remote.c revision 1.8
1/* Remote target communications for serial-line targets in custom GDB protocol
2
3   Copyright (C) 1988-2019 Free Software Foundation, Inc.
4
5   This file is part of GDB.
6
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 3 of the License, or
10   (at your option) any later version.
11
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20/* See the GDB User Guide for details of the GDB remote protocol.  */
21
22#include "defs.h"
23#include <ctype.h>
24#include <fcntl.h>
25#include "inferior.h"
26#include "infrun.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "target.h"
30#include "process-stratum-target.h"
31#include "gdbcmd.h"
32#include "objfiles.h"
33#include "gdb-stabs.h"
34#include "gdbthread.h"
35#include "remote.h"
36#include "remote-notif.h"
37#include "regcache.h"
38#include "value.h"
39#include "observable.h"
40#include "solib.h"
41#include "cli/cli-decode.h"
42#include "cli/cli-setshow.h"
43#include "target-descriptions.h"
44#include "gdb_bfd.h"
45#include "common/filestuff.h"
46#include "common/rsp-low.h"
47#include "disasm.h"
48#include "location.h"
49
50#include "common/gdb_sys_time.h"
51
52#include "event-loop.h"
53#include "event-top.h"
54#include "inf-loop.h"
55
56#include <signal.h>
57#include "serial.h"
58
59#include "gdbcore.h" /* for exec_bfd */
60
61#include "remote-fileio.h"
62#include "gdb/fileio.h"
63#include <sys/stat.h>
64#include "xml-support.h"
65
66#include "memory-map.h"
67
68#include "tracepoint.h"
69#include "ax.h"
70#include "ax-gdb.h"
71#include "common/agent.h"
72#include "btrace.h"
73#include "record-btrace.h"
74#include <algorithm>
75#include "common/scoped_restore.h"
76#include "common/environ.h"
77#include "common/byte-vector.h"
78#include <unordered_map>
79
80/* The remote target.  */
81
82static const char remote_doc[] = N_("\
83Use a remote computer via a serial line, using a gdb-specific protocol.\n\
84Specify the serial device it is connected to\n\
85(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
86
87#define OPAQUETHREADBYTES 8
88
89/* a 64 bit opaque identifier */
90typedef unsigned char threadref[OPAQUETHREADBYTES];
91
92struct gdb_ext_thread_info;
93struct threads_listing_context;
94typedef int (*rmt_thread_action) (threadref *ref, void *context);
95struct protocol_feature;
96struct packet_reg;
97
98struct stop_reply;
99static void stop_reply_xfree (struct stop_reply *);
100
101struct stop_reply_deleter
102{
103  void operator() (stop_reply *r) const
104  {
105    stop_reply_xfree (r);
106  }
107};
108
109typedef std::unique_ptr<stop_reply, stop_reply_deleter> stop_reply_up;
110
111/* Generic configuration support for packets the stub optionally
112   supports.  Allows the user to specify the use of the packet as well
113   as allowing GDB to auto-detect support in the remote stub.  */
114
115enum packet_support
116  {
117    PACKET_SUPPORT_UNKNOWN = 0,
118    PACKET_ENABLE,
119    PACKET_DISABLE
120  };
121
122/* Analyze a packet's return value and update the packet config
123   accordingly.  */
124
125enum packet_result
126{
127  PACKET_ERROR,
128  PACKET_OK,
129  PACKET_UNKNOWN
130};
131
132struct threads_listing_context;
133
134/* Stub vCont actions support.
135
136   Each field is a boolean flag indicating whether the stub reports
137   support for the corresponding action.  */
138
139struct vCont_action_support
140{
141  /* vCont;t */
142  bool t = false;
143
144  /* vCont;r */
145  bool r = false;
146
147  /* vCont;s */
148  bool s = false;
149
150  /* vCont;S */
151  bool S = false;
152};
153
154/* About this many threadisds fit in a packet.  */
155
156#define MAXTHREADLISTRESULTS 32
157
158/* Data for the vFile:pread readahead cache.  */
159
160struct readahead_cache
161{
162  /* Invalidate the readahead cache.  */
163  void invalidate ();
164
165  /* Invalidate the readahead cache if it is holding data for FD.  */
166  void invalidate_fd (int fd);
167
168  /* Serve pread from the readahead cache.  Returns number of bytes
169     read, or 0 if the request can't be served from the cache.  */
170  int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
171
172  /* The file descriptor for the file that is being cached.  -1 if the
173     cache is invalid.  */
174  int fd = -1;
175
176  /* The offset into the file that the cache buffer corresponds
177     to.  */
178  ULONGEST offset = 0;
179
180  /* The buffer holding the cache contents.  */
181  gdb_byte *buf = nullptr;
182  /* The buffer's size.  We try to read as much as fits into a packet
183     at a time.  */
184  size_t bufsize = 0;
185
186  /* Cache hit and miss counters.  */
187  ULONGEST hit_count = 0;
188  ULONGEST miss_count = 0;
189};
190
191/* Description of the remote protocol for a given architecture.  */
192
193struct packet_reg
194{
195  long offset; /* Offset into G packet.  */
196  long regnum; /* GDB's internal register number.  */
197  LONGEST pnum; /* Remote protocol register number.  */
198  int in_g_packet; /* Always part of G packet.  */
199  /* long size in bytes;  == register_size (target_gdbarch (), regnum);
200     at present.  */
201  /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
202     at present.  */
203};
204
205struct remote_arch_state
206{
207  explicit remote_arch_state (struct gdbarch *gdbarch);
208
209  /* Description of the remote protocol registers.  */
210  long sizeof_g_packet;
211
212  /* Description of the remote protocol registers indexed by REGNUM
213     (making an array gdbarch_num_regs in size).  */
214  std::unique_ptr<packet_reg[]> regs;
215
216  /* This is the size (in chars) of the first response to the ``g''
217     packet.  It is used as a heuristic when determining the maximum
218     size of memory-read and memory-write packets.  A target will
219     typically only reserve a buffer large enough to hold the ``g''
220     packet.  The size does not include packet overhead (headers and
221     trailers).  */
222  long actual_register_packet_size;
223
224  /* This is the maximum size (in chars) of a non read/write packet.
225     It is also used as a cap on the size of read/write packets.  */
226  long remote_packet_size;
227};
228
229/* Description of the remote protocol state for the currently
230   connected target.  This is per-target state, and independent of the
231   selected architecture.  */
232
233class remote_state
234{
235public:
236
237  remote_state ();
238  ~remote_state ();
239
240  /* Get the remote arch state for GDBARCH.  */
241  struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
242
243public: /* data */
244
245  /* A buffer to use for incoming packets, and its current size.  The
246     buffer is grown dynamically for larger incoming packets.
247     Outgoing packets may also be constructed in this buffer.
248     The size of the buffer is always at least REMOTE_PACKET_SIZE;
249     REMOTE_PACKET_SIZE should be used to limit the length of outgoing
250     packets.  */
251  gdb::char_vector buf;
252
253  /* True if we're going through initial connection setup (finding out
254     about the remote side's threads, relocating symbols, etc.).  */
255  bool starting_up = false;
256
257  /* If we negotiated packet size explicitly (and thus can bypass
258     heuristics for the largest packet size that will not overflow
259     a buffer in the stub), this will be set to that packet size.
260     Otherwise zero, meaning to use the guessed size.  */
261  long explicit_packet_size = 0;
262
263  /* remote_wait is normally called when the target is running and
264     waits for a stop reply packet.  But sometimes we need to call it
265     when the target is already stopped.  We can send a "?" packet
266     and have remote_wait read the response.  Or, if we already have
267     the response, we can stash it in BUF and tell remote_wait to
268     skip calling getpkt.  This flag is set when BUF contains a
269     stop reply packet and the target is not waiting.  */
270  int cached_wait_status = 0;
271
272  /* True, if in no ack mode.  That is, neither GDB nor the stub will
273     expect acks from each other.  The connection is assumed to be
274     reliable.  */
275  bool noack_mode = false;
276
277  /* True if we're connected in extended remote mode.  */
278  bool extended = false;
279
280  /* True if we resumed the target and we're waiting for the target to
281     stop.  In the mean time, we can't start another command/query.
282     The remote server wouldn't be ready to process it, so we'd
283     timeout waiting for a reply that would never come and eventually
284     we'd close the connection.  This can happen in asynchronous mode
285     because we allow GDB commands while the target is running.  */
286  bool waiting_for_stop_reply = false;
287
288  /* The status of the stub support for the various vCont actions.  */
289  vCont_action_support supports_vCont;
290
291  /* True if the user has pressed Ctrl-C, but the target hasn't
292     responded to that.  */
293  bool ctrlc_pending_p = false;
294
295  /* True if we saw a Ctrl-C while reading or writing from/to the
296     remote descriptor.  At that point it is not safe to send a remote
297     interrupt packet, so we instead remember we saw the Ctrl-C and
298     process it once we're done with sending/receiving the current
299     packet, which should be shortly.  If however that takes too long,
300     and the user presses Ctrl-C again, we offer to disconnect.  */
301  bool got_ctrlc_during_io = false;
302
303  /* Descriptor for I/O to remote machine.  Initialize it to NULL so that
304     remote_open knows that we don't have a file open when the program
305     starts.  */
306  struct serial *remote_desc = nullptr;
307
308  /* These are the threads which we last sent to the remote system.  The
309     TID member will be -1 for all or -2 for not sent yet.  */
310  ptid_t general_thread = null_ptid;
311  ptid_t continue_thread = null_ptid;
312
313  /* This is the traceframe which we last selected on the remote system.
314     It will be -1 if no traceframe is selected.  */
315  int remote_traceframe_number = -1;
316
317  char *last_pass_packet = nullptr;
318
319  /* The last QProgramSignals packet sent to the target.  We bypass
320     sending a new program signals list down to the target if the new
321     packet is exactly the same as the last we sent.  IOW, we only let
322     the target know about program signals list changes.  */
323  char *last_program_signals_packet = nullptr;
324
325  gdb_signal last_sent_signal = GDB_SIGNAL_0;
326
327  bool last_sent_step = false;
328
329  /* The execution direction of the last resume we got.  */
330  exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
331
332  char *finished_object = nullptr;
333  char *finished_annex = nullptr;
334  ULONGEST finished_offset = 0;
335
336  /* Should we try the 'ThreadInfo' query packet?
337
338     This variable (NOT available to the user: auto-detect only!)
339     determines whether GDB will use the new, simpler "ThreadInfo"
340     query or the older, more complex syntax for thread queries.
341     This is an auto-detect variable (set to true at each connect,
342     and set to false when the target fails to recognize it).  */
343  bool use_threadinfo_query = false;
344  bool use_threadextra_query = false;
345
346  threadref echo_nextthread {};
347  threadref nextthread {};
348  threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
349
350  /* The state of remote notification.  */
351  struct remote_notif_state *notif_state = nullptr;
352
353  /* The branch trace configuration.  */
354  struct btrace_config btrace_config {};
355
356  /* The argument to the last "vFile:setfs:" packet we sent, used
357     to avoid sending repeated unnecessary "vFile:setfs:" packets.
358     Initialized to -1 to indicate that no "vFile:setfs:" packet
359     has yet been sent.  */
360  int fs_pid = -1;
361
362  /* A readahead cache for vFile:pread.  Often, reading a binary
363     involves a sequence of small reads.  E.g., when parsing an ELF
364     file.  A readahead cache helps mostly the case of remote
365     debugging on a connection with higher latency, due to the
366     request/reply nature of the RSP.  We only cache data for a single
367     file descriptor at a time.  */
368  struct readahead_cache readahead_cache;
369
370  /* The list of already fetched and acknowledged stop events.  This
371     queue is used for notification Stop, and other notifications
372     don't need queue for their events, because the notification
373     events of Stop can't be consumed immediately, so that events
374     should be queued first, and be consumed by remote_wait_{ns,as}
375     one per time.  Other notifications can consume their events
376     immediately, so queue is not needed for them.  */
377  std::vector<stop_reply_up> stop_reply_queue;
378
379  /* Asynchronous signal handle registered as event loop source for
380     when we have pending events ready to be passed to the core.  */
381  struct async_event_handler *remote_async_inferior_event_token = nullptr;
382
383  /* FIXME: cagney/1999-09-23: Even though getpkt was called with
384     ``forever'' still use the normal timeout mechanism.  This is
385     currently used by the ASYNC code to guarentee that target reads
386     during the initial connect always time-out.  Once getpkt has been
387     modified to return a timeout indication and, in turn
388     remote_wait()/wait_for_inferior() have gained a timeout parameter
389     this can go away.  */
390  int wait_forever_enabled_p = 1;
391
392private:
393  /* Mapping of remote protocol data for each gdbarch.  Usually there
394     is only one entry here, though we may see more with stubs that
395     support multi-process.  */
396  std::unordered_map<struct gdbarch *, remote_arch_state>
397    m_arch_states;
398};
399
400static const target_info remote_target_info = {
401  "remote",
402  N_("Remote serial target in gdb-specific protocol"),
403  remote_doc
404};
405
406class remote_target : public process_stratum_target
407{
408public:
409  remote_target () = default;
410  ~remote_target () override;
411
412  const target_info &info () const override
413  { return remote_target_info; }
414
415  thread_control_capabilities get_thread_control_capabilities () override
416  { return tc_schedlock; }
417
418  /* Open a remote connection.  */
419  static void open (const char *, int);
420
421  void close () override;
422
423  void detach (inferior *, int) override;
424  void disconnect (const char *, int) override;
425
426  void commit_resume () override;
427  void resume (ptid_t, int, enum gdb_signal) override;
428  ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
429
430  void fetch_registers (struct regcache *, int) override;
431  void store_registers (struct regcache *, int) override;
432  void prepare_to_store (struct regcache *) override;
433
434  void files_info () override;
435
436  int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
437
438  int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
439			 enum remove_bp_reason) override;
440
441
442  bool stopped_by_sw_breakpoint () override;
443  bool supports_stopped_by_sw_breakpoint () override;
444
445  bool stopped_by_hw_breakpoint () override;
446
447  bool supports_stopped_by_hw_breakpoint () override;
448
449  bool stopped_by_watchpoint () override;
450
451  bool stopped_data_address (CORE_ADDR *) override;
452
453  bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
454
455  int can_use_hw_breakpoint (enum bptype, int, int) override;
456
457  int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
458
459  int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
460
461  int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
462
463  int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
464			 struct expression *) override;
465
466  int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
467			 struct expression *) override;
468
469  void kill () override;
470
471  void load (const char *, int) override;
472
473  void mourn_inferior () override;
474
475  void pass_signals (gdb::array_view<const unsigned char>) override;
476
477  int set_syscall_catchpoint (int, bool, int,
478			      gdb::array_view<const int>) override;
479
480  void program_signals (gdb::array_view<const unsigned char>) override;
481
482  bool thread_alive (ptid_t ptid) override;
483
484  const char *thread_name (struct thread_info *) override;
485
486  void update_thread_list () override;
487
488  const char *pid_to_str (ptid_t) override;
489
490  const char *extra_thread_info (struct thread_info *) override;
491
492  ptid_t get_ada_task_ptid (long lwp, long thread) override;
493
494  thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
495					     int handle_len,
496					     inferior *inf) override;
497
498  void stop (ptid_t) override;
499
500  void interrupt () override;
501
502  void pass_ctrlc () override;
503
504  enum target_xfer_status xfer_partial (enum target_object object,
505					const char *annex,
506					gdb_byte *readbuf,
507					const gdb_byte *writebuf,
508					ULONGEST offset, ULONGEST len,
509					ULONGEST *xfered_len) override;
510
511  ULONGEST get_memory_xfer_limit () override;
512
513  void rcmd (const char *command, struct ui_file *output) override;
514
515  char *pid_to_exec_file (int pid) override;
516
517  void log_command (const char *cmd) override
518  {
519    serial_log_command (this, cmd);
520  }
521
522  CORE_ADDR get_thread_local_address (ptid_t ptid,
523				      CORE_ADDR load_module_addr,
524				      CORE_ADDR offset) override;
525
526  bool can_execute_reverse () override;
527
528  std::vector<mem_region> memory_map () override;
529
530  void flash_erase (ULONGEST address, LONGEST length) override;
531
532  void flash_done () override;
533
534  const struct target_desc *read_description () override;
535
536  int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
537		     const gdb_byte *pattern, ULONGEST pattern_len,
538		     CORE_ADDR *found_addrp) override;
539
540  bool can_async_p () override;
541
542  bool is_async_p () override;
543
544  void async (int) override;
545
546  void thread_events (int) override;
547
548  int can_do_single_step () override;
549
550  void terminal_inferior () override;
551
552  void terminal_ours () override;
553
554  bool supports_non_stop () override;
555
556  bool supports_multi_process () override;
557
558  bool supports_disable_randomization () override;
559
560  bool filesystem_is_local () override;
561
562
563  int fileio_open (struct inferior *inf, const char *filename,
564		   int flags, int mode, int warn_if_slow,
565		   int *target_errno) override;
566
567  int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
568		     ULONGEST offset, int *target_errno) override;
569
570  int fileio_pread (int fd, gdb_byte *read_buf, int len,
571		    ULONGEST offset, int *target_errno) override;
572
573  int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
574
575  int fileio_close (int fd, int *target_errno) override;
576
577  int fileio_unlink (struct inferior *inf,
578		     const char *filename,
579		     int *target_errno) override;
580
581  gdb::optional<std::string>
582    fileio_readlink (struct inferior *inf,
583		     const char *filename,
584		     int *target_errno) override;
585
586  bool supports_enable_disable_tracepoint () override;
587
588  bool supports_string_tracing () override;
589
590  bool supports_evaluation_of_breakpoint_conditions () override;
591
592  bool can_run_breakpoint_commands () override;
593
594  void trace_init () override;
595
596  void download_tracepoint (struct bp_location *location) override;
597
598  bool can_download_tracepoint () override;
599
600  void download_trace_state_variable (const trace_state_variable &tsv) override;
601
602  void enable_tracepoint (struct bp_location *location) override;
603
604  void disable_tracepoint (struct bp_location *location) override;
605
606  void trace_set_readonly_regions () override;
607
608  void trace_start () override;
609
610  int get_trace_status (struct trace_status *ts) override;
611
612  void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
613    override;
614
615  void trace_stop () override;
616
617  int trace_find (enum trace_find_type type, int num,
618		  CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
619
620  bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
621
622  int save_trace_data (const char *filename) override;
623
624  int upload_tracepoints (struct uploaded_tp **utpp) override;
625
626  int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
627
628  LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
629
630  int get_min_fast_tracepoint_insn_len () override;
631
632  void set_disconnected_tracing (int val) override;
633
634  void set_circular_trace_buffer (int val) override;
635
636  void set_trace_buffer_size (LONGEST val) override;
637
638  bool set_trace_notes (const char *user, const char *notes,
639			const char *stopnotes) override;
640
641  int core_of_thread (ptid_t ptid) override;
642
643  int verify_memory (const gdb_byte *data,
644		     CORE_ADDR memaddr, ULONGEST size) override;
645
646
647  bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
648
649  void set_permissions () override;
650
651  bool static_tracepoint_marker_at (CORE_ADDR,
652				    struct static_tracepoint_marker *marker)
653    override;
654
655  std::vector<static_tracepoint_marker>
656    static_tracepoint_markers_by_strid (const char *id) override;
657
658  traceframe_info_up traceframe_info () override;
659
660  bool use_agent (bool use) override;
661  bool can_use_agent () override;
662
663  struct btrace_target_info *enable_btrace (ptid_t ptid,
664					    const struct btrace_config *conf) override;
665
666  void disable_btrace (struct btrace_target_info *tinfo) override;
667
668  void teardown_btrace (struct btrace_target_info *tinfo) override;
669
670  enum btrace_error read_btrace (struct btrace_data *data,
671				 struct btrace_target_info *btinfo,
672				 enum btrace_read_type type) override;
673
674  const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
675  bool augmented_libraries_svr4_read () override;
676  int follow_fork (int, int) override;
677  void follow_exec (struct inferior *, char *) override;
678  int insert_fork_catchpoint (int) override;
679  int remove_fork_catchpoint (int) override;
680  int insert_vfork_catchpoint (int) override;
681  int remove_vfork_catchpoint (int) override;
682  int insert_exec_catchpoint (int) override;
683  int remove_exec_catchpoint (int) override;
684  enum exec_direction_kind execution_direction () override;
685
686public: /* Remote specific methods.  */
687
688  void remote_download_command_source (int num, ULONGEST addr,
689				       struct command_line *cmds);
690
691  void remote_file_put (const char *local_file, const char *remote_file,
692			int from_tty);
693  void remote_file_get (const char *remote_file, const char *local_file,
694			int from_tty);
695  void remote_file_delete (const char *remote_file, int from_tty);
696
697  int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
698			   ULONGEST offset, int *remote_errno);
699  int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
700			    ULONGEST offset, int *remote_errno);
701  int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
702				 ULONGEST offset, int *remote_errno);
703
704  int remote_hostio_send_command (int command_bytes, int which_packet,
705				  int *remote_errno, char **attachment,
706				  int *attachment_len);
707  int remote_hostio_set_filesystem (struct inferior *inf,
708				    int *remote_errno);
709  /* We should get rid of this and use fileio_open directly.  */
710  int remote_hostio_open (struct inferior *inf, const char *filename,
711			  int flags, int mode, int warn_if_slow,
712			  int *remote_errno);
713  int remote_hostio_close (int fd, int *remote_errno);
714
715  int remote_hostio_unlink (inferior *inf, const char *filename,
716			    int *remote_errno);
717
718  struct remote_state *get_remote_state ();
719
720  long get_remote_packet_size (void);
721  long get_memory_packet_size (struct memory_packet_config *config);
722
723  long get_memory_write_packet_size ();
724  long get_memory_read_packet_size ();
725
726  char *append_pending_thread_resumptions (char *p, char *endp,
727					   ptid_t ptid);
728  static void open_1 (const char *name, int from_tty, int extended_p);
729  void start_remote (int from_tty, int extended_p);
730  void remote_detach_1 (struct inferior *inf, int from_tty);
731
732  char *append_resumption (char *p, char *endp,
733			   ptid_t ptid, int step, gdb_signal siggnal);
734  int remote_resume_with_vcont (ptid_t ptid, int step,
735				gdb_signal siggnal);
736
737  void add_current_inferior_and_thread (char *wait_status);
738
739  ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
740		  int options);
741  ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
742		  int options);
743
744  ptid_t process_stop_reply (struct stop_reply *stop_reply,
745			     target_waitstatus *status);
746
747  void remote_notice_new_inferior (ptid_t currthread, int executing);
748
749  void process_initial_stop_replies (int from_tty);
750
751  thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
752
753  void btrace_sync_conf (const btrace_config *conf);
754
755  void remote_btrace_maybe_reopen ();
756
757  void remove_new_fork_children (threads_listing_context *context);
758  void kill_new_fork_children (int pid);
759  void discard_pending_stop_replies (struct inferior *inf);
760  int stop_reply_queue_length ();
761
762  void check_pending_events_prevent_wildcard_vcont
763    (int *may_global_wildcard_vcont);
764
765  void discard_pending_stop_replies_in_queue ();
766  struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
767  struct stop_reply *queued_stop_reply (ptid_t ptid);
768  int peek_stop_reply (ptid_t ptid);
769  void remote_parse_stop_reply (const char *buf, stop_reply *event);
770
771  void remote_stop_ns (ptid_t ptid);
772  void remote_interrupt_as ();
773  void remote_interrupt_ns ();
774
775  char *remote_get_noisy_reply ();
776  int remote_query_attached (int pid);
777  inferior *remote_add_inferior (int fake_pid_p, int pid, int attached,
778				 int try_open_exec);
779
780  ptid_t remote_current_thread (ptid_t oldpid);
781  ptid_t get_current_thread (char *wait_status);
782
783  void set_thread (ptid_t ptid, int gen);
784  void set_general_thread (ptid_t ptid);
785  void set_continue_thread (ptid_t ptid);
786  void set_general_process ();
787
788  char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
789
790  int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
791					  gdb_ext_thread_info *info);
792  int remote_get_threadinfo (threadref *threadid, int fieldset,
793			     gdb_ext_thread_info *info);
794
795  int parse_threadlist_response (char *pkt, int result_limit,
796				 threadref *original_echo,
797				 threadref *resultlist,
798				 int *doneflag);
799  int remote_get_threadlist (int startflag, threadref *nextthread,
800			     int result_limit, int *done, int *result_count,
801			     threadref *threadlist);
802
803  int remote_threadlist_iterator (rmt_thread_action stepfunction,
804				  void *context, int looplimit);
805
806  int remote_get_threads_with_ql (threads_listing_context *context);
807  int remote_get_threads_with_qxfer (threads_listing_context *context);
808  int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
809
810  void extended_remote_restart ();
811
812  void get_offsets ();
813
814  void remote_check_symbols ();
815
816  void remote_supported_packet (const struct protocol_feature *feature,
817				enum packet_support support,
818				const char *argument);
819
820  void remote_query_supported ();
821
822  void remote_packet_size (const protocol_feature *feature,
823			   packet_support support, const char *value);
824
825  void remote_serial_quit_handler ();
826
827  void remote_detach_pid (int pid);
828
829  void remote_vcont_probe ();
830
831  void remote_resume_with_hc (ptid_t ptid, int step,
832			      gdb_signal siggnal);
833
834  void send_interrupt_sequence ();
835  void interrupt_query ();
836
837  void remote_notif_get_pending_events (notif_client *nc);
838
839  int fetch_register_using_p (struct regcache *regcache,
840			      packet_reg *reg);
841  int send_g_packet ();
842  void process_g_packet (struct regcache *regcache);
843  void fetch_registers_using_g (struct regcache *regcache);
844  int store_register_using_P (const struct regcache *regcache,
845			      packet_reg *reg);
846  void store_registers_using_G (const struct regcache *regcache);
847
848  void set_remote_traceframe ();
849
850  void check_binary_download (CORE_ADDR addr);
851
852  target_xfer_status remote_write_bytes_aux (const char *header,
853					     CORE_ADDR memaddr,
854					     const gdb_byte *myaddr,
855					     ULONGEST len_units,
856					     int unit_size,
857					     ULONGEST *xfered_len_units,
858					     char packet_format,
859					     int use_length);
860
861  target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
862					 const gdb_byte *myaddr, ULONGEST len,
863					 int unit_size, ULONGEST *xfered_len);
864
865  target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
866					  ULONGEST len_units,
867					  int unit_size, ULONGEST *xfered_len_units);
868
869  target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
870							ULONGEST memaddr,
871							ULONGEST len,
872							int unit_size,
873							ULONGEST *xfered_len);
874
875  target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
876					gdb_byte *myaddr, ULONGEST len,
877					int unit_size,
878					ULONGEST *xfered_len);
879
880  packet_result remote_send_printf (const char *format, ...)
