */
4758  0xd503201f,	/* nop */
4759  0xd503201f,	/* nop */
4760  0xd503201f,	/* nop */
4761};
4762
4763
4764template<>
4765const uint32_t
4766Output_data_plt_aarch64_standard<64, true>::
4767    first_plt_entry[first_plt_entry_size / 4] =
4768{
4769  0xa9bf7bf0,	/* stp x16, x30, [sp, #-16]!  */
4770  0x90000010,	/* adrp x16, PLT_GOT+16  */
4771  0xf9400A11,	/* ldr x17, [x16, #PLT_GOT+0x10]  */
4772  0x91004210,	/* add x16, x16,#PLT_GOT+0x10   */
4773  0xd61f0220,	/* br x17  */
4774  0xd503201f,	/* nop */
4775  0xd503201f,	/* nop */
4776  0xd503201f,	/* nop */
4777};
4778
4779
4780template<>
4781const uint32_t
4782Output_data_plt_aarch64_standard<32, false>::
4783    plt_entry[plt_entry_size / 4] =
4784{
4785  0x90000010,	/* adrp x16, PLTGOT + n * 4  */
4786  0xb9400211,	/* ldr w17, [w16, PLTGOT + n * 4] */
4787  0x11000210,	/* add w16, w16, :lo12:PLTGOT + n * 4  */
4788  0xd61f0220,	/* br x17.  */
4789};
4790
4791
4792template<>
4793const uint32_t
4794Output_data_plt_aarch64_standard<32, true>::
4795    plt_entry[plt_entry_size / 4] =
4796{
4797  0x90000010,	/* adrp x16, PLTGOT + n * 4  */
4798  0xb9400211,	/* ldr w17, [w16, PLTGOT + n * 4] */
4799  0x11000210,	/* add w16, w16, :lo12:PLTGOT + n * 4  */
4800  0xd61f0220,	/* br x17.  */
4801};
4802
4803
4804template<>
4805const uint32_t
4806Output_data_plt_aarch64_standard<64, false>::
4807    plt_entry[plt_entry_size / 4] =
4808{
4809  0x90000010,	/* adrp x16, PLTGOT + n * 8  */
4810  0xf9400211,	/* ldr x17, [x16, PLTGOT + n * 8] */
4811  0x91000210,	/* add x16, x16, :lo12:PLTGOT + n * 8  */
4812  0xd61f0220,	/* br x17.  */
4813};
4814
4815
4816template<>
4817const uint32_t
4818Output_data_plt_aarch64_standard<64, true>::
4819    plt_entry[plt_entry_size / 4] =
4820{
4821  0x90000010,	/* adrp x16, PLTGOT + n * 8  */
4822  0xf9400211,	/* ldr x17, [x16, PLTGOT + n * 8] */
4823  0x91000210,	/* add x16, x16, :lo12:PLTGOT + n * 8  */
4824  0xd61f0220,	/* br x17.  */
4825};
4826
4827
4828template<int size, bool big_endian>
4829void
4830Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
4831    unsigned char* pov,
4832    Address got_address,
4833    Address plt_address)
4834{
4835  // PLT0 of the small PLT looks like this in ELF64 -
4836  // stp x16, x30, [sp, #-16]!	 	Save the reloc and lr on stack.
4837  // adrp x16, PLT_GOT + 16		Get the page base of the GOTPLT
4838  // ldr  x17, [x16, #:lo12:PLT_GOT+16]	Load the address of the
4839  // 					symbol resolver
4840  // add  x16, x16, #:lo12:PLT_GOT+16	Load the lo12 bits of the
4841  // 					GOTPLT entry for this.
4842  // br   x17
4843  // PLT0 will be slightly different in ELF32 due to different got entry
4844  // size.
4845  memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
4846  Address gotplt_2nd_ent = got_address + (size / 8) * 2;
4847
4848  // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
4849  // ADRP:  (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
4850  // FIXME: This only works for 64bit
4851  AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
4852      gotplt_2nd_ent, plt_address + 4);
4853
4854  // Fill in R_AARCH64_LDST8_LO12
4855  elfcpp::Swap<32, big_endian>::writeval(
4856      pov + 8,
4857      ((this->first_plt_entry[2] & 0xffc003ff)
4858       | ((gotplt_2nd_ent & 0xff8) << 7)));
4859
4860  // Fill in R_AARCH64_ADD_ABS_LO12
4861  elfcpp::Swap<32, big_endian>::writeval(
4862      pov + 12,
4863      ((this->first_plt_entry[3] & 0xffc003ff)
4864       | ((gotplt_2nd_ent & 0xfff) << 10)));
4865}
4866
4867
4868// Subsequent entries in the PLT for an executable.
4869// FIXME: This only works for 64bit
4870
4871template<int size, bool big_endian>
4872void
4873Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
4874    unsigned char* pov,
4875    Address got_address,
4876    Address plt_address,
4877    unsigned int got_offset,
4878    unsigned int plt_offset)
4879{
4880  memcpy(pov, this->plt_entry, this->plt_entry_size);
4881
4882  Address gotplt_entry_address = got_address + got_offset;
4883  Address plt_entry_address = plt_address + plt_offset;
4884
4885  // Fill in R_AARCH64_PCREL_ADR_HI21
4886  AArch64_relocate_functions<size, big_endian>::adrp(
4887      pov,
4888      gotplt_entry_address,
4889      plt_entry_address);
4890
4891  // Fill in R_AARCH64_LDST64_ABS_LO12
4892  elfcpp::Swap<32, big_endian>::writeval(
4893      pov + 4,
4894      ((this->plt_entry[1] & 0xffc003ff)
4895       | ((gotplt_entry_address & 0xff8) << 7)));
4896
4897  // Fill in R_AARCH64_ADD_ABS_LO12
4898  elfcpp::Swap<32, big_endian>::writeval(
4899      pov + 8,
4900      ((this->plt_entry[2] & 0xffc003ff)
4901       | ((gotplt_entry_address & 0xfff) <<10)));
4902
4903}
4904
4905
4906template<>
4907const uint32_t
4908Output_data_plt_aarch64_standard<32, false>::
4909    tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4910{
4911  0xa9bf0fe2,	/* stp x2, x3, [sp, #-16]!  */
4912  0x90000002,	/* adrp x2, 0 */
4913  0x90000003,	/* adrp x3, 0 */
4914  0xb9400042,	/* ldr w2, [w2, #0] */
4915  0x11000063,	/* add w3, w3, 0 */
4916  0xd61f0040,	/* br x2 */
4917  0xd503201f,	/* nop */
4918  0xd503201f,	/* nop */
4919};
4920
4921template<>
4922const uint32_t
4923Output_data_plt_aarch64_standard<32, true>::
4924    tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4925{
4926  0xa9bf0fe2,	/* stp x2, x3, [sp, #-16]!  */
4927  0x90000002,	/* adrp x2, 0 */
4928  0x90000003,	/* adrp x3, 0 */
4929  0xb9400042,	/* ldr w2, [w2, #0] */
4930  0x11000063,	/* add w3, w3, 0 */
4931  0xd61f0040,	/* br x2 */
4932  0xd503201f,	/* nop */
4933  0xd503201f,	/* nop */
4934};
4935
4936template<>
4937const uint32_t
4938Output_data_plt_aarch64_standard<64, false>::
4939    tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4940{
4941  0xa9bf0fe2,	/* stp x2, x3, [sp, #-16]!  */
4942  0x90000002,	/* adrp x2, 0 */
4943  0x90000003,	/* adrp x3, 0 */
4944  0xf9400042,	/* ldr x2, [x2, #0] */
4945  0x91000063,	/* add x3, x3, 0 */
4946  0xd61f0040,	/* br x2 */
4947  0xd503201f,	/* nop */
4948  0xd503201f,	/* nop */
4949};
4950
4951template<>
4952const uint32_t
4953Output_data_plt_aarch64_standard<64, true>::
4954    tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4955{
4956  0xa9bf0fe2,	/* stp x2, x3, [sp, #-16]!  */
4957  0x90000002,	/* adrp x2, 0 */
4958  0x90000003,	/* adrp x3, 0 */
4959  0xf9400042,	/* ldr x2, [x2, #0] */
4960  0x91000063,	/* add x3, x3, 0 */
4961  0xd61f0040,	/* br x2 */
4962  0xd503201f,	/* nop */
4963  0xd503201f,	/* nop */
4964};
4965
4966template<int size, bool big_endian>
4967void
4968Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
4969    unsigned char* pov,
4970    Address gotplt_address,
4971    Address plt_address,
4972    Address got_base,
4973    unsigned int tlsdesc_got_offset,
4974    unsigned int plt_offset)
4975{
4976  memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);
4977
4978  // move DT_TLSDESC_GOT address into x2
4979  // move .got.plt address into x3
4980  Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
4981  Address plt_entry_address = plt_address + plt_offset;
4982
4983  // R_AARCH64_ADR_PREL_PG_HI21
4984  AArch64_relocate_functions<size, big_endian>::adrp(
4985      pov + 4,
4986      tlsdesc_got_entry,
4987      plt_entry_address + 4);
4988
4989  // R_AARCH64_ADR_PREL_PG_HI21
4990  AArch64_relocate_functions<size, big_endian>::adrp(
4991      pov + 8,
4992      gotplt_address,
4993      plt_entry_address + 8);
4994
4995  // R_AARCH64_LDST64_ABS_LO12
4996  elfcpp::Swap<32, big_endian>::writeval(
4997      pov + 12,
4998      ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
4999       | ((tlsdesc_got_entry & 0xff8) << 7)));
5000
5001  // R_AARCH64_ADD_ABS_LO12
5002  elfcpp::Swap<32, big_endian>::writeval(
5003      pov + 16,
5004      ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
5005       | ((gotplt_address & 0xfff) << 10)));
5006}
5007
5008// Write out the PLT.  This uses the hand-coded instructions above,
5009// and adjusts them as needed.  This is specified by the AMD64 ABI.
5010
5011template<int size, bool big_endian>
5012void
5013Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
5014{
5015  const off_t offset = this->offset();
5016  const section_size_type oview_size =
5017    convert_to_section_size_type(this->data_size());
5018  unsigned char* const oview = of->get_output_view(offset, oview_size);
5019
5020  const off_t got_file_offset = this->got_plt_->offset();
5021  gold_assert(got_file_offset + this->got_plt_->data_size()
5022	      == this->got_irelative_->offset());
5023
5024  const section_size_type got_size =
5025      convert_to_section_size_type(this->got_plt_->data_size()
5026				   + this->got_irelative_->data_size());
5027  unsigned char* const got_view = of->get_output_view(got_file_offset,
5028						      got_size);
5029
5030  unsigned char* pov = oview;
5031
5032  // The base address of the .plt section.
5033  typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
5034  // The base address of the PLT portion of the .got section.
5035  typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
5036      = this->got_plt_->address();
5037
5038  this->fill_first_plt_entry(pov, gotplt_address, plt_address);
5039  pov += this->first_plt_entry_offset();
5040
5041  // The first three entries in .got.plt are reserved.
5042  unsigned char* got_pov = got_view;
5043  memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
5044  got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
5045
5046  unsigned int plt_offset = this->first_plt_entry_offset();
5047  unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
5048  const unsigned int count = this->count_ + this->irelative_count_;
5049  for (unsigned int plt_index = 0;
5050       plt_index < count;
5051       ++plt_index,
5052	 pov += this->get_plt_entry_size(),
5053	 got_pov += size / 8,
5054	 plt_offset += this->get_plt_entry_size(),
5055	 got_offset += size / 8)
5056    {
5057      // Set and adjust the PLT entry itself.
5058      this->fill_plt_entry(pov, gotplt_address, plt_address,
5059			   got_offset, plt_offset);
5060
5061      // Set the entry in the GOT, which points to plt0.
5062      elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
5063    }
5064
5065  if (this->has_tlsdesc_entry())
5066    {
5067      // Set and adjust the reserved TLSDESC PLT entry.
5068      unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
5069      // The base address of the .base section.
5070      typename elfcpp::Elf_types<size>::Elf_Addr got_base =
5071	  this->got_->address();
5072      this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
5073			       tlsdesc_got_offset, plt_offset);
5074      pov += this->get_plt_tlsdesc_entry_size();
5075    }
5076
5077  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
5078  gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
5079
5080  of->write_output_view(offset, oview_size, oview);
5081  of->write_output_view(got_file_offset, got_size, got_view);
5082}
5083
5084// Telling how to update the immediate field of an instruction.
5085struct AArch64_howto
5086{
5087  // The immediate field mask.
5088  elfcpp::Elf_Xword dst_mask;
5089
5090  // The offset to apply relocation immediate
5091  int doffset;
5092
5093  // The second part offset, if the immediate field has two parts.
5094  // -1 if the immediate field has only one part.
5095  int doffset2;
5096};
5097
5098static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
5099{
5100  {0, -1, -1},		// DATA
5101  {0x1fffe0, 5, -1},	// MOVW  [20:5]-imm16
5102  {0xffffe0, 5, -1},	// LD    [23:5]-imm19
5103  {0x60ffffe0, 29, 5},	// ADR   [30:29]-immlo  [23:5]-immhi
5104  {0x60ffffe0, 29, 5},	// ADRP  [30:29]-immlo  [23:5]-immhi
5105  {0x3ffc00, 10, -1},	// ADD   [21:10]-imm12
5106  {0x3ffc00, 10, -1},	// LDST  [21:10]-imm12
5107  {0x7ffe0, 5, -1},	// TBZNZ [18:5]-imm14
5108  {0xffffe0, 5, -1},	// CONDB [23:5]-imm19
5109  {0x3ffffff, 0, -1},	// B     [25:0]-imm26
5110  {0x3ffffff, 0, -1},	// CALL  [25:0]-imm26
5111};
5112
5113// AArch64 relocate function class
5114
5115template<int size, bool big_endian>
5116class AArch64_relocate_functions
5117{
5118 public:
5119  typedef enum
5120  {
5121    STATUS_OKAY,	// No error during relocation.
5122    STATUS_OVERFLOW,	// Relocation overflow.
5123    STATUS_BAD_RELOC,	// Relocation cannot be applied.
5124  } Status;
5125
5126  typedef AArch64_relocate_functions<size, big_endian> This;
5127  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5128  typedef Relocate_info<size, big_endian> The_relocate_info;
5129  typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
5130  typedef Reloc_stub<size, big_endian> The_reloc_stub;
5131  typedef Stub_table<size, big_endian> The_stub_table;
5132  typedef elfcpp::Rela<size, big_endian> The_rela;
5133  typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;
5134
5135  // Return the page address of the address.
5136  // Page(address) = address & ~0xFFF
5137
5138  static inline AArch64_valtype
5139  Page(Address address)
5140  {
5141    return (address & (~static_cast<Address>(0xFFF)));
5142  }
5143
5144 private:
5145  // Update instruction (pointed by view) with selected bits (immed).
5146  // val = (val & ~dst_mask) | (immed << doffset)
5147
5148  template<int valsize>
5149  static inline void
5150  update_view(unsigned char* view,
5151	      AArch64_valtype immed,
5152	      elfcpp::Elf_Xword doffset,
5153	      elfcpp::Elf_Xword dst_mask)
5154  {
5155    typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5156    Valtype* wv = reinterpret_cast<Valtype*>(view);
5157    Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5158
5159    // Clear immediate fields.
5160    val &= ~dst_mask;
5161    elfcpp::Swap<valsize, big_endian>::writeval(wv,
5162      static_cast<Valtype>(val | (immed << doffset)));
5163  }
5164
5165  // Update two parts of an instruction (pointed by view) with selected
5166  // bits (immed1 and immed2).
5167  // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
5168
5169  template<int valsize>
5170  static inline void
5171  update_view_two_parts(
5172    unsigned char* view,
5173    AArch64_valtype immed1,
5174    AArch64_valtype immed2,
5175    elfcpp::Elf_Xword doffset1,
5176    elfcpp::Elf_Xword doffset2,
5177    elfcpp::Elf_Xword dst_mask)
5178  {
5179    typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5180    Valtype* wv = reinterpret_cast<Valtype*>(view);
5181    Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5182    val &= ~dst_mask;
5183    elfcpp::Swap<valsize, big_endian>::writeval(wv,
5184      static_cast<Valtype>(val | (immed1 << doffset1) |
5185			   (immed2 << doffset2)));
5186  }
5187
5188  // Update adr or adrp instruction with immed.
5189  // In adr and adrp: [30:29] immlo   [23:5] immhi
5190
5191  static inline void
5192  update_adr(unsigned char* view, AArch64_valtype immed)
5193  {
5194    elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
5195    This::template update_view_two_parts<32>(
5196      view,
5197      immed & 0x3,
5198      (immed & 0x1ffffc) >> 2,
5199      29,
5200      5,
5201      dst_mask);
5202  }
5203
5204  // Update movz/movn instruction with bits immed.
5205  // Set instruction to movz if is_movz is true, otherwise set instruction
5206  // to movn.
5207
5208  static inline void
5209  update_movnz(unsigned char* view,
5210	       AArch64_valtype immed,
5211	       bool is_movz)
5212  {
5213    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5214    Valtype* wv = reinterpret_cast<Valtype*>(view);
5215    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
5216
5217    const elfcpp::Elf_Xword doffset =
5218	aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
5219    const elfcpp::Elf_Xword dst_mask =
5220	aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;
5221
5222    // Clear immediate fields and opc code.
5223    val &= ~(dst_mask | (0x3 << 29));
5224
5225    // Set instruction to movz or movn.
5226    // movz: [30:29] is 10   movn: [30:29] is 00
5227    if (is_movz)
5228      val |= (0x2 << 29);
5229
5230    elfcpp::Swap<32, big_endian>::writeval(wv,
5231      static_cast<Valtype>(val | (immed << doffset)));
5232  }
5233
5234 public:
5235
5236  // Update selected bits in text.
5237
5238  template<int valsize>
5239  static inline typename This::Status
5240  reloc_common(unsigned char* view, Address x,
5241		const AArch64_reloc_property* reloc_property)
5242  {
5243    // Select bits from X.
5244    Address immed = reloc_property->select_x_value(x);
5245
5246    // Update view.
5247    const AArch64_reloc_property::Reloc_inst inst =
5248      reloc_property->reloc_inst();
5249    // If it is a data relocation or instruction has 2 parts of immediate
5250    // fields, you should not call pcrela_general.
5251    gold_assert(aarch64_howto[inst].doffset2 == -1 &&
5252		aarch64_howto[inst].doffset != -1);
5253    This::template update_view<valsize>(view, immed,
5254					aarch64_howto[inst].doffset,
5255					aarch64_howto[inst].dst_mask);
5256
5257    // Do check overflow or alignment if needed.
5258    return (reloc_property->checkup_x_value(x)
5259	    ? This::STATUS_OKAY
5260	    : This::STATUS_OVERFLOW);
5261  }
5262
5263  // Construct a B insn. Note, although we group it here with other relocation
5264  // operation, there is actually no 'relocation' involved here.
5265  static inline void
5266  construct_b(unsigned char* view, unsigned int branch_offset)
5267  {
5268    update_view_two_parts<32>(view, 0x05, (branch_offset >> 2),
5269			      26, 0, 0xffffffff);
5270  }
5271
5272  // Do a simple rela relocation at unaligned addresses.
5273
5274  template<int valsize>
5275  static inline typename This::Status
5276  rela_ua(unsigned char* view,
5277	  const Sized_relobj_file<size, big_endian>* object,
5278	  const Symbol_value<size>* psymval,
5279	  AArch64_valtype addend,
5280	  const AArch64_reloc_property* reloc_property)
5281  {
5282    typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5283      Valtype;
5284    typename elfcpp::Elf_types<size>::Elf_Addr x =
5285	psymval->value(object, addend);
5286    elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5287      static_cast<Valtype>(x));
5288    return (reloc_property->checkup_x_value(x)
5289	    ? This::STATUS_OKAY
5290	    : This::STATUS_OVERFLOW);
5291  }
5292
5293  // Do a simple pc-relative relocation at unaligned addresses.
5294
5295  template<int valsize>
5296  static inline typename This::Status
5297  pcrela_ua(unsigned char* view,
5298	    const Sized_relobj_file<size, big_endian>* object,
5299	    const Symbol_value<size>* psymval,
5300	    AArch64_valtype addend,
5301	    Address address,
5302	    const AArch64_reloc_property* reloc_property)
5303  {
5304    typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5305      Valtype;
5306    Address x = psymval->value(object, addend) - address;
5307    elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5308      static_cast<Valtype>(x));
5309    return (reloc_property->checkup_x_value(x)
5310	    ? This::STATUS_OKAY
5311	    : This::STATUS_OVERFLOW);
5312  }
5313
5314  // Do a simple rela relocation at aligned addresses.
5315
5316  template<int valsize>
5317  static inline typename This::Status
5318  rela(
5319    unsigned char* view,
5320    const Sized_relobj_file<size, big_endian>* object,
5321    const Symbol_value<size>* psymval,
5322    AArch64_valtype addend,
5323    const AArch64_reloc_property* reloc_property)
5324  {
5325    typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5326    Valtype* wv = reinterpret_cast<Valtype*>(view);
5327    Address x = psymval->value(object, addend);
5328    elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
5329    return (reloc_property->checkup_x_value(x)
5330	    ? This::STATUS_OKAY
5331	    : This::STATUS_OVERFLOW);
5332  }
5333
5334  // Do relocate. Update selected bits in text.
5335  // new_val = (val & ~dst_mask) | (immed << doffset)
5336
5337  template<int valsize>
5338  static inline typename This::Status
5339  rela_general(unsigned char* view,
5340	       const Sized_relobj_file<size, big_endian>* object,
5341	       const Symbol_value<size>* psymval,
5342	       AArch64_valtype addend,
5343	       const AArch64_reloc_property* reloc_property)
5344  {
5345    // Calculate relocation.
5346    Address x = psymval->value(object, addend);
5347    return This::template reloc_common<valsize>(view, x, reloc_property);
5348  }
5349
5350  // Do relocate. Update selected bits in text.
5351  // new val = (val & ~dst_mask) | (immed << doffset)
5352
5353  template<int valsize>
5354  static inline typename This::Status
5355  rela_general(
5356    unsigned char* view,
5357    AArch64_valtype s,
5358    AArch64_valtype addend,
5359    const AArch64_reloc_property* reloc_property)
5360  {
5361    // Calculate relocation.
5362    Address x = s + addend;
5363    return This::template reloc_common<valsize>(view, x, reloc_property);
5364  }
5365
5366  // Do address relative relocate. Update selected bits in text.
5367  // new val = (val & ~dst_mask) | (immed << doffset)
5368
5369  template<int valsize>
5370  static inline typename This::Status
5371  pcrela_general(
5372    unsigned char* view,
5373    const Sized_relobj_file<size, big_endian>* object,
5374    const Symbol_value<size>* psymval,
5375    AArch64_valtype addend,
5376    Address address,
5377    const AArch64_reloc_property* reloc_property)
5378  {
5379    // Calculate relocation.
5380    Address x = psymval->value(object, addend) - address;
5381    return This::template reloc_common<valsize>(view, x, reloc_property);
5382  }
5383
5384
5385  // Calculate (S + A) - address, update adr instruction.
5386
5387  static inline typename This::Status
5388  adr(unsigned char* view,
5389      const Sized_relobj_file<size, big_endian>* object,
5390      const Symbol_value<size>* psymval,
5391      Address addend,
5392      Address address,
5393      const AArch64_reloc_property* /* reloc_property */)
5394  {
5395    AArch64_valtype x = psymval->value(object, addend) - address;
5396    // Pick bits [20:0] of X.
5397    AArch64_valtype immed = x & 0x1fffff;
5398    update_adr(view, immed);
5399    // Check -2^20 <= X < 2^20
5400    return (size == 64 && Bits<21>::has_overflow((x))
5401	    ? This::STATUS_OVERFLOW
5402	    : This::STATUS_OKAY);
5403  }
5404
5405  // Calculate PG(S+A) - PG(address), update adrp instruction.
5406  // R_AARCH64_ADR_PREL_PG_HI21
5407
5408  static inline typename This::Status
5409  adrp(
5410    unsigned char* view,
5411    Address sa,
5412    Address address)
5413  {
5414    AArch64_valtype x = This::Page(sa) - This::Page(address);
5415    // Pick [32:12] of X.
5416    AArch64_valtype immed = (x >> 12) & 0x1fffff;
5417    update_adr(view, immed);
5418    // Check -2^32 <= X < 2^32
5419    return (size == 64 && Bits<33>::has_overflow((x))
5420	    ? This::STATUS_OVERFLOW
5421	    : This::STATUS_OKAY);
5422  }
5423
5424  // Calculate PG(S+A) - PG(address), update adrp instruction.
5425  // R_AARCH64_ADR_PREL_PG_HI21
5426
5427  static inline typename This::Status
5428  adrp(unsigned char* view,
5429       const Sized_relobj_file<size, big_endian>* object,
5430       const Symbol_value<size>* psymval,
5431       Address addend,
5432       Address address,
5433       const AArch64_reloc_property* reloc_property)
5434  {
5435    Address sa = psymval->value(object, addend);
5436    AArch64_valtype x = This::Page(sa) - This::Page(address);
5437    // Pick [32:12] of X.
5438    AArch64_valtype immed = (x >> 12) & 0x1fffff;
5439    update_adr(view, immed);
5440    return (reloc_property->checkup_x_value(x)
5441	    ? This::STATUS_OKAY
5442	    : This::STATUS_OVERFLOW);
5443  }
5444
5445  // Update mov[n/z] instruction. Check overflow if needed.
5446  // If X >=0, set the instruction to movz and its immediate value to the
5447  // selected bits S.
5448  // If X < 0, set the instruction to movn and its immediate value to
5449  // NOT (selected bits of).
5450
5451  static inline typename This::Status
5452  movnz(unsigned char* view,
5453	AArch64_valtype x,
5454	const AArch64_reloc_property* reloc_property)
5455  {
5456    // Select bits from X.
5457    Address immed;
5458    bool is_movz;
5459    typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
5460    if (static_cast<SignedW>(x) >= 0)
5461      {
5462	immed = reloc_property->select_x_value(x);
5463        is_movz = true;
5464      }
5465    else
5466      {
5467	immed = reloc_property->select_x_value(~x);;
5468	is_movz = false;
5469      }
5470
5471    // Update movnz instruction.
5472    update_movnz(view, immed, is_movz);
5473
5474    // Do check overflow or alignment if needed.
5475    return (reloc_property->checkup_x_value(x)
5476	    ? This::STATUS_OKAY
5477	    : This::STATUS_OVERFLOW);
5478  }
5479
5480  static inline bool
5481  maybe_apply_stub(unsigned int,
5482		   const The_relocate_info*,
5483		   const The_rela&,
5484		   unsigned char*,
5485		   Address,
5486		   const Sized_symbol<size>*,
5487		   const Symbol_value<size>*,
5488		   const Sized_relobj_file<size, big_endian>*,
5489		   section_size_type);
5490
5491};  // End of AArch64_relocate_functions
5492
5493
5494// For a certain relocation type (usually jump/branch), test to see if the
5495// destination needs a stub to fulfil. If so, re-route the destination of the
5496// original instruction to the stub, note, at this time, the stub has already
5497// been generated.
5498
5499template<int size, bool big_endian>
5500bool
5501AArch64_relocate_functions<size, big_endian>::
5502maybe_apply_stub(unsigned int r_type,
5503		 const The_relocate_info* relinfo,
5504		 const The_rela& rela,
5505		 unsigned char* view,
5506		 Address address,
5507		 const Sized_symbol<size>* gsym,
5508		 const Symbol_value<size>* psymval,
5509		 const Sized_relobj_file<size, big_endian>* object,
5510		 section_size_type current_group_size)
5511{
5512  if (parameters->options().relocatable())
5513    return false;
5514
5515  typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
5516  Address branch_target = psymval->value(object, 0) + addend;
5517  int stub_type =
5518    The_reloc_stub::stub_type_for_reloc(r_type, address, branch_target);
5519  if (stub_type == ST_NONE)
5520    return false;
5521
5522  const The_aarch64_relobj* aarch64_relobj =
5523      static_cast<const The_aarch64_relobj*>(object);
5524  const AArch64_reloc_property* arp =
5525    aarch64_reloc_property_table->get_reloc_property(r_type);
5526  gold_assert(arp != NULL);
5527
5528  // We don't create stubs for undefined symbols, but do for weak.
5529  if (gsym
5530      && !gsym->use_plt_offset(arp->reference_flags())
5531      && gsym->is_undefined())
5532    {
5533      gold_debug(DEBUG_TARGET,
5534		 "stub: looking for a stub for undefined symbol %s in file %s",
5535		 gsym->name(), aarch64_relobj->name().c_str());
5536      return false;
5537    }
5538
5539  The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
5540  gold_assert(stub_table != NULL);
5541
5542  unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5543  typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
5544  The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
5545  gold_assert(stub != NULL);
5546
5547  Address new_branch_target = stub_table->address() + stub->offset();
5548  typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
5549      new_branch_target - address;
5550  typename This::Status status = This::template
5551      rela_general<32>(view, branch_offset, 0, arp);
5552  if (status != This::STATUS_OKAY)
5553    gold_error(_("Stub is too far away, try a smaller value "
5554		 "for '--stub-group-size'. The current value is 0x%lx."),
5555	       static_cast<unsigned long>(current_group_size));
5556  return true;
5557}
5558
5559
5560// Group input sections for stub generation.
5561//
5562// We group input sections in an output section so that the total size,
5563// including any padding space due to alignment is smaller than GROUP_SIZE
5564// unless the only input section in group is bigger than GROUP_SIZE already.
5565// Then an ARM stub table is created to follow the last input section
5566// in group.  For each group an ARM stub table is created an is placed
5567// after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
5568// extend the group after the stub table.
5569
5570template<int size, bool big_endian>
5571void
5572Target_aarch64<size, big_endian>::group_sections(
5573    Layout* layout,
5574    section_size_type group_size,
5575    bool stubs_always_after_branch,
5576    const Task* task)
5577{
5578  // Group input sections and insert stub table
5579  Layout::Section_list section_list;
5580  layout->get_executable_sections(&section_list);
5581  for (Layout::Section_list::const_iterator p = section_list.begin();
5582       p != section_list.end();
5583       ++p)
5584    {
5585      AArch64_output_section<size, big_endian>* output_section =
5586	  static_cast<AArch64_output_section<size, big_endian>*>(*p);
5587      output_section->group_sections(group_size, stubs_always_after_branch,
5588				     this, task);
5589    }
5590}
5591
5592
5593// Find the AArch64_input_section object corresponding to the SHNDX-th input
5594// section of RELOBJ.
5595
5596template<int size, bool big_endian>
5597AArch64_input_section<size, big_endian>*
5598Target_aarch64<size, big_endian>::find_aarch64_input_section(
5599    Relobj* relobj, unsigned int shndx) const
5600{
5601  Section_id sid(relobj, shndx);
5602  typename AArch64_input_section_map::const_iterator p =
5603    this->aarch64_input_section_map_.find(sid);
5604  return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
5605}
5606
5607
5608// Make a new AArch64_input_section object.
5609
5610template<int size, bool big_endian>
5611AArch64_input_section<size, big_endian>*
5612Target_aarch64<size, big_endian>::new_aarch64_input_section(
5613    Relobj* relobj, unsigned int shndx)
5614{
5615  Section_id sid(relobj, shndx);
5616
5617  AArch64_input_section<size, big_endian>* input_section =
5618      new AArch64_input_section<size, big_endian>(relobj, shndx);
5619  input_section->init();
5620
5621  // Register new AArch64_input_section in map for look-up.
5622  std::pair<typename AArch64_input_section_map::iterator,bool> ins =
5623      this->aarch64_input_section_map_.insert(
5624	  std::make_pair(sid, input_section));
5625
5626  // Make sure that it we have not created another AArch64_input_section
5627  // for this input section already.
5628  gold_assert(ins.second);
5629
5630  return input_section;
5631}
5632
5633
5634// Relaxation hook.  This is where we do stub generation.
5635
5636template<int size, bool big_endian>
5637bool
5638Target_aarch64<size, big_endian>::do_relax(
5639    int pass,
5640    const Input_objects* input_objects,
5641    Symbol_table* symtab,
5642    Layout* layout ,
5643    const Task* task)
5644{
5645  gold_assert(!parameters->options().relocatable());
5646  if (pass == 1)
5647    {
5648      // We don't handle negative stub_group_size right now.
5649      this->stub_group_size_ = abs(parameters->options().stub_group_size());
5650      if (this->stub_group_size_ == 1)
5651	{
5652	  // Leave room for 4096 4-byte stub entries. If we exceed that, then we
5653	  // will fail to link.  The user will have to relink with an explicit
5654	  // group size option.