881    ATTRIBUTE_PRINTF (2, 3);
882
883  target_xfer_status remote_flash_write (ULONGEST address,
884					 ULONGEST length, ULONGEST *xfered_len,
885					 const gdb_byte *data);
886
887  int readchar (int timeout);
888
889  void remote_serial_write (const char *str, int len);
890
891  int putpkt (const char *buf);
892  int putpkt_binary (const char *buf, int cnt);
893
894  int putpkt (const gdb::char_vector &buf)
895  {
896    return putpkt (buf.data ());
897  }
898
899  void skip_frame ();
900  long read_frame (gdb::char_vector *buf_p);
901  void getpkt (gdb::char_vector *buf, int forever);
902  int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
903			      int expecting_notif, int *is_notif);
904  int getpkt_sane (gdb::char_vector *buf, int forever);
905  int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
906			    int *is_notif);
907  int remote_vkill (int pid);
908  void remote_kill_k ();
909
910  void extended_remote_disable_randomization (int val);
911  int extended_remote_run (const std::string &args);
912
913  void send_environment_packet (const char *action,
914				const char *packet,
915				const char *value);
916
917  void extended_remote_environment_support ();
918  void extended_remote_set_inferior_cwd ();
919
920  target_xfer_status remote_write_qxfer (const char *object_name,
921					 const char *annex,
922					 const gdb_byte *writebuf,
923					 ULONGEST offset, LONGEST len,
924					 ULONGEST *xfered_len,
925					 struct packet_config *packet);
926
927  target_xfer_status remote_read_qxfer (const char *object_name,
928					const char *annex,
929					gdb_byte *readbuf, ULONGEST offset,
930					LONGEST len,
931					ULONGEST *xfered_len,
932					struct packet_config *packet);
933
934  void push_stop_reply (struct stop_reply *new_event);
935
936  bool vcont_r_supported ();
937
938  void packet_command (const char *args, int from_tty);
939
940private: /* data fields */
941
942  /* The remote state.  Don't reference this directly.  Use the
943     get_remote_state method instead.  */
944  remote_state m_remote_state;
945};
946
947static const target_info extended_remote_target_info = {
948  "extended-remote",
949  N_("Extended remote serial target in gdb-specific protocol"),
950  remote_doc
951};
952
953/* Set up the extended remote target by extending the standard remote
954   target and adding to it.  */
955
956class extended_remote_target final : public remote_target
957{
958public:
959  const target_info &info () const override
960  { return extended_remote_target_info; }
961
962  /* Open an extended-remote connection.  */
963  static void open (const char *, int);
964
965  bool can_create_inferior () override { return true; }
966  void create_inferior (const char *, const std::string &,
967			char **, int) override;
968
969  void detach (inferior *, int) override;
970
971  bool can_attach () override { return true; }
972  void attach (const char *, int) override;
973
974  void post_attach (int) override;
975  bool supports_disable_randomization () override;
976};
977
978/* Per-program-space data key.  */
979static const struct program_space_data *remote_pspace_data;
980
981/* The variable registered as the control variable used by the
982   remote exec-file commands.  While the remote exec-file setting is
983   per-program-space, the set/show machinery uses this as the
984   location of the remote exec-file value.  */
985static char *remote_exec_file_var;
986
987/* The size to align memory write packets, when practical.  The protocol
988   does not guarantee any alignment, and gdb will generate short
989   writes and unaligned writes, but even as a best-effort attempt this
990   can improve bulk transfers.  For instance, if a write is misaligned
991   relative to the target's data bus, the stub may need to make an extra
992   round trip fetching data from the target.  This doesn't make a
993   huge difference, but it's easy to do, so we try to be helpful.
994
995   The alignment chosen is arbitrary; usually data bus width is
996   important here, not the possibly larger cache line size.  */
997enum { REMOTE_ALIGN_WRITES = 16 };
998
999/* Prototypes for local functions.  */
1000
1001static int hexnumlen (ULONGEST num);
1002
1003static int stubhex (int ch);
1004
1005static int hexnumstr (char *, ULONGEST);
1006
1007static int hexnumnstr (char *, ULONGEST, int);
1008
1009static CORE_ADDR remote_address_masked (CORE_ADDR);
1010
1011static void print_packet (const char *);
1012
1013static int stub_unpack_int (char *buff, int fieldlength);
1014
1015struct packet_config;
1016
1017static void show_packet_config_cmd (struct packet_config *config);
1018
1019static void show_remote_protocol_packet_cmd (struct ui_file *file,
1020					     int from_tty,
1021					     struct cmd_list_element *c,
1022					     const char *value);
1023
1024static ptid_t read_ptid (const char *buf, const char **obuf);
1025
1026static void remote_async_inferior_event_handler (gdb_client_data);
1027
1028static bool remote_read_description_p (struct target_ops *target);
1029
1030static void remote_console_output (const char *msg);
1031
1032static void remote_btrace_reset (remote_state *rs);
1033
1034static void remote_unpush_and_throw (void);
1035
1036/* For "remote".  */
1037
1038static struct cmd_list_element *remote_cmdlist;
1039
1040/* For "set remote" and "show remote".  */
1041
1042static struct cmd_list_element *remote_set_cmdlist;
1043static struct cmd_list_element *remote_show_cmdlist;
1044
1045/* Controls whether GDB is willing to use range stepping.  */
1046
1047static int use_range_stepping = 1;
1048
1049/* The max number of chars in debug output.  The rest of chars are
1050   omitted.  */
1051
1052#define REMOTE_DEBUG_MAX_CHAR 512
1053
1054/* Private data that we'll store in (struct thread_info)->priv.  */
1055struct remote_thread_info : public private_thread_info
1056{
1057  std::string extra;
1058  std::string name;
1059  int core = -1;
1060
1061  /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1062     sequence of bytes.  */
1063  gdb::byte_vector thread_handle;
1064
1065  /* Whether the target stopped for a breakpoint/watchpoint.  */
1066  enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1067
1068  /* This is set to the data address of the access causing the target
1069     to stop for a watchpoint.  */
1070  CORE_ADDR watch_data_address = 0;
1071
1072  /* Fields used by the vCont action coalescing implemented in
1073     remote_resume / remote_commit_resume.  remote_resume stores each
1074     thread's last resume request in these fields, so that a later
1075     remote_commit_resume knows which is the proper action for this
1076     thread to include in the vCont packet.  */
1077
1078  /* True if the last target_resume call for this thread was a step
1079     request, false if a continue request.  */
1080  int last_resume_step = 0;
1081
1082  /* The signal specified in the last target_resume call for this
1083     thread.  */
1084  gdb_signal last_resume_sig = GDB_SIGNAL_0;
1085
1086  /* Whether this thread was already vCont-resumed on the remote
1087     side.  */
1088  int vcont_resumed = 0;
1089};
1090
1091remote_state::remote_state ()
1092  : buf (400)
1093{
1094}
1095
1096remote_state::~remote_state ()
1097{
1098  xfree (this->last_pass_packet);
1099  xfree (this->last_program_signals_packet);
1100  xfree (this->finished_object);
1101  xfree (this->finished_annex);
1102}
1103
1104/* Utility: generate error from an incoming stub packet.  */
1105static void
1106trace_error (char *buf)
1107{
1108  if (*buf++ != 'E')
1109    return;			/* not an error msg */
1110  switch (*buf)
1111    {
1112    case '1':			/* malformed packet error */
1113      if (*++buf == '0')	/*   general case: */
1114	error (_("remote.c: error in outgoing packet."));
1115      else
1116	error (_("remote.c: error in outgoing packet at field #%ld."),
1117	       strtol (buf, NULL, 16));
1118    default:
1119      error (_("Target returns error code '%s'."), buf);
1120    }
1121}
1122
1123/* Utility: wait for reply from stub, while accepting "O" packets.  */
1124
1125char *
1126remote_target::remote_get_noisy_reply ()
1127{
1128  struct remote_state *rs = get_remote_state ();
1129
1130  do				/* Loop on reply from remote stub.  */
1131    {
1132      char *buf;
1133
1134      QUIT;			/* Allow user to bail out with ^C.  */
1135      getpkt (&rs->buf, 0);
1136      buf = rs->buf.data ();
1137      if (buf[0] == 'E')
1138	trace_error (buf);
1139      else if (startswith (buf, "qRelocInsn:"))
1140	{
1141	  ULONGEST ul;
1142	  CORE_ADDR from, to, org_to;
1143	  const char *p, *pp;
1144	  int adjusted_size = 0;
1145	  int relocated = 0;
1146
1147	  p = buf + strlen ("qRelocInsn:");
1148	  pp = unpack_varlen_hex (p, &ul);
1149	  if (*pp != ';')
1150	    error (_("invalid qRelocInsn packet: %s"), buf);
1151	  from = ul;
1152
1153	  p = pp + 1;
1154	  unpack_varlen_hex (p, &ul);
1155	  to = ul;
1156
1157	  org_to = to;
1158
1159	  TRY
1160	    {
1161	      gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1162	      relocated = 1;
1163	    }
1164	  CATCH (ex, RETURN_MASK_ALL)
1165	    {
1166	      if (ex.error == MEMORY_ERROR)
1167		{
1168		  /* Propagate memory errors silently back to the
1169		     target.  The stub may have limited the range of
1170		     addresses we can write to, for example.  */
1171		}
1172	      else
1173		{
1174		  /* Something unexpectedly bad happened.  Be verbose
1175		     so we can tell what, and propagate the error back
1176		     to the stub, so it doesn't get stuck waiting for
1177		     a response.  */
1178		  exception_fprintf (gdb_stderr, ex,
1179				     _("warning: relocating instruction: "));
1180		}
1181	      putpkt ("E01");
1182	    }
1183	  END_CATCH
1184
1185	  if (relocated)
1186	    {
1187	      adjusted_size = to - org_to;
1188
1189	      xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1190	      putpkt (buf);
1191	    }
1192	}
1193      else if (buf[0] == 'O' && buf[1] != 'K')
1194	remote_console_output (buf + 1);	/* 'O' message from stub */
1195      else
1196	return buf;		/* Here's the actual reply.  */
1197    }
1198  while (1);
1199}
1200
1201struct remote_arch_state *
1202remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1203{
1204  remote_arch_state *rsa;
1205
1206  auto it = this->m_arch_states.find (gdbarch);
1207  if (it == this->m_arch_states.end ())
1208    {
1209      auto p = this->m_arch_states.emplace (std::piecewise_construct,
1210					    std::forward_as_tuple (gdbarch),
1211					    std::forward_as_tuple (gdbarch));
1212      rsa = &p.first->second;
1213
1214      /* Make sure that the packet buffer is plenty big enough for
1215	 this architecture.  */
1216      if (this->buf.size () < rsa->remote_packet_size)
1217	this->buf.resize (2 * rsa->remote_packet_size);
1218    }
1219  else
1220    rsa = &it->second;
1221
1222  return rsa;
1223}
1224
1225/* Fetch the global remote target state.  */
1226
1227remote_state *
1228remote_target::get_remote_state ()
1229{
1230  /* Make sure that the remote architecture state has been
1231     initialized, because doing so might reallocate rs->buf.  Any
1232     function which calls getpkt also needs to be mindful of changes
1233     to rs->buf, but this call limits the number of places which run
1234     into trouble.  */
1235  m_remote_state.get_remote_arch_state (target_gdbarch ());
1236
1237  return &m_remote_state;
1238}
1239
1240/* Cleanup routine for the remote module's pspace data.  */
1241
1242static void
1243remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
1244{
1245  char *remote_exec_file = (char *) arg;
1246
1247  xfree (remote_exec_file);
1248}
1249
1250/* Fetch the remote exec-file from the current program space.  */
1251
1252static const char *
1253get_remote_exec_file (void)
1254{
1255  char *remote_exec_file;
1256
1257  remote_exec_file
1258    = (char *) program_space_data (current_program_space,
1259				   remote_pspace_data);
1260  if (remote_exec_file == NULL)
1261    return "";
1262
1263  return remote_exec_file;
1264}
1265
1266/* Set the remote exec file for PSPACE.  */
1267
1268static void
1269set_pspace_remote_exec_file (struct program_space *pspace,
1270			char *remote_exec_file)
1271{
1272  char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
1273
1274  xfree (old_file);
1275  set_program_space_data (pspace, remote_pspace_data,
1276			  xstrdup (remote_exec_file));
1277}
1278
1279/* The "set/show remote exec-file" set command hook.  */
1280
1281static void
1282set_remote_exec_file (const char *ignored, int from_tty,
1283		      struct cmd_list_element *c)
1284{
1285  gdb_assert (remote_exec_file_var != NULL);
1286  set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1287}
1288
1289/* The "set/show remote exec-file" show command hook.  */
1290
1291static void
1292show_remote_exec_file (struct ui_file *file, int from_tty,
1293		       struct cmd_list_element *cmd, const char *value)
1294{
1295  fprintf_filtered (file, "%s\n", remote_exec_file_var);
1296}
1297
1298static int
1299compare_pnums (const void *lhs_, const void *rhs_)
1300{
1301  const struct packet_reg * const *lhs
1302    = (const struct packet_reg * const *) lhs_;
1303  const struct packet_reg * const *rhs
1304    = (const struct packet_reg * const *) rhs_;
1305
1306  if ((*lhs)->pnum < (*rhs)->pnum)
1307    return -1;
1308  else if ((*lhs)->pnum == (*rhs)->pnum)
1309    return 0;
1310  else
1311    return 1;
1312}
1313
1314static int
1315map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1316{
1317  int regnum, num_remote_regs, offset;
1318  struct packet_reg **remote_regs;
1319
1320  for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1321    {
1322      struct packet_reg *r = &regs[regnum];
1323
1324      if (register_size (gdbarch, regnum) == 0)
1325	/* Do not try to fetch zero-sized (placeholder) registers.  */
1326	r->pnum = -1;
1327      else
1328	r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1329
1330      r->regnum = regnum;
1331    }
1332
1333  /* Define the g/G packet format as the contents of each register
1334     with a remote protocol number, in order of ascending protocol
1335     number.  */
1336
1337  remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1338  for (num_remote_regs = 0, regnum = 0;
1339       regnum < gdbarch_num_regs (gdbarch);
1340       regnum++)
1341    if (regs[regnum].pnum != -1)
1342      remote_regs[num_remote_regs++] = &regs[regnum];
1343
1344  qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
1345	 compare_pnums);
1346
1347  for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1348    {
1349      remote_regs[regnum]->in_g_packet = 1;
1350      remote_regs[regnum]->offset = offset;
1351      offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1352    }
1353
1354  return offset;
1355}
1356
1357/* Given the architecture described by GDBARCH, return the remote
1358   protocol register's number and the register's offset in the g/G
1359   packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1360   If the target does not have a mapping for REGNUM, return false,
1361   otherwise, return true.  */
1362
1363int
1364remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1365				   int *pnum, int *poffset)
1366{
1367  gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1368
1369  std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1370
1371  map_regcache_remote_table (gdbarch, regs.data ());
1372
1373  *pnum = regs[regnum].pnum;
1374  *poffset = regs[regnum].offset;
1375
1376  return *pnum != -1;
1377}
1378
1379remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1380{
1381  /* Use the architecture to build a regnum<->pnum table, which will be
1382     1:1 unless a feature set specifies otherwise.  */
1383  this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1384
1385  /* Record the maximum possible size of the g packet - it may turn out
1386     to be smaller.  */
1387  this->sizeof_g_packet
1388    = map_regcache_remote_table (gdbarch, this->regs.get ());
1389
1390  /* Default maximum number of characters in a packet body.  Many
1391     remote stubs have a hardwired buffer size of 400 bytes
1392     (c.f. BUFMAX in m68k-stub.c and i386-stub.c).  BUFMAX-1 is used
1393     as the maximum packet-size to ensure that the packet and an extra
1394     NUL character can always fit in the buffer.  This stops GDB
1395     trashing stubs that try to squeeze an extra NUL into what is
1396     already a full buffer (As of 1999-12-04 that was most stubs).  */
1397  this->remote_packet_size = 400 - 1;
1398
1399  /* This one is filled in when a ``g'' packet is received.  */
1400  this->actual_register_packet_size = 0;
1401
1402  /* Should rsa->sizeof_g_packet needs more space than the
1403     default, adjust the size accordingly.  Remember that each byte is
1404     encoded as two characters.  32 is the overhead for the packet
1405     header / footer.  NOTE: cagney/1999-10-26: I suspect that 8
1406     (``$NN:G...#NN'') is a better guess, the below has been padded a
1407     little.  */
1408  if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1409    this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1410}
1411
1412/* Get a pointer to the current remote target.  If not connected to a
1413   remote target, return NULL.  */
1414
1415static remote_target *
1416get_current_remote_target ()
1417{
1418  target_ops *proc_target = find_target_at (process_stratum);
1419  return dynamic_cast<remote_target *> (proc_target);
1420}
1421
1422/* Return the current allowed size of a remote packet.  This is
1423   inferred from the current architecture, and should be used to
1424   limit the length of outgoing packets.  */
1425long
1426remote_target::get_remote_packet_size ()
1427{
1428  struct remote_state *rs = get_remote_state ();
1429  remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1430
1431  if (rs->explicit_packet_size)
1432    return rs->explicit_packet_size;
1433
1434  return rsa->remote_packet_size;
1435}
1436
1437static struct packet_reg *
1438packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1439			long regnum)
1440{
1441  if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1442    return NULL;
1443  else
1444    {
1445      struct packet_reg *r = &rsa->regs[regnum];
1446
1447      gdb_assert (r->regnum == regnum);
1448      return r;
1449    }
1450}
1451
1452static struct packet_reg *
1453packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1454		      LONGEST pnum)
1455{
1456  int i;
1457
1458  for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1459    {
1460      struct packet_reg *r = &rsa->regs[i];
1461
1462      if (r->pnum == pnum)
1463	return r;
1464    }
1465  return NULL;
1466}
1467
1468/* Allow the user to specify what sequence to send to the remote
1469   when he requests a program interruption: Although ^C is usually
1470   what remote systems expect (this is the default, here), it is
1471   sometimes preferable to send a break.  On other systems such
1472   as the Linux kernel, a break followed by g, which is Magic SysRq g
1473   is required in order to interrupt the execution.  */
1474const char interrupt_sequence_control_c[] = "Ctrl-C";
1475const char interrupt_sequence_break[] = "BREAK";
1476const char interrupt_sequence_break_g[] = "BREAK-g";
1477static const char *const interrupt_sequence_modes[] =
1478  {
1479    interrupt_sequence_control_c,
1480    interrupt_sequence_break,
1481    interrupt_sequence_break_g,
1482    NULL
1483  };
1484static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1485
1486static void
1487show_interrupt_sequence (struct ui_file *file, int from_tty,
1488			 struct cmd_list_element *c,
1489			 const char *value)
1490{
1491  if (interrupt_sequence_mode == interrupt_sequence_control_c)
1492    fprintf_filtered (file,
1493		      _("Send the ASCII ETX character (Ctrl-c) "
1494			"to the remote target to interrupt the "
1495			"execution of the program.\n"));
1496  else if (interrupt_sequence_mode == interrupt_sequence_break)
1497    fprintf_filtered (file,
1498		      _("send a break signal to the remote target "
1499			"to interrupt the execution of the program.\n"));
1500  else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1501    fprintf_filtered (file,
1502		      _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1503			"the remote target to interrupt the execution "
1504			"of Linux kernel.\n"));
1505  else
1506    internal_error (__FILE__, __LINE__,
1507		    _("Invalid value for interrupt_sequence_mode: %s."),
1508		    interrupt_sequence_mode);
1509}
1510
1511/* This boolean variable specifies whether interrupt_sequence is sent
1512   to the remote target when gdb connects to it.
1513   This is mostly needed when you debug the Linux kernel: The Linux kernel
1514   expects BREAK g which is Magic SysRq g for connecting gdb.  */
1515static int interrupt_on_connect = 0;
1516
1517/* This variable is used to implement the "set/show remotebreak" commands.