5655	  this->stub_group_size_ = The_reloc_stub::MAX_BRANCH_OFFSET -
5656				   4096 * 4;
5657	}
5658      group_sections(layout, this->stub_group_size_, true, task);
5659    }
5660  else
5661    {
5662      // If this is not the first pass, addresses and file offsets have
5663      // been reset at this point, set them here.
5664      for (Stub_table_iterator sp = this->stub_tables_.begin();
5665	   sp != this->stub_tables_.end(); ++sp)
5666	{
5667	  The_stub_table* stt = *sp;
5668	  The_aarch64_input_section* owner = stt->owner();
5669	  off_t off = align_address(owner->original_size(),
5670				    stt->addralign());
5671	  stt->set_address_and_file_offset(owner->address() + off,
5672					   owner->offset() + off);
5673	}
5674    }
5675
5676  // Scan relocs for relocation stubs
5677  for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
5678       op != input_objects->relobj_end();
5679       ++op)
5680    {
5681      The_aarch64_relobj* aarch64_relobj =
5682	  static_cast<The_aarch64_relobj*>(*op);
5683      // Lock the object so we can read from it.  This is only called
5684      // single-threaded from Layout::finalize, so it is OK to lock.
5685      Task_lock_obj<Object> tl(task, aarch64_relobj);
5686      aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
5687    }
5688
5689  bool any_stub_table_changed = false;
5690  for (Stub_table_iterator siter = this->stub_tables_.begin();
5691       siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
5692    {
5693      The_stub_table* stub_table = *siter;
5694      if (stub_table->update_data_size_changed_p())
5695	{
5696	  The_aarch64_input_section* owner = stub_table->owner();
5697	  uint64_t address = owner->address();
5698	  off_t offset = owner->offset();
5699	  owner->reset_address_and_file_offset();
5700	  owner->set_address_and_file_offset(address, offset);
5701
5702	  any_stub_table_changed = true;
5703	}
5704    }
5705
5706  // Do not continue relaxation.
5707  bool continue_relaxation = any_stub_table_changed;
5708  if (!continue_relaxation)
5709    for (Stub_table_iterator sp = this->stub_tables_.begin();
5710	 (sp != this->stub_tables_.end());
5711	 ++sp)
5712      (*sp)->finalize_stubs();
5713
5714  return continue_relaxation;
5715}
5716
5717
5718// Make a new Stub_table.
5719
5720template<int size, bool big_endian>
5721Stub_table<size, big_endian>*
5722Target_aarch64<size, big_endian>::new_stub_table(
5723    AArch64_input_section<size, big_endian>* owner)
5724{
5725  Stub_table<size, big_endian>* stub_table =
5726      new Stub_table<size, big_endian>(owner);
5727  stub_table->set_address(align_address(
5728      owner->address() + owner->data_size(), 8));
5729  stub_table->set_file_offset(owner->offset() + owner->data_size());
5730  stub_table->finalize_data_size();
5731
5732  this->stub_tables_.push_back(stub_table);
5733
5734  return stub_table;
5735}
5736
5737
5738template<int size, bool big_endian>
5739uint64_t
5740Target_aarch64<size, big_endian>::do_reloc_addend(
5741    void* arg, unsigned int r_type, uint64_t) const
5742{
5743  gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
5744  uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
5745  gold_assert(intarg < this->tlsdesc_reloc_info_.size());
5746  const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
5747  const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
5748  gold_assert(psymval->is_tls_symbol());
5749  // The value of a TLS symbol is the offset in the TLS segment.
5750  return psymval->value(ti.object, 0);
5751}
5752
5753// Return the number of entries in the PLT.
5754
5755template<int size, bool big_endian>
5756unsigned int
5757Target_aarch64<size, big_endian>::plt_entry_count() const
5758{
5759  if (this->plt_ == NULL)
5760    return 0;
5761  return this->plt_->entry_count();
5762}
5763
5764// Return the offset of the first non-reserved PLT entry.
5765
5766template<int size, bool big_endian>
5767unsigned int
5768Target_aarch64<size, big_endian>::first_plt_entry_offset() const
5769{
5770  return this->plt_->first_plt_entry_offset();
5771}
5772
5773// Return the size of each PLT entry.
5774
5775template<int size, bool big_endian>
5776unsigned int
5777Target_aarch64<size, big_endian>::plt_entry_size() const
5778{
5779  return this->plt_->get_plt_entry_size();
5780}
5781
5782// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
5783
5784template<int size, bool big_endian>
5785void
5786Target_aarch64<size, big_endian>::define_tls_base_symbol(
5787    Symbol_table* symtab, Layout* layout)
5788{
5789  if (this->tls_base_symbol_defined_)
5790    return;
5791
5792  Output_segment* tls_segment = layout->tls_segment();
5793  if (tls_segment != NULL)
5794    {
5795      // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
5796      symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
5797				       Symbol_table::PREDEFINED,
5798				       tls_segment, 0, 0,
5799				       elfcpp::STT_TLS,
5800				       elfcpp::STB_LOCAL,
5801				       elfcpp::STV_HIDDEN, 0,
5802				       Symbol::SEGMENT_START,
5803				       true);
5804    }
5805  this->tls_base_symbol_defined_ = true;
5806}
5807
5808// Create the reserved PLT and GOT entries for the TLS descriptor resolver.
5809
5810template<int size, bool big_endian>
5811void
5812Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
5813    Symbol_table* symtab, Layout* layout)
5814{
5815  if (this->plt_ == NULL)
5816    this->make_plt_section(symtab, layout);
5817
5818  if (!this->plt_->has_tlsdesc_entry())
5819    {
5820      // Allocate the TLSDESC_GOT entry.
5821      Output_data_got_aarch64<size, big_endian>* got =
5822	  this->got_section(symtab, layout);
5823      unsigned int got_offset = got->add_constant(0);
5824
5825      // Allocate the TLSDESC_PLT entry.
5826      this->plt_->reserve_tlsdesc_entry(got_offset);
5827    }
5828}
5829
5830// Create a GOT entry for the TLS module index.
5831
5832template<int size, bool big_endian>
5833unsigned int
5834Target_aarch64<size, big_endian>::got_mod_index_entry(
5835    Symbol_table* symtab, Layout* layout,
5836    Sized_relobj_file<size, big_endian>* object)
5837{
5838  if (this->got_mod_index_offset_ == -1U)
5839    {
5840      gold_assert(symtab != NULL && layout != NULL && object != NULL);
5841      Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5842      Output_data_got_aarch64<size, big_endian>* got =
5843	  this->got_section(symtab, layout);
5844      unsigned int got_offset = got->add_constant(0);
5845      rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
5846			  got_offset, 0);
5847      got->add_constant(0);
5848      this->got_mod_index_offset_ = got_offset;
5849    }
5850  return this->got_mod_index_offset_;
5851}
5852
5853// Optimize the TLS relocation type based on what we know about the
5854// symbol.  IS_FINAL is true if the final address of this symbol is
5855// known at link time.
5856
5857template<int size, bool big_endian>
5858tls::Tls_optimization
5859Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
5860						     int r_type)
5861{
5862  // If we are generating a shared library, then we can't do anything
5863  // in the linker
5864  if (parameters->options().shared())
5865    return tls::TLSOPT_NONE;
5866
5867  switch (r_type)
5868    {
5869    case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5870    case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5871    case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
5872    case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
5873    case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5874    case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5875    case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5876    case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
5877    case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
5878    case elfcpp::R_AARCH64_TLSDESC_LDR:
5879    case elfcpp::R_AARCH64_TLSDESC_ADD:
5880    case elfcpp::R_AARCH64_TLSDESC_CALL:
5881      // These are General-Dynamic which permits fully general TLS
5882      // access.  Since we know that we are generating an executable,
5883      // we can convert this to Initial-Exec.  If we also know that
5884      // this is a local symbol, we can further switch to Local-Exec.
5885      if (is_final)
5886	return tls::TLSOPT_TO_LE;
5887      return tls::TLSOPT_TO_IE;
5888
5889    case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5890    case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5891    case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5892    case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5893    case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5894    case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5895      // These are Local-Dynamic, which refer to local symbols in the
5896      // dynamic TLS block. Since we know that we generating an
5897      // executable, we can switch to Local-Exec.
5898      return tls::TLSOPT_TO_LE;
5899
5900    case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5901    case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5902    case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5903    case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5904    case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5905      // These are Initial-Exec relocs which get the thread offset
5906      // from the GOT. If we know that we are linking against the
5907      // local symbol, we can switch to Local-Exec, which links the
5908      // thread offset into the instruction.
5909      if (is_final)
5910	return tls::TLSOPT_TO_LE;
5911      return tls::TLSOPT_NONE;
5912
5913    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5914    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5915    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5916    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5917    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5918    case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5919    case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5920    case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5921    case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
5922    case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
5923    case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
5924    case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
5925    case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
5926    case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
5927    case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
5928    case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
5929      // When we already have Local-Exec, there is nothing further we
5930      // can do.
5931      return tls::TLSOPT_NONE;
5932
5933    default:
5934      gold_unreachable();
5935    }
5936}
5937
5938// Returns true if this relocation type could be that of a function pointer.
5939
5940template<int size, bool big_endian>
5941inline bool
5942Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
5943  unsigned int r_type)
5944{
5945  switch (r_type)
5946    {
5947    case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
5948    case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
5949    case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
5950    case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5951    case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5952      {
5953	return true;
5954      }
5955    }
5956  return false;
5957}
5958
5959// For safe ICF, scan a relocation for a local symbol to check if it
5960// corresponds to a function pointer being taken.  In that case mark
5961// the function whose pointer was taken as not foldable.
5962
5963template<int size, bool big_endian>
5964inline bool
5965Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
5966  Symbol_table* ,
5967  Layout* ,
5968  Target_aarch64<size, big_endian>* ,
5969  Sized_relobj_file<size, big_endian>* ,
5970  unsigned int ,
5971  Output_section* ,
5972  const elfcpp::Rela<size, big_endian>& ,
5973  unsigned int r_type,
5974  const elfcpp::Sym<size, big_endian>&)
5975{
5976  // When building a shared library, do not fold any local symbols.
5977  return (parameters->options().shared()
5978	  || possible_function_pointer_reloc(r_type));
5979}
5980
5981// For safe ICF, scan a relocation for a global symbol to check if it
5982// corresponds to a function pointer being taken.  In that case mark
5983// the function whose pointer was taken as not foldable.
5984
5985template<int size, bool big_endian>
5986inline bool
5987Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
5988  Symbol_table* ,
5989  Layout* ,
5990  Target_aarch64<size, big_endian>* ,
5991  Sized_relobj_file<size, big_endian>* ,
5992  unsigned int ,
5993  Output_section* ,
5994  const elfcpp::Rela<size, big_endian>& ,
5995  unsigned int r_type,
5996  Symbol* gsym)
5997{
5998  // When building a shared library, do not fold symbols whose visibility
5999  // is hidden, internal or protected.
6000  return ((parameters->options().shared()
6001	   && (gsym->visibility() == elfcpp::STV_INTERNAL
6002	       || gsym->visibility() == elfcpp::STV_PROTECTED
6003	       || gsym->visibility() == elfcpp::STV_HIDDEN))
6004	  || possible_function_pointer_reloc(r_type));
6005}
6006
6007// Report an unsupported relocation against a local symbol.
6008
6009template<int size, bool big_endian>
6010void
6011Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
6012     Sized_relobj_file<size, big_endian>* object,
6013     unsigned int r_type)
6014{
6015  gold_error(_("%s: unsupported reloc %u against local symbol"),
6016	     object->name().c_str(), r_type);
6017}
6018
6019// We are about to emit a dynamic relocation of type R_TYPE.  If the
6020// dynamic linker does not support it, issue an error.
6021
6022template<int size, bool big_endian>
6023void
6024Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
6025						      unsigned int r_type)
6026{
6027  gold_assert(r_type != elfcpp::R_AARCH64_NONE);
6028
6029  switch (r_type)
6030    {
6031    // These are the relocation types supported by glibc for AARCH64.
6032    case elfcpp::R_AARCH64_NONE:
6033    case elfcpp::R_AARCH64_COPY:
6034    case elfcpp::R_AARCH64_GLOB_DAT:
6035    case elfcpp::R_AARCH64_JUMP_SLOT:
6036    case elfcpp::R_AARCH64_RELATIVE:
6037    case elfcpp::R_AARCH64_TLS_DTPREL64:
6038    case elfcpp::R_AARCH64_TLS_DTPMOD64:
6039    case elfcpp::R_AARCH64_TLS_TPREL64:
6040    case elfcpp::R_AARCH64_TLSDESC:
6041    case elfcpp::R_AARCH64_IRELATIVE:
6042    case elfcpp::R_AARCH64_ABS32:
6043    case elfcpp::R_AARCH64_ABS64:
6044      return;
6045
6046    default:
6047      break;
6048    }
6049
6050  // This prevents us from issuing more than one error per reloc
6051  // section. But we can still wind up issuing more than one
6052  // error per object file.
6053  if (this->issued_non_pic_error_)
6054    return;
6055  gold_assert(parameters->options().output_is_position_independent());
6056  object->error(_("requires unsupported dynamic reloc; "
6057		  "recompile with -fPIC"));
6058  this->issued_non_pic_error_ = true;
6059  return;
6060}
6061
6062// Return whether we need to make a PLT entry for a relocation of the
6063// given type against a STT_GNU_IFUNC symbol.
6064
6065template<int size, bool big_endian>
6066bool
6067Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
6068    Sized_relobj_file<size, big_endian>* object,
6069    unsigned int r_type)
6070{
6071  const AArch64_reloc_property* arp =
6072      aarch64_reloc_property_table->get_reloc_property(r_type);
6073  gold_assert(arp != NULL);
6074
6075  int flags = arp->reference_flags();
6076  if (flags & Symbol::TLS_REF)
6077    {
6078      gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
6079		 object->name().c_str(), arp->name().c_str());
6080      return false;
6081    }
6082  return flags != 0;
6083}
6084
6085// Scan a relocation for a local symbol.
6086
6087template<int size, bool big_endian>
6088inline void
6089Target_aarch64<size, big_endian>::Scan::local(
6090    Symbol_table* symtab,
6091    Layout* layout,
6092    Target_aarch64<size, big_endian>* target,
6093    Sized_relobj_file<size, big_endian>* object,
6094    unsigned int data_shndx,
6095    Output_section* output_section,
6096    const elfcpp::Rela<size, big_endian>& rela,
6097    unsigned int r_type,
6098    const elfcpp::Sym<size, big_endian>& lsym,
6099    bool is_discarded)
6100{
6101  if (is_discarded)
6102    return;
6103
6104  typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6105      Reloc_section;
6106  unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6107
6108  // A local STT_GNU_IFUNC symbol may require a PLT entry.
6109  bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
6110  if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
6111    target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
6112
6113  switch (r_type)
6114    {
6115    case elfcpp::R_AARCH64_NONE:
6116      break;
6117
6118    case elfcpp::R_AARCH64_ABS32:
6119    case elfcpp::R_AARCH64_ABS16:
6120      if (parameters->options().output_is_position_independent())
6121	{
6122	  gold_error(_("%s: unsupported reloc %u in pos independent link."),
6123		     object->name().c_str(), r_type);
6124	}
6125      break;
6126
6127    case elfcpp::R_AARCH64_ABS64:
6128      // If building a shared library or pie, we need to mark this as a dynmic
6129      // reloction, so that the dynamic loader can relocate it.
6130      if (parameters->options().output_is_position_independent())
6131	{
6132	  Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6133	  rela_dyn->add_local_relative(object, r_sym,
6134				       elfcpp::R_AARCH64_RELATIVE,
6135				       output_section,
6136				       data_shndx,
6137				       rela.get_r_offset(),
6138				       rela.get_r_addend(),
6139				       is_ifunc);
6140	}
6141      break;
6142
6143    case elfcpp::R_AARCH64_PREL64:
6144    case elfcpp::R_AARCH64_PREL32:
6145    case elfcpp::R_AARCH64_PREL16:
6146      break;
6147
6148    case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6149    case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6150    case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6151      // The above relocations are used to access GOT entries.
6152      {
6153	Output_data_got_aarch64<size, big_endian>* got =
6154	    target->got_section(symtab, layout);
6155	bool is_new = false;
6156	// This symbol requires a GOT entry.
6157	if (is_ifunc)
6158	  is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6159	else
6160	  is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6161	if (is_new && parameters->options().output_is_position_independent())
6162	  target->rela_dyn_section(layout)->
6163	    add_local_relative(object,
6164			       r_sym,
6165			       elfcpp::R_AARCH64_RELATIVE,
6166			       got,
6167			       object->local_got_offset(r_sym,
6168							GOT_TYPE_STANDARD),
6169			       0,
6170			       false);
6171      }
6172      break;
6173
6174    case elfcpp::R_AARCH64_MOVW_UABS_G0:        // 263
6175    case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:     // 264
6176    case elfcpp::R_AARCH64_MOVW_UABS_G1:        // 265
6177    case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:     // 266
6178    case elfcpp::R_AARCH64_MOVW_UABS_G2:        // 267
6179    case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:     // 268
6180    case elfcpp::R_AARCH64_MOVW_UABS_G3:        // 269
6181    case elfcpp::R_AARCH64_MOVW_SABS_G0:        // 270
6182    case elfcpp::R_AARCH64_MOVW_SABS_G1:        // 271
6183    case elfcpp::R_AARCH64_MOVW_SABS_G2:        // 272
6184      if (parameters->options().output_is_position_independent())
6185	{
6186	  gold_error(_("%s: unsupported reloc %u in pos independent link."),
6187		     object->name().c_str(), r_type);
6188	}
6189      break;
6190
6191    case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
6192    case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
6193    case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
6194    case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6195    case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
6196    case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
6197    case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
6198    case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
6199    case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
6200    case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6201       break;
6202
6203    // Control flow, pc-relative. We don't need to do anything for a relative
6204    // addressing relocation against a local symbol if it does not reference
6205    // the GOT.
6206    case elfcpp::R_AARCH64_TSTBR14:
6207    case elfcpp::R_AARCH64_CONDBR19:
6208    case elfcpp::R_AARCH64_JUMP26:
6209    case elfcpp::R_AARCH64_CALL26:
6210      break;
6211
6212    case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6213    case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6214      {
6215	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6216	  optimize_tls_reloc(!parameters->options().shared(), r_type);
6217	if (tlsopt == tls::TLSOPT_TO_LE)
6218	  break;
6219
6220	layout->set_has_static_tls();
6221	// Create a GOT entry for the tp-relative offset.
6222	if (!parameters->doing_static_link())
6223	  {
6224	    Output_data_got_aarch64<size, big_endian>* got =
6225		target->got_section(symtab, layout);
6226	    got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
6227				    target->rela_dyn_section(layout),
6228				    elfcpp::R_AARCH64_TLS_TPREL64);
6229	  }
6230	else if (!object->local_has_got_offset(r_sym,
6231					       GOT_TYPE_TLS_OFFSET))
6232	  {
6233	    Output_data_got_aarch64<size, big_endian>* got =
6234		target->got_section(symtab, layout);
6235	    got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
6236	    unsigned int got_offset =
6237		object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
6238	    const elfcpp::Elf_Xword addend = rela.get_r_addend();
6239	    gold_assert(addend == 0);
6240	    got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
6241				  object, r_sym);
6242	  }
6243      }
6244      break;
6245
6246    case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6247    case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
6248      {
6249	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6250	    optimize_tls_reloc(!parameters->options().shared(), r_type);
6251	if (tlsopt == tls::TLSOPT_TO_LE)
6252	  {
6253	    layout->set_has_static_tls();
6254	    break;
6255	  }
6256	gold_assert(tlsopt == tls::TLSOPT_NONE);
6257
6258	Output_data_got_aarch64<size, big_endian>* got =
6259	    target->got_section(symtab, layout);
6260	got->add_local_pair_with_rel(object,r_sym, data_shndx,
6261				     GOT_TYPE_TLS_PAIR,
6262				     target->rela_dyn_section(layout),
6263				     elfcpp::R_AARCH64_TLS_DTPMOD64);
6264      }
6265      break;
6266
6267    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6268    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6269    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6270    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6271    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6272    case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6273    case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6274    case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6275    case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
6276    case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6277    case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
6278    case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6279    case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
6280    case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6281    case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
6282    case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
6283      {
6284	layout->set_has_static_tls();
6285	bool output_is_shared = parameters->options().shared();
6286	if (output_is_shared)
6287	  gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
6288		     object->name().c_str(), r_type);
6289      }
6290      break;
6291
6292    case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6293    case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
6294      {
6295	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6296	    optimize_tls_reloc(!parameters->options().shared(), r_type);
6297	if (tlsopt == tls::TLSOPT_NONE)
6298	  {
6299	    // Create a GOT entry for the module index.
6300	    target->got_mod_index_entry(symtab, layout, object);
6301	  }
6302	else if (tlsopt != tls::TLSOPT_TO_LE)
6303	  unsupported_reloc_local(object, r_type);
6304      }
6305      break;
6306
6307    case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6308    case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6309    case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6310    case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6311      break;
6312
6313    case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6314    case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6315    case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6316      {
6317	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6318	    optimize_tls_reloc(!parameters->options().shared(), r_type);
6319	target->define_tls_base_symbol(symtab, layout);
6320	if (tlsopt == tls::TLSOPT_NONE)
6321	  {
6322	    // Create reserved PLT and GOT entries for the resolver.
6323	    target->reserve_tlsdesc_entries(symtab, layout);
6324
6325	    // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
6326	    // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
6327	    // entry needs to be in an area in .got.plt, not .got. Call
6328	    // got_section to make sure the section has been created.
6329	    target->got_section(symtab, layout);
6330	    Output_data_got<size, big_endian>* got =
6331		target->got_tlsdesc_section();
6332	    unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6333	    if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
6334	      {
6335		unsigned int got_offset = got->add_constant(0);
6336		got->add_constant(0);
6337		object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
6338					     got_offset);
6339		Reloc_section* rt = target->rela_tlsdesc_section(layout);
6340		// We store the arguments we need in a vector, and use
6341		// the index into the vector as the parameter to pass
6342		// to the target specific routines.
6343		uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
6344		void* arg = reinterpret_cast<void*>(intarg);
6345		rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
6346					got, got_offset, 0);
6347	      }
6348	  }
6349	else if (tlsopt != tls::TLSOPT_TO_LE)
6350	  unsupported_reloc_local(object, r_type);
6351      }
6352      break;
6353
6354    case elfcpp::R_AARCH64_TLSDESC_CALL:
6355      break;
6356
6357    default:
6358      unsupported_reloc_local(object, r_type);
6359    }
6360}
6361
6362
6363// Report an unsupported relocation against a global symbol.
6364
6365template<int size, bool big_endian>
6366void
6367Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
6368    Sized_relobj_file<size, big_endian>* object,
6369    unsigned int r_type,
6370    Symbol* gsym)
6371{
6372  gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6373	     object->name().c_str(), r_type, gsym->demangled_name().c_str());
6374}
6375
6376template<int size, bool big_endian>
6377inline void
6378Target_aarch64<size, big_endian>::Scan::global(
6379    Symbol_table* symtab,
6380    Layout* layout,
6381    Target_aarch64<size, big_endian>* target,
6382    Sized_relobj_file<size, big_endian> * object,
6383    unsigned int data_shndx,
6384    Output_section* output_section,
6385    const elfcpp::Rela<size, big_endian>& rela,
6386    unsigned int r_type,
6387    Symbol* gsym)
6388{
6389  // A STT_GNU_IFUNC symbol may require a PLT entry.
6390  if (gsym->type() == elfcpp::STT_GNU_IFUNC
6391      && this->reloc_needs_plt_for_ifunc(object, r_type))
6392    target->make_plt_entry(symtab, layout, gsym);
6393
6394  typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6395    Reloc_section;
6396  const AArch64_reloc_property* arp =
6397      aarch64_reloc_property_table->get_reloc_property(r_type);
6398  gold_assert(arp != NULL);
6399
6400  switch (r_type)
6401    {
6402    case elfcpp::R_AARCH64_NONE:
6403      break;
6404
6405    case elfcpp::R_AARCH64_ABS16:
6406    case elfcpp::R_AARCH64_ABS32:
6407    case elfcpp::R_AARCH64_ABS64:
6408      {
6409	// Make a PLT entry if necessary.
6410	if (gsym->needs_plt_entry())
6411	  {
6412	    target->make_plt_entry(symtab, layout, gsym);
6413	    // Since this is not a PC-relative relocation, we may be
6414	    // taking the address of a function. In that case we need to
6415	    // set the entry in the dynamic symbol table to the address of
6416	    // the PLT entry.
6417	    if (gsym->is_from_dynobj() && !parameters->options().shared())
6418	      gsym->set_needs_dynsym_value();
6419	  }
6420	// Make a dynamic relocation if necessary.
6421	if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6422	  {
6423	    if (!parameters->options().output_is_position_independent()
6424		&& gsym->may_need_copy_reloc())
6425	      {
6426		target->copy_reloc(symtab, layout, object,
6427				   data_shndx, output_section, gsym, rela);
6428	      }
6429	    else if (r_type == elfcpp::R_AARCH64_ABS64
6430		     && gsym->type() == elfcpp::STT_GNU_IFUNC
6431		     && gsym->can_use_relative_reloc(false)
6432		     && !gsym->is_from_dynobj()
6433		     && !gsym->is_undefined()
6434		     && !gsym->is_preemptible())
6435	      {
6436		// Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
6437		// symbol. This makes a function address in a PIE executable
6438		// match the address in a shared library that it links against.
6439		Reloc_section* rela_dyn =
6440		    target->rela_irelative_section(layout);
6441		unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
6442		rela_dyn->add_symbolless_global_addend(gsym, r_type,
6443						       output_section, object,
6444						       data_shndx,
6445						       rela.get_r_offset(),
6446						       rela.get_r_addend());
6447	      }
6448	    else if (r_type == elfcpp::R_AARCH64_ABS64
6449		     && gsym->can_use_relative_reloc(false))
6450	      {
6451		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6452		rela_dyn->add_global_relative(gsym,
6453					      elfcpp::R_AARCH64_RELATIVE,
6454					      output_section,
6455					      object,
6456					      data_shndx,
6457					      rela.get_r_offset(),
6458					      rela.get_r_addend(),
6459					      false);
6460	      }
6461	    else
6462	      {
6463		check_non_pic(object, r_type);
6464		Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
6465		    rela_dyn = target->rela_dyn_section(layout);
6466		rela_dyn->add_global(
6467		  gsym, r_type, output_section, object,
6468		  data_shndx, rela.get_r_offset(),rela.get_r_addend());
6469	      }
6470	  }
6471      }
6472      break;
6473
6474    case elfcpp::R_AARCH64_PREL16:
6475    case elfcpp::R_AARCH64_PREL32:
6476    case elfcpp::R_AARCH64_PREL64:
6477      // This is used to fill the GOT absolute address.
6478      if (gsym->needs_plt_entry())
6479	{
6480	  target->make_plt_entry(symtab, layout, gsym);
6481	}
6482      break;
6483
6484    case elfcpp::R_AARCH64_MOVW_UABS_G0:        // 263
6485    case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:     // 264
6486    case elfcpp::R_AARCH64_MOVW_UABS_G1:        // 265
6487    case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:     // 266
6488    case elfcpp::R_AARCH64_MOVW_UABS_G2:        // 267
6489    case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:     // 268
6490    case elfcpp::R_AARCH64_MOVW_UABS_G3:        // 269
6491    case elfcpp::R_AARCH64_MOVW_SABS_G0:        // 270
6492    case elfcpp::R_AARCH64_MOVW_SABS_G1:        // 271
6493    case elfcpp::R_AARCH64_MOVW_SABS_G2:        // 272
6494      if (parameters->options().output_is_position_independent())
6495	{
6496	  gold_error(_("%s: unsupported reloc %u in pos independent link."),
6497		     object->name().c_str(), r_type);
6498	}
6499      // Make a PLT entry if necessary.
6500      if (gsym->needs_plt_entry())
6501	{
6502	  target->make_plt_entry(symtab, layout, gsym);
6503	  // Since this is not a PC-relative relocation, we may be
6504	  // taking the address of a function. In that case we need to
6505	  // set the entry in the dynamic symbol table to the address of
6506	  // the PLT entry.
6507	  if (gsym->is_from_dynobj() && !parameters->options().shared())
6508	    gsym->set_needs_dynsym_value();
6509	}
6510      break;
6511
6512    case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
6513    case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
6514    case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
6515    case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6516    case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
6517    case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
6518    case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
6519    case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
6520    case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
6521    case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6522      {
6523	if (gsym->needs_plt_entry())
6524	  target->make_plt_entry(symtab, layout, gsym);
6525	// Make a dynamic relocation if necessary.
6526	if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6527	  {
6528	    if (parameters->options().output_is_executable()
6529		&& gsym->may_need_copy_reloc())
6530	      {
6531		target->copy_reloc(symtab, layout, object,
6532				   data_shndx, output_section, gsym, rela);
6533	      }
6534	  }
6535	break;
6536      }
6537
6538    case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6539    case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6540    case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6541      {
6542	// The above relocations are used to access GOT entries.
6543	// Note a GOT entry is an *address* to a symbol.
6544	// The symbol requires a GOT entry
6545	Output_data_got_aarch64<size, big_endian>* got =
6546	  target->got_section(symtab, layout);
6547	if (gsym->final_value_is_known())
6548	  {
6549	    // For a STT_GNU_IFUNC symbol we want the PLT address.
6550	    if (gsym->type() == elfcpp::STT_GNU_IFUNC)
6551	      got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6552	    else
6553	      got->add_global(gsym, GOT_TYPE_STANDARD);
6554	  }
6555	else
6556	  {
6557	    // If this symbol is not fully resolved, we need to add a dynamic
6558	    // relocation for it.
6559	    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6560
6561	    // Use a GLOB_DAT rather than a RELATIVE reloc if:
6562	    //
6563	    // 1) The symbol may be defined in some other module.
6564	    // 2) We are building a shared library and this is a protected
6565	    // symbol; using GLOB_DAT means that the dynamic linker can use
6566	    // the address of the PLT in the main executable when appropriate
6567	    // so that function address comparisons work.
6568	    // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
6569	    // again so that function address comparisons work.
6570	    if (gsym->is_from_dynobj()
6571		|| gsym->is_undefined()
6572		|| gsym->is_preemptible()
6573		|| (gsym->visibility() == elfcpp::STV_PROTECTED
6574		    && parameters->options().shared())
6575		|| (gsym->type() == elfcpp::STT_GNU_IFUNC
6576		    && parameters->options().output_is_position_independent()))
6577	      got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
6578				       rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
6579	    else
6580	      {
6581		// For a STT_GNU_IFUNC symbol we want to write the PLT
6582		// offset into the GOT, so that function pointer
6583		// comparisons work correctly.
6584		bool is_new;
6585		if (gsym->type() != elfcpp::STT_GNU_IFUNC)
6586		  is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
6587		else
6588		  {
6589		    is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6590		    // Tell the dynamic linker to use the PLT address
6591		    // when resolving relocations.
6592		    if (gsym->is_from_dynobj()
6593			&& !parameters->options().shared())
6594		      gsym->set_needs_dynsym_value();
6595		  }
6596		if (is_new)
6597		  {
6598		    rela_dyn->add_global_relative(
6599			gsym, elfcpp::R_AARCH64_RELATIVE,
6600			got,
6601			gsym->got_offset(GOT_TYPE_STANDARD),
6602			0,
6603			false);
6604		  }
6605	      }
6606	  }
6607	break;
6608      }
6609
6610    case elfcpp::R_AARCH64_TSTBR14:
6611    case elfcpp::R_AARCH64_CONDBR19:
6612    case elfcpp::R_AARCH64_JUMP26:
6613    case elfcpp::R_AARCH64_CALL26:
6614      {
6615	if (gsym->final_value_is_known())
6616	  break;
6617
6618	if (gsym->is_defined() &&
6619	    !gsym->is_from_dynobj() &&
6620	    !gsym->is_preemptible())
6621	  break;
6622
6623	// Make plt entry for function call.
6624	target->make_plt_entry(symtab, layout, gsym);
6625	break;
6626      }
6627
6628    case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6629    case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // General dynamic
6630      {
6631	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6632	    optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6633	if (tlsopt == tls::TLSOPT_TO_LE)
6634	  {
6635	    layout->set_has_static_tls();
6636	    break;
6637	  }
6638	gold_assert(tlsopt == tls::TLSOPT_NONE);
6639
6640	// General dynamic.
6641	Output_data_got_aarch64<size, big_endian>* got =
6642	    target->got_section(symtab, layout);
6643	// Create 2 consecutive entries for module index and offset.