1518   Since these commands are now deprecated in favor of "set/show remote
1519   interrupt-sequence", it no longer has any effect on the code.  */
1520static int remote_break;
1521
1522static void
1523set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1524{
1525  if (remote_break)
1526    interrupt_sequence_mode = interrupt_sequence_break;
1527  else
1528    interrupt_sequence_mode = interrupt_sequence_control_c;
1529}
1530
1531static void
1532show_remotebreak (struct ui_file *file, int from_tty,
1533		  struct cmd_list_element *c,
1534		  const char *value)
1535{
1536}
1537
1538/* This variable sets the number of bits in an address that are to be
1539   sent in a memory ("M" or "m") packet.  Normally, after stripping
1540   leading zeros, the entire address would be sent.  This variable
1541   restricts the address to REMOTE_ADDRESS_SIZE bits.  HISTORY: The
1542   initial implementation of remote.c restricted the address sent in
1543   memory packets to ``host::sizeof long'' bytes - (typically 32
1544   bits).  Consequently, for 64 bit targets, the upper 32 bits of an
1545   address was never sent.  Since fixing this bug may cause a break in
1546   some remote targets this variable is principly provided to
1547   facilitate backward compatibility.  */
1548
1549static unsigned int remote_address_size;
1550
1551
1552/* User configurable variables for the number of characters in a
1553   memory read/write packet.  MIN (rsa->remote_packet_size,
1554   rsa->sizeof_g_packet) is the default.  Some targets need smaller
1555   values (fifo overruns, et.al.) and some users need larger values
1556   (speed up transfers).  The variables ``preferred_*'' (the user
1557   request), ``current_*'' (what was actually set) and ``forced_*''
1558   (Positive - a soft limit, negative - a hard limit).  */
1559
1560struct memory_packet_config
1561{
1562  const char *name;
1563  long size;
1564  int fixed_p;
1565};
1566
1567/* The default max memory-write-packet-size, when the setting is
1568   "fixed".  The 16k is historical.  (It came from older GDB's using
1569   alloca for buffers and the knowledge (folklore?) that some hosts
1570   don't cope very well with large alloca calls.)  */
1571#define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1572
1573/* The minimum remote packet size for memory transfers.  Ensures we
1574   can write at least one byte.  */
1575#define MIN_MEMORY_PACKET_SIZE 20
1576
1577/* Get the memory packet size, assuming it is fixed.  */
1578
1579static long
1580get_fixed_memory_packet_size (struct memory_packet_config *config)
1581{
1582  gdb_assert (config->fixed_p);
1583
1584  if (config->size <= 0)
1585    return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1586  else
1587    return config->size;
1588}
1589
1590/* Compute the current size of a read/write packet.  Since this makes
1591   use of ``actual_register_packet_size'' the computation is dynamic.  */
1592
1593long
1594remote_target::get_memory_packet_size (struct memory_packet_config *config)
1595{
1596  struct remote_state *rs = get_remote_state ();
1597  remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1598
1599  long what_they_get;
1600  if (config->fixed_p)
1601    what_they_get = get_fixed_memory_packet_size (config);
1602  else
1603    {
1604      what_they_get = get_remote_packet_size ();
1605      /* Limit the packet to the size specified by the user.  */
1606      if (config->size > 0
1607	  && what_they_get > config->size)
1608	what_they_get = config->size;
1609
1610      /* Limit it to the size of the targets ``g'' response unless we have
1611	 permission from the stub to use a larger packet size.  */
1612      if (rs->explicit_packet_size == 0
1613	  && rsa->actual_register_packet_size > 0
1614	  && what_they_get > rsa->actual_register_packet_size)
1615	what_they_get = rsa->actual_register_packet_size;
1616    }
1617  if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1618    what_they_get = MIN_MEMORY_PACKET_SIZE;
1619
1620  /* Make sure there is room in the global buffer for this packet
1621     (including its trailing NUL byte).  */
1622  if (rs->buf.size () < what_they_get + 1)
1623    rs->buf.resize (2 * what_they_get);
1624
1625  return what_they_get;
1626}
1627
1628/* Update the size of a read/write packet.  If they user wants
1629   something really big then do a sanity check.  */
1630
1631static void
1632set_memory_packet_size (const char *args, struct memory_packet_config *config)
1633{
1634  int fixed_p = config->fixed_p;
1635  long size = config->size;
1636
1637  if (args == NULL)
1638    error (_("Argument required (integer, `fixed' or `limited')."));
1639  else if (strcmp (args, "hard") == 0
1640      || strcmp (args, "fixed") == 0)
1641    fixed_p = 1;
1642  else if (strcmp (args, "soft") == 0
1643	   || strcmp (args, "limit") == 0)
1644    fixed_p = 0;
1645  else
1646    {
1647      char *end;
1648
1649      size = strtoul (args, &end, 0);
1650      if (args == end)
1651	error (_("Invalid %s (bad syntax)."), config->name);
1652
1653      /* Instead of explicitly capping the size of a packet to or
1654	 disallowing it, the user is allowed to set the size to
1655	 something arbitrarily large.  */
1656    }
1657
1658  /* Extra checks?  */
1659  if (fixed_p && !config->fixed_p)
1660    {
1661      /* So that the query shows the correct value.  */
1662      long query_size = (size <= 0
1663			 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1664			 : size);
1665
1666      if (! query (_("The target may not be able to correctly handle a %s\n"
1667		   "of %ld bytes. Change the packet size? "),
1668		   config->name, query_size))
1669	error (_("Packet size not changed."));
1670    }
1671  /* Update the config.  */
1672  config->fixed_p = fixed_p;
1673  config->size = size;
1674}
1675
1676static void
1677show_memory_packet_size (struct memory_packet_config *config)
1678{
1679  if (config->size == 0)
1680    printf_filtered (_("The %s is 0 (default). "), config->name);
1681  else
1682    printf_filtered (_("The %s is %ld. "), config->name, config->size);
1683  if (config->fixed_p)
1684    printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1685		     get_fixed_memory_packet_size (config));
1686  else
1687    {
1688      remote_target *remote = get_current_remote_target ();
1689
1690      if (remote != NULL)
1691	printf_filtered (_("Packets are limited to %ld bytes.\n"),
1692			 remote->get_memory_packet_size (config));
1693      else
1694	puts_filtered ("The actual limit will be further reduced "
1695		       "dependent on the target.\n");
1696    }
1697}
1698
1699static struct memory_packet_config memory_write_packet_config =
1700{
1701  "memory-write-packet-size",
1702};
1703
1704static void
1705set_memory_write_packet_size (const char *args, int from_tty)
1706{
1707  set_memory_packet_size (args, &memory_write_packet_config);
1708}
1709
1710static void
1711show_memory_write_packet_size (const char *args, int from_tty)
1712{
1713  show_memory_packet_size (&memory_write_packet_config);
1714}
1715
1716/* Show the number of hardware watchpoints that can be used.  */
1717
1718static void
1719show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1720				struct cmd_list_element *c,
1721				const char *value)
1722{
1723  fprintf_filtered (file, _("The maximum number of target hardware "
1724			    "watchpoints is %s.\n"), value);
1725}
1726
1727/* Show the length limit (in bytes) for hardware watchpoints.  */
1728
1729static void
1730show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1731				       struct cmd_list_element *c,
1732				       const char *value)
1733{
1734  fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1735			    "hardware watchpoint is %s.\n"), value);
1736}
1737
1738/* Show the number of hardware breakpoints that can be used.  */
1739
1740static void
1741show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1742				struct cmd_list_element *c,
1743				const char *value)
1744{
1745  fprintf_filtered (file, _("The maximum number of target hardware "
1746			    "breakpoints is %s.\n"), value);
1747}
1748
1749long
1750remote_target::get_memory_write_packet_size ()
1751{
1752  return get_memory_packet_size (&memory_write_packet_config);
1753}
1754
1755static struct memory_packet_config memory_read_packet_config =
1756{
1757  "memory-read-packet-size",
1758};
1759
1760static void
1761set_memory_read_packet_size (const char *args, int from_tty)
1762{
1763  set_memory_packet_size (args, &memory_read_packet_config);
1764}
1765
1766static void
1767show_memory_read_packet_size (const char *args, int from_tty)
1768{
1769  show_memory_packet_size (&memory_read_packet_config);
1770}
1771
1772long
1773remote_target::get_memory_read_packet_size ()
1774{
1775  long size = get_memory_packet_size (&memory_read_packet_config);
1776
1777  /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1778     extra buffer size argument before the memory read size can be
1779     increased beyond this.  */
1780  if (size > get_remote_packet_size ())
1781    size = get_remote_packet_size ();
1782  return size;
1783}
1784
1785
1786
1787struct packet_config
1788  {
1789    const char *name;
1790    const char *title;
1791
1792    /* If auto, GDB auto-detects support for this packet or feature,
1793       either through qSupported, or by trying the packet and looking
1794       at the response.  If true, GDB assumes the target supports this
1795       packet.  If false, the packet is disabled.  Configs that don't
1796       have an associated command always have this set to auto.  */
1797    enum auto_boolean detect;
1798
1799    /* Does the target support this packet?  */
1800    enum packet_support support;
1801  };
1802
1803static enum packet_support packet_config_support (struct packet_config *config);
1804static enum packet_support packet_support (int packet);
1805
1806static void
1807show_packet_config_cmd (struct packet_config *config)
1808{
1809  const char *support = "internal-error";
1810
1811  switch (packet_config_support (config))
1812    {
1813    case PACKET_ENABLE:
1814      support = "enabled";
1815      break;
1816    case PACKET_DISABLE:
1817      support = "disabled";
1818      break;
1819    case PACKET_SUPPORT_UNKNOWN:
1820      support = "unknown";
1821      break;
1822    }
1823  switch (config->detect)
1824    {
1825    case AUTO_BOOLEAN_AUTO:
1826      printf_filtered (_("Support for the `%s' packet "
1827			 "is auto-detected, currently %s.\n"),
1828		       config->name, support);
1829      break;
1830    case AUTO_BOOLEAN_TRUE:
1831    case AUTO_BOOLEAN_FALSE:
1832      printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1833		       config->name, support);
1834      break;
1835    }
1836}
1837
1838static void
1839add_packet_config_cmd (struct packet_config *config, const char *name,
1840		       const char *title, int legacy)
1841{
1842  char *set_doc;
1843  char *show_doc;
1844  char *cmd_name;
1845
1846  config->name = name;
1847  config->title = title;
1848  set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1849			name, title);
1850  show_doc = xstrprintf ("Show current use of remote "
1851			 "protocol `%s' (%s) packet",
1852			 name, title);
1853  /* set/show TITLE-packet {auto,on,off} */
1854  cmd_name = xstrprintf ("%s-packet", title);
1855  add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1856				&config->detect, set_doc,
1857				show_doc, NULL, /* help_doc */
1858				NULL,
1859				show_remote_protocol_packet_cmd,
1860				&remote_set_cmdlist, &remote_show_cmdlist);
1861  /* The command code copies the documentation strings.  */
1862  xfree (set_doc);
1863  xfree (show_doc);
1864  /* set/show remote NAME-packet {auto,on,off} -- legacy.  */
1865  if (legacy)
1866    {
1867      char *legacy_name;
1868
1869      legacy_name = xstrprintf ("%s-packet", name);
1870      add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1871		     &remote_set_cmdlist);
1872      add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1873		     &remote_show_cmdlist);
1874    }
1875}
1876
1877static enum packet_result
1878packet_check_result (const char *buf)
1879{
1880  if (buf[0] != '\0')
1881    {
1882      /* The stub recognized the packet request.  Check that the
1883	 operation succeeded.  */
1884      if (buf[0] == 'E'
1885	  && isxdigit (buf[1]) && isxdigit (buf[2])
1886	  && buf[3] == '\0')
1887	/* "Enn"  - definitly an error.  */
1888	return PACKET_ERROR;
1889
1890      /* Always treat "E." as an error.  This will be used for
1891	 more verbose error messages, such as E.memtypes.  */
1892      if (buf[0] == 'E' && buf[1] == '.')
1893	return PACKET_ERROR;
1894
1895      /* The packet may or may not be OK.  Just assume it is.  */
1896      return PACKET_OK;
1897    }
1898  else
1899    /* The stub does not support the packet.  */
1900    return PACKET_UNKNOWN;
1901}
1902
1903static enum packet_result
1904packet_check_result (const gdb::char_vector &buf)
1905{
1906  return packet_check_result (buf.data ());
1907}
1908
1909static enum packet_result
1910packet_ok (const char *buf, struct packet_config *config)
1911{
1912  enum packet_result result;
1913
1914  if (config->detect != AUTO_BOOLEAN_TRUE
1915      && config->support == PACKET_DISABLE)
1916    internal_error (__FILE__, __LINE__,
1917		    _("packet_ok: attempt to use a disabled packet"));
1918
1919  result = packet_check_result (buf);
1920  switch (result)
1921    {
1922    case PACKET_OK:
1923    case PACKET_ERROR:
1924      /* The stub recognized the packet request.  */
1925      if (config->support == PACKET_SUPPORT_UNKNOWN)
1926	{
1927	  if (remote_debug)
1928	    fprintf_unfiltered (gdb_stdlog,
1929				"Packet %s (%s) is supported\n",
1930				config->name, config->title);
1931	  config->support = PACKET_ENABLE;
1932	}
1933      break;
1934    case PACKET_UNKNOWN:
1935      /* The stub does not support the packet.  */
1936      if (config->detect == AUTO_BOOLEAN_AUTO
1937	  && config->support == PACKET_ENABLE)
1938	{
1939	  /* If the stub previously indicated that the packet was
1940	     supported then there is a protocol error.  */
1941	  error (_("Protocol error: %s (%s) conflicting enabled responses."),
1942		 config->name, config->title);
1943	}
1944      else if (config->detect == AUTO_BOOLEAN_TRUE)
1945	{
1946	  /* The user set it wrong.  */
1947	  error (_("Enabled packet %s (%s) not recognized by stub"),
1948		 config->name, config->title);
1949	}
1950
1951      if (remote_debug)
1952	fprintf_unfiltered (gdb_stdlog,
1953			    "Packet %s (%s) is NOT supported\n",
1954			    config->name, config->title);
1955      config->support = PACKET_DISABLE;
1956      break;
1957    }
1958
1959  return result;
1960}
1961
1962static enum packet_result
1963packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1964{
1965  return packet_ok (buf.data (), config);
1966}
1967
1968enum {
1969  PACKET_vCont = 0,
1970  PACKET_X,
1971  PACKET_qSymbol,
1972  PACKET_P,
1973  PACKET_p,
1974  PACKET_Z0,
1975  PACKET_Z1,
1976  PACKET_Z2,
1977  PACKET_Z3,
1978  PACKET_Z4,
1979  PACKET_vFile_setfs,
1980  PACKET_vFile_open,
1981  PACKET_vFile_pread,
1982  PACKET_vFile_pwrite,
1983  PACKET_vFile_close,
1984  PACKET_vFile_unlink,
1985  PACKET_vFile_readlink,
1986  PACKET_vFile_fstat,
1987  PACKET_qXfer_auxv,
1988  PACKET_qXfer_features,
1989  PACKET_qXfer_exec_file,
1990  PACKET_qXfer_libraries,
1991  PACKET_qXfer_libraries_svr4,
1992  PACKET_qXfer_memory_map,
1993  PACKET_qXfer_spu_read,
1994  PACKET_qXfer_spu_write,
1995  PACKET_qXfer_osdata,
1996  PACKET_qXfer_threads,
1997  PACKET_qXfer_statictrace_read,
1998  PACKET_qXfer_traceframe_info,
1999  PACKET_qXfer_uib,
2000  PACKET_qGetTIBAddr,
2001  PACKET_qGetTLSAddr,
2002  PACKET_qSupported,
2003  PACKET_qTStatus,
2004  PACKET_QPassSignals,
2005  PACKET_QCatchSyscalls,
2006  PACKET_QProgramSignals,
2007  PACKET_QSetWorkingDir,
2008  PACKET_QStartupWithShell,
2009  PACKET_QEnvironmentHexEncoded,
2010  PACKET_QEnvironmentReset,
2011  PACKET_QEnvironmentUnset,
2012  PACKET_qCRC,
2013  PACKET_qSearch_memory,
2014  PACKET_vAttach,
2015  PACKET_vRun,
2016  PACKET_QStartNoAckMode,
2017  PACKET_vKill,
2018  PACKET_qXfer_siginfo_read,
2019  PACKET_qXfer_siginfo_write,
2020  PACKET_qAttached,
2021
2022  /* Support for conditional tracepoints.  */
2023  PACKET_ConditionalTracepoints,
2024
2025  /* Support for target-side breakpoint conditions.  */
2026  PACKET_ConditionalBreakpoints,
2027
2028  /* Support for target-side breakpoint commands.  */
2029  PACKET_BreakpointCommands,
2030
2031  /* Support for fast tracepoints.  */
2032  PACKET_FastTracepoints,
2033
2034  /* Support for static tracepoints.  */
2035  PACKET_StaticTracepoints,
2036
2037  /* Support for installing tracepoints while a trace experiment is
2038     running.  */
2039  PACKET_InstallInTrace,
2040
2041  PACKET_bc,
2042  PACKET_bs,
2043  PACKET_TracepointSource,
2044  PACKET_QAllow,
2045  PACKET_qXfer_fdpic,
2046  PACKET_QDisableRandomization,
2047  PACKET_QAgent,
2048  PACKET_QTBuffer_size,
2049  PACKET_Qbtrace_off,
2050  PACKET_Qbtrace_bts,
2051  PACKET_Qbtrace_pt,
2052  PACKET_qXfer_btrace,
2053
2054  /* Support for the QNonStop packet.  */
2055  PACKET_QNonStop,
2056
2057  /* Support for the QThreadEvents packet.  */
2058  PACKET_QThreadEvents,
2059
2060  /* Support for multi-process extensions.  */
2061  PACKET_multiprocess_feature,
2062
2063  /* Support for enabling and disabling tracepoints while a trace
2064     experiment is running.  */
2065  PACKET_EnableDisableTracepoints_feature,
2066
2067  /* Support for collecting strings using the tracenz bytecode.  */
2068  PACKET_tracenz_feature,
2069
2070  /* Support for continuing to run a trace experiment while GDB is
2071     disconnected.  */
2072  PACKET_DisconnectedTracing_feature,
2073
2074  /* Support for qXfer:libraries-svr4:read with a non-empty annex.  */
2075  PACKET_augmented_libraries_svr4_read_feature,
2076
2077  /* Support for the qXfer:btrace-conf:read packet.  */
2078  PACKET_qXfer_btrace_conf,
2079
2080  /* Support for the Qbtrace-conf:bts:size packet.  */
2081  PACKET_Qbtrace_conf_bts_size,
2082
2083  /* Support for swbreak+ feature.  */
2084  PACKET_swbreak_feature,
2085
2086  /* Support for hwbreak+ feature.  */
2087  PACKET_hwbreak_feature,
2088
2089  /* Support for fork events.  */
2090  PACKET_fork_event_feature,
2091
2092  /* Support for vfork events.  */
2093  PACKET_vfork_event_feature,
2094
2095  /* Support for the Qbtrace-conf:pt:size packet.  */
2096  PACKET_Qbtrace_conf_pt_size,
2097
2098  /* Support for exec events.  */
2099  PACKET_exec_event_feature,
2100
2101  /* Support for query supported vCont actions.  */
2102  PACKET_vContSupported,
2103
2104  /* Support remote CTRL-C.  */
2105  PACKET_vCtrlC,
2106
2107  /* Support TARGET_WAITKIND_NO_RESUMED.  */
2108  PACKET_no_resumed,
2109
2110  PACKET_MAX
2111};
2112
2113static struct packet_config remote_protocol_packets[PACKET_MAX];
2114
2115/* Returns the packet's corresponding "set remote foo-packet" command
2116   state.  See struct packet_config for more details.  */
2117
2118static enum auto_boolean
2119packet_set_cmd_state (int packet)
2120{
2121  return remote_protocol_packets[packet].detect;
2122}
2123
2124/* Returns whether a given packet or feature is supported.  This takes
2125   into account the state of the corresponding "set remote foo-packet"
2126   command, which may be used to bypass auto-detection.  */
2127
2128static enum packet_support
2129packet_config_support (struct packet_config *config)
2130{
2131  switch (config->detect)
2132    {
2133    case AUTO_BOOLEAN_TRUE:
2134      return PACKET_ENABLE;
2135    case AUTO_BOOLEAN_FALSE:
2136      return PACKET_DISABLE;
2137    case AUTO_BOOLEAN_AUTO:
2138      return config->support;
2139    default:
2140      gdb_assert_not_reached (_("bad switch"));
2141    }
2142}
2143
2144/* Same as packet_config_support, but takes the packet's enum value as
2145   argument.  */
2146
2147static enum packet_support
2148packet_support (int packet)
2149{
2150  struct packet_config *config = &remote_protocol_packets[packet];
2151
2152  return packet_config_support (config);
2153}
2154
2155static void
2156show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2157				 struct cmd_list_element *c,
2158				 const char *value)
2159{
2160  struct packet_config *packet;
2161
2162  for (packet = remote_protocol_packets;
2163       packet < &remote_protocol_packets[PACKET_MAX];
2164       packet++)
2165    {
2166      if (&packet->detect == c->var)
2167	{
2168	  show_packet_config_cmd (packet);
2169	  return;
2170	}
2171    }
2172  internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2173		  c->name);
2174}
2175
2176/* Should we try one of the 'Z' requests?  */
2177
2178enum Z_packet_type
2179{
2180  Z_PACKET_SOFTWARE_BP,
2181  Z_PACKET_HARDWARE_BP,
2182  Z_PACKET_WRITE_WP,
2183  Z_PACKET_READ_WP,
2184  Z_PACKET_ACCESS_WP,
2185  NR_Z_PACKET_TYPES
2186};
2187
2188/* For compatibility with older distributions.  Provide a ``set remote
2189   Z-packet ...'' command that updates all the Z packet types.  */
2190
2191static enum auto_boolean remote_Z_packet_detect;
2192
2193static void
2194set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2195				  struct cmd_list_element *c)
2196{
2197  int i;
2198
2199  for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2200    remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2201}
2202
2203static void
2204show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2205				   struct cmd_list_element *c,
2206				   const char *value)
2207{
2208  int i;
2209
2210  for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2211    {
2212      show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2213    }
2214}
2215
2216/* Returns true if the multi-process extensions are in effect.  */
2217
2218static int
2219remote_multi_process_p (struct remote_state *rs)
2220{
2221  return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2222}
2223
2224/* Returns true if fork events are supported.  */
2225
2226static int
2227remote_fork_event_p (struct remote_state *rs)
2228{
2229  return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2230}
2231
2232/* Returns true if vfork events are supported.  */
2233
2234static int
2235remote_vfork_event_p (struct remote_state *rs)
2236{
2237  return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2238}
2239
2240/* Returns true if exec events are supported.  */
2241
2242static int
2243remote_exec_event_p (struct remote_state *rs)
2244{
2245  return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2246}
2247
2248/* Insert fork catchpoint target routine.  If fork events are enabled
2249   then return success, nothing more to do.  */
2250
2251int
2252remote_target::insert_fork_catchpoint (int pid)
2253{
2254  struct remote_state *rs = get_remote_state ();
2255
2256  return !remote_fork_event_p (rs);
2257}
2258
2259/* Remove fork catchpoint target routine.  Nothing to do, just
2260   return success.  */
2261
2262int
2263remote_target::remove_fork_catchpoint (int pid)
2264{
2265  return 0;
2266}
2267
2268/* Insert vfork catchpoint target routine.  If vfork events are enabled
2269   then return success, nothing more to do.  */
2270
2271int
2272remote_target::insert_vfork_catchpoint (int pid)
2273{
2274  struct remote_state *rs = get_remote_state ();
2275
2276  return !remote_vfork_event_p (rs);
2277}
2278
2279/* Remove vfork catchpoint target routine.  Nothing to do, just
2280   return success.  */
2281
2282int
2283remote_target::remove_vfork_catchpoint (int pid)
2284{
2285  return 0;
2286}
2287
2288/* Insert exec catchpoint target routine.  If exec events are
2289   enabled, just return success.  */
2290
2291int
2292remote_target::insert_exec_catchpoint (int pid)
2293{
2294  struct remote_state *rs = get_remote_state ();
2295
2296  return !remote_exec_event_p (rs);
2297}
2298
2299/* Remove exec catchpoint target routine.  Nothing to do, just
2300   return success.  */
2301
2302int
2303remote_target::remove_exec_catchpoint (int pid)
2304{
2305  return 0;
2306}
2307
2308
2309
2310static ptid_t magic_null_ptid;
2311static ptid_t not_sent_ptid;
2312static ptid_t any_thread_ptid;
2313
2314/* Find out if the stub attached to PID (and hence GDB should offer to
2315   detach instead of killing it when bailing out).  */
2316
2317int
2318remote_target::remote_query_attached (int pid)
2319{
2320  struct remote_state *rs = get_remote_state ();
2321  size_t size = get_remote_packet_size ();
2322
2323  if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2324    return 0;
2325
2326  if (remote_multi_process_p (rs))
2327    xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2328  else
2329    xsnprintf (rs->buf.data (), size, "qAttached");
2330
2331  putpkt (rs->buf);
2332  getpkt (&rs->buf, 0);
2333
2334  switch (packet_ok (rs->buf,
2335		     &remote_protocol_packets[PACKET_qAttached]))
2336    {
2337    case PACKET_OK:
2338      if (strcmp (rs->buf.data (), "1") == 0)
2339	return 1;
2340      break;
2341    case PACKET_ERROR:
2342      warning (_("Remote failure reply: %s"), rs->buf.data ());
2343      break;
2344    case PACKET_UNKNOWN:
2345      break;
2346    }
2347
2348  return 0;
2349}
2350
2351/* Add PID to GDB's inferior table.  If FAKE_PID_P is true, then PID
2352   has been invented by GDB, instead of reported by the target.  Since
2353   we can be connected to a remote system before before knowing about
2354   any inferior, mark the target with execution when we find the first
2355   inferior.  If ATTACHED is 1, then we had just attached to this
2356   inferior.  If it is 0, then we just created this inferior.  If it
2357   is -1, then try querying the remote stub to find out if it had
2358   attached to the inferior or not.  If TRY_OPEN_EXEC is true then
2359   attempt to open this inferior's executable as the main executable
2360   if no main executable is open already.  */
2361
2362inferior *
2363remote_target::remote_add_inferior (int fake_pid_p, int pid, int attached,
2364				    int try_open_exec)
2365{
2366  struct inferior *inf;
2367
2368  /* Check whether this process we're learning about is to be
2369     considered attached, or if is to be considered to have been
2370     spawned by the stub.  */
2371  if (attached == -1)
2372    attached = remote_query_attached (pid);
2373
2374  if (gdbarch_has_global_solist (target_gdbarch ()))
2375    {
2376      /* If the target shares code across all inferiors, then every
2377	 attach adds a new inferior.  */
2378      inf = add_inferior (pid);
2379
2380      /* ... and every inferior is bound to the same program space.