6644	got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
6645				      target->rela_dyn_section(layout),
6646				      elfcpp::R_AARCH64_TLS_DTPMOD64,
6647				      elfcpp::R_AARCH64_TLS_DTPREL64);
6648      }
6649      break;
6650
6651    case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6652    case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local dynamic
6653      {
6654	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6655	    optimize_tls_reloc(!parameters->options().shared(), r_type);
6656	if (tlsopt == tls::TLSOPT_NONE)
6657	  {
6658	    // Create a GOT entry for the module index.
6659	    target->got_mod_index_entry(symtab, layout, object);
6660	  }
6661	else if (tlsopt != tls::TLSOPT_TO_LE)
6662	  unsupported_reloc_local(object, r_type);
6663      }
6664      break;
6665
6666    case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6667    case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6668    case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6669    case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local dynamic
6670      break;
6671
6672    case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6673    case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial executable
6674      {
6675	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6676	  optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6677	if (tlsopt == tls::TLSOPT_TO_LE)
6678	  break;
6679
6680	layout->set_has_static_tls();
6681	// Create a GOT entry for the tp-relative offset.
6682	Output_data_got_aarch64<size, big_endian>* got
6683	  = target->got_section(symtab, layout);
6684	if (!parameters->doing_static_link())
6685	  {
6686	    got->add_global_with_rel(
6687	      gsym, GOT_TYPE_TLS_OFFSET,
6688	      target->rela_dyn_section(layout),
6689	      elfcpp::R_AARCH64_TLS_TPREL64);
6690	  }
6691	if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
6692	  {
6693	    got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
6694	    unsigned int got_offset =
6695	      gsym->got_offset(GOT_TYPE_TLS_OFFSET);
6696	    const elfcpp::Elf_Xword addend = rela.get_r_addend();
6697	    gold_assert(addend == 0);
6698	    got->add_static_reloc(got_offset,
6699				  elfcpp::R_AARCH64_TLS_TPREL64, gsym);
6700	  }
6701      }
6702      break;
6703
6704    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6705    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6706    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6707    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6708    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6709    case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6710    case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6711    case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6712    case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
6713    case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6714    case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
6715    case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6716    case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
6717    case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6718    case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
6719    case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:  // Local executable
6720      layout->set_has_static_tls();
6721      if (parameters->options().shared())
6722	gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
6723		   object->name().c_str(), r_type);
6724      break;
6725
6726    case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6727    case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6728    case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:  // TLS descriptor
6729      {
6730	target->define_tls_base_symbol(symtab, layout);
6731	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6732	    optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6733	if (tlsopt == tls::TLSOPT_NONE)
6734	  {
6735	    // Create reserved PLT and GOT entries for the resolver.
6736	    target->reserve_tlsdesc_entries(symtab, layout);
6737
6738	    // Create a double GOT entry with an R_AARCH64_TLSDESC
6739	    // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
6740	    // entry needs to be in an area in .got.plt, not .got. Call
6741	    // got_section to make sure the section has been created.
6742	    target->got_section(symtab, layout);
6743	    Output_data_got<size, big_endian>* got =
6744		target->got_tlsdesc_section();
6745	    Reloc_section* rt = target->rela_tlsdesc_section(layout);
6746	    got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
6747					  elfcpp::R_AARCH64_TLSDESC, 0);
6748	  }
6749	else if (tlsopt == tls::TLSOPT_TO_IE)
6750	  {
6751	    // Create a GOT entry for the tp-relative offset.
6752	    Output_data_got<size, big_endian>* got
6753		= target->got_section(symtab, layout);
6754	    got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
6755				     target->rela_dyn_section(layout),
6756				     elfcpp::R_AARCH64_TLS_TPREL64);
6757	  }
6758	else if (tlsopt != tls::TLSOPT_TO_LE)
6759	  unsupported_reloc_global(object, r_type, gsym);
6760      }
6761      break;
6762
6763    case elfcpp::R_AARCH64_TLSDESC_CALL:
6764      break;
6765
6766    default:
6767      gold_error(_("%s: unsupported reloc type in global scan"),
6768		 aarch64_reloc_property_table->
6769		 reloc_name_in_error_message(r_type).c_str());
6770    }
6771  return;
6772}  // End of Scan::global
6773
6774
6775// Create the PLT section.
6776template<int size, bool big_endian>
6777void
6778Target_aarch64<size, big_endian>::make_plt_section(
6779  Symbol_table* symtab, Layout* layout)
6780{
6781  if (this->plt_ == NULL)
6782    {
6783      // Create the GOT section first.
6784      this->got_section(symtab, layout);
6785
6786      this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
6787				       this->got_irelative_);
6788
6789      layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
6790				      (elfcpp::SHF_ALLOC
6791				       | elfcpp::SHF_EXECINSTR),
6792				      this->plt_, ORDER_PLT, false);
6793
6794      // Make the sh_info field of .rela.plt point to .plt.
6795      Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
6796      rela_plt_os->set_info_section(this->plt_->output_section());
6797    }
6798}
6799
6800// Return the section for TLSDESC relocations.
6801
6802template<int size, bool big_endian>
6803typename Target_aarch64<size, big_endian>::Reloc_section*
6804Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
6805{
6806  return this->plt_section()->rela_tlsdesc(layout);
6807}
6808
6809// Create a PLT entry for a global symbol.
6810
6811template<int size, bool big_endian>
6812void
6813Target_aarch64<size, big_endian>::make_plt_entry(
6814    Symbol_table* symtab,
6815    Layout* layout,
6816    Symbol* gsym)
6817{
6818  if (gsym->has_plt_offset())
6819    return;
6820
6821  if (this->plt_ == NULL)
6822    this->make_plt_section(symtab, layout);
6823
6824  this->plt_->add_entry(symtab, layout, gsym);
6825}
6826
6827// Make a PLT entry for a local STT_GNU_IFUNC symbol.
6828
6829template<int size, bool big_endian>
6830void
6831Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
6832    Symbol_table* symtab, Layout* layout,
6833    Sized_relobj_file<size, big_endian>* relobj,
6834    unsigned int local_sym_index)
6835{
6836  if (relobj->local_has_plt_offset(local_sym_index))
6837    return;
6838  if (this->plt_ == NULL)
6839    this->make_plt_section(symtab, layout);
6840  unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
6841							      relobj,
6842							      local_sym_index);
6843  relobj->set_local_plt_offset(local_sym_index, plt_offset);
6844}
6845
6846template<int size, bool big_endian>
6847void
6848Target_aarch64<size, big_endian>::gc_process_relocs(
6849    Symbol_table* symtab,
6850    Layout* layout,
6851    Sized_relobj_file<size, big_endian>* object,
6852    unsigned int data_shndx,
6853    unsigned int sh_type,
6854    const unsigned char* prelocs,
6855    size_t reloc_count,
6856    Output_section* output_section,
6857    bool needs_special_offset_handling,
6858    size_t local_symbol_count,
6859    const unsigned char* plocal_symbols)
6860{
6861  typedef Target_aarch64<size, big_endian> Aarch64;
6862  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6863      Classify_reloc;
6864
6865  if (sh_type == elfcpp::SHT_REL)
6866    {
6867      return;
6868    }
6869
6870  gold::gc_process_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
6871    symtab,
6872    layout,
6873    this,
6874    object,
6875    data_shndx,
6876    prelocs,
6877    reloc_count,
6878    output_section,
6879    needs_special_offset_handling,
6880    local_symbol_count,
6881    plocal_symbols);
6882}
6883
6884// Scan relocations for a section.
6885
6886template<int size, bool big_endian>
6887void
6888Target_aarch64<size, big_endian>::scan_relocs(
6889    Symbol_table* symtab,
6890    Layout* layout,
6891    Sized_relobj_file<size, big_endian>* object,
6892    unsigned int data_shndx,
6893    unsigned int sh_type,
6894    const unsigned char* prelocs,
6895    size_t reloc_count,
6896    Output_section* output_section,
6897    bool needs_special_offset_handling,
6898    size_t local_symbol_count,
6899    const unsigned char* plocal_symbols)
6900{
6901  typedef Target_aarch64<size, big_endian> Aarch64;
6902  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6903      Classify_reloc;
6904
6905  if (sh_type == elfcpp::SHT_REL)
6906    {
6907      gold_error(_("%s: unsupported REL reloc section"),
6908		 object->name().c_str());
6909      return;
6910    }
6911
6912  gold::scan_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
6913    symtab,
6914    layout,
6915    this,
6916    object,
6917    data_shndx,
6918    prelocs,
6919    reloc_count,
6920    output_section,
6921    needs_special_offset_handling,
6922    local_symbol_count,
6923    plocal_symbols);
6924}
6925
6926// Return the value to use for a dynamic which requires special
6927// treatment.  This is how we support equality comparisons of function
6928// pointers across shared library boundaries, as described in the
6929// processor specific ABI supplement.
6930
6931template<int size, bool big_endian>
6932uint64_t
6933Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
6934{
6935  gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
6936  return this->plt_address_for_global(gsym);
6937}
6938
6939
6940// Finalize the sections.
6941
6942template<int size, bool big_endian>
6943void
6944Target_aarch64<size, big_endian>::do_finalize_sections(
6945    Layout* layout,
6946    const Input_objects*,
6947    Symbol_table* symtab)
6948{
6949  const Reloc_section* rel_plt = (this->plt_ == NULL
6950				  ? NULL
6951				  : this->plt_->rela_plt());
6952  layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
6953				  this->rela_dyn_, true, false);
6954
6955  // Emit any relocs we saved in an attempt to avoid generating COPY
6956  // relocs.
6957  if (this->copy_relocs_.any_saved_relocs())
6958    this->copy_relocs_.emit(this->rela_dyn_section(layout));
6959
6960  // Fill in some more dynamic tags.
6961  Output_data_dynamic* const odyn = layout->dynamic_data();
6962  if (odyn != NULL)
6963    {
6964      if (this->plt_ != NULL
6965	  && this->plt_->output_section() != NULL
6966	  && this->plt_ ->has_tlsdesc_entry())
6967	{
6968	  unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
6969	  unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
6970	  this->got_->finalize_data_size();
6971	  odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
6972					this->plt_, plt_offset);
6973	  odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
6974					this->got_, got_offset);
6975	}
6976    }
6977
6978  // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
6979  // the .got section.
6980  Symbol* sym = this->global_offset_table_;
6981  if (sym != NULL)
6982    {
6983      uint64_t data_size = this->got_->current_data_size();
6984      symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
6985
6986      // If the .got section is more than 0x8000 bytes, we add
6987      // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
6988      // bit relocations have a greater chance of working.
6989      if (data_size >= 0x8000)
6990	symtab->get_sized_symbol<size>(sym)->set_value(
6991	  symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
6992    }
6993
6994  if (parameters->doing_static_link()
6995      && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
6996    {
6997      // If linking statically, make sure that the __rela_iplt symbols
6998      // were defined if necessary, even if we didn't create a PLT.
6999      static const Define_symbol_in_segment syms[] =
7000	{
7001	  {
7002	    "__rela_iplt_start",	// name
7003	    elfcpp::PT_LOAD,		// segment_type
7004	    elfcpp::PF_W,		// segment_flags_set
7005	    elfcpp::PF(0),		// segment_flags_clear
7006	    0,				// value
7007	    0,				// size
7008	    elfcpp::STT_NOTYPE,		// type
7009	    elfcpp::STB_GLOBAL,		// binding
7010	    elfcpp::STV_HIDDEN,		// visibility
7011	    0,				// nonvis
7012	    Symbol::SEGMENT_START,	// offset_from_base
7013	    true			// only_if_ref
7014	  },
7015	  {
7016	    "__rela_iplt_end",		// name
7017	    elfcpp::PT_LOAD,		// segment_type
7018	    elfcpp::PF_W,		// segment_flags_set
7019	    elfcpp::PF(0),		// segment_flags_clear
7020	    0,				// value
7021	    0,				// size
7022	    elfcpp::STT_NOTYPE,		// type
7023	    elfcpp::STB_GLOBAL,		// binding
7024	    elfcpp::STV_HIDDEN,		// visibility
7025	    0,				// nonvis
7026	    Symbol::SEGMENT_START,	// offset_from_base
7027	    true			// only_if_ref
7028	  }
7029	};
7030
7031      symtab->define_symbols(layout, 2, syms,
7032			     layout->script_options()->saw_sections_clause());
7033    }
7034
7035  return;
7036}
7037
7038// Perform a relocation.
7039
7040template<int size, bool big_endian>
7041inline bool
7042Target_aarch64<size, big_endian>::Relocate::relocate(
7043    const Relocate_info<size, big_endian>* relinfo,
7044    unsigned int,
7045    Target_aarch64<size, big_endian>* target,
7046    Output_section* ,
7047    size_t relnum,
7048    const unsigned char* preloc,
7049    const Sized_symbol<size>* gsym,
7050    const Symbol_value<size>* psymval,
7051    unsigned char* view,
7052    typename elfcpp::Elf_types<size>::Elf_Addr address,
7053    section_size_type /* view_size */)
7054{
7055  if (view == NULL)
7056    return true;
7057
7058  typedef AArch64_relocate_functions<size, big_endian> Reloc;
7059
7060  const elfcpp::Rela<size, big_endian> rela(preloc);
7061  unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
7062  const AArch64_reloc_property* reloc_property =
7063      aarch64_reloc_property_table->get_reloc_property(r_type);
7064
7065  if (reloc_property == NULL)
7066    {
7067      std::string reloc_name =
7068	  aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
7069      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7070			     _("cannot relocate %s in object file"),
7071			     reloc_name.c_str());
7072      return true;
7073    }
7074
7075  const Sized_relobj_file<size, big_endian>* object = relinfo->object;
7076
7077  // Pick the value to use for symbols defined in the PLT.
7078  Symbol_value<size> symval;
7079  if (gsym != NULL
7080      && gsym->use_plt_offset(reloc_property->reference_flags()))
7081    {
7082      symval.set_output_value(target->plt_address_for_global(gsym));
7083      psymval = &symval;
7084    }
7085  else if (gsym == NULL && psymval->is_ifunc_symbol())
7086    {
7087      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7088      if (object->local_has_plt_offset(r_sym))
7089	{
7090	  symval.set_output_value(target->plt_address_for_local(object, r_sym));
7091	  psymval = &symval;
7092	}
7093    }
7094
7095  const elfcpp::Elf_Xword addend = rela.get_r_addend();
7096
7097  // Get the GOT offset if needed.
7098  // For aarch64, the GOT pointer points to the start of the GOT section.
7099  bool have_got_offset = false;
7100  int got_offset = 0;
7101  int got_base = (target->got_ != NULL
7102		  ? (target->got_->current_data_size() >= 0x8000
7103		     ? 0x8000 : 0)
7104		  : 0);
7105  switch (r_type)
7106    {
7107    case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
7108    case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
7109    case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
7110    case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
7111    case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
7112    case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
7113    case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
7114    case elfcpp::R_AARCH64_GOTREL64:
7115    case elfcpp::R_AARCH64_GOTREL32:
7116    case elfcpp::R_AARCH64_GOT_LD_PREL19:
7117    case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
7118    case elfcpp::R_AARCH64_ADR_GOT_PAGE:
7119    case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
7120    case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
7121      if (gsym != NULL)
7122	{
7123	  gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7124	  got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
7125	}
7126      else
7127	{
7128	  unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7129	  gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7130	  got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
7131			- got_base);
7132	}
7133      have_got_offset = true;
7134      break;
7135
7136    default:
7137      break;
7138    }
7139
7140  typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
7141  typename elfcpp::Elf_types<size>::Elf_Addr value;
7142  switch (r_type)
7143    {
7144    case elfcpp::R_AARCH64_NONE:
7145      break;
7146
7147    case elfcpp::R_AARCH64_ABS64:
7148      if (!parameters->options().apply_dynamic_relocs()
7149          && parameters->options().output_is_position_independent()
7150          && gsym != NULL
7151          && gsym->needs_dynamic_reloc(reloc_property->reference_flags())
7152          && !gsym->can_use_relative_reloc(false))
7153        // We have generated an absolute dynamic relocation, so do not
7154        // apply the relocation statically. (Works around bugs in older
7155        // Android dynamic linkers.)
7156        break;
7157      reloc_status = Reloc::template rela_ua<64>(
7158	view, object, psymval, addend, reloc_property);
7159      break;
7160
7161    case elfcpp::R_AARCH64_ABS32:
7162      if (!parameters->options().apply_dynamic_relocs()
7163          && parameters->options().output_is_position_independent()
7164          && gsym != NULL
7165          && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
7166        // We have generated an absolute dynamic relocation, so do not
7167        // apply the relocation statically. (Works around bugs in older
7168        // Android dynamic linkers.)
7169        break;
7170      reloc_status = Reloc::template rela_ua<32>(
7171	view, object, psymval, addend, reloc_property);
7172      break;
7173
7174    case elfcpp::R_AARCH64_ABS16:
7175      if (!parameters->options().apply_dynamic_relocs()
7176          && parameters->options().output_is_position_independent()
7177          && gsym != NULL
7178          && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
7179        // We have generated an absolute dynamic relocation, so do not
7180        // apply the relocation statically. (Works around bugs in older
7181        // Android dynamic linkers.)
7182        break;
7183      reloc_status = Reloc::template rela_ua<16>(
7184	view, object, psymval, addend, reloc_property);
7185      break;
7186
7187    case elfcpp::R_AARCH64_PREL64:
7188      reloc_status = Reloc::template pcrela_ua<64>(
7189	view, object, psymval, addend, address, reloc_property);
7190      break;
7191
7192    case elfcpp::R_AARCH64_PREL32:
7193      reloc_status = Reloc::template pcrela_ua<32>(
7194	view, object, psymval, addend, address, reloc_property);
7195      break;
7196
7197    case elfcpp::R_AARCH64_PREL16:
7198      reloc_status = Reloc::template pcrela_ua<16>(
7199	view, object, psymval, addend, address, reloc_property);
7200      break;
7201
7202    case elfcpp::R_AARCH64_MOVW_UABS_G0:
7203    case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:
7204    case elfcpp::R_AARCH64_MOVW_UABS_G1:
7205    case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:
7206    case elfcpp::R_AARCH64_MOVW_UABS_G2:
7207    case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:
7208    case elfcpp::R_AARCH64_MOVW_UABS_G3:
7209      reloc_status = Reloc::template rela_general<32>(
7210	view, object, psymval, addend, reloc_property);
7211      break;
7212    case elfcpp::R_AARCH64_MOVW_SABS_G0:
7213    case elfcpp::R_AARCH64_MOVW_SABS_G1:
7214    case elfcpp::R_AARCH64_MOVW_SABS_G2:
7215      reloc_status = Reloc::movnz(view, psymval->value(object, addend),
7216				  reloc_property);
7217      break;
7218
7219    case elfcpp::R_AARCH64_LD_PREL_LO19:
7220      reloc_status = Reloc::template pcrela_general<32>(
7221	  view, object, psymval, addend, address, reloc_property);
7222      break;
7223
7224    case elfcpp::R_AARCH64_ADR_PREL_LO21:
7225      reloc_status = Reloc::adr(view, object, psymval, addend,
7226				address, reloc_property);
7227      break;
7228
7229    case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
7230    case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
7231      reloc_status = Reloc::adrp(view, object, psymval, addend, address,
7232				 reloc_property);
7233      break;
7234
7235    case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
7236    case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
7237    case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
7238    case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
7239    case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
7240    case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
7241      reloc_status = Reloc::template rela_general<32>(
7242	view, object, psymval, addend, reloc_property);
7243      break;
7244
7245    case elfcpp::R_AARCH64_CALL26:
7246      if (this->skip_call_tls_get_addr_)
7247	{
7248	  // Double check that the TLSGD insn has been optimized away.
7249	  typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7250	  Insntype insn = elfcpp::Swap<32, big_endian>::readval(
7251	      reinterpret_cast<Insntype*>(view));
7252	  gold_assert((insn & 0xff000000) == 0x91000000);
7253
7254	  reloc_status = Reloc::STATUS_OKAY;
7255	  this->skip_call_tls_get_addr_ = false;
7256	  // Return false to stop further processing this reloc.
7257	  return false;
7258	}
7259      // Fall through.
7260    case elfcpp::R_AARCH64_JUMP26:
7261      if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
7262				  gsym, psymval, object,
7263				  target->stub_group_size_))
7264	break;
7265      // Fall through.
7266    case elfcpp::R_AARCH64_TSTBR14:
7267    case elfcpp::R_AARCH64_CONDBR19:
7268      reloc_status = Reloc::template pcrela_general<32>(
7269	view, object, psymval, addend, address, reloc_property);
7270      break;
7271
7272    case elfcpp::R_AARCH64_ADR_GOT_PAGE:
7273      gold_assert(have_got_offset);
7274      value = target->got_->address() + got_base + got_offset;
7275      reloc_status = Reloc::adrp(view, value + addend, address);
7276      break;
7277
7278    case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
7279      gold_assert(have_got_offset);
7280      value = target->got_->address() + got_base + got_offset;
7281      reloc_status = Reloc::template rela_general<32>(
7282	view, value, addend, reloc_property);
7283      break;
7284
7285    case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
7286      {
7287	gold_assert(have_got_offset);
7288	value = target->got_->address() + got_base + got_offset + addend -
7289	  Reloc::Page(target->got_->address() + got_base);
7290	if ((value & 7) != 0)
7291	  reloc_status = Reloc::STATUS_OVERFLOW;
7292	else
7293	  reloc_status = Reloc::template reloc_common<32>(
7294	    view, value, reloc_property);
7295	break;
7296      }
7297
7298    case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7299    case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7300    case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7301    case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7302    case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7303    case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7304    case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7305    case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7306    case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7307    case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7308    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7309    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7310    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7311    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7312    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7313    case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7314    case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7315    case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7316    case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
7317    case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
7318    case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
7319    case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
7320    case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
7321    case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
7322    case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
7323    case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
7324    case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7325    case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7326    case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7327    case elfcpp::R_AARCH64_TLSDESC_CALL:
7328      reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
7329				  gsym, psymval, view, address);
7330      break;
7331
7332    // These are dynamic relocations, which are unexpected when linking.
7333    case elfcpp::R_AARCH64_COPY:
7334    case elfcpp::R_AARCH64_GLOB_DAT:
7335    case elfcpp::R_AARCH64_JUMP_SLOT:
7336    case elfcpp::R_AARCH64_RELATIVE:
7337    case elfcpp::R_AARCH64_IRELATIVE:
7338    case elfcpp::R_AARCH64_TLS_DTPREL64:
7339    case elfcpp::R_AARCH64_TLS_DTPMOD64:
7340    case elfcpp::R_AARCH64_TLS_TPREL64:
7341    case elfcpp::R_AARCH64_TLSDESC:
7342      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7343			     _("unexpected reloc %u in object file"),
7344			     r_type);
7345      break;
7346
7347    default:
7348      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7349			     _("unsupported reloc %s"),
7350			     reloc_property->name().c_str());
7351      break;
7352    }
7353
7354  // Report any errors.
7355  switch (reloc_status)
7356    {
7357    case Reloc::STATUS_OKAY:
7358      break;
7359    case Reloc::STATUS_OVERFLOW:
7360      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7361			     _("relocation overflow in %s"),
7362			     reloc_property->name().c_str());
7363      break;
7364    case Reloc::STATUS_BAD_RELOC:
7365      gold_error_at_location(
7366	  relinfo,
7367	  relnum,
7368	  rela.get_r_offset(),
7369	  _("unexpected opcode while processing relocation %s"),
7370	  reloc_property->name().c_str());
7371      break;
7372    default:
7373      gold_unreachable();
7374    }
7375
7376  return true;
7377}
7378
7379
7380template<int size, bool big_endian>
7381inline
7382typename AArch64_relocate_functions<size, big_endian>::Status
7383Target_aarch64<size, big_endian>::Relocate::relocate_tls(
7384    const Relocate_info<size, big_endian>* relinfo,
7385    Target_aarch64<size, big_endian>* target,
7386    size_t relnum,
7387    const elfcpp::Rela<size, big_endian>& rela,
7388    unsigned int r_type, const Sized_symbol<size>* gsym,
7389    const Symbol_value<size>* psymval,
7390    unsigned char* view,
7391    typename elfcpp::Elf_types<size>::Elf_Addr address)
7392{
7393  typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7394  typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7395
7396  Output_segment* tls_segment = relinfo->layout->tls_segment();
7397  const elfcpp::Elf_Xword addend = rela.get_r_addend();
7398  const AArch64_reloc_property* reloc_property =
7399      aarch64_reloc_property_table->get_reloc_property(r_type);
7400  gold_assert(reloc_property != NULL);
7401
7402  const bool is_final = (gsym == NULL
7403			 ? !parameters->options().shared()
7404			 : gsym->final_value_is_known());
7405  tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
7406      optimize_tls_reloc(is_final, r_type);
7407
7408  Sized_relobj_file<size, big_endian>* object = relinfo->object;
7409  int tls_got_offset_type;
7410  switch (r_type)
7411    {
7412    case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7413    case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // Global-dynamic
7414      {
7415	if (tlsopt == tls::TLSOPT_TO_LE)
7416	  {
7417	    if (tls_segment == NULL)
7418	      {
7419		gold_assert(parameters->errors()->error_count() > 0
7420			    || issue_undefined_symbol_error(gsym));
7421		return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7422	      }
7423	    return tls_gd_to_le(relinfo, target, rela, r_type, view,
7424				psymval);
7425	  }
7426	else if (tlsopt == tls::TLSOPT_NONE)
7427	  {
7428	    tls_got_offset_type = GOT_TYPE_TLS_PAIR;
7429	    // Firstly get the address for the got entry.
7430	    typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7431	    if (gsym != NULL)
7432	      {
7433		gold_assert(gsym->has_got_offset(tls_got_offset_type));
7434		got_entry_address = target->got_->address() +
7435				    gsym->got_offset(tls_got_offset_type);
7436	      }
7437	    else
7438	      {
7439		unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7440		gold_assert(
7441		  object->local_has_got_offset(r_sym, tls_got_offset_type));
7442		got_entry_address = target->got_->address() +
7443		  object->local_got_offset(r_sym, tls_got_offset_type);
7444	      }
7445
7446	    // Relocate the address into adrp/ld, adrp/add pair.
7447	    switch (r_type)
7448	      {
7449	      case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7450		return aarch64_reloc_funcs::adrp(
7451		  view, got_entry_address + addend, address);
7452
7453		break;
7454
7455	      case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7456		return aarch64_reloc_funcs::template rela_general<32>(
7457		  view, got_entry_address, addend, reloc_property);
7458		break;
7459
7460	      default:
7461		gold_unreachable();
7462	      }
7463	  }
7464	gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7465			       _("unsupported gd_to_ie relaxation on %u"),
7466			       r_type);
7467      }
7468      break;
7469
7470    case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7471    case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local-dynamic
7472      {
7473	if (tlsopt == tls::TLSOPT_TO_LE)
7474	  {
7475	    if (tls_segment == NULL)
7476	      {
7477		gold_assert(parameters->errors()->error_count() > 0
7478			    || issue_undefined_symbol_error(gsym));
7479		return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7480	      }
7481	    return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
7482				      psymval);
7483	  }
7484
7485	gold_assert(tlsopt == tls::TLSOPT_NONE);
7486	// Relocate the field with the offset of the GOT entry for
7487	// the module index.
7488	typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7489	got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
7490			     target->got_->address());
7491
7492	switch (r_type)
7493	  {
7494	  case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7495	    return aarch64_reloc_funcs::adrp(
7496	      view, got_entry_address + addend, address);
7497	    break;
7498
7499	  case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7500	    return aarch64_reloc_funcs::template rela_general<32>(
7501	      view, got_entry_address, addend, reloc_property);
7502	    break;
7503
7504	  default:
7505	    gold_unreachable();
7506	  }
7507      }
7508      break;
7509
7510    case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7511    case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7512    case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7513    case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local-dynamic
7514      {
7515	AArch64_address value = psymval->value(object, 0);
7516	if (tlsopt == tls::TLSOPT_TO_LE)
7517	  {
7518	    if (tls_segment == NULL)
7519	      {
7520		gold_assert(parameters->errors()->error_count() > 0
7521			    || issue_undefined_symbol_error(gsym));
7522		return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7523	      }
7524	  }
7525	switch (r_type)
7526	  {
7527	  case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7528	    return aarch64_reloc_funcs::movnz(view, value + addend,
7529					      reloc_property);
7530	    break;
7531
7532	  case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7533	  case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7534	  case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7535	    return aarch64_reloc_funcs::template rela_general<32>(
7536		view, value, addend, reloc_property);
7537	    break;
7538
7539	  default:
7540	    gold_unreachable();
7541	  }
7542	// We should never reach here.
7543      }
7544      break;
7545
7546    case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7547    case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial-exec
7548      {
7549	if (tlsopt == tls::TLSOPT_TO_LE)
7550	  {
7551	    if (tls_segment == NULL)
7552	      {
7553		gold_assert(parameters->errors()->error_count() > 0
7554			    || issue_undefined_symbol_error(gsym));
7555		return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7556	      }
7557	    return tls_ie_to_le(relinfo, target, rela, r_type, view,
7558				psymval);
7559	  }
7560	tls_got_offset_type = GOT_TYPE_TLS_OFFSET;
7561
7562	// Firstly get the address for the got entry.
7563	typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7564	if (gsym != NULL)
7565	  {
7566	    gold_assert(gsym->has_got_offset(tls_got_offset_type));
7567	    got_entry_address = target->got_->address() +
7568				gsym->got_offset(tls_got_offset_type);
7569	  }
7570	else
7571	  {
7572	    unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7573	    gold_assert(
7574		object->local_has_got_offset(r_sym, tls_got_offset_type));
7575	    got_entry_address = target->got_->address() +
7576		object->local_got_offset(r_sym, tls_got_offset_type);
7577	  }
7578	// Relocate the address into adrp/ld, adrp/add pair.
7579	switch (r_type)
7580	  {
7581	  case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7582	    return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7583					     address);
7584	    break;
7585	  case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7586	    return aarch64_reloc_funcs::template rela_general<32>(
7587	      view, got_entry_address, addend, reloc_property);
7588	  default:
7589	    gold_unreachable();
7590	  }
7591      }
7592      // We shall never reach here.
7593      break;
7594
7595    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7596    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7597    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7598    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7599    case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7600    case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7601    case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7602    case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7603    case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
7604    case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
7605    case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
7606    case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
7607    case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
7608    case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
7609    case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
7610    case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
7611      {
7612	gold_assert(tls_segment != NULL);
7613	AArch64_address value = psymval->value(object, 0);
7614
7615	if (!parameters->options().shared())
7616	  {
7617	    AArch64_address aligned_tcb_size =
7618		align_address(target->tcb_size(),
7619			      tls_segment->maximum_alignment());
7620	    value += aligned_tcb_size;
7621	    switch (r_type)
7622	      {
7623	      case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7624	      case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7625	      case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7626		return aarch64_reloc_funcs::movnz(view, value + addend,
7627						  reloc_property);
7628	      default:
7629		return aarch64_reloc_funcs::template
7630		  rela_general<32>(view,
7631				   value,
7632				   addend,
7633				   reloc_property);
7634	      }
7635	  }
7636	else
7637	  gold_error(_("%s: unsupported reloc %u "
7638		       "in non-static TLSLE mode."),
7639		     object->name().c_str(), r_type);
7640      }
7641      break;
7642
7643    case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7644    case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7645    case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7646    case elfcpp::R_AARCH64_TLSDESC_CALL:
7647      {
7648	if (tlsopt == tls::TLSOPT_TO_LE)
7649	  {
7650	    if (tls_segment == NULL)
7651	      {
7652		gold_assert(parameters->errors()->error_count() > 0
7653			    || issue_undefined_symbol_error(gsym));
7654		return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7655	      }
7656	    return tls_desc_gd_to_le(relinfo, target, rela, r_type,
7657				     view, psymval);
7658	  }
7659	else
7660	  {
7661	    tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
7662				   ? GOT_TYPE_TLS_OFFSET
7663				   : GOT_TYPE_TLS_DESC);
7664	    int got_tlsdesc_offset = 0;
7665	    if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
7666		&& tlsopt == tls::TLSOPT_NONE)
7667	      {
7668		// We created GOT entries in the .got.tlsdesc portion of the
7669		// .got.plt section, but the offset stored in the symbol is the
7670		// offset within .got.tlsdesc.