2381	 However, each inferior may still have its own address
2382	 space.  */
2383      inf->aspace = maybe_new_address_space ();
2384      inf->pspace = current_program_space;
2385    }
2386  else
2387    {
2388      /* In the traditional debugging scenario, there's a 1-1 match
2389	 between program/address spaces.  We simply bind the inferior
2390	 to the program space's address space.  */
2391      inf = current_inferior ();
2392      inferior_appeared (inf, pid);
2393    }
2394
2395  inf->attach_flag = attached;
2396  inf->fake_pid_p = fake_pid_p;
2397
2398  /* If no main executable is currently open then attempt to
2399     open the file that was executed to create this inferior.  */
2400  if (try_open_exec && get_exec_file (0) == NULL)
2401    exec_file_locate_attach (pid, 0, 1);
2402
2403  return inf;
2404}
2405
2406static remote_thread_info *get_remote_thread_info (thread_info *thread);
2407static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2408
2409/* Add thread PTID to GDB's thread list.  Tag it as executing/running
2410   according to RUNNING.  */
2411
2412thread_info *
2413remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2414{
2415  struct remote_state *rs = get_remote_state ();
2416  struct thread_info *thread;
2417
2418  /* GDB historically didn't pull threads in the initial connection
2419     setup.  If the remote target doesn't even have a concept of
2420     threads (e.g., a bare-metal target), even if internally we
2421     consider that a single-threaded target, mentioning a new thread
2422     might be confusing to the user.  Be silent then, preserving the
2423     age old behavior.  */
2424  if (rs->starting_up)
2425    thread = add_thread_silent (ptid);
2426  else
2427    thread = add_thread (ptid);
2428
2429  get_remote_thread_info (thread)->vcont_resumed = executing;
2430  set_executing (ptid, executing);
2431  set_running (ptid, running);
2432
2433  return thread;
2434}
2435
2436/* Come here when we learn about a thread id from the remote target.
2437   It may be the first time we hear about such thread, so take the
2438   opportunity to add it to GDB's thread list.  In case this is the
2439   first time we're noticing its corresponding inferior, add it to
2440   GDB's inferior list as well.  EXECUTING indicates whether the
2441   thread is (internally) executing or stopped.  */
2442
2443void
2444remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2445{
2446  /* In non-stop mode, we assume new found threads are (externally)
2447     running until proven otherwise with a stop reply.  In all-stop,
2448     we can only get here if all threads are stopped.  */
2449  int running = target_is_non_stop_p () ? 1 : 0;
2450
2451  /* If this is a new thread, add it to GDB's thread list.
2452     If we leave it up to WFI to do this, bad things will happen.  */
2453
2454  thread_info *tp = find_thread_ptid (currthread);
2455  if (tp != NULL && tp->state == THREAD_EXITED)
2456    {
2457      /* We're seeing an event on a thread id we knew had exited.
2458	 This has to be a new thread reusing the old id.  Add it.  */
2459      remote_add_thread (currthread, running, executing);
2460      return;
2461    }
2462
2463  if (!in_thread_list (currthread))
2464    {
2465      struct inferior *inf = NULL;
2466      int pid = currthread.pid ();
2467
2468      if (inferior_ptid.is_pid ()
2469	  && pid == inferior_ptid.pid ())
2470	{
2471	  /* inferior_ptid has no thread member yet.  This can happen
2472	     with the vAttach -> remote_wait,"TAAthread:" path if the
2473	     stub doesn't support qC.  This is the first stop reported
2474	     after an attach, so this is the main thread.  Update the
2475	     ptid in the thread list.  */
2476	  if (in_thread_list (ptid_t (pid)))
2477	    thread_change_ptid (inferior_ptid, currthread);
2478	  else
2479	    {
2480	      remote_add_thread (currthread, running, executing);
2481	      inferior_ptid = currthread;
2482	    }
2483	  return;
2484	}
2485
2486      if (magic_null_ptid == inferior_ptid)
2487	{
2488	  /* inferior_ptid is not set yet.  This can happen with the
2489	     vRun -> remote_wait,"TAAthread:" path if the stub
2490	     doesn't support qC.  This is the first stop reported
2491	     after an attach, so this is the main thread.  Update the
2492	     ptid in the thread list.  */
2493	  thread_change_ptid (inferior_ptid, currthread);
2494	  return;
2495	}
2496
2497      /* When connecting to a target remote, or to a target
2498	 extended-remote which already was debugging an inferior, we
2499	 may not know about it yet.  Add it before adding its child
2500	 thread, so notifications are emitted in a sensible order.  */
2501      if (find_inferior_pid (currthread.pid ()) == NULL)
2502	{
2503	  struct remote_state *rs = get_remote_state ();
2504	  int fake_pid_p = !remote_multi_process_p (rs);
2505
2506	  inf = remote_add_inferior (fake_pid_p,
2507				     currthread.pid (), -1, 1);
2508	}
2509
2510      /* This is really a new thread.  Add it.  */
2511      thread_info *new_thr
2512	= remote_add_thread (currthread, running, executing);
2513
2514      /* If we found a new inferior, let the common code do whatever
2515	 it needs to with it (e.g., read shared libraries, insert
2516	 breakpoints), unless we're just setting up an all-stop
2517	 connection.  */
2518      if (inf != NULL)
2519	{
2520	  struct remote_state *rs = get_remote_state ();
2521
2522	  if (!rs->starting_up)
2523	    notice_new_inferior (new_thr, executing, 0);
2524	}
2525    }
2526}
2527
2528/* Return THREAD's private thread data, creating it if necessary.  */
2529
2530static remote_thread_info *
2531get_remote_thread_info (thread_info *thread)
2532{
2533  gdb_assert (thread != NULL);
2534
2535  if (thread->priv == NULL)
2536    thread->priv.reset (new remote_thread_info);
2537
2538  return static_cast<remote_thread_info *> (thread->priv.get ());
2539}
2540
2541static remote_thread_info *
2542get_remote_thread_info (ptid_t ptid)
2543{
2544  thread_info *thr = find_thread_ptid (ptid);
2545  return get_remote_thread_info (thr);
2546}
2547
2548/* Call this function as a result of
2549   1) A halt indication (T packet) containing a thread id
2550   2) A direct query of currthread
2551   3) Successful execution of set thread */
2552
2553static void
2554record_currthread (struct remote_state *rs, ptid_t currthread)
2555{
2556  rs->general_thread = currthread;
2557}
2558
2559/* If 'QPassSignals' is supported, tell the remote stub what signals
2560   it can simply pass through to the inferior without reporting.  */
2561
2562void
2563remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2564{
2565  if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2566    {
2567      char *pass_packet, *p;
2568      int count = 0;
2569      struct remote_state *rs = get_remote_state ();
2570
2571      gdb_assert (pass_signals.size () < 256);
2572      for (size_t i = 0; i < pass_signals.size (); i++)
2573	{
2574	  if (pass_signals[i])
2575	    count++;
2576	}
2577      pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2578      strcpy (pass_packet, "QPassSignals:");
2579      p = pass_packet + strlen (pass_packet);
2580      for (size_t i = 0; i < pass_signals.size (); i++)
2581	{
2582	  if (pass_signals[i])
2583	    {
2584	      if (i >= 16)
2585		*p++ = tohex (i >> 4);
2586	      *p++ = tohex (i & 15);
2587	      if (count)
2588		*p++ = ';';
2589	      else
2590		break;
2591	      count--;
2592	    }
2593	}
2594      *p = 0;
2595      if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2596	{
2597	  putpkt (pass_packet);
2598	  getpkt (&rs->buf, 0);
2599	  packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2600	  if (rs->last_pass_packet)
2601	    xfree (rs->last_pass_packet);
2602	  rs->last_pass_packet = pass_packet;
2603	}
2604      else
2605	xfree (pass_packet);
2606    }
2607}
2608
2609/* If 'QCatchSyscalls' is supported, tell the remote stub
2610   to report syscalls to GDB.  */
2611
2612int
2613remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2614				       gdb::array_view<const int> syscall_counts)
2615{
2616  const char *catch_packet;
2617  enum packet_result result;
2618  int n_sysno = 0;
2619
2620  if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2621    {
2622      /* Not supported.  */
2623      return 1;
2624    }
2625
2626  if (needed && any_count == 0)
2627    {
2628      /* Count how many syscalls are to be caught.  */
2629      for (size_t i = 0; i < syscall_counts.size (); i++)
2630	{
2631	  if (syscall_counts[i] != 0)
2632	    n_sysno++;
2633	}
2634    }
2635
2636  if (remote_debug)
2637    {
2638      fprintf_unfiltered (gdb_stdlog,
2639			  "remote_set_syscall_catchpoint "
2640			  "pid %d needed %d any_count %d n_sysno %d\n",
2641			  pid, needed, any_count, n_sysno);
2642    }
2643
2644  std::string built_packet;
2645  if (needed)
2646    {
2647      /* Prepare a packet with the sysno list, assuming max 8+1
2648	 characters for a sysno.  If the resulting packet size is too
2649	 big, fallback on the non-selective packet.  */
2650      const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2651      built_packet.reserve (maxpktsz);
2652      built_packet = "QCatchSyscalls:1";
2653      if (any_count == 0)
2654	{
2655	  /* Add in each syscall to be caught.  */
2656	  for (size_t i = 0; i < syscall_counts.size (); i++)
2657	    {
2658	      if (syscall_counts[i] != 0)
2659		string_appendf (built_packet, ";%zx", i);
2660	    }
2661	}
2662      if (built_packet.size () > get_remote_packet_size ())
2663	{
2664	  /* catch_packet too big.  Fallback to less efficient
2665	     non selective mode, with GDB doing the filtering.  */
2666	  catch_packet = "QCatchSyscalls:1";
2667	}
2668      else
2669	catch_packet = built_packet.c_str ();
2670    }
2671  else
2672    catch_packet = "QCatchSyscalls:0";
2673
2674  struct remote_state *rs = get_remote_state ();
2675
2676  putpkt (catch_packet);
2677  getpkt (&rs->buf, 0);
2678  result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2679  if (result == PACKET_OK)
2680    return 0;
2681  else
2682    return -1;
2683}
2684
2685/* If 'QProgramSignals' is supported, tell the remote stub what
2686   signals it should pass through to the inferior when detaching.  */
2687
2688void
2689remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2690{
2691  if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2692    {
2693      char *packet, *p;
2694      int count = 0;
2695      struct remote_state *rs = get_remote_state ();
2696
2697      gdb_assert (signals.size () < 256);
2698      for (size_t i = 0; i < signals.size (); i++)
2699	{
2700	  if (signals[i])
2701	    count++;
2702	}
2703      packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2704      strcpy (packet, "QProgramSignals:");
2705      p = packet + strlen (packet);
2706      for (size_t i = 0; i < signals.size (); i++)
2707	{
2708	  if (signal_pass_state (i))
2709	    {
2710	      if (i >= 16)
2711		*p++ = tohex (i >> 4);
2712	      *p++ = tohex (i & 15);
2713	      if (count)
2714		*p++ = ';';
2715	      else
2716		break;
2717	      count--;
2718	    }
2719	}
2720      *p = 0;
2721      if (!rs->last_program_signals_packet
2722	  || strcmp (rs->last_program_signals_packet, packet) != 0)
2723	{
2724	  putpkt (packet);
2725	  getpkt (&rs->buf, 0);
2726	  packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2727	  xfree (rs->last_program_signals_packet);
2728	  rs->last_program_signals_packet = packet;
2729	}
2730      else
2731	xfree (packet);
2732    }
2733}
2734
2735/* If PTID is MAGIC_NULL_PTID, don't set any thread.  If PTID is
2736   MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2737   thread.  If GEN is set, set the general thread, if not, then set
2738   the step/continue thread.  */
2739void
2740remote_target::set_thread (ptid_t ptid, int gen)
2741{
2742  struct remote_state *rs = get_remote_state ();
2743  ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2744  char *buf = rs->buf.data ();
2745  char *endbuf = buf + get_remote_packet_size ();
2746
2747  if (state == ptid)
2748    return;
2749
2750  *buf++ = 'H';
2751  *buf++ = gen ? 'g' : 'c';
2752  if (ptid == magic_null_ptid)
2753    xsnprintf (buf, endbuf - buf, "0");
2754  else if (ptid == any_thread_ptid)
2755    xsnprintf (buf, endbuf - buf, "0");
2756  else if (ptid == minus_one_ptid)
2757    xsnprintf (buf, endbuf - buf, "-1");
2758  else
2759    write_ptid (buf, endbuf, ptid);
2760  putpkt (rs->buf);
2761  getpkt (&rs->buf, 0);
2762  if (gen)
2763    rs->general_thread = ptid;
2764  else
2765    rs->continue_thread = ptid;
2766}
2767
2768void
2769remote_target::set_general_thread (ptid_t ptid)
2770{
2771  set_thread (ptid, 1);
2772}
2773
2774void
2775remote_target::set_continue_thread (ptid_t ptid)
2776{
2777  set_thread (ptid, 0);
2778}
2779
2780/* Change the remote current process.  Which thread within the process
2781   ends up selected isn't important, as long as it is the same process
2782   as what INFERIOR_PTID points to.
2783
2784   This comes from that fact that there is no explicit notion of
2785   "selected process" in the protocol.  The selected process for
2786   general operations is the process the selected general thread
2787   belongs to.  */
2788
2789void
2790remote_target::set_general_process ()
2791{
2792  struct remote_state *rs = get_remote_state ();
2793
2794  /* If the remote can't handle multiple processes, don't bother.  */
2795  if (!remote_multi_process_p (rs))
2796    return;
2797
2798  /* We only need to change the remote current thread if it's pointing
2799     at some other process.  */
2800  if (rs->general_thread.pid () != inferior_ptid.pid ())
2801    set_general_thread (inferior_ptid);
2802}
2803
2804
2805/* Return nonzero if this is the main thread that we made up ourselves
2806   to model non-threaded targets as single-threaded.  */
2807
2808static int
2809remote_thread_always_alive (ptid_t ptid)
2810{
2811  if (ptid == magic_null_ptid)
2812    /* The main thread is always alive.  */
2813    return 1;
2814
2815  if (ptid.pid () != 0 && ptid.lwp () == 0)
2816    /* The main thread is always alive.  This can happen after a
2817       vAttach, if the remote side doesn't support
2818       multi-threading.  */
2819    return 1;
2820
2821  return 0;
2822}
2823
2824/* Return nonzero if the thread PTID is still alive on the remote
2825   system.  */
2826
2827bool
2828remote_target::thread_alive (ptid_t ptid)
2829{
2830  struct remote_state *rs = get_remote_state ();
2831  char *p, *endp;
2832
2833  /* Check if this is a thread that we made up ourselves to model
2834     non-threaded targets as single-threaded.  */
2835  if (remote_thread_always_alive (ptid))
2836    return 1;
2837
2838  p = rs->buf.data ();
2839  endp = p + get_remote_packet_size ();
2840
2841  *p++ = 'T';
2842  write_ptid (p, endp, ptid);
2843
2844  putpkt (rs->buf);
2845  getpkt (&rs->buf, 0);
2846  return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2847}
2848
2849/* Return a pointer to a thread name if we know it and NULL otherwise.
2850   The thread_info object owns the memory for the name.  */
2851
2852const char *
2853remote_target::thread_name (struct thread_info *info)
2854{
2855  if (info->priv != NULL)
2856    {
2857      const std::string &name = get_remote_thread_info (info)->name;
2858      return !name.empty () ? name.c_str () : NULL;
2859    }
2860
2861  return NULL;
2862}
2863
2864/* About these extended threadlist and threadinfo packets.  They are
2865   variable length packets but, the fields within them are often fixed
2866   length.  They are redundent enough to send over UDP as is the
2867   remote protocol in general.  There is a matching unit test module
2868   in libstub.  */
2869
2870/* WARNING: This threadref data structure comes from the remote O.S.,
2871   libstub protocol encoding, and remote.c.  It is not particularly
2872   changable.  */
2873
2874/* Right now, the internal structure is int. We want it to be bigger.
2875   Plan to fix this.  */
2876
2877typedef int gdb_threadref;	/* Internal GDB thread reference.  */
2878
2879/* gdb_ext_thread_info is an internal GDB data structure which is
2880   equivalent to the reply of the remote threadinfo packet.  */
2881
2882struct gdb_ext_thread_info
2883  {
2884    threadref threadid;		/* External form of thread reference.  */
2885    int active;			/* Has state interesting to GDB?
2886				   regs, stack.  */
2887    char display[256];		/* Brief state display, name,
2888				   blocked/suspended.  */
2889    char shortname[32];		/* To be used to name threads.  */
2890    char more_display[256];	/* Long info, statistics, queue depth,
2891				   whatever.  */
2892  };
2893
2894/* The volume of remote transfers can be limited by submitting
2895   a mask containing bits specifying the desired information.
2896   Use a union of these values as the 'selection' parameter to
2897   get_thread_info.  FIXME: Make these TAG names more thread specific.  */
2898
2899#define TAG_THREADID 1
2900#define TAG_EXISTS 2
2901#define TAG_DISPLAY 4
2902#define TAG_THREADNAME 8
2903#define TAG_MOREDISPLAY 16
2904
2905#define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2906
2907static char *unpack_nibble (char *buf, int *val);
2908
2909static char *unpack_byte (char *buf, int *value);
2910
2911static char *pack_int (char *buf, int value);
2912
2913static char *unpack_int (char *buf, int *value);
2914
2915static char *unpack_string (char *src, char *dest, int length);
2916
2917static char *pack_threadid (char *pkt, threadref *id);
2918
2919static char *unpack_threadid (char *inbuf, threadref *id);
2920
2921void int_to_threadref (threadref *id, int value);
2922
2923static int threadref_to_int (threadref *ref);
2924
2925static void copy_threadref (threadref *dest, threadref *src);
2926
2927static int threadmatch (threadref *dest, threadref *src);
2928
2929static char *pack_threadinfo_request (char *pkt, int mode,
2930				      threadref *id);
2931
2932static char *pack_threadlist_request (char *pkt, int startflag,
2933				      int threadcount,
2934				      threadref *nextthread);
2935
2936static int remote_newthread_step (threadref *ref, void *context);
2937
2938
2939/* Write a PTID to BUF.  ENDBUF points to one-passed-the-end of the
2940   buffer we're allowed to write to.  Returns
2941   BUF+CHARACTERS_WRITTEN.  */
2942
2943char *
2944remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2945{
2946  int pid, tid;
2947  struct remote_state *rs = get_remote_state ();
2948
2949  if (remote_multi_process_p (rs))
2950    {
2951      pid = ptid.pid ();
2952      if (pid < 0)
2953	buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2954      else
2955	buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2956    }
2957  tid = ptid.lwp ();
2958  if (tid < 0)
2959    buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2960  else
2961    buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2962
2963  return buf;
2964}
2965
2966/* Extract a PTID from BUF.  If non-null, OBUF is set to one past the
2967   last parsed char.  Returns null_ptid if no thread id is found, and
2968   throws an error if the thread id has an invalid format.  */
2969
2970static ptid_t
2971read_ptid (const char *buf, const char **obuf)
2972{
2973  const char *p = buf;
2974  const char *pp;
2975  ULONGEST pid = 0, tid = 0;
2976
2977  if (*p == 'p')
2978    {
2979      /* Multi-process ptid.  */
2980      pp = unpack_varlen_hex (p + 1, &pid);
2981      if (*pp != '.')
2982	error (_("invalid remote ptid: %s"), p);
2983
2984      p = pp;
2985      pp = unpack_varlen_hex (p + 1, &tid);
2986      if (obuf)
2987	*obuf = pp;
2988      return ptid_t (pid, tid, 0);
2989    }
2990
2991  /* No multi-process.  Just a tid.  */
2992  pp = unpack_varlen_hex (p, &tid);
2993
2994  /* Return null_ptid when no thread id is found.  */
2995  if (p == pp)
2996    {
2997      if (obuf)
2998	*obuf = pp;
2999      return null_ptid;
3000    }
3001
3002  /* Since the stub is not sending a process id, then default to
3003     what's in inferior_ptid, unless it's null at this point.  If so,
3004     then since there's no way to know the pid of the reported
3005     threads, use the magic number.  */
3006  if (inferior_ptid == null_ptid)
3007    pid = magic_null_ptid.pid ();
3008  else
3009    pid = inferior_ptid.pid ();
3010
3011  if (obuf)
3012    *obuf = pp;
3013  return ptid_t (pid, tid, 0);
3014}
3015
3016static int
3017stubhex (int ch)
3018{
3019  if (ch >= 'a' && ch <= 'f')
3020    return ch - 'a' + 10;
3021  if (ch >= '0' && ch <= '9')
3022    return ch - '0';
3023  if (ch >= 'A' && ch <= 'F')
3024    return ch - 'A' + 10;
3025  return -1;
3026}
3027
3028static int
3029stub_unpack_int (char *buff, int fieldlength)
3030{
3031  int nibble;
3032  int retval = 0;
3033
3034  while (fieldlength)
3035    {
3036      nibble = stubhex (*buff++);
3037      retval |= nibble;
3038      fieldlength--;
3039      if (fieldlength)
3040	retval = retval << 4;
3041    }
3042  return retval;
3043}
3044
3045static char *
3046unpack_nibble (char *buf, int *val)
3047{
3048  *val = fromhex (*buf++);
3049  return buf;
3050}
3051
3052static char *
3053unpack_byte (char *buf, int *value)
3054{
3055  *value = stub_unpack_int (buf, 2);
3056  return buf + 2;
3057}
3058
3059static char *
3060pack_int (char *buf, int value)
3061{
3062  buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3063  buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3064  buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3065  buf = pack_hex_byte (buf, (value & 0xff));
3066  return buf;
3067}
3068
3069static char *
3070unpack_int (char *buf, int *value)
3071{
3072  *value = stub_unpack_int (buf, 8);
3073  return buf + 8;
3074}
3075
3076#if 0			/* Currently unused, uncomment when needed.  */
3077static char *pack_string (char *pkt, char *string);
3078
3079static char *
3080pack_string (char *pkt, char *string)
3081{
3082  char ch;
3083  int len;
3084
3085  len = strlen (string);
3086  if (len > 200)
3087    len = 200;		/* Bigger than most GDB packets, junk???  */
3088  pkt = pack_hex_byte (pkt, len);
3089  while (len-- > 0)
3090    {
3091      ch = *string++;
3092      if ((ch == '\0') || (ch == '#'))
3093	ch = '*';		/* Protect encapsulation.  */
3094      *pkt++ = ch;
3095    }
3096  return pkt;
3097}
3098#endif /* 0 (unused) */
3099
3100static char *
3101unpack_string (char *src, char *dest, int length)
3102{
3103  while (length--)
3104    *dest++ = *src++;
3105  *dest = '\0';
3106  return src;
3107}
3108
3109static char *
3110pack_threadid (char *pkt, threadref *id)
3111{
3112  char *limit;
3113  unsigned char *altid;
3114
3115  altid = (unsigned char *) id;
3116  limit = pkt + BUF_THREAD_ID_SIZE;
3117  while (pkt < limit)
3118    pkt = pack_hex_byte (pkt, *altid++);
3119  return pkt;
3120}
3121
3122
3123static char *
3124unpack_threadid (char *inbuf, threadref *id)
3125{
3126  char *altref;
3127  char *limit = inbuf + BUF_THREAD_ID_SIZE;
3128  int x, y;
3129
3130  altref = (char *) id;
3131
3132  while (inbuf < limit)
3133    {
3134      x = stubhex (*inbuf++);
3135      y = stubhex (*inbuf++);
3136      *altref++ = (x << 4) | y;
3137    }
3138  return inbuf;
3139}
3140
3141/* Externally, threadrefs are 64 bits but internally, they are still
3142   ints.  This is due to a mismatch of specifications.  We would like
3143   to use 64bit thread references internally.  This is an adapter
3144   function.  */
3145
3146void
3147int_to_threadref (threadref *id, int value)
3148{
3149  unsigned char *scan;
3150
3151  scan = (unsigned char *) id;
3152  {
3153    int i = 4;
3154    while (i--)
3155      *scan++ = 0;
3156  }
3157  *scan++ = (value >> 24) & 0xff;
3158  *scan++ = (value >> 16) & 0xff;
3159  *scan++ = (value >> 8) & 0xff;
3160  *scan++ = (value & 0xff);
3161}
3162
3163static int
3164threadref_to_int (threadref *ref)
3165{
3166  int i, value = 0;
3167  unsigned char *scan;
3168
3169  scan = *ref;
3170  scan += 4;
3171  i = 4;
3172  while (i-- > 0)
3173    value = (value << 8) | ((*scan++) & 0xff);
3174  return value;
3175}
3176
3177static void
3178copy_threadref (threadref *dest, threadref *src)
3179{
3180  int i;
3181  unsigned char *csrc, *cdest;
3182
3183  csrc = (unsigned char *) src;
3184  cdest = (unsigned char *) dest;
3185  i = 8;
3186  while (i--)
3187    *cdest++ = *csrc++;
3188}
3189
3190static int
3191threadmatch (threadref *dest, threadref *src)
3192{
3193  /* Things are broken right now, so just assume we got a match.  */
3194#if 0
3195  unsigned char *srcp, *destp;
3196  int i, result;
3197  srcp = (char *) src;
3198  destp = (char *) dest;
3199
3200  result = 1;
3201  while (i-- > 0)
3202    result &= (*srcp++ == *destp++) ? 1 : 0;
3203  return result;
3204#endif
3205  return 1;
3206}
3207
3208/*
3209   threadid:1,        # always request threadid
3210   context_exists:2,
3211   display:4,
3212   unique_name:8,
3213   more_display:16
3214 */
3215
3216/* Encoding:  'Q':8,'P':8,mask:32,threadid:64 */
3217
3218static char *
3219pack_threadinfo_request (char *pkt, int mode, threadref *id)
3220{
3221  *pkt++ = 'q';				/* Info Query */
3222  *pkt++ = 'P';				/* process or thread info */
3223  pkt = pack_int (pkt, mode);		/* mode */
3224  pkt = pack_threadid (pkt, id);	/* threadid */
3225  *pkt = '\0';				/* terminate */
3226  return pkt;
3227}
3228
3229/* These values tag the fields in a thread info response packet.  */
3230/* Tagging the fields allows us to request specific fields and to
3231   add more fields as time goes by.  */
3232
3233#define TAG_THREADID 1		/* Echo the thread identifier.  */
3234#define TAG_EXISTS 2		/* Is this process defined enough to
3235				   fetch registers and its stack?  */
3236#define TAG_DISPLAY 4		/* A short thing maybe to put on a window */
3237#define TAG_THREADNAME 8	/* string, maps 1-to-1 with a thread is.  */
3238#define TAG_MOREDISPLAY 16	/* Whatever the kernel wants to say about
3239				   the process.  */
3240
3241int
3242remote_target::remote_unpack_thread_info_response (char *pkt,
3243						   threadref *expectedref,
3244						   gdb_ext_thread_info *info)
3245{
3246  struct remote_state *rs = get_remote_state ();
3247  int mask, length;
3248  int tag;
3249  threadref ref;
3250  char *limit = pkt + rs->buf.size (); /* Plausible parsing limit.  */
3251  int retval = 1;
3252
3253  /* info->threadid = 0; FIXME: implement zero_threadref.  */
3254  info->active = 0;
3255  info->display[0] = '\0';
3256  info->shortname[0] = '\0';
3257  info->more_display[0] = '\0';
3258
3259  /* Assume the characters indicating the packet type have been
3260     stripped.  */
3261  pkt = unpack_int (pkt, &mask);	/* arg mask */
3262  pkt = unpack_threadid (pkt, &ref);
3263
3264  if (mask == 0)
3265    warning (_("Incomplete response to threadinfo request."));
3266  if (!threadmatch (&ref, expectedref))
3267    {			/* This is an answer to a different request.  */
3268      warning (_("ERROR RMT Thread info mismatch."));
3269      return 0;
3270    }
3271  copy_threadref (&info->threadid, &ref);
3272
3273  /* Loop on tagged fields , try to bail if somthing goes wrong.  */
3274
3275  /* Packets are terminated with nulls.  */
3276  while ((pkt < limit) && mask && *pkt)
3277    {
3278      pkt = unpack_int (pkt, &tag);	/* tag */
3279      pkt = unpack_byte (pkt, &length);	/* length */
3280      if (!(tag & mask))		/* Tags out of synch with mask.  */
3281	{
3282	  warning (_("ERROR RMT: threadinfo tag mismatch."));
3283	  retval = 0;
3284	  break;
3285	}
3286      if (tag == TAG_THREADID)
3287	{
3288	  if (length != 16)
3289	    {
3290	      warning (_("ERROR RMT: length of threadid is not 16."));
3291	      retval = 0;
3292	      break;
3293	    }
3294	  pkt = unpack_threadid (pkt, &ref);
3295	  mask = mask & ~TAG_THREADID;
3296	  continue;
3297	}
3298      if (tag == TAG_EXISTS)
3299	{
3300	  info->active = stub_unpack_int (pkt, length);
3301	  pkt += length;
3302	  mask = mask & ~(TAG_EXISTS);
3303	  if (length > 8)
3304	    {
3305	      warning (_("ERROR RMT: 'exists' length too long."));
3306	      retval = 0;
3307	      break;
3308	    }
3309	  continue;
3310	}
3311      if (tag == TAG_THREADNAME)
3312	{
3313	  pkt = unpack_string (pkt, &info->shortname[0], length);
3314	  mask = mask & ~TAG_THREADNAME;
3315	  continue;
3316	}
3317      if (tag == TAG_DISPLAY)
3318	{
3319	  pkt = unpack_string (pkt, &info->display[0], length);
3320	  mask = mask & ~TAG_DISPLAY;
3321	  continue;
3322	}
3323      if (tag == TAG_MOREDISPLAY)
3324	{
3325	  pkt = unpack_string (pkt, &info->more_display[0], length);
3326	  mask = mask & ~TAG_MOREDISPLAY;
3327	  continue;
3328	}
3329      warning (_("ERROR RMT: unknown thread info tag."));
3330      break;			/* Not a tag we know about.  */
3331    }
3332  return retval;
3333}
3334
3335int
3336remote_target::remote_get_threadinfo (threadref *threadid,
3337				      int fieldset,
3338				      gdb_ext_thread_info *info)
3339{
3340  struct remote_state *rs = get_remote_state ();
3341  int result;
3342
3343  pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3344  putpkt (rs->buf);
3345  getpkt (&rs->buf, 0);
3346
3347  if (rs->buf[0] == '\0')
3348    return 0;
3349
3350  result = remote_unpack_thread_info_response (&rs->buf[2],
3351					       threadid, info);
3352  return result;
3353}
3354
3355/*    Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32   */
3356
3357static char *
3358pack_threadlist_request (char *pkt, int startflag, int threadcount,
3359			 threadref *nextthread)
3360{
3361  *pkt++ = 'q';			/* info query packet */
3362  *pkt++ = 'L';			/* Process LIST or threadLIST request */
3363  pkt = pack_nibble (pkt, startflag);		/* initflag 1 bytes */
3364  pkt = pack_hex_byte (pkt, threadcount);	/* threadcount 2 bytes */
3365  pkt = pack_threadid (pkt, nextthread);	/* 64 bit thread identifier */
3366  *pkt = '\0';
3367  return pkt;
3368}
3369
3370/* Encoding:   'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3371
3372int
3373remote_target::parse_threadlist_response (char *pkt, int result_limit,
3374					  threadref *original_echo,
3375					  threadref *resultlist,
3376					  int *doneflag)
3377{
3378  struct remote_state *rs = get_remote_state ();
3379  char *limit;
3380  int count, resultcount, done;
3381
3382  resultcount = 0;
3383  /* Assume the 'q' and 'M chars have been stripped.  */
3384  limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3385  /* done parse past here */
3386  pkt = unpack_byte (pkt, &count);	/* count field */
3387  pkt = unpack_nibble (pkt, &done);
3388  /* The first threadid is the argument threadid.  */
3389  pkt = unpack_threadid (pkt, original_echo);	/* should match query packet */
3390  while ((count-- > 0) && (pkt < limit))
3391    {
3392      pkt = unpack_threadid (pkt, resultlist++);
3393      if (resultcount++ >= result_limit)
3394	break;
3395    }
3396  if (doneflag)
3397    *doneflag = done;
3398  return resultcount;
3399}
3400
3401/* Fetch the next batch of threads from the remote.  Returns -1 if the
3402   qL packet is not supported, 0 on error and 1 on success.  */
3403
3404int
3405remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3406				      int result_limit, int *done, int *result_count,
3407				      threadref *threadlist)
3408{
3409  struct remote_state *rs = get_remote_state ();
3410  int result = 1;
3411
3412  /* Trancate result limit to be smaller than the packet size.  */
3413  if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3414      >= get_remote_packet_size ())
3415    result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3416
3417  pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3418			   nextthread);
3419  putpkt (rs->buf);
3420  getpkt (&rs->buf, 0);
3421  if (rs->buf[0] == '\0')
3422    {
3423      /* Packet not supported.  */
3424      return -1;
3425    }
3426
3427  *result_count =
3428    parse_threadlist_response (&rs->buf[2], result_limit,
3429			       &rs->echo_nextthread, threadlist, done);
3430
3431  if (!threadmatch (&rs->echo_nextthread, nextthread))
3432    {
3433      /* FIXME: This is a good reason to drop the packet.  */
3434      /* Possably, there is a duplicate response.  */
3435      /* Possabilities :
3436         retransmit immediatly - race conditions
3437         retransmit after timeout - yes
3438         exit
3439         wait for packet, then exit
3440       */
3441      warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3442      return 0;			/* I choose simply exiting.  */
3443    }
3444  if (*result_count <= 0)
3445    {
3446      if (*done != 1)
3447	{
3448	  warning (_("RMT ERROR : failed to get remote thread list."));
3449	  result = 0;
3450	}
3451      return result;		/* break; */
3452    }
3453  if (*result_count > result_limit)
3454    {
3455      *result_count = 0;
3456      warning (_("RMT ERROR: threadlist response longer than requested."));
3457      return 0;
3458    }
3459  return result;
3460}
3461
3462/* Fetch the list of remote threads, with the qL packet, and call
3463   STEPFUNCTION for each thread found.  Stops iterating and returns 1
3464   if STEPFUNCTION returns true.  Stops iterating and returns 0 if the
3465   STEPFUNCTION returns false.  If the packet is not supported,
3466   returns -1.  */
3467
3468int
3469remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3470					   void *context, int looplimit)
3471{
3472  struct remote_state *rs = get_remote_state ();
3473  int done, i, result_count;
3474  int startflag = 1;
3475  int result = 1;
3476  int loopcount = 0;
3477
3478  done = 0;
3479  while (!done)
3480    {
3481      if (loopcount++ > looplimit)
3482	{
3483	  result = 0;
3484	  warning (_("Remote fetch threadlist -infinite loop-."));
3485	  break;
3486	}
3487      result = remote_get_threadlist (startflag, &rs->nextthread,
3488				      MAXTHREADLISTRESULTS,
3489				      &done, &result_count,
3490				      rs->resultthreadlist);
3491      if (result <= 0)
3492	break;
3493      /* Clear for later iterations.  */
3494      startflag = 0;
3495      /* Setup to resume next batch of thread references, set nextthread.  */
3496      if (result_count >= 1)
3497	copy_threadref (&rs->nextthread,
3498			&rs->resultthreadlist[result_count - 1]);
3499      i = 0;
3500      while (result_count--)
3501	{
3502	  if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3503	    {
3504	      result = 0;
3505	      break;
3506	    }
3507	}
3508    }
3509  return result;
3510}
3511
3512/* A thread found on the remote target.  */
3513
3514struct thread_item
3515{
3516  explicit thread_item (ptid_t ptid_)
3517  : ptid (ptid_)
3518  {}
3519
3520  thread_item (thread_item &&other) = default;
3521  thread_item &operator= (thread_item &&other) = default;
3522
3523  DISABLE_COPY_AND_ASSIGN (thread_item);
3524
3525  /* The thread's PTID.  */
3526  ptid_t ptid;
3527
3528  /* The thread's extra info.  */
3529  std::string extra;
3530
3531  /* The thread's name.  */
3532  std::string name;
3533
3534  /* The core the thread was running on.  -1 if not known.  */
3535  int core = -1;
3536
3537  /* The thread handle associated with the thread.  */
3538  gdb::byte_vector thread_handle;
3539};
3540
3541/* Context passed around to the various methods listing remote
3542   threads.  As new threads are found, they're added to the ITEMS
3543   vector.  */
3544
3545struct threads_listing_context
3546{
3547  /* Return true if this object contains an entry for a thread with ptid
3548     PTID.  */
3549
3550  bool contains_thread (ptid_t ptid) const
3551  {
3552    auto match_ptid = [&] (const thread_item &item)
3553      {
3554	return item.ptid == ptid;
3555      };
3556
3557    auto it = std::find_if (this->items.begin (),
3558			    this->items.end (),
3559			    match_ptid);
3560
3561    return it != this->items.end ();
3562  }
3563
3564  /* Remove the thread with ptid PTID.  */
3565
3566  void remove_thread (ptid_t ptid)
3567  {
3568    auto match_ptid = [&] (const thread_item &item)
3569      {
3570        return item.ptid == ptid;
3571      };
3572
3573    auto it = std::remove_if (this->items.begin (),
3574			      this->items.end (),
3575			      match_ptid);
3576
3577    if (it != this->items.end ())
3578      this->items.erase (it);
3579  }
3580
3581  /* The threads found on the remote target.  */
3582  std::vector<thread_item> items;
3583};
3584
3585static int
3586remote_newthread_step (threadref *ref, void *data)
3587{
3588  struct threads_listing_context *context
3589    = (struct threads_listing_context *) data;
3590  int pid = inferior_ptid.pid ();
3591  int lwp = threadref_to_int (ref);
3592  ptid_t ptid (pid, lwp);
3593
3594  context->items.emplace_back (ptid);
3595
3596  return 1;			/* continue iterator */
3597}
3598
3599#define CRAZY_MAX_THREADS 1000
3600
3601ptid_t
3602remote_target::remote_current_thread (ptid_t oldpid)
3603{
3604  struct remote_state *rs = get_remote_state ();
3605
3606  putpkt ("qC");
3607  getpkt (&rs->buf, 0);
3608  if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3609    {
3610      const char *obuf;
3611      ptid_t result;
3612
3613      result = read_ptid (&rs->buf[2], &obuf);
3614      if (*obuf != '\0' && remote_debug)
3615        fprintf_unfiltered (gdb_stdlog,
3616	                    "warning: garbage in qC reply\n");
3617
3618      return result;
3619    }
3620  else
3621    return oldpid;
3622}
3623
3624/* List remote threads using the deprecated qL packet.  */
3625
3626int
3627remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3628{
3629  if (remote_threadlist_iterator (remote_newthread_step, context,
3630				  CRAZY_MAX_THREADS) >= 0)
3631    return 1;
3632
3633  return 0;
3634}
3635
3636#if defined(HAVE_LIBEXPAT)
3637
3638static void
3639start_thread (struct gdb_xml_parser *parser,
3640	      const struct gdb_xml_element *element,
3641	      void *user_data,
3642	      std::vector<gdb_xml_value> &attributes)
3643{
3644  struct threads_listing_context *data
3645    = (struct threads_listing_context *) user_data;
3646  struct gdb_xml_value *attr;
3647
3648  char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3649  ptid_t ptid = read_ptid (id, NULL);
3650
3651  data->items.emplace_back (ptid);
3652  thread_item &item = data->items.back ();
3653
3654  attr = xml_find_attribute (attributes, "core");
3655  if (attr != NULL)
3656    item.core = *(ULONGEST *) attr->value.get ();
3657
3658  attr = xml_find_attribute (attributes, "name");
3659  if (attr != NULL)
3660    item.name = (const char *) attr->value.get ();
3661
3662  attr = xml_find_attribute (attributes, "handle");
3663  if (attr != NULL)
3664    item.thread_handle = hex2bin ((const char *) attr->value.get ());
3665}
3666
3667static void
3668end_thread (struct gdb_xml_parser *parser,
3669	    const struct gdb_xml_element *element,
3670	    void *user_data, const char *body_text)
3671{
3672  struct threads_listing_context *data
3673    = (struct threads_listing_context *) user_data;
3674
3675  if (body_text != NULL && *body_text != '\0')
3676    data->items.back ().extra = body_text;
3677}
3678
3679const struct gdb_xml_attribute thread_attributes[] = {
3680  { "id", GDB_XML_AF_NONE, NULL, NULL },
3681  { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3682  { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3683  { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3684  { NULL, GDB_XML_AF_NONE, NULL, NULL }
3685};
3686
3687const struct gdb_xml_element thread_children[] = {
3688  { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3689};
3690
3691const struct gdb_xml_element threads_children[] = {
3692  { "thread", thread_attributes, thread_children,
3693    GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3694    start_thread, end_thread },
3695  { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3696};
3697
3698const struct gdb_xml_element threads_elements[] = {
3699  { "threads", NULL, threads_children,
3700    GDB_XML_EF_NONE, NULL, NULL },
3701  { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3702};
3703
3704#endif
3705
3706/* List remote threads using qXfer:threads:read.  */
3707
3708int
3709remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3710{
3711#if defined(HAVE_LIBEXPAT)
3712  if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3713    {
3714      gdb::optional<gdb::char_vector> xml
3715	= target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3716
3717      if (xml && (*xml)[0] != '\0')
3718	{
3719	  gdb_xml_parse_quick (_("threads"), "threads.dtd",
3720			       threads_elements, xml->data (), context);
3721	}
3722
3723      return 1;
3724    }
3725#endif
3726
3727  return 0;
3728}
3729
3730/* List remote threads using qfThreadInfo/qsThreadInfo.  */
3731
3732int
3733remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3734{
3735  struct remote_state *rs = get_remote_state ();
3736
3737  if (rs->use_threadinfo_query)
3738    {
3739      const char *bufp;
3740
3741      putpkt ("qfThreadInfo");
3742      getpkt (&rs->buf, 0);
3743      bufp = rs->buf.data ();
3744      if (bufp[0] != '\0')		/* q packet recognized */
3745	{
3746	  while (*bufp++ == 'm')	/* reply contains one or more TID */
3747	    {
3748	      do
3749		{
3750		  ptid_t ptid = read_ptid (bufp, &bufp);
3751		  context->items.emplace_back (ptid);
3752		}
3753	      while (*bufp++ == ',');	/* comma-separated list */
3754	      putpkt ("qsThreadInfo");
3755	      getpkt (&rs->buf, 0);
3756	      bufp = rs->buf.data ();
3757	    }
3758	  return 1;
3759	}
3760      else
3761	{
3762	  /* Packet not recognized.  */
3763	  rs->use_threadinfo_query = 0;
3764	}
3765    }
3766
3767  return 0;
3768}
3769
3770/* Implement the to_update_thread_list function for the remote
3771   targets.  */
3772
3773void
3774remote_target::update_thread_list ()
3775{
3776  struct threads_listing_context context;
3777  int got_list = 0;
3778
3779  /* We have a few different mechanisms to fetch the thread list.  Try
3780     them all, starting with the most preferred one first, falling
3781     back to older methods.  */
3782  if (remote_get_threads_with_qxfer (&context)
3783      || remote_get_threads_with_qthreadinfo (&context)
3784      || remote_get_threads_with_ql (&context))
3785    {
3786      got_list = 1;
3787
3788      if (context.items.empty ()
3789	  && remote_thread_always_alive (inferior_ptid))
3790	{
3791	  /* Some targets don't really support threads, but still
3792	     reply an (empty) thread list in response to the thread
3793	     listing packets, instead of replying "packet not
3794	     supported".  Exit early so we don't delete the main
3795	     thread.  */
3796	  return;
3797	}
3798
3799      /* CONTEXT now holds the current thread list on the remote
3800	 target end.  Delete GDB-side threads no longer found on the
3801	 target.  */
3802      for (thread_info *tp : all_threads_safe ())
3803	{
3804	  if (!context.contains_thread (tp->ptid))
3805	    {
3806	      /* Not found.  */
3807	      delete_thread (tp);
3808	    }
3809	}
3810
3811      /* Remove any unreported fork child threads from CONTEXT so
3812	 that we don't interfere with follow fork, which is where
3813	 creation of such threads is handled.  */
3814      remove_new_fork_children (&context);
3815
3816      /* And now add threads we don't know about yet to our list.  */
3817      for (thread_item &item : context.items)
3818	{
3819	  if (item.ptid != null_ptid)
3820	    {
3821	      /* In non-stop mode, we assume new found threads are
3822		 executing until proven otherwise with a stop reply.