7671		got_tlsdesc_offset = (target->got_tlsdesc_->address()
7672				      - target->got_->address());
7673	      }
7674	    typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7675	    if (gsym != NULL)
7676	      {
7677		gold_assert(gsym->has_got_offset(tls_got_offset_type));
7678		got_entry_address = target->got_->address()
7679				    + got_tlsdesc_offset
7680				    + gsym->got_offset(tls_got_offset_type);
7681	      }
7682	    else
7683	      {
7684		unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7685		gold_assert(
7686		    object->local_has_got_offset(r_sym, tls_got_offset_type));
7687		got_entry_address = target->got_->address() +
7688		  got_tlsdesc_offset +
7689		  object->local_got_offset(r_sym, tls_got_offset_type);
7690	      }
7691	    if (tlsopt == tls::TLSOPT_TO_IE)
7692	      {
7693		return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
7694					 view, psymval, got_entry_address,
7695					 address);
7696	      }
7697
7698	    // Now do tlsdesc relocation.
7699	    switch (r_type)
7700	      {
7701	      case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7702		return aarch64_reloc_funcs::adrp(view,
7703						 got_entry_address + addend,
7704						 address);
7705		break;
7706	      case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7707	      case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7708		return aarch64_reloc_funcs::template rela_general<32>(
7709		  view, got_entry_address, addend, reloc_property);
7710		break;
7711	      case elfcpp::R_AARCH64_TLSDESC_CALL:
7712		return aarch64_reloc_funcs::STATUS_OKAY;
7713		break;
7714	      default:
7715		gold_unreachable();
7716	      }
7717	  }
7718	}
7719      break;
7720
7721    default:
7722      gold_error(_("%s: unsupported TLS reloc %u."),
7723		 object->name().c_str(), r_type);
7724    }
7725  return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7726}  // End of relocate_tls.
7727
7728
7729template<int size, bool big_endian>
7730inline
7731typename AArch64_relocate_functions<size, big_endian>::Status
7732Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
7733	     const Relocate_info<size, big_endian>* relinfo,
7734	     Target_aarch64<size, big_endian>* target,
7735	     const elfcpp::Rela<size, big_endian>& rela,
7736	     unsigned int r_type,
7737	     unsigned char* view,
7738	     const Symbol_value<size>* psymval)
7739{
7740  typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7741  typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7742  typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7743
7744  Insntype* ip = reinterpret_cast<Insntype*>(view);
7745  Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7746  Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7747  Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7748
7749  if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
7750    {
7751      // This is the 2nd relocs, optimization should already have been
7752      // done.
7753      gold_assert((insn1 & 0xfff00000) == 0x91400000);
7754      return aarch64_reloc_funcs::STATUS_OKAY;
7755    }
7756
7757  // The original sequence is -
7758  //   90000000        adrp    x0, 0 <main>
7759  //   91000000        add     x0, x0, #0x0
7760  //   94000000        bl      0 <__tls_get_addr>
7761  // optimized to sequence -
7762  //   d53bd040        mrs     x0, tpidr_el0
7763  //   91400000        add     x0, x0, #0x0, lsl #12
7764  //   91000000        add     x0, x0, #0x0
7765
7766  // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7767  // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
7768  // have to change "bl tls_get_addr", which does not have a corresponding tls
7769  // relocation type. So before proceeding, we need to make sure compiler
7770  // does not change the sequence.
7771  if(!(insn1 == 0x90000000      // adrp x0,0
7772       && insn2 == 0x91000000   // add x0, x0, #0x0
7773       && insn3 == 0x94000000)) // bl 0
7774    {
7775      // Ideally we should give up gd_to_le relaxation and do gd access.
7776      // However the gd_to_le relaxation decision has been made early
7777      // in the scan stage, where we did not allocate any GOT entry for
7778      // this symbol. Therefore we have to exit and report error now.
7779      gold_error(_("unexpected reloc insn sequence while relaxing "
7780		   "tls gd to le for reloc %u."), r_type);
7781      return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7782    }
7783
7784  // Write new insns.
7785  insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
7786  insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
7787  insn3 = 0x91000000;  // add x0, x0, #0x0
7788  elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7789  elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7790  elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7791
7792  // Calculate tprel value.
7793  Output_segment* tls_segment = relinfo->layout->tls_segment();
7794  gold_assert(tls_segment != NULL);
7795  AArch64_address value = psymval->value(relinfo->object, 0);
7796  const elfcpp::Elf_Xword addend = rela.get_r_addend();
7797  AArch64_address aligned_tcb_size =
7798      align_address(target->tcb_size(), tls_segment->maximum_alignment());
7799  AArch64_address x = value + aligned_tcb_size;
7800
7801  // After new insns are written, apply TLSLE relocs.
7802  const AArch64_reloc_property* rp1 =
7803      aarch64_reloc_property_table->get_reloc_property(
7804	  elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7805  const AArch64_reloc_property* rp2 =
7806      aarch64_reloc_property_table->get_reloc_property(
7807	  elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7808  gold_assert(rp1 != NULL && rp2 != NULL);
7809
7810  typename aarch64_reloc_funcs::Status s1 =
7811      aarch64_reloc_funcs::template rela_general<32>(view + 4,
7812						     x,
7813						     addend,
7814						     rp1);
7815  if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7816    return s1;
7817
7818  typename aarch64_reloc_funcs::Status s2 =
7819      aarch64_reloc_funcs::template rela_general<32>(view + 8,
7820						     x,
7821						     addend,
7822						     rp2);
7823
7824  this->skip_call_tls_get_addr_ = true;
7825  return s2;
7826}  // End of tls_gd_to_le
7827
7828
7829template<int size, bool big_endian>
7830inline
7831typename AArch64_relocate_functions<size, big_endian>::Status
7832Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
7833	     const Relocate_info<size, big_endian>* relinfo,
7834	     Target_aarch64<size, big_endian>* target,
7835	     const elfcpp::Rela<size, big_endian>& rela,
7836	     unsigned int r_type,
7837	     unsigned char* view,
7838	     const Symbol_value<size>* psymval)
7839{
7840  typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7841  typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7842  typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7843
7844  Insntype* ip = reinterpret_cast<Insntype*>(view);
7845  Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7846  Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7847  Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7848
7849  if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
7850    {
7851      // This is the 2nd relocs, optimization should already have been
7852      // done.
7853      gold_assert((insn1 & 0xfff00000) == 0x91400000);
7854      return aarch64_reloc_funcs::STATUS_OKAY;
7855    }
7856
7857  // The original sequence is -
7858  //   90000000        adrp    x0, 0 <main>
7859  //   91000000        add     x0, x0, #0x0
7860  //   94000000        bl      0 <__tls_get_addr>
7861  // optimized to sequence -
7862  //   d53bd040        mrs     x0, tpidr_el0
7863  //   91400000        add     x0, x0, #0x0, lsl #12
7864  //   91000000        add     x0, x0, #0x0
7865
7866  // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7867  // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
7868  // have to change "bl tls_get_addr", which does not have a corresponding tls
7869  // relocation type. So before proceeding, we need to make sure compiler
7870  // does not change the sequence.
7871  if(!(insn1 == 0x90000000      // adrp x0,0
7872       && insn2 == 0x91000000   // add x0, x0, #0x0
7873       && insn3 == 0x94000000)) // bl 0
7874    {
7875      // Ideally we should give up gd_to_le relaxation and do gd access.
7876      // However the gd_to_le relaxation decision has been made early
7877      // in the scan stage, where we did not allocate a GOT entry for
7878      // this symbol. Therefore we have to exit and report an error now.
7879      gold_error(_("unexpected reloc insn sequence while relaxing "
7880		   "tls gd to le for reloc %u."), r_type);
7881      return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7882    }
7883
7884  // Write new insns.
7885  insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
7886  insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
7887  insn3 = 0x91000000;  // add x0, x0, #0x0
7888  elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7889  elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7890  elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7891
7892  // Calculate tprel value.
7893  Output_segment* tls_segment = relinfo->layout->tls_segment();
7894  gold_assert(tls_segment != NULL);
7895  AArch64_address value = psymval->value(relinfo->object, 0);
7896  const elfcpp::Elf_Xword addend = rela.get_r_addend();
7897  AArch64_address aligned_tcb_size =
7898      align_address(target->tcb_size(), tls_segment->maximum_alignment());
7899  AArch64_address x = value + aligned_tcb_size;
7900
7901  // After new insns are written, apply TLSLE relocs.
7902  const AArch64_reloc_property* rp1 =
7903      aarch64_reloc_property_table->get_reloc_property(
7904	  elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7905  const AArch64_reloc_property* rp2 =
7906      aarch64_reloc_property_table->get_reloc_property(
7907	  elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7908  gold_assert(rp1 != NULL && rp2 != NULL);
7909
7910  typename aarch64_reloc_funcs::Status s1 =
7911      aarch64_reloc_funcs::template rela_general<32>(view + 4,
7912						     x,
7913						     addend,
7914						     rp1);
7915  if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7916    return s1;
7917
7918  typename aarch64_reloc_funcs::Status s2 =
7919      aarch64_reloc_funcs::template rela_general<32>(view + 8,
7920						     x,
7921						     addend,
7922						     rp2);
7923
7924  this->skip_call_tls_get_addr_ = true;
7925  return s2;
7926
7927}  // End of tls_ld_to_le
7928
7929template<int size, bool big_endian>
7930inline
7931typename AArch64_relocate_functions<size, big_endian>::Status
7932Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
7933	     const Relocate_info<size, big_endian>* relinfo,
7934	     Target_aarch64<size, big_endian>* target,
7935	     const elfcpp::Rela<size, big_endian>& rela,
7936	     unsigned int r_type,
7937	     unsigned char* view,
7938	     const Symbol_value<size>* psymval)
7939{
7940  typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7941  typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7942  typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7943
7944  AArch64_address value = psymval->value(relinfo->object, 0);
7945  Output_segment* tls_segment = relinfo->layout->tls_segment();
7946  AArch64_address aligned_tcb_address =
7947      align_address(target->tcb_size(), tls_segment->maximum_alignment());
7948  const elfcpp::Elf_Xword addend = rela.get_r_addend();
7949  AArch64_address x = value + addend + aligned_tcb_address;
7950  // "x" is the offset to tp, we can only do this if x is within
7951  // range [0, 2^32-1]
7952  if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
7953    {
7954      gold_error(_("TLS variable referred by reloc %u is too far from TP."),
7955		 r_type);
7956      return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7957    }
7958
7959  Insntype* ip = reinterpret_cast<Insntype*>(view);
7960  Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7961  unsigned int regno;
7962  Insntype newinsn;
7963  if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
7964    {
7965      // Generate movz.
7966      regno = (insn & 0x1f);
7967      newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
7968    }
7969  else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
7970    {
7971      // Generate movk.
7972      regno = (insn & 0x1f);
7973      gold_assert(regno == ((insn >> 5) & 0x1f));
7974      newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
7975    }
7976  else
7977    gold_unreachable();
7978
7979  elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7980  return aarch64_reloc_funcs::STATUS_OKAY;
7981}  // End of tls_ie_to_le
7982
7983
7984template<int size, bool big_endian>
7985inline
7986typename AArch64_relocate_functions<size, big_endian>::Status
7987Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
7988	     const Relocate_info<size, big_endian>* relinfo,
7989	     Target_aarch64<size, big_endian>* target,
7990	     const elfcpp::Rela<size, big_endian>& rela,
7991	     unsigned int r_type,
7992	     unsigned char* view,
7993	     const Symbol_value<size>* psymval)
7994{
7995  typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7996  typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7997  typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7998
7999  // TLSDESC-GD sequence is like:
8000  //   adrp  x0, :tlsdesc:v1
8001  //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
8002  //   add   x0, x0, :tlsdesc_lo12:v1
8003  //   .tlsdesccall    v1
8004  //   blr   x1
8005  // After desc_gd_to_le optimization, the sequence will be like:
8006  //   movz  x0, #0x0, lsl #16
8007  //   movk  x0, #0x10
8008  //   nop
8009  //   nop
8010
8011  // Calculate tprel value.
8012  Output_segment* tls_segment = relinfo->layout->tls_segment();
8013  gold_assert(tls_segment != NULL);
8014  Insntype* ip = reinterpret_cast<Insntype*>(view);
8015  const elfcpp::Elf_Xword addend = rela.get_r_addend();
8016  AArch64_address value = psymval->value(relinfo->object, addend);
8017  AArch64_address aligned_tcb_size =
8018      align_address(target->tcb_size(), tls_segment->maximum_alignment());
8019  AArch64_address x = value + aligned_tcb_size;
8020  // x is the offset to tp, we can only do this if x is within range
8021  // [0, 2^32-1]. If x is out of range, fail and exit.
8022  if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
8023    {
8024      gold_error(_("TLS variable referred by reloc %u is too far from TP. "
8025		   "We Can't do gd_to_le relaxation.\n"), r_type);
8026      return aarch64_reloc_funcs::STATUS_BAD_RELOC;
8027    }
8028  Insntype newinsn;
8029  switch (r_type)
8030    {
8031    case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
8032    case elfcpp::R_AARCH64_TLSDESC_CALL:
8033      // Change to nop
8034      newinsn = 0xd503201f;
8035      break;
8036
8037    case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
8038      // Change to movz.
8039      newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
8040      break;
8041
8042    case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
8043      // Change to movk.
8044      newinsn = 0xf2800000 | ((x & 0xffff) << 5);
8045      break;
8046
8047    default:
8048      gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
8049		 r_type);
8050      gold_unreachable();
8051    }
8052  elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
8053  return aarch64_reloc_funcs::STATUS_OKAY;
8054}  // End of tls_desc_gd_to_le
8055
8056
8057template<int size, bool big_endian>
8058inline
8059typename AArch64_relocate_functions<size, big_endian>::Status
8060Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
8061	     const Relocate_info<size, big_endian>* /* relinfo */,
8062	     Target_aarch64<size, big_endian>* /* target */,
8063	     const elfcpp::Rela<size, big_endian>& rela,
8064	     unsigned int r_type,
8065	     unsigned char* view,
8066	     const Symbol_value<size>* /* psymval */,
8067	     typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
8068	     typename elfcpp::Elf_types<size>::Elf_Addr address)
8069{
8070  typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
8071  typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
8072
8073  // TLSDESC-GD sequence is like:
8074  //   adrp  x0, :tlsdesc:v1
8075  //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
8076  //   add   x0, x0, :tlsdesc_lo12:v1
8077  //   .tlsdesccall    v1
8078  //   blr   x1
8079  // After desc_gd_to_ie optimization, the sequence will be like:
8080  //   adrp  x0, :tlsie:v1
8081  //   ldr   x0, [x0, :tlsie_lo12:v1]
8082  //   nop
8083  //   nop
8084
8085  Insntype* ip = reinterpret_cast<Insntype*>(view);
8086  const elfcpp::Elf_Xword addend = rela.get_r_addend();
8087  Insntype newinsn;
8088  switch (r_type)
8089    {
8090    case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
8091    case elfcpp::R_AARCH64_TLSDESC_CALL:
8092      // Change to nop
8093      newinsn = 0xd503201f;
8094      elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
8095      break;
8096
8097    case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
8098      {
8099	return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
8100					 address);
8101      }
8102      break;
8103
8104    case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
8105      {
8106       // Set ldr target register to be x0.
8107       Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
8108       insn &= 0xffffffe0;
8109       elfcpp::Swap<32, big_endian>::writeval(ip, insn);
8110       // Do relocation.
8111	const AArch64_reloc_property* reloc_property =
8112	    aarch64_reloc_property_table->get_reloc_property(
8113	      elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
8114	return aarch64_reloc_funcs::template rela_general<32>(
8115		 view, got_entry_address, addend, reloc_property);
8116      }
8117      break;
8118
8119    default:
8120      gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
8121		 r_type);
8122      gold_unreachable();
8123    }
8124  return aarch64_reloc_funcs::STATUS_OKAY;
8125}  // End of tls_desc_gd_to_ie
8126
8127// Relocate section data.
8128
8129template<int size, bool big_endian>
8130void
8131Target_aarch64<size, big_endian>::relocate_section(
8132    const Relocate_info<size, big_endian>* relinfo,
8133    unsigned int sh_type,
8134    const unsigned char* prelocs,
8135    size_t reloc_count,
8136    Output_section* output_section,
8137    bool needs_special_offset_handling,
8138    unsigned char* view,
8139    typename elfcpp::Elf_types<size>::Elf_Addr address,
8140    section_size_type view_size,
8141    const Reloc_symbol_changes* reloc_symbol_changes)
8142{
8143  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
8144  typedef Target_aarch64<size, big_endian> Aarch64;
8145  typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
8146  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8147      Classify_reloc;
8148
8149  gold_assert(sh_type == elfcpp::SHT_RELA);
8150
8151  // See if we are relocating a relaxed input section.  If so, the view
8152  // covers the whole output section and we need to adjust accordingly.