3823		 In all-stop, we can only get here if all threads are
3824		 stopped.  */
3825	      int executing = target_is_non_stop_p () ? 1 : 0;
3826
3827	      remote_notice_new_inferior (item.ptid, executing);
3828
3829	      thread_info *tp = find_thread_ptid (item.ptid);
3830	      remote_thread_info *info = get_remote_thread_info (tp);
3831	      info->core = item.core;
3832	      info->extra = std::move (item.extra);
3833	      info->name = std::move (item.name);
3834	      info->thread_handle = std::move (item.thread_handle);
3835	    }
3836	}
3837    }
3838
3839  if (!got_list)
3840    {
3841      /* If no thread listing method is supported, then query whether
3842	 each known thread is alive, one by one, with the T packet.
3843	 If the target doesn't support threads at all, then this is a
3844	 no-op.  See remote_thread_alive.  */
3845      prune_threads ();
3846    }
3847}
3848
3849/*
3850 * Collect a descriptive string about the given thread.
3851 * The target may say anything it wants to about the thread
3852 * (typically info about its blocked / runnable state, name, etc.).
3853 * This string will appear in the info threads display.
3854 *
3855 * Optional: targets are not required to implement this function.
3856 */
3857
3858const char *
3859remote_target::extra_thread_info (thread_info *tp)
3860{
3861  struct remote_state *rs = get_remote_state ();
3862  int set;
3863  threadref id;
3864  struct gdb_ext_thread_info threadinfo;
3865
3866  if (rs->remote_desc == 0)		/* paranoia */
3867    internal_error (__FILE__, __LINE__,
3868		    _("remote_threads_extra_info"));
3869
3870  if (tp->ptid == magic_null_ptid
3871      || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3872    /* This is the main thread which was added by GDB.  The remote
3873       server doesn't know about it.  */
3874    return NULL;
3875
3876  std::string &extra = get_remote_thread_info (tp)->extra;
3877
3878  /* If already have cached info, use it.  */
3879  if (!extra.empty ())
3880    return extra.c_str ();
3881
3882  if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3883    {
3884      /* If we're using qXfer:threads:read, then the extra info is
3885	 included in the XML.  So if we didn't have anything cached,
3886	 it's because there's really no extra info.  */
3887      return NULL;
3888    }
3889
3890  if (rs->use_threadextra_query)
3891    {
3892      char *b = rs->buf.data ();
3893      char *endb = b + get_remote_packet_size ();
3894
3895      xsnprintf (b, endb - b, "qThreadExtraInfo,");
3896      b += strlen (b);
3897      write_ptid (b, endb, tp->ptid);
3898
3899      putpkt (rs->buf);
3900      getpkt (&rs->buf, 0);
3901      if (rs->buf[0] != 0)
3902	{
3903	  extra.resize (strlen (rs->buf.data ()) / 2);
3904	  hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3905	  return extra.c_str ();
3906	}
3907    }
3908
3909  /* If the above query fails, fall back to the old method.  */
3910  rs->use_threadextra_query = 0;
3911  set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3912    | TAG_MOREDISPLAY | TAG_DISPLAY;
3913  int_to_threadref (&id, tp->ptid.lwp ());
3914  if (remote_get_threadinfo (&id, set, &threadinfo))
3915    if (threadinfo.active)
3916      {
3917	if (*threadinfo.shortname)
3918	  string_appendf (extra, " Name: %s", threadinfo.shortname);
3919	if (*threadinfo.display)
3920	  {
3921	    if (!extra.empty ())
3922	      extra += ',';
3923	    string_appendf (extra, " State: %s", threadinfo.display);
3924	  }
3925	if (*threadinfo.more_display)
3926	  {
3927	    if (!extra.empty ())
3928	      extra += ',';
3929	    string_appendf (extra, " Priority: %s", threadinfo.more_display);
3930	  }
3931	return extra.c_str ();
3932      }
3933  return NULL;
3934}
3935
3936
3937bool
3938remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3939					    struct static_tracepoint_marker *marker)
3940{
3941  struct remote_state *rs = get_remote_state ();
3942  char *p = rs->buf.data ();
3943
3944  xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3945  p += strlen (p);
3946  p += hexnumstr (p, addr);
3947  putpkt (rs->buf);
3948  getpkt (&rs->buf, 0);
3949  p = rs->buf.data ();
3950
3951  if (*p == 'E')
3952    error (_("Remote failure reply: %s"), p);
3953
3954  if (*p++ == 'm')
3955    {
3956      parse_static_tracepoint_marker_definition (p, NULL, marker);
3957      return true;
3958    }
3959
3960  return false;
3961}
3962
3963std::vector<static_tracepoint_marker>
3964remote_target::static_tracepoint_markers_by_strid (const char *strid)
3965{
3966  struct remote_state *rs = get_remote_state ();
3967  std::vector<static_tracepoint_marker> markers;
3968  const char *p;
3969  static_tracepoint_marker marker;
3970
3971  /* Ask for a first packet of static tracepoint marker
3972     definition.  */
3973  putpkt ("qTfSTM");
3974  getpkt (&rs->buf, 0);
3975  p = rs->buf.data ();
3976  if (*p == 'E')
3977    error (_("Remote failure reply: %s"), p);
3978
3979  while (*p++ == 'm')
3980    {
3981      do
3982	{
3983	  parse_static_tracepoint_marker_definition (p, &p, &marker);
3984
3985	  if (strid == NULL || marker.str_id == strid)
3986	    markers.push_back (std::move (marker));
3987	}
3988      while (*p++ == ',');	/* comma-separated list */
3989      /* Ask for another packet of static tracepoint definition.  */
3990      putpkt ("qTsSTM");
3991      getpkt (&rs->buf, 0);
3992      p = rs->buf.data ();
3993    }
3994
3995  return markers;
3996}
3997
3998
3999/* Implement the to_get_ada_task_ptid function for the remote targets.  */
4000
4001ptid_t
4002remote_target::get_ada_task_ptid (long lwp, long thread)
4003{
4004  return ptid_t (inferior_ptid.pid (), lwp, 0);
4005}
4006
4007
4008/* Restart the remote side; this is an extended protocol operation.  */
4009
4010void
4011remote_target::extended_remote_restart ()
4012{
4013  struct remote_state *rs = get_remote_state ();
4014
4015  /* Send the restart command; for reasons I don't understand the
4016     remote side really expects a number after the "R".  */
4017  xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4018  putpkt (rs->buf);
4019
4020  remote_fileio_reset ();
4021}
4022
4023/* Clean up connection to a remote debugger.  */
4024
4025void
4026remote_target::close ()
4027{
4028  /* Make sure we leave stdin registered in the event loop.  */
4029  terminal_ours ();
4030
4031  /* We don't have a connection to the remote stub anymore.  Get rid
4032     of all the inferiors and their threads we were controlling.
4033     Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4034     will be unable to find the thread corresponding to (pid, 0, 0).  */
4035  inferior_ptid = null_ptid;
4036  discard_all_inferiors ();
4037
4038  trace_reset_local_state ();
4039
4040  delete this;
4041}
4042
4043remote_target::~remote_target ()
4044{
4045  struct remote_state *rs = get_remote_state ();
4046
4047  /* Check for NULL because we may get here with a partially
4048     constructed target/connection.  */
4049  if (rs->remote_desc == nullptr)
4050    return;
4051
4052  serial_close (rs->remote_desc);
4053
4054  /* We are destroying the remote target, so we should discard
4055     everything of this target.  */
4056  discard_pending_stop_replies_in_queue ();
4057
4058  if (rs->remote_async_inferior_event_token)
4059    delete_async_event_handler (&rs->remote_async_inferior_event_token);
4060
4061  remote_notif_state_xfree (rs->notif_state);
4062}
4063
4064/* Query the remote side for the text, data and bss offsets.  */
4065
4066void
4067remote_target::get_offsets ()
4068{
4069  struct remote_state *rs = get_remote_state ();
4070  char *buf;
4071  char *ptr;
4072  int lose, num_segments = 0, do_sections, do_segments;
4073  CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4074  struct section_offsets *offs;
4075  struct symfile_segment_data *data;
4076
4077  if (symfile_objfile == NULL)
4078    return;
4079
4080  putpkt ("qOffsets");
4081  getpkt (&rs->buf, 0);
4082  buf = rs->buf.data ();
4083
4084  if (buf[0] == '\000')
4085    return;			/* Return silently.  Stub doesn't support
4086				   this command.  */
4087  if (buf[0] == 'E')
4088    {
4089      warning (_("Remote failure reply: %s"), buf);
4090      return;
4091    }
4092
4093  /* Pick up each field in turn.  This used to be done with scanf, but
4094     scanf will make trouble if CORE_ADDR size doesn't match
4095     conversion directives correctly.  The following code will work
4096     with any size of CORE_ADDR.  */
4097  text_addr = data_addr = bss_addr = 0;
4098  ptr = buf;
4099  lose = 0;
4100
4101  if (startswith (ptr, "Text="))
4102    {
4103      ptr += 5;
4104      /* Don't use strtol, could lose on big values.  */
4105      while (*ptr && *ptr != ';')
4106	text_addr = (text_addr << 4) + fromhex (*ptr++);
4107
4108      if (startswith (ptr, ";Data="))
4109	{
4110	  ptr += 6;
4111	  while (*ptr && *ptr != ';')
4112	    data_addr = (data_addr << 4) + fromhex (*ptr++);
4113	}
4114      else
4115	lose = 1;
4116
4117      if (!lose && startswith (ptr, ";Bss="))
4118	{
4119	  ptr += 5;
4120	  while (*ptr && *ptr != ';')
4121	    bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4122
4123	  if (bss_addr != data_addr)
4124	    warning (_("Target reported unsupported offsets: %s"), buf);
4125	}
4126      else
4127	lose = 1;
4128    }
4129  else if (startswith (ptr, "TextSeg="))
4130    {
4131      ptr += 8;
4132      /* Don't use strtol, could lose on big values.  */
4133      while (*ptr && *ptr != ';')
4134	text_addr = (text_addr << 4) + fromhex (*ptr++);
4135      num_segments = 1;
4136
4137      if (startswith (ptr, ";DataSeg="))
4138	{
4139	  ptr += 9;
4140	  while (*ptr && *ptr != ';')
4141	    data_addr = (data_addr << 4) + fromhex (*ptr++);
4142	  num_segments++;
4143	}
4144    }
4145  else
4146    lose = 1;
4147
4148  if (lose)
4149    error (_("Malformed response to offset query, %s"), buf);
4150  else if (*ptr != '\0')
4151    warning (_("Target reported unsupported offsets: %s"), buf);
4152
4153  offs = ((struct section_offsets *)
4154	  alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
4155  memcpy (offs, symfile_objfile->section_offsets,
4156	  SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
4157
4158  data = get_symfile_segment_data (symfile_objfile->obfd);
4159  do_segments = (data != NULL);
4160  do_sections = num_segments == 0;
4161
4162  if (num_segments > 0)
4163    {
4164      segments[0] = text_addr;
4165      segments[1] = data_addr;
4166    }
4167  /* If we have two segments, we can still try to relocate everything
4168     by assuming that the .text and .data offsets apply to the whole
4169     text and data segments.  Convert the offsets given in the packet
4170     to base addresses for symfile_map_offsets_to_segments.  */
4171  else if (data && data->num_segments == 2)
4172    {
4173      segments[0] = data->segment_bases[0] + text_addr;
4174      segments[1] = data->segment_bases[1] + data_addr;
4175      num_segments = 2;
4176    }
4177  /* If the object file has only one segment, assume that it is text
4178     rather than data; main programs with no writable data are rare,
4179     but programs with no code are useless.  Of course the code might
4180     have ended up in the data segment... to detect that we would need
4181     the permissions here.  */
4182  else if (data && data->num_segments == 1)
4183    {
4184      segments[0] = data->segment_bases[0] + text_addr;
4185      num_segments = 1;
4186    }
4187  /* There's no way to relocate by segment.  */
4188  else
4189    do_segments = 0;
4190
4191  if (do_segments)
4192    {
4193      int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4194						 offs, num_segments, segments);
4195
4196      if (ret == 0 && !do_sections)
4197	error (_("Can not handle qOffsets TextSeg "
4198		 "response with this symbol file"));
4199
4200      if (ret > 0)
4201	do_sections = 0;
4202    }
4203
4204  if (data)
4205    free_symfile_segment_data (data);
4206
4207  if (do_sections)
4208    {
4209      offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4210
4211      /* This is a temporary kludge to force data and bss to use the
4212	 same offsets because that's what nlmconv does now.  The real
4213	 solution requires changes to the stub and remote.c that I
4214	 don't have time to do right now.  */
4215
4216      offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4217      offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4218    }
4219
4220  objfile_relocate (symfile_objfile, offs);
4221}
4222
4223/* Send interrupt_sequence to remote target.  */
4224
4225void
4226remote_target::send_interrupt_sequence ()
4227{
4228  struct remote_state *rs = get_remote_state ();
4229
4230  if (interrupt_sequence_mode == interrupt_sequence_control_c)
4231    remote_serial_write ("\x03", 1);
4232  else if (interrupt_sequence_mode == interrupt_sequence_break)
4233    serial_send_break (rs->remote_desc);
4234  else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4235    {
4236      serial_send_break (rs->remote_desc);
4237      remote_serial_write ("g", 1);
4238    }
4239  else
4240    internal_error (__FILE__, __LINE__,
4241		    _("Invalid value for interrupt_sequence_mode: %s."),
4242		    interrupt_sequence_mode);
4243}
4244
4245
4246/* If STOP_REPLY is a T stop reply, look for the "thread" register,
4247   and extract the PTID.  Returns NULL_PTID if not found.  */
4248
4249static ptid_t
4250stop_reply_extract_thread (char *stop_reply)
4251{
4252  if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4253    {
4254      const char *p;
4255
4256      /* Txx r:val ; r:val (...)  */
4257      p = &stop_reply[3];
4258
4259      /* Look for "register" named "thread".  */
4260      while (*p != '\0')
4261	{
4262	  const char *p1;
4263
4264	  p1 = strchr (p, ':');
4265	  if (p1 == NULL)
4266	    return null_ptid;
4267
4268	  if (strncmp (p, "thread", p1 - p) == 0)
4269	    return read_ptid (++p1, &p);
4270
4271	  p1 = strchr (p, ';');
4272	  if (p1 == NULL)
4273	    return null_ptid;
4274	  p1++;
4275
4276	  p = p1;
4277	}
4278    }
4279
4280  return null_ptid;
4281}
4282
4283/* Determine the remote side's current thread.  If we have a stop
4284   reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4285   "thread" register we can extract the current thread from.  If not,
4286   ask the remote which is the current thread with qC.  The former
4287   method avoids a roundtrip.  */
4288
4289ptid_t
4290remote_target::get_current_thread (char *wait_status)
4291{
4292  ptid_t ptid = null_ptid;
4293
4294  /* Note we don't use remote_parse_stop_reply as that makes use of
4295     the target architecture, which we haven't yet fully determined at
4296     this point.  */
4297  if (wait_status != NULL)
4298    ptid = stop_reply_extract_thread (wait_status);
4299  if (ptid == null_ptid)
4300    ptid = remote_current_thread (inferior_ptid);
4301
4302  return ptid;
4303}
4304
4305/* Query the remote target for which is the current thread/process,
4306   add it to our tables, and update INFERIOR_PTID.  The caller is
4307   responsible for setting the state such that the remote end is ready
4308   to return the current thread.
4309
4310   This function is called after handling the '?' or 'vRun' packets,
4311   whose response is a stop reply from which we can also try
4312   extracting the thread.  If the target doesn't support the explicit
4313   qC query, we infer the current thread from that stop reply, passed
4314   in in WAIT_STATUS, which may be NULL.  */
4315
4316void
4317remote_target::add_current_inferior_and_thread (char *wait_status)
4318{
4319  struct remote_state *rs = get_remote_state ();
4320  int fake_pid_p = 0;
4321
4322  inferior_ptid = null_ptid;
4323
4324  /* Now, if we have thread information, update inferior_ptid.  */
4325  ptid_t curr_ptid = get_current_thread (wait_status);
4326
4327  if (curr_ptid != null_ptid)
4328    {
4329      if (!remote_multi_process_p (rs))
4330	fake_pid_p = 1;
4331    }
4332  else
4333    {
4334      /* Without this, some commands which require an active target
4335	 (such as kill) won't work.  This variable serves (at least)
4336	 double duty as both the pid of the target process (if it has
4337	 such), and as a flag indicating that a target is active.  */
4338      curr_ptid = magic_null_ptid;
4339      fake_pid_p = 1;
4340    }
4341
4342  remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4343
4344  /* Add the main thread and switch to it.  Don't try reading
4345     registers yet, since we haven't fetched the target description
4346     yet.  */
4347  thread_info *tp = add_thread_silent (curr_ptid);
4348  switch_to_thread_no_regs (tp);
4349}
4350
4351/* Print info about a thread that was found already stopped on
4352   connection.  */
4353
4354static void
4355print_one_stopped_thread (struct thread_info *thread)
4356{
4357  struct target_waitstatus *ws = &thread->suspend.waitstatus;
4358
4359  switch_to_thread (thread);
4360  thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4361  set_current_sal_from_frame (get_current_frame ());
4362
4363  thread->suspend.waitstatus_pending_p = 0;
4364
4365  if (ws->kind == TARGET_WAITKIND_STOPPED)
4366    {
4367      enum gdb_signal sig = ws->value.sig;
4368
4369      if (signal_print_state (sig))
4370	gdb::observers::signal_received.notify (sig);
4371    }
4372  gdb::observers::normal_stop.notify (NULL, 1);
4373}
4374
4375/* Process all initial stop replies the remote side sent in response
4376   to the ? packet.  These indicate threads that were already stopped
4377   on initial connection.  We mark these threads as stopped and print
4378   their current frame before giving the user the prompt.  */
4379
4380void
4381remote_target::process_initial_stop_replies (int from_tty)
4382{
4383  int pending_stop_replies = stop_reply_queue_length ();
4384  struct thread_info *selected = NULL;
4385  struct thread_info *lowest_stopped = NULL;
4386  struct thread_info *first = NULL;
4387
4388  /* Consume the initial pending events.  */
4389  while (pending_stop_replies-- > 0)
4390    {
4391      ptid_t waiton_ptid = minus_one_ptid;
4392      ptid_t event_ptid;
4393      struct target_waitstatus ws;
4394      int ignore_event = 0;
4395
4396      memset (&ws, 0, sizeof (ws));
4397      event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4398      if (remote_debug)
4399	print_target_wait_results (waiton_ptid, event_ptid, &ws);
4400
4401      switch (ws.kind)
4402	{
4403	case TARGET_WAITKIND_IGNORE:
4404	case TARGET_WAITKIND_NO_RESUMED:
4405	case TARGET_WAITKIND_SIGNALLED:
4406	case TARGET_WAITKIND_EXITED:
4407	  /* We shouldn't see these, but if we do, just ignore.  */
4408	  if (remote_debug)
4409	    fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4410	  ignore_event = 1;
4411	  break;
4412
4413	case TARGET_WAITKIND_EXECD:
4414	  xfree (ws.value.execd_pathname);
4415	  break;
4416	default:
4417	  break;
4418	}
4419
4420      if (ignore_event)
4421	continue;
4422
4423      struct thread_info *evthread = find_thread_ptid (event_ptid);
4424
4425      if (ws.kind == TARGET_WAITKIND_STOPPED)
4426	{
4427	  enum gdb_signal sig = ws.value.sig;
4428
4429	  /* Stubs traditionally report SIGTRAP as initial signal,
4430	     instead of signal 0.  Suppress it.  */
4431	  if (sig == GDB_SIGNAL_TRAP)
4432	    sig = GDB_SIGNAL_0;
4433	  evthread->suspend.stop_signal = sig;
4434	  ws.value.sig = sig;
4435	}
4436
4437      evthread->suspend.waitstatus = ws;
4438
4439      if (ws.kind != TARGET_WAITKIND_STOPPED
4440	  || ws.value.sig != GDB_SIGNAL_0)
4441	evthread->suspend.waitstatus_pending_p = 1;
4442
4443      set_executing (event_ptid, 0);
4444      set_running (event_ptid, 0);
4445      get_remote_thread_info (evthread)->vcont_resumed = 0;
4446    }
4447
4448  /* "Notice" the new inferiors before anything related to
4449     registers/memory.  */
4450  for (inferior *inf : all_non_exited_inferiors ())
4451    {
4452      inf->needs_setup = 1;
4453
4454      if (non_stop)
4455	{
4456	  thread_info *thread = any_live_thread_of_inferior (inf);
4457	  notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4458			       from_tty);
4459	}
4460    }
4461
4462  /* If all-stop on top of non-stop, pause all threads.  Note this
4463     records the threads' stop pc, so must be done after "noticing"
4464     the inferiors.  */
4465  if (!non_stop)
4466    {
4467      stop_all_threads ();
4468
4469      /* If all threads of an inferior were already stopped, we
4470	 haven't setup the inferior yet.  */
4471      for (inferior *inf : all_non_exited_inferiors ())
4472	{
4473	  if (inf->needs_setup)
4474	    {
4475	      thread_info *thread = any_live_thread_of_inferior (inf);
4476	      switch_to_thread_no_regs (thread);
4477	      setup_inferior (0);
4478	    }
4479	}
4480    }
4481
4482  /* Now go over all threads that are stopped, and print their current
4483     frame.  If all-stop, then if there's a signalled thread, pick
4484     that as current.  */
4485  for (thread_info *thread : all_non_exited_threads ())
4486    {
4487      if (first == NULL)
4488	first = thread;
4489
4490      if (!non_stop)
4491	thread->set_running (false);
4492      else if (thread->state != THREAD_STOPPED)
4493	continue;
4494
4495      if (selected == NULL
4496	  && thread->suspend.waitstatus_pending_p)
4497	selected = thread;
4498
4499      if (lowest_stopped == NULL
4500	  || thread->inf->num < lowest_stopped->inf->num
4501	  || thread->per_inf_num < lowest_stopped->per_inf_num)
4502	lowest_stopped = thread;
4503
4504      if (non_stop)
4505	print_one_stopped_thread (thread);
4506    }
4507
4508  /* In all-stop, we only print the status of one thread, and leave
4509     others with their status pending.  */
4510  if (!non_stop)
4511    {
4512      thread_info *thread = selected;
4513      if (thread == NULL)
4514	thread = lowest_stopped;
4515      if (thread == NULL)
4516	thread = first;
4517
4518      print_one_stopped_thread (thread);
4519    }
4520
4521  /* For "info program".  */
4522  thread_info *thread = inferior_thread ();
4523  if (thread->state == THREAD_STOPPED)
4524    set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4525}
4526
4527/* Start the remote connection and sync state.  */
4528
4529void
4530remote_target::start_remote (int from_tty, int extended_p)
4531{
4532  struct remote_state *rs = get_remote_state ();
4533  struct packet_config *noack_config;
4534  char *wait_status = NULL;
4535
4536  /* Signal other parts that we're going through the initial setup,
4537     and so things may not be stable yet.  E.g., we don't try to
4538     install tracepoints until we've relocated symbols.  Also, a
4539     Ctrl-C before we're connected and synced up can't interrupt the
4540     target.  Instead, it offers to drop the (potentially wedged)
4541     connection.  */
4542  rs->starting_up = 1;
4543
4544  QUIT;
4545
4546  if (interrupt_on_connect)
4547    send_interrupt_sequence ();
4548
4549  /* Ack any packet which the remote side has already sent.  */
4550  remote_serial_write ("+", 1);
4551
4552  /* The first packet we send to the target is the optional "supported
4553     packets" request.  If the target can answer this, it will tell us
4554     which later probes to skip.  */
4555  remote_query_supported ();
4556
4557  /* If the stub wants to get a QAllow, compose one and send it.  */
4558  if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4559    set_permissions ();
4560
4561  /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4562     unknown 'v' packet with string "OK".  "OK" gets interpreted by GDB
4563     as a reply to known packet.  For packet "vFile:setfs:" it is an
4564     invalid reply and GDB would return error in
4565     remote_hostio_set_filesystem, making remote files access impossible.