8153  if (needs_special_offset_handling)
8154    {
8155      const Output_relaxed_input_section* poris =
8156	output_section->find_relaxed_input_section(relinfo->object,
8157						   relinfo->data_shndx);
8158      if (poris != NULL)
8159	{
8160	  Address section_address = poris->address();
8161	  section_size_type section_size = poris->data_size();
8162
8163	  gold_assert((section_address >= address)
8164		      && ((section_address + section_size)
8165			  <= (address + view_size)));
8166
8167	  off_t offset = section_address - address;
8168	  view += offset;
8169	  address += offset;
8170	  view_size = section_size;
8171	}
8172    }
8173
8174  gold::relocate_section<size, big_endian, Aarch64, AArch64_relocate,
8175			 gold::Default_comdat_behavior, Classify_reloc>(
8176    relinfo,
8177    this,
8178    prelocs,
8179    reloc_count,
8180    output_section,
8181    needs_special_offset_handling,
8182    view,
8183    address,
8184    view_size,
8185    reloc_symbol_changes);
8186}
8187
8188// Scan the relocs during a relocatable link.
8189
8190template<int size, bool big_endian>
8191void
8192Target_aarch64<size, big_endian>::scan_relocatable_relocs(
8193    Symbol_table* symtab,
8194    Layout* layout,
8195    Sized_relobj_file<size, big_endian>* object,
8196    unsigned int data_shndx,
8197    unsigned int sh_type,
8198    const unsigned char* prelocs,
8199    size_t reloc_count,
8200    Output_section* output_section,
8201    bool needs_special_offset_handling,
8202    size_t local_symbol_count,
8203    const unsigned char* plocal_symbols,
8204    Relocatable_relocs* rr)
8205{
8206  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8207      Classify_reloc;
8208  typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
8209      Scan_relocatable_relocs;
8210
8211  gold_assert(sh_type == elfcpp::SHT_RELA);
8212
8213  gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
8214    symtab,
8215    layout,
8216    object,
8217    data_shndx,
8218    prelocs,
8219    reloc_count,
8220    output_section,
8221    needs_special_offset_handling,
8222    local_symbol_count,
8223    plocal_symbols,
8224    rr);
8225}
8226
8227// Scan the relocs for --emit-relocs.
8228
8229template<int size, bool big_endian>
8230void
8231Target_aarch64<size, big_endian>::emit_relocs_scan(
8232    Symbol_table* symtab,
8233    Layout* layout,
8234    Sized_relobj_file<size, big_endian>* object,
8235    unsigned int data_shndx,
8236    unsigned int sh_type,
8237    const unsigned char* prelocs,
8238    size_t reloc_count,
8239    Output_section* output_section,
8240    bool needs_special_offset_handling,
8241    size_t local_symbol_count,
8242    const unsigned char* plocal_syms,
8243    Relocatable_relocs* rr)
8244{
8245  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8246      Classify_reloc;
8247  typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8248      Emit_relocs_strategy;
8249
8250  gold_assert(sh_type == elfcpp::SHT_RELA);
8251
8252  gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8253    symtab,
8254    layout,
8255    object,
8256    data_shndx,
8257    prelocs,
8258    reloc_count,
8259    output_section,
8260    needs_special_offset_handling,
8261    local_symbol_count,
8262    plocal_syms,
8263    rr);
8264}
8265
8266// Relocate a section during a relocatable link.
8267
8268template<int size, bool big_endian>
8269void
8270Target_aarch64<size, big_endian>::relocate_relocs(
8271    const Relocate_info<size, big_endian>* relinfo,
8272    unsigned int sh_type,
8273    const unsigned char* prelocs,
8274    size_t reloc_count,
8275    Output_section* output_section,
8276    typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8277    unsigned char* view,
8278    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
8279    section_size_type view_size,
8280    unsigned char* reloc_view,
8281    section_size_type reloc_view_size)
8282{
8283  typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8284      Classify_reloc;
8285
8286  gold_assert(sh_type == elfcpp::SHT_RELA);
8287
8288  gold::relocate_relocs<size, big_endian, Classify_reloc>(
8289    relinfo,
8290    prelocs,
8291    reloc_count,
8292    output_section,
8293    offset_in_output_section,
8294    view,
8295    view_address,
8296    view_size,
8297    reloc_view,
8298    reloc_view_size);
8299}
8300
8301
8302// Return whether this is a 3-insn erratum sequence.
8303
8304template<int size, bool big_endian>
8305bool
8306Target_aarch64<size, big_endian>::is_erratum_843419_sequence(
8307    typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8308    typename elfcpp::Swap<32,big_endian>::Valtype insn2,
8309    typename elfcpp::Swap<32,big_endian>::Valtype insn3)
8310{
8311  unsigned rt1, rt2;
8312  bool load, pair;
8313
8314  // The 2nd insn is a single register load or store; or register pair
8315  // store.
8316  if (Insn_utilities::aarch64_mem_op_p(insn2, &rt1, &rt2, &pair, &load)
8317      && (!pair || (pair && !load)))
8318    {
8319      // The 3rd insn is a load or store instruction from the "Load/store
8320      // register (unsigned immediate)" encoding class, using Rn as the
8321      // base address register.
8322      if (Insn_utilities::aarch64_ldst_uimm(insn3)
8323	  && (Insn_utilities::aarch64_rn(insn3)
8324	      == Insn_utilities::aarch64_rd(insn1)))
8325	return true;
8326    }
8327  return false;
8328}
8329
8330
8331// Return whether this is a 835769 sequence.
8332// (Similarly implemented as in elfnn-aarch64.c.)
8333
8334template<int size, bool big_endian>
8335bool
8336Target_aarch64<size, big_endian>::is_erratum_835769_sequence(
8337    typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8338    typename elfcpp::Swap<32,big_endian>::Valtype insn2)
8339{
8340  uint32_t rt;
8341  uint32_t rt2 = 0;
8342  uint32_t rn;
8343  uint32_t rm;
8344  uint32_t ra;
8345  bool pair;
8346  bool load;
8347
8348  if (Insn_utilities::aarch64_mlxl(insn2)
8349      && Insn_utilities::aarch64_mem_op_p (insn1, &rt, &rt2, &pair, &load))
8350    {
8351      /* Any SIMD memory op is independent of the subsequent MLA
8352	 by definition of the erratum.  */
8353      if (Insn_utilities::aarch64_bit(insn1, 26))
8354	return true;
8355
8356      /* If not SIMD, check for integer memory ops and MLA relationship.  */
8357      rn = Insn_utilities::aarch64_rn(insn2);
8358      ra = Insn_utilities::aarch64_ra(insn2);
8359      rm = Insn_utilities::aarch64_rm(insn2);
8360
8361      /* If this is a load and there's a true(RAW) dependency, we are safe
8362	 and this is not an erratum sequence.  */
8363      if (load &&
8364	  (rt == rn || rt == rm || rt == ra
8365	   || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
8366	return false;
8367
8368      /* We conservatively put out stubs for all other cases (including
8369	 writebacks).  */
8370      return true;
8371    }
8372
8373  return false;
8374}
8375
8376
8377// Helper method to create erratum stub for ST_E_843419 and ST_E_835769.
8378
8379template<int size, bool big_endian>
8380void
8381Target_aarch64<size, big_endian>::create_erratum_stub(
8382    AArch64_relobj<size, big_endian>* relobj,
8383    unsigned int shndx,
8384    section_size_type erratum_insn_offset,
8385    Address erratum_address,
8386    typename Insn_utilities::Insntype erratum_insn,
8387    int erratum_type,
8388    unsigned int e843419_adrp_offset)
8389{
8390  gold_assert(erratum_type == ST_E_843419 || erratum_type == ST_E_835769);
8391  The_stub_table* stub_table = relobj->stub_table(shndx);
8392  gold_assert(stub_table != NULL);
8393  if (stub_table->find_erratum_stub(relobj,
8394				    shndx,
8395				    erratum_insn_offset) == NULL)
8396    {
8397      const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8398      The_erratum_stub* stub;
8399      if (erratum_type == ST_E_835769)
8400	stub = new The_erratum_stub(relobj, erratum_type, shndx,
8401				    erratum_insn_offset);
8402      else if (erratum_type == ST_E_843419)
8403	stub = new E843419_stub<size, big_endian>(
8404	    relobj, shndx, erratum_insn_offset, e843419_adrp_offset);
8405      else
8406	gold_unreachable();
8407      stub->set_erratum_insn(erratum_insn);
8408      stub->set_erratum_address(erratum_address);
8409      // For erratum ST_E_843419 and ST_E_835769, the destination address is
8410      // always the next insn after erratum insn.
8411      stub->set_destination_address(erratum_address + BPI);
8412      stub_table->add_erratum_stub(stub);
8413    }
8414}
8415
8416
8417// Scan erratum for section SHNDX range [output_address + span_start,
8418// output_address + span_end). Note here we do not share the code with
8419// scan_erratum_843419_span function, because for 843419 we optimize by only
8420// scanning the last few insns of a page, whereas for 835769, we need to scan
8421// every insn.
8422
8423template<int size, bool big_endian>
8424void
8425Target_aarch64<size, big_endian>::scan_erratum_835769_span(
8426    AArch64_relobj<size, big_endian>*  relobj,
8427    unsigned int shndx,
8428    const section_size_type span_start,
8429    const section_size_type span_end,
8430    unsigned char* input_view,
8431    Address output_address)
8432{
8433  typedef typename Insn_utilities::Insntype Insntype;
8434
8435  const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8436
8437  // Adjust output_address and view to the start of span.
8438  output_address += span_start;
8439  input_view += span_start;
8440
8441  section_size_type span_length = span_end - span_start;
8442  section_size_type offset = 0;
8443  for (offset = 0; offset + BPI < span_length; offset += BPI)
8444    {
8445      Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8446      Insntype insn1 = ip[0];
8447      Insntype insn2 = ip[1];
8448      if (is_erratum_835769_sequence(insn1, insn2))
8449	{
8450	  Insntype erratum_insn = insn2;
8451	  // "span_start + offset" is the offset for insn1. So for insn2, it is
8452	  // "span_start + offset + BPI".
8453	  section_size_type erratum_insn_offset = span_start + offset + BPI;
8454	  Address erratum_address = output_address + offset + BPI;
8455	  gold_info(_("Erratum 835769 found and fixed at \"%s\", "
8456			 "section %d, offset 0x%08x."),
8457		       relobj->name().c_str(), shndx,
8458		       (unsigned int)(span_start + offset));
8459
8460	  this->create_erratum_stub(relobj, shndx,
8461				    erratum_insn_offset, erratum_address,
8462				    erratum_insn, ST_E_835769);
8463	  offset += BPI;  // Skip mac insn.
8464	}
8465    }
8466}  // End of "Target_aarch64::scan_erratum_835769_span".
8467
8468
8469// Scan erratum for section SHNDX range
8470// [output_address + span_start, output_address + span_end).
8471
8472template<int size, bool big_endian>
8473void
8474Target_aarch64<size, big_endian>::scan_erratum_843419_span(
8475    AArch64_relobj<size, big_endian>*  relobj,
8476    unsigned int shndx,
8477    const section_size_type span_start,
8478    const section_size_type span_end,
8479    unsigned char* input_view,
8480    Address output_address)
8481{
8482  typedef typename Insn_utilities::Insntype Insntype;
8483
8484  // Adjust output_address and view to the start of span.
8485  output_address += span_start;
8486  input_view += span_start;
8487
8488  if ((output_address & 0x03) != 0)
8489    return;
8490
8491  section_size_type offset = 0;
8492  section_size_type span_length = span_end - span_start;
8493  // The first instruction must be ending at 0xFF8 or 0xFFC.
8494  unsigned int page_offset = output_address & 0xFFF;
8495  // Make sure starting position, that is "output_address+offset",
8496  // starts at page position 0xff8 or 0xffc.
8497  if (page_offset < 0xff8)
8498    offset = 0xff8 - page_offset;
8499  while (offset + 3 * Insn_utilities::BYTES_PER_INSN <= span_length)
8500    {
8501      Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8502      Insntype insn1 = ip[0];
8503      if (Insn_utilities::is_adrp(insn1))
8504	{
8505	  Insntype insn2 = ip[1];
8506	  Insntype insn3 = ip[2];
8507	  Insntype erratum_insn;
8508	  unsigned insn_offset;
8509	  bool do_report = false;
8510	  if (is_erratum_843419_sequence(insn1, insn2, insn3))
8511	    {
8512	      do_report = true;
8513	      erratum_insn = insn3;
8514	      insn_offset = 2 * Insn_utilities::BYTES_PER_INSN;
8515	    }
8516	  else if (offset + 4 * Insn_utilities::BYTES_PER_INSN <= span_length)
8517	    {
8518	      // Optionally we can have an insn between ins2 and ins3
8519	      Insntype insn_opt = ip[2];
8520	      // And insn_opt must not be a branch.
8521	      if (!Insn_utilities::aarch64_b(insn_opt)
8522		  && !Insn_utilities::aarch64_bl(insn_opt)
8523		  && !Insn_utilities::aarch64_blr(insn_opt)
8524		  && !Insn_utilities::aarch64_br(insn_opt))
8525		{
8526		  // And insn_opt must not write to dest reg in insn1. However
8527		  // we do a conservative scan, which means we may fix/report
8528		  // more than necessary, but it doesn't hurt.
8529
8530		  Insntype insn4 = ip[3];
8531		  if (is_erratum_843419_sequence(insn1, insn2, insn4))
8532		    {
8533		      do_report = true;
8534		      erratum_insn = insn4;
8535		      insn_offset = 3 * Insn_utilities::BYTES_PER_INSN;
8536		    }
8537		}
8538	    }
8539	  if (do_report)
8540	    {
8541	      unsigned int erratum_insn_offset =
8542		span_start + offset + insn_offset;
8543	      Address erratum_address =
8544		output_address + offset + insn_offset;
8545	      create_erratum_stub(relobj, shndx,
8546				  erratum_insn_offset, erratum_address,
8547				  erratum_insn, ST_E_843419,
8548				  span_start + offset);
8549	    }
8550	}
8551
8552      // Advance to next candidate instruction. We only consider instruction
8553      // sequences starting at a page offset of 0xff8 or 0xffc.
8554      page_offset = (output_address + offset) & 0xfff;
8555      if (page_offset == 0xff8)
8556	offset += 4;
8557      else  // (page_offset == 0xffc), we move to next page's 0xff8.
8558	offset += 0xffc;
8559    }
8560}  // End of "Target_aarch64::scan_erratum_843419_span".
8561
8562
8563// The selector for aarch64 object files.
8564
8565template<int size, bool big_endian>
8566class Target_selector_aarch64 : public Target_selector
8567{
8568 public:
8569  Target_selector_aarch64();
8570
8571  virtual Target*
8572  do_instantiate_target()
8573  { return new Target_aarch64<size, big_endian>(); }
8574};
8575
8576template<>
8577Target_selector_aarch64<32, true>::Target_selector_aarch64()
8578  : Target_selector(elfcpp::EM_AARCH64, 32, true,
8579		    "elf32-bigaarch64", "aarch64_elf32_be_vec")
8580{ }
8581
8582template<>
8583Target_selector_aarch64<32, false>::Target_selector_aarch64()
8584  : Target_selector(elfcpp::EM_AARCH64, 32, false,
8585		    "elf32-littleaarch64", "aarch64_elf32_le_vec")
8586{ }
8587
8588template<>
8589Target_selector_aarch64<64, true>::Target_selector_aarch64()
8590  : Target_selector(elfcpp::EM_AARCH64, 64, true,
8591		    "elf64-bigaarch64", "aarch64_elf64_be_vec")
8592{ }
8593
8594template<>
8595Target_selector_aarch64<64, false>::Target_selector_aarch64()
8596  : Target_selector(elfcpp::EM_AARCH64, 64, false,
8597		    "elf64-littleaarch64", "aarch64_elf64_le_vec")
8598{ }
8599
8600Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
8601Target_selector_aarch64<32, false> target_selector_aarch64elf32;
8602Target_selector_aarch64<64, true> target_selector_aarch64elfb;
8603Target_selector_aarch64<64, false> target_selector_aarch64elf;
8604
8605} // End anonymous namespace.
8606