4566     Disable "vFile:setfs:" in such case.  Do not disable other 'v' packets as
4567     other "vFile" packets get correctly detected even on gdbserver < 7.7.  */
4568  {
4569    const char v_mustreplyempty[] = "vMustReplyEmpty";
4570
4571    putpkt (v_mustreplyempty);
4572    getpkt (&rs->buf, 0);
4573    if (strcmp (rs->buf.data (), "OK") == 0)
4574      remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4575    else if (strcmp (rs->buf.data (), "") != 0)
4576      error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4577	     rs->buf.data ());
4578  }
4579
4580  /* Next, we possibly activate noack mode.
4581
4582     If the QStartNoAckMode packet configuration is set to AUTO,
4583     enable noack mode if the stub reported a wish for it with
4584     qSupported.
4585
4586     If set to TRUE, then enable noack mode even if the stub didn't
4587     report it in qSupported.  If the stub doesn't reply OK, the
4588     session ends with an error.
4589
4590     If FALSE, then don't activate noack mode, regardless of what the
4591     stub claimed should be the default with qSupported.  */
4592
4593  noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4594  if (packet_config_support (noack_config) != PACKET_DISABLE)
4595    {
4596      putpkt ("QStartNoAckMode");
4597      getpkt (&rs->buf, 0);
4598      if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4599	rs->noack_mode = 1;
4600    }
4601
4602  if (extended_p)
4603    {
4604      /* Tell the remote that we are using the extended protocol.  */
4605      putpkt ("!");
4606      getpkt (&rs->buf, 0);
4607    }
4608
4609  /* Let the target know which signals it is allowed to pass down to
4610     the program.  */
4611  update_signals_program_target ();
4612
4613  /* Next, if the target can specify a description, read it.  We do
4614     this before anything involving memory or registers.  */
4615  target_find_description ();
4616
4617  /* Next, now that we know something about the target, update the
4618     address spaces in the program spaces.  */
4619  update_address_spaces ();
4620
4621  /* On OSs where the list of libraries is global to all
4622     processes, we fetch them early.  */
4623  if (gdbarch_has_global_solist (target_gdbarch ()))
4624    solib_add (NULL, from_tty, auto_solib_add);
4625
4626  if (target_is_non_stop_p ())
4627    {
4628      if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4629	error (_("Non-stop mode requested, but remote "
4630		 "does not support non-stop"));
4631
4632      putpkt ("QNonStop:1");
4633      getpkt (&rs->buf, 0);
4634
4635      if (strcmp (rs->buf.data (), "OK") != 0)
4636	error (_("Remote refused setting non-stop mode with: %s"),
4637	       rs->buf.data ());
4638
4639      /* Find about threads and processes the stub is already
4640	 controlling.  We default to adding them in the running state.
4641	 The '?' query below will then tell us about which threads are
4642	 stopped.  */
4643      this->update_thread_list ();
4644    }
4645  else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4646    {
4647      /* Don't assume that the stub can operate in all-stop mode.
4648	 Request it explicitly.  */
4649      putpkt ("QNonStop:0");
4650      getpkt (&rs->buf, 0);
4651
4652      if (strcmp (rs->buf.data (), "OK") != 0)
4653	error (_("Remote refused setting all-stop mode with: %s"),
4654	       rs->buf.data ());
4655    }
4656
4657  /* Upload TSVs regardless of whether the target is running or not.  The
4658     remote stub, such as GDBserver, may have some predefined or builtin
4659     TSVs, even if the target is not running.  */
4660  if (get_trace_status (current_trace_status ()) != -1)
4661    {
4662      struct uploaded_tsv *uploaded_tsvs = NULL;
4663
4664      upload_trace_state_variables (&uploaded_tsvs);
4665      merge_uploaded_trace_state_variables (&uploaded_tsvs);
4666    }
4667
4668  /* Check whether the target is running now.  */
4669  putpkt ("?");
4670  getpkt (&rs->buf, 0);
4671
4672  if (!target_is_non_stop_p ())
4673    {
4674      if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4675	{
4676	  if (!extended_p)
4677	    error (_("The target is not running (try extended-remote?)"));
4678
4679	  /* We're connected, but not running.  Drop out before we
4680	     call start_remote.  */
4681	  rs->starting_up = 0;
4682	  return;
4683	}
4684      else
4685	{
4686	  /* Save the reply for later.  */
4687	  wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4688	  strcpy (wait_status, rs->buf.data ());
4689	}
4690
4691      /* Fetch thread list.  */
4692      target_update_thread_list ();
4693
4694      /* Let the stub know that we want it to return the thread.  */
4695      set_continue_thread (minus_one_ptid);
4696
4697      if (thread_count () == 0)
4698	{
4699	  /* Target has no concept of threads at all.  GDB treats
4700	     non-threaded target as single-threaded; add a main
4701	     thread.  */
4702	  add_current_inferior_and_thread (wait_status);
4703	}
4704      else
4705	{
4706	  /* We have thread information; select the thread the target
4707	     says should be current.  If we're reconnecting to a
4708	     multi-threaded program, this will ideally be the thread
4709	     that last reported an event before GDB disconnected.  */
4710	  inferior_ptid = get_current_thread (wait_status);
4711	  if (inferior_ptid == null_ptid)
4712	    {
4713	      /* Odd... The target was able to list threads, but not
4714		 tell us which thread was current (no "thread"
4715		 register in T stop reply?).  Just pick the first
4716		 thread in the thread list then.  */
4717
4718	      if (remote_debug)
4719		fprintf_unfiltered (gdb_stdlog,
4720		                    "warning: couldn't determine remote "
4721				    "current thread; picking first in list.\n");
4722
4723	      inferior_ptid = inferior_list->thread_list->ptid;
4724	    }
4725	}
4726
4727      /* init_wait_for_inferior should be called before get_offsets in order
4728	 to manage `inserted' flag in bp loc in a correct state.
4729	 breakpoint_init_inferior, called from init_wait_for_inferior, set
4730	 `inserted' flag to 0, while before breakpoint_re_set, called from
4731	 start_remote, set `inserted' flag to 1.  In the initialization of
4732	 inferior, breakpoint_init_inferior should be called first, and then
4733	 breakpoint_re_set can be called.  If this order is broken, state of
4734	 `inserted' flag is wrong, and cause some problems on breakpoint
4735	 manipulation.  */
4736      init_wait_for_inferior ();
4737
4738      get_offsets ();		/* Get text, data & bss offsets.  */
4739
4740      /* If we could not find a description using qXfer, and we know
4741	 how to do it some other way, try again.  This is not
4742	 supported for non-stop; it could be, but it is tricky if
4743	 there are no stopped threads when we connect.  */
4744      if (remote_read_description_p (this)
4745	  && gdbarch_target_desc (target_gdbarch ()) == NULL)
4746	{
4747	  target_clear_description ();
4748	  target_find_description ();
4749	}
4750
4751      /* Use the previously fetched status.  */
4752      gdb_assert (wait_status != NULL);
4753      strcpy (rs->buf.data (), wait_status);
4754      rs->cached_wait_status = 1;
4755
4756      ::start_remote (from_tty); /* Initialize gdb process mechanisms.  */
4757    }
4758  else
4759    {
4760      /* Clear WFI global state.  Do this before finding about new
4761	 threads and inferiors, and setting the current inferior.
4762	 Otherwise we would clear the proceed status of the current
4763	 inferior when we want its stop_soon state to be preserved
4764	 (see notice_new_inferior).  */
4765      init_wait_for_inferior ();
4766
4767      /* In non-stop, we will either get an "OK", meaning that there
4768	 are no stopped threads at this time; or, a regular stop
4769	 reply.  In the latter case, there may be more than one thread
4770	 stopped --- we pull them all out using the vStopped
4771	 mechanism.  */
4772      if (strcmp (rs->buf.data (), "OK") != 0)
4773	{
4774	  struct notif_client *notif = &notif_client_stop;
4775
4776	  /* remote_notif_get_pending_replies acks this one, and gets
4777	     the rest out.  */
4778	  rs->notif_state->pending_event[notif_client_stop.id]
4779	    = remote_notif_parse (this, notif, rs->buf.data ());
4780	  remote_notif_get_pending_events (notif);
4781	}
4782
4783      if (thread_count () == 0)
4784	{
4785	  if (!extended_p)
4786	    error (_("The target is not running (try extended-remote?)"));
4787
4788	  /* We're connected, but not running.  Drop out before we
4789	     call start_remote.  */
4790	  rs->starting_up = 0;
4791	  return;
4792	}
4793
4794      /* In non-stop mode, any cached wait status will be stored in
4795	 the stop reply queue.  */
4796      gdb_assert (wait_status == NULL);
4797
4798      /* Report all signals during attach/startup.  */
4799      pass_signals ({});
4800
4801      /* If there are already stopped threads, mark them stopped and
4802	 report their stops before giving the prompt to the user.  */
4803      process_initial_stop_replies (from_tty);
4804
4805      if (target_can_async_p ())
4806	target_async (1);
4807    }
4808
4809  /* If we connected to a live target, do some additional setup.  */
4810  if (target_has_execution)
4811    {
4812      if (symfile_objfile) 	/* No use without a symbol-file.  */
4813	remote_check_symbols ();
4814    }
4815
4816  /* Possibly the target has been engaged in a trace run started
4817     previously; find out where things are at.  */
4818  if (get_trace_status (current_trace_status ()) != -1)
4819    {
4820      struct uploaded_tp *uploaded_tps = NULL;
4821
4822      if (current_trace_status ()->running)
4823	printf_filtered (_("Trace is already running on the target.\n"));
4824
4825      upload_tracepoints (&uploaded_tps);
4826
4827      merge_uploaded_tracepoints (&uploaded_tps);
4828    }
4829
4830  /* Possibly the target has been engaged in a btrace record started
4831     previously; find out where things are at.  */
4832  remote_btrace_maybe_reopen ();
4833
4834  /* The thread and inferior lists are now synchronized with the
4835     target, our symbols have been relocated, and we're merged the
4836     target's tracepoints with ours.  We're done with basic start
4837     up.  */
4838  rs->starting_up = 0;
4839
4840  /* Maybe breakpoints are global and need to be inserted now.  */
4841  if (breakpoints_should_be_inserted_now ())
4842    insert_breakpoints ();
4843}
4844
4845/* Open a connection to a remote debugger.
4846   NAME is the filename used for communication.  */
4847
4848void
4849remote_target::open (const char *name, int from_tty)
4850{
4851  open_1 (name, from_tty, 0);
4852}
4853
4854/* Open a connection to a remote debugger using the extended
4855   remote gdb protocol.  NAME is the filename used for communication.  */
4856
4857void
4858extended_remote_target::open (const char *name, int from_tty)
4859{
4860  open_1 (name, from_tty, 1 /*extended_p */);
4861}
4862
4863/* Reset all packets back to "unknown support".  Called when opening a
4864   new connection to a remote target.  */
4865
4866static void
4867reset_all_packet_configs_support (void)
4868{
4869  int i;
4870
4871  for (i = 0; i < PACKET_MAX; i++)
4872    remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4873}
4874
4875/* Initialize all packet configs.  */
4876
4877static void
4878init_all_packet_configs (void)
4879{
4880  int i;
4881
4882  for (i = 0; i < PACKET_MAX; i++)
4883    {
4884      remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4885      remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4886    }
4887}
4888
4889/* Symbol look-up.  */
4890
4891void
4892remote_target::remote_check_symbols ()
4893{
4894  char *tmp;
4895  int end;
4896
4897  /* The remote side has no concept of inferiors that aren't running
4898     yet, it only knows about running processes.  If we're connected
4899     but our current inferior is not running, we should not invite the
4900     remote target to request symbol lookups related to its
4901     (unrelated) current process.  */
4902  if (!target_has_execution)
4903    return;
4904
4905  if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4906    return;
4907
4908  /* Make sure the remote is pointing at the right process.  Note
4909     there's no way to select "no process".  */
4910  set_general_process ();
4911
4912  /* Allocate a message buffer.  We can't reuse the input buffer in RS,
4913     because we need both at the same time.  */
4914  gdb::char_vector msg (get_remote_packet_size ());
4915  gdb::char_vector reply (get_remote_packet_size ());
4916
4917  /* Invite target to request symbol lookups.  */
4918
4919  putpkt ("qSymbol::");
4920  getpkt (&reply, 0);
4921  packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4922
4923  while (startswith (reply.data (), "qSymbol:"))
4924    {
4925      struct bound_minimal_symbol sym;
4926
4927      tmp = &reply[8];
4928      end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4929		     strlen (tmp) / 2);
4930      msg[end] = '\0';
4931      sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4932      if (sym.minsym == NULL)
4933	xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4934		   &reply[8]);
4935      else
4936	{
4937	  int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4938	  CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4939
4940	  /* If this is a function address, return the start of code
4941	     instead of any data function descriptor.  */
4942	  sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4943							 sym_addr,
4944							 current_top_target ());
4945
4946	  xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4947		     phex_nz (sym_addr, addr_size), &reply[8]);
4948	}
4949
4950      putpkt (msg.data ());
4951      getpkt (&reply, 0);
4952    }
4953}
4954
4955static struct serial *
4956remote_serial_open (const char *name)
4957{
4958  static int udp_warning = 0;
4959
4960  /* FIXME: Parsing NAME here is a hack.  But we want to warn here instead
4961     of in ser-tcp.c, because it is the remote protocol assuming that the
4962     serial connection is reliable and not the serial connection promising
4963     to be.  */
4964  if (!udp_warning && startswith (name, "udp:"))
4965    {
4966      warning (_("The remote protocol may be unreliable over UDP.\n"
4967		 "Some events may be lost, rendering further debugging "
4968		 "impossible."));
4969      udp_warning = 1;
4970    }
4971
4972  return serial_open (name);
4973}
4974
4975/* Inform the target of our permission settings.  The permission flags
4976   work without this, but if the target knows the settings, it can do
4977   a couple things.  First, it can add its own check, to catch cases
4978   that somehow manage to get by the permissions checks in target
4979   methods.  Second, if the target is wired to disallow particular
4980   settings (for instance, a system in the field that is not set up to
4981   be able to stop at a breakpoint), it can object to any unavailable
4982   permissions.  */
4983
4984void
4985remote_target::set_permissions ()
4986{
4987  struct remote_state *rs = get_remote_state ();
4988
4989  xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
4990	     "WriteReg:%x;WriteMem:%x;"
4991	     "InsertBreak:%x;InsertTrace:%x;"
4992	     "InsertFastTrace:%x;Stop:%x",
4993	     may_write_registers, may_write_memory,
4994	     may_insert_breakpoints, may_insert_tracepoints,
4995	     may_insert_fast_tracepoints, may_stop);
4996  putpkt (rs->buf);
4997  getpkt (&rs->buf, 0);
4998
4999  /* If the target didn't like the packet, warn the user.  Do not try
5000     to undo the user's settings, that would just be maddening.  */
5001  if (strcmp (rs->buf.data (), "OK") != 0)
5002    warning (_("Remote refused setting permissions with: %s"),
5003	     rs->buf.data ());
5004}
5005
5006/* This type describes each known response to the qSupported
5007   packet.  */
5008struct protocol_feature
5009{
5010  /* The name of this protocol feature.  */
5011  const char *name;
5012
5013  /* The default for this protocol feature.  */
5014  enum packet_support default_support;
5015
5016  /* The function to call when this feature is reported, or after
5017     qSupported processing if the feature is not supported.
5018     The first argument points to this structure.  The second
5019     argument indicates whether the packet requested support be
5020     enabled, disabled, or probed (or the default, if this function
5021     is being called at the end of processing and this feature was
5022     not reported).  The third argument may be NULL; if not NULL, it
5023     is a NUL-terminated string taken from the packet following
5024     this feature's name and an equals sign.  */
5025  void (*func) (remote_target *remote, const struct protocol_feature *,
5026		enum packet_support, const char *);
5027
5028  /* The corresponding packet for this feature.  Only used if
5029     FUNC is remote_supported_packet.  */
5030  int packet;
5031};
5032
5033static void
5034remote_supported_packet (remote_target *remote,
5035			 const struct protocol_feature *feature,
5036			 enum packet_support support,
5037			 const char *argument)
5038{
5039  if (argument)
5040    {
5041      warning (_("Remote qSupported response supplied an unexpected value for"
5042		 " \"%s\"."), feature->name);
5043      return;
5044    }
5045
5046  remote_protocol_packets[feature->packet].support = support;
5047}
5048
5049void
5050remote_target::remote_packet_size (const protocol_feature *feature,
5051				   enum packet_support support, const char *value)
5052{
5053  struct remote_state *rs = get_remote_state ();
5054
5055  int packet_size;
5056  char *value_end;
5057
5058  if (support != PACKET_ENABLE)
5059    return;
5060
5061  if (value == NULL || *value == '\0')
5062    {
5063      warning (_("Remote target reported \"%s\" without a size."),
5064	       feature->name);
5065      return;
5066    }
5067
5068  errno = 0;
5069  packet_size = strtol (value, &value_end, 16);
5070  if (errno != 0 || *value_end != '\0' || packet_size < 0)
5071    {
5072      warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5073	       feature->name, value);
5074      return;
5075    }
5076
5077  /* Record the new maximum packet size.  */
5078  rs->explicit_packet_size = packet_size;
5079}
5080
5081void
5082remote_packet_size (remote_target *remote, const protocol_feature *feature,
5083		    enum packet_support support, const char *value)
5084{
5085  remote->remote_packet_size (feature, support, value);
5086}
5087
5088static const struct protocol_feature remote_protocol_features[] = {
5089  { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5090  { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5091    PACKET_qXfer_auxv },
5092  { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5093    PACKET_qXfer_exec_file },
5094  { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5095    PACKET_qXfer_features },
5096  { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5097    PACKET_qXfer_libraries },
5098  { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5099    PACKET_qXfer_libraries_svr4 },
5100  { "augmented-libraries-svr4-read", PACKET_DISABLE,
5101    remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5102  { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5103    PACKET_qXfer_memory_map },
5104  { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
5105    PACKET_qXfer_spu_read },
5106  { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
5107    PACKET_qXfer_spu_write },
5108  { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5109    PACKET_qXfer_osdata },
5110  { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5111    PACKET_qXfer_threads },
5112  { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5113    PACKET_qXfer_traceframe_info },
5114  { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5115    PACKET_QPassSignals },
5116  { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5117    PACKET_QCatchSyscalls },
5118  { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5119    PACKET_QProgramSignals },
5120  { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5121    PACKET_QSetWorkingDir },
5122  { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5123    PACKET_QStartupWithShell },
5124  { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5125    PACKET_QEnvironmentHexEncoded },
5126  { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5127    PACKET_QEnvironmentReset },
5128  { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5129    PACKET_QEnvironmentUnset },
5130  { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5131    PACKET_QStartNoAckMode },
5132  { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5133    PACKET_multiprocess_feature },
5134  { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5135  { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5136    PACKET_qXfer_siginfo_read },
5137  { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5138    PACKET_qXfer_siginfo_write },
5139  { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5140    PACKET_ConditionalTracepoints },
5141  { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5142    PACKET_ConditionalBreakpoints },
5143  { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5144    PACKET_BreakpointCommands },
5145  { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5146    PACKET_FastTracepoints },
5147  { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5148    PACKET_StaticTracepoints },
5149  {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5150   PACKET_InstallInTrace},
5151  { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5152    PACKET_DisconnectedTracing_feature },
5153  { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5154    PACKET_bc },
5155  { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5156    PACKET_bs },
5157  { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5158    PACKET_TracepointSource },
5159  { "QAllow", PACKET_DISABLE, remote_supported_packet,
5160    PACKET_QAllow },
5161  { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5162    PACKET_EnableDisableTracepoints_feature },
5163  { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5164    PACKET_qXfer_fdpic },
5165  { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5166    PACKET_qXfer_uib },
5167  { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5168    PACKET_QDisableRandomization },
5169  { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5170  { "QTBuffer:size", PACKET_DISABLE,
5171    remote_supported_packet, PACKET_QTBuffer_size},
5172  { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5173  { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5174  { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5175  { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5176  { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5177    PACKET_qXfer_btrace },
5178  { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5179    PACKET_qXfer_btrace_conf },
5180  { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5181    PACKET_Qbtrace_conf_bts_size },
5182  { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5183  { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5184  { "fork-events", PACKET_DISABLE, remote_supported_packet,
5185    PACKET_fork_event_feature },
5186  { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5187    PACKET_vfork_event_feature },
5188  { "exec-events", PACKET_DISABLE, remote_supported_packet,
5189    PACKET_exec_event_feature },
5190  { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5191    PACKET_Qbtrace_conf_pt_size },
5192  { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5193  { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5194  { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5195};
5196
5197static char *remote_support_xml;
5198
5199/* Register string appended to "xmlRegisters=" in qSupported query.  */
5200
5201void
5202register_remote_support_xml (const char *xml)
5203{
5204#if defined(HAVE_LIBEXPAT)
5205  if (remote_support_xml == NULL)
5206    remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5207  else
5208    {
5209      char *copy = xstrdup (remote_support_xml + 13);
5210      char *p = strtok (copy, ",");
5211
5212      do
5213	{
5214	  if (strcmp (p, xml) == 0)
5215	    {
5216	      /* already there */
5217	      xfree (copy);
5218	      return;
5219	    }
5220	}
5221      while ((p = strtok (NULL, ",")) != NULL);
5222      xfree (copy);
5223
5224      remote_support_xml = reconcat (remote_support_xml,
5225				     remote_support_xml, ",", xml,
5226				     (char *) NULL);
5227    }
5228#endif
5229}
5230
5231static void
5232remote_query_supported_append (std::string *msg, const char *append)
5233{
5234  if (!msg->empty ())
5235    msg->append (";");
5236  msg->append (append);
5237}
5238
5239void
5240remote_target::remote_query_supported ()
5241{
5242  struct remote_state *rs = get_remote_state ();
5243  char *next;
5244  int i;
5245  unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5246
5247  /* The packet support flags are handled differently for this packet
5248     than for most others.  We treat an error, a disabled packet, and
5249     an empty response identically: any features which must be reported
5250     to be used will be automatically disabled.  An empty buffer
5251     accomplishes this, since that is also the representation for a list
5252     containing no features.  */
5253
5254  rs->buf[0] = 0;
5255  if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5256    {
5257      std::string q;
5258
5259      if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5260	remote_query_supported_append (&q, "multiprocess+");
5261
5262      if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5263	remote_query_supported_append (&q, "swbreak+");
5264      if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5265	remote_query_supported_append (&q, "hwbreak+");
5266
5267      remote_query_supported_append (&q, "qRelocInsn+");
5268
5269      if (packet_set_cmd_state (PACKET_fork_event_feature)
5270	  != AUTO_BOOLEAN_FALSE)
5271	remote_query_supported_append (&q, "fork-events+");
5272      if (packet_set_cmd_state (PACKET_vfork_event_feature)
5273	  != AUTO_BOOLEAN_FALSE)
5274	remote_query_supported_append (&q, "vfork-events+");
5275      if (packet_set_cmd_state (PACKET_exec_event_feature)
5276	  != AUTO_BOOLEAN_FALSE)
5277	remote_query_supported_append (&q, "exec-events+");
5278
5279      if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5280	remote_query_supported_append (&q, "vContSupported+");
5281
5282      if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5283	remote_query_supported_append (&q, "QThreadEvents+");
5284
5285      if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5286	remote_query_supported_append (&q, "no-resumed+");
5287
5288      /* Keep this one last to work around a gdbserver <= 7.10 bug in
5289	 the qSupported:xmlRegisters=i386 handling.  */
5290      if (remote_support_xml != NULL
5291	  && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5292	remote_query_supported_append (&q, remote_support_xml);
5293
5294      q = "qSupported:" + q;
5295      putpkt (q.c_str ());
5296
5297      getpkt (&rs->buf, 0);
5298
5299      /* If an error occured, warn, but do not return - just reset the
5300	 buffer to empty and go on to disable features.  */
5301      if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5302	  == PACKET_ERROR)
5303	{
5304	  warning (_("Remote failure reply: %s"), rs->buf.data ());
5305	  rs->buf[0] = 0;
5306	}
5307    }
5308
5309  memset (seen, 0, sizeof (seen));
5310
5311  next = rs->buf.data ();
5312  while (*next)
5313    {
5314      enum packet_support is_supported;
5315      char *p, *end, *name_end, *value;
5316
5317      /* First separate out this item from the rest of the packet.  If
5318	 there's another item after this, we overwrite the separator
5319	 (terminated strings are much easier to work with).  */
5320      p = next;
5321      end = strchr (p, ';');
5322      if (end == NULL)
5323	{
5324	  end = p + strlen (p);
5325	  next = end;
5326	}
5327      else
5328	{
5329	  *end = '\0';
5330	  next = end + 1;
5331
5332	  if (end == p)
5333	    {
5334	      warning (_("empty item in \"qSupported\" response"));
5335	      continue;
5336	    }
5337	}
5338
5339      name_end = strchr (p, '=');
5340      if (name_end)
5341	{
5342	  /* This is a name=value entry.  */
5343	  is_supported = PACKET_ENABLE;
5344	  value = name_end + 1;
5345	  *name_end = '\0';
5346	}
5347      else
5348	{
5349	  value = NULL;
5350	  switch (end[-1])
5351	    {
5352	    case '+':
5353	      is_supported = PACKET_ENABLE;
5354	      break;
5355
5356	    case '-':
5357	      is_supported = PACKET_DISABLE;
5358	      break;
5359
5360	    case '?':
5361	      is_supported = PACKET_SUPPORT_UNKNOWN;
5362	      break;
5363
5364	    default:
5365	      warning (_("unrecognized item \"%s\" "
5366			 "in \"qSupported\" response"), p);
5367	      continue;
5368	    }
5369	  end[-1] = '\0';
5370	}
5371
5372      for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5373	if (strcmp (remote_protocol_features[i].name, p) == 0)
5374	  {
5375	    const struct protocol_feature *feature;
5376
5377	    seen[i] = 1;
5378	    feature = &remote_protocol_features[i];
5379	    feature->func (this, feature, is_supported, value);
5380	    break;
5381	  }
5382    }
5383
5384  /* If we increased the packet size, make sure to increase the global
5385     buffer size also.  We delay this until after parsing the entire
5386     qSupported packet, because this is the same buffer we were
5387     parsing.  */
5388  if (rs->buf.size () < rs->explicit_packet_size)
5389    rs->buf.resize (rs->explicit_packet_size);
5390
5391  /* Handle the defaults for unmentioned features.  */
5392  for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5393    if (!seen[i])
5394      {
5395	const struct protocol_feature *feature;
5396
5397	feature = &remote_protocol_features[i];
5398	feature->func (this, feature, feature->default_support, NULL);
5399      }
5400}
5401
5402/* Serial QUIT handler for the remote serial descriptor.
5403
5404   Defers handling a Ctrl-C until we're done with the current
5405   command/response packet sequence, unless:
5406
5407   - We're setting up the connection.  Don't send a remote interrupt
5408     request, as we're not fully synced yet.  Quit immediately
5409     instead.
5410
5411   - The target has been resumed in the foreground
5412     (target_terminal::is_ours is false) with a synchronous resume
5413     packet, and we're blocked waiting for the stop reply, thus a
5414     Ctrl-C should be immediately sent to the target.
5415
5416   - We get a second Ctrl-C while still within the same serial read or
5417     write.  In that case the serial is seemingly wedged --- offer to
5418     quit/disconnect.
5419
5420   - We see a second Ctrl-C without target response, after having
5421     previously interrupted the target.  In that case the target/stub
5422     is probably wedged --- offer to quit/disconnect.
5423*/
5424
5425void
5426remote_target::remote_serial_quit_handler ()
5427{
5428  struct remote_state *rs = get_remote_state ();
5429
5430  if (check_quit_flag ())
5431    {
5432      /* If we're starting up, we're not fully synced yet.  Quit
5433	 immediately.  */
5434      if (rs->starting_up)
5435	quit ();
5436      else if (rs->got_ctrlc_during_io)
5437	{
5438	  if (query (_("The target is not responding to GDB commands.\n"
5439		       "Stop debugging it? ")))
5440	    remote_unpush_and_throw ();
5441	}
5442      /* If ^C has already been sent once, offer to disconnect.  */
5443      else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5444	interrupt_query ();
5445      /* All-stop protocol, and blocked waiting for stop reply.  Send
5446	 an interrupt request.  */
5447      else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5448	target_interrupt ();
5449      else
5450	rs->got_ctrlc_during_io = 1;
5451    }
5452}
5453
5454/* The remote_target that is current while the quit handler is
5455   overridden with remote_serial_quit_handler.  */
5456static remote_target *curr_quit_handler_target;
5457
5458static void
5459remote_serial_quit_handler ()
5460{
5461  curr_quit_handler_target->remote_serial_quit_handler ();
5462}
5463
5464/* Remove any of the remote.c targets from target stack.  Upper targets depend
5465   on it so remove them first.  */
5466
5467static void
5468remote_unpush_target (void)
5469{
5470  pop_all_targets_at_and_above (process_stratum);
5471}
5472
5473static void
5474remote_unpush_and_throw (void)
5475{
5476  remote_unpush_target ();
5477  throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5478}
5479
5480void
5481remote_target::open_1 (const char *name, int from_tty, int extended_p)
5482{
5483  remote_target *curr_remote = get_current_remote_target ();
5484
5485  if (name == 0)
5486    error (_("To open a remote debug connection, you need to specify what\n"
5487	   "serial device is attached to the remote system\n"
5488	   "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5489
5490  /* If we're connected to a running target, target_preopen will kill it.
5491     Ask this question first, before target_preopen has a chance to kill
5492     anything.  */
5493  if (curr_remote != NULL && !have_inferiors ())
5494    {
5495      if (from_tty
5496	  && !query (_("Already connected to a remote target.  Disconnect? ")))
5497	error (_("Still connected."));
5498    }
5499
5500  /* Here the possibly existing remote target gets unpushed.  */
5501  target_preopen (from_tty);
5502
5503  remote_fileio_reset ();
5504  reopen_exec_file ();
5505  reread_symbols ();
5506
5507  remote_target *remote
5508    = (extended_p ? new extended_remote_target () : new remote_target ());
5509  target_ops_up target_holder (remote);
5510
5511  remote_state *rs = remote->get_remote_state ();
5512
5513  /* See FIXME above.  */
5514  if (!target_async_permitted)
5515    rs->wait_forever_enabled_p = 1;
5516
5517  rs->remote_desc = remote_serial_open (name);
5518  if (!rs->remote_desc)
5519    perror_with_name (name);
5520
5521  if (baud_rate != -1)
5522    {
5523      if (serial_setbaudrate (rs->remote_desc, baud_rate))
5524	{
5525	  /* The requested speed could not be set.  Error out to
5526	     top level after closing remote_desc.  Take care to
5527	     set remote_desc to NULL to avoid closing remote_desc
5528	     more than once.  */
5529	  serial_close (rs->remote_desc);
5530	  rs->remote_desc = NULL;
5531	  perror_with_name (name);
5532	}
5533    }
5534
5535  serial_setparity (rs->remote_desc, serial_parity);
5536  serial_raw (rs->remote_desc);
5537
5538  /* If there is something sitting in the buffer we might take it as a
5539     response to a command, which would be bad.  */
5540  serial_flush_input (rs->remote_desc);
5541
5542  if (from_tty)
5543    {
5544      puts_filtered ("Remote debugging using ");
5545      puts_filtered (name);
5546      puts_filtered ("\n");
5547    }
5548
5549  /* Switch to using the remote target now.  */
5550  push_target (std::move (target_holder));
5551
5552  /* Register extra event sources in the event loop.  */
5553  rs->remote_async_inferior_event_token
5554    = create_async_event_handler (remote_async_inferior_event_handler,
5555				  remote);
5556  rs->notif_state = remote_notif_state_allocate (remote);
5557
5558  /* Reset the target state; these things will be queried either by
5559     remote_query_supported or as they are needed.  */
5560  reset_all_packet_configs_support ();
5561  rs->cached_wait_status = 0;
5562  rs->explicit_packet_size = 0;
5563  rs->noack_mode = 0;
5564  rs->extended = extended_p;
5565  rs->waiting_for_stop_reply = 0;
5566  rs->ctrlc_pending_p = 0;
5567  rs->got_ctrlc_during_io = 0;
5568
5569  rs->general_thread = not_sent_ptid;
5570  rs->continue_thread = not_sent_ptid;
5571  rs->remote_traceframe_number = -1;
5572
5573  rs->last_resume_exec_dir = EXEC_FORWARD;
5574
5575  /* Probe for ability to use "ThreadInfo" query, as required.  */
5576  rs->use_threadinfo_query = 1;
5577  rs->use_threadextra_query = 1;
5578
5579  rs->readahead_cache.invalidate ();
5580
5581  if (target_async_permitted)
5582    {
5583      /* FIXME: cagney/1999-09-23: During the initial connection it is
5584	 assumed that the target is already ready and able to respond to
5585	 requests.  Unfortunately remote_start_remote() eventually calls
5586	 wait_for_inferior() with no timeout.  wait_forever_enabled_p gets
5587	 around this.  Eventually a mechanism that allows
5588	 wait_for_inferior() to expect/get timeouts will be
5589	 implemented.  */
5590      rs->wait_forever_enabled_p = 0;
5591    }
5592
5593  /* First delete any symbols previously loaded from shared libraries.  */
5594  no_shared_libraries (NULL, 0);
5595
5596  /* Start the remote connection.  If error() or QUIT, discard this
5597     target (we'd otherwise be in an inconsistent state) and then
5598     propogate the error on up the exception chain.  This ensures that
5599     the caller doesn't stumble along blindly assuming that the
5600     function succeeded.  The CLI doesn't have this problem but other
5601     UI's, such as MI do.
5602
5603     FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5604     this function should return an error indication letting the
5605     caller restore the previous state.  Unfortunately the command
5606     ``target remote'' is directly wired to this function making that
5607     impossible.  On a positive note, the CLI side of this problem has
5608     been fixed - the function set_cmd_context() makes it possible for
5609     all the ``target ....'' commands to share a common callback
5610     function.  See cli-dump.c.  */
5611  {
5612
5613    TRY
5614      {
5615	remote->start_remote (from_tty, extended_p);
5616      }
5617    CATCH (ex, RETURN_MASK_ALL)
5618      {
5619	/* Pop the partially set up target - unless something else did
5620	   already before throwing the exception.  */
5621	if (ex.error != TARGET_CLOSE_ERROR)
5622	  remote_unpush_target ();
5623	throw_exception (ex);
5624      }
5625    END_CATCH
5626  }
5627
5628  remote_btrace_reset (rs);
5629
5630  if (target_async_permitted)
5631    rs->wait_forever_enabled_p = 1;
5632}
5633
5634/* Detach the specified process.  */
5635
5636void
5637remote_target::remote_detach_pid (int pid)
5638{
5639  struct remote_state *rs = get_remote_state ();
5640
5641  /* This should not be necessary, but the handling for D;PID in
5642     GDBserver versions prior to 8.2 incorrectly assumes that the
5643     selected process points to the same process we're detaching,
5644     leading to misbehavior (and possibly GDBserver crashing) when it
5645     does not.  Since it's easy and cheap, work around it by forcing
5646     GDBserver to select GDB's current process.  */
5647  set_general_process ();
5648
5649  if (remote_multi_process_p (rs))
5650    xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5651  else
5652    strcpy (rs->buf.data (), "D");
5653
5654  putpkt (rs->buf);
5655  getpkt (&rs->buf, 0);
5656
5657  if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5658    ;
5659  else if (rs->buf[0] == '\0')
5660    error (_("Remote doesn't know how to detach"));
5661  else
5662    error (_("Can't detach process."));
5663}
5664
5665/* This detaches a program to which we previously attached, using
5666   inferior_ptid to identify the process.  After this is done, GDB
5667   can be used to debug some other program.  We better not have left
5668   any breakpoints in the target program or it'll die when it hits
5669   one.  */
5670
5671void
5672remote_target::remote_detach_1 (inferior *inf, int from_tty)
5673{
5674  int pid = inferior_ptid.pid ();
5675  struct remote_state *rs = get_remote_state ();
5676  int is_fork_parent;
5677
5678  if (!target_has_execution)
5679    error (_("No process to detach from."));
5680
5681  target_announce_detach (from_tty);
5682
5683  /* Tell the remote target to detach.  */
5684  remote_detach_pid (pid);
5685
5686  /* Exit only if this is the only active inferior.  */
5687  if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5688    puts_filtered (_("Ending remote debugging.\n"));
5689
5690  struct thread_info *tp = find_thread_ptid (inferior_ptid);
5691
5692  /* Check to see if we are detaching a fork parent.  Note that if we
5693     are detaching a fork child, tp == NULL.  */
5694  is_fork_parent = (tp != NULL
5695		    && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5696
5697  /* If doing detach-on-fork, we don't mourn, because that will delete
5698     breakpoints that should be available for the followed inferior.  */
5699  if (!is_fork_parent)
5700    {
5701      /* Save the pid as a string before mourning, since that will
5702	 unpush the remote target, and we need the string after.  */
5703      std::string infpid = target_pid_to_str (ptid_t (pid));
5704
5705      target_mourn_inferior (inferior_ptid);
5706      if (print_inferior_events)
5707	printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5708			   inf->num, infpid.c_str ());
5709    }
5710  else
5711    {
5712      inferior_ptid = null_ptid;
5713      detach_inferior (current_inferior ());
5714    }
5715}
5716
5717void
5718remote_target::detach (inferior *inf, int from_tty)
5719{
5720  remote_detach_1 (inf, from_tty);
5721}
5722
5723void
5724extended_remote_target::detach (inferior *inf, int from_tty)
5725{
5726  remote_detach_1 (inf, from_tty);
5727}
5728
5729/* Target follow-fork function for remote targets.  On entry, and
5730   at return, the current inferior is the fork parent.
5731
5732   Note that although this is currently only used for extended-remote,
5733   it is named remote_follow_fork in anticipation of using it for the
5734   remote target as well.  */
5735
5736int
5737remote_target::follow_fork (int follow_child, int detach_fork)
5738{
5739  struct remote_state *rs = get_remote_state ();
5740  enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5741
5742  if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5743      || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5744    {
5745      /* When following the parent and detaching the child, we detach
5746	 the child here.  For the case of following the child and
5747	 detaching the parent, the detach is done in the target-
5748	 independent follow fork code in infrun.c.  We can't use
5749	 target_detach when detaching an unfollowed child because
5750	 the client side doesn't know anything about the child.  */
5751      if (detach_fork && !follow_child)
5752	{
5753	  /* Detach the fork child.  */
5754	  ptid_t child_ptid;
5755	  pid_t child_pid;
5756
5757	  child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5758	  child_pid = child_ptid.pid ();
5759
5760	  remote_detach_pid (child_pid);
5761	}
5762    }
5763  return 0;
5764}
5765
5766/* Target follow-exec function for remote targets.  Save EXECD_PATHNAME
5767   in the program space of the new inferior.  On entry and at return the
5768   current inferior is the exec'ing inferior.  INF is the new exec'd
5769   inferior, which may be the same as the exec'ing inferior unless
5770   follow-exec-mode is "new".  */
5771
5772void
5773remote_target::follow_exec (struct inferior *inf, char *execd_pathname)
5774{
5775  /* We know that this is a target file name, so if it has the "target:"
5776     prefix we strip it off before saving it in the program space.  */
5777  if (is_target_filename (execd_pathname))
5778    execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5779
5780  set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5781}
5782
5783/* Same as remote_detach, but don't send the "D" packet; just disconnect.  */
5784
5785void
5786remote_target::disconnect (const char *args, int from_tty)
5787{
5788  if (args)
5789    error (_("Argument given to \"disconnect\" when remotely debugging."));
5790
5791  /* Make sure we unpush even the extended remote targets.  Calling
5792     target_mourn_inferior won't unpush, and remote_mourn won't
5793     unpush if there is more than one inferior left.  */
5794  unpush_target (this);
5795  generic_mourn_inferior ();
5796
5797  if (from_tty)
5798    puts_filtered ("Ending remote debugging.\n");
5799}
5800
5801/* Attach to the process specified by ARGS.  If FROM_TTY is non-zero,
5802   be chatty about it.  */
5803
5804void
5805extended_remote_target::attach (const char *args, int from_tty)
5806{
5807  struct remote_state *rs = get_remote_state ();
5808  int pid;
5809  char *wait_status = NULL;
5810
5811  pid = parse_pid_to_attach (args);
5812
5813  /* Remote PID can be freely equal to getpid, do not check it here the same
5814     way as in other targets.  */
5815
5816  if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5817    error (_("This target does not support attaching to a process"));
5818
5819  if (from_tty)
5820    {
5821      char *exec_file = get_exec_file (0);
5822
5823      if (exec_file)
5824	printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5825			   target_pid_to_str (ptid_t (pid)));
5826      else
5827	printf_unfiltered (_("Attaching to %s\n"),
5828			   target_pid_to_str (ptid_t (pid)));
5829
5830      gdb_flush (gdb_stdout);
5831    }
5832
5833  xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5834  putpkt (rs->buf);
5835  getpkt (&rs->buf, 0);
5836
5837  switch (packet_ok (rs->buf,
5838		     &remote_protocol_packets[PACKET_vAttach]))
5839    {
5840    case PACKET_OK:
5841      if (!target_is_non_stop_p ())
5842	{
5843	  /* Save the reply for later.  */
5844	  wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5845	  strcpy (wait_status, rs->buf.data ());
5846	}
5847      else if (strcmp (rs->buf.data (), "OK") != 0)
5848	error (_("Attaching to %s failed with: %s"),
5849	       target_pid_to_str (ptid_t (pid)),
5850	       rs->buf.data ());
5851      break;
5852    case PACKET_UNKNOWN:
5853      error (_("This target does not support attaching to a process"));
5854    default:
5855      error (_("Attaching to %s failed"),
5856	     target_pid_to_str (ptid_t (pid)));
5857    }
5858
5859  set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5860
5861  inferior_ptid = ptid_t (pid);
5862
5863  if (target_is_non_stop_p ())
5864    {
5865      struct thread_info *thread;
5866
5867      /* Get list of threads.  */
5868      update_thread_list ();
5869
5870      thread = first_thread_of_inferior (current_inferior ());
5871      if (thread)
5872	inferior_ptid = thread->ptid;
5873      else
5874	inferior_ptid = ptid_t (pid);
5875
5876      /* Invalidate our notion of the remote current thread.  */
5877      record_currthread (rs, minus_one_ptid);
5878    }
5879  else
5880    {
5881      /* Now, if we have thread information, update inferior_ptid.  */
5882      inferior_ptid = remote_current_thread (inferior_ptid);
5883
5884      /* Add the main thread to the thread list.  */
5885      thread_info *thr = add_thread_silent (inferior_ptid);
5886      /* Don't consider the thread stopped until we've processed the
5887	 saved stop reply.  */
5888      set_executing (thr->ptid, true);
5889    }
5890
5891  /* Next, if the target can specify a description, read it.  We do
5892     this before anything involving memory or registers.  */
5893  target_find_description ();
5894
5895  if (!target_is_non_stop_p ())
5896    {
5897      /* Use the previously fetched status.  */
5898      gdb_assert (wait_status != NULL);
5899
5900      if (target_can_async_p ())
5901	{
5902	  struct notif_event *reply
5903	    =  remote_notif_parse (this, &notif_client_stop, wait_status);
5904
5905	  push_stop_reply ((struct stop_reply *) reply);
5906
5907	  target_async (1);
5908	}
5909      else
5910	{
5911	  gdb_assert (wait_status != NULL);
5912	  strcpy (rs->buf.data (), wait_status);
5913	  rs->cached_wait_status = 1;
5914	}
5915    }
5916  else
5917    gdb_assert (wait_status == NULL);
5918}
5919
5920/* Implementation of the to_post_attach method.  */
5921
5922void
5923extended_remote_target::post_attach (int pid)
5924{
5925  /* Get text, data & bss offsets.  */
5926  get_offsets ();
5927
5928  /* In certain cases GDB might not have had the chance to start
5929     symbol lookup up until now.  This could happen if the debugged
5930     binary is not using shared libraries, the vsyscall page is not
5931     present (on Linux) and the binary itself hadn't changed since the
5932     debugging process was started.  */
5933  if (symfile_objfile != NULL)
5934    remote_check_symbols();
5935}
5936
5937
5938/* Check for the availability of vCont.  This function should also check
5939   the response.  */
5940
5941void
5942remote_target::remote_vcont_probe ()
5943{
5944  remote_state *rs = get_remote_state ();
5945  char *buf;
5946
5947  strcpy (rs->buf.data (), "vCont?");
5948  putpkt (rs->buf);
5949  getpkt (&rs->buf, 0);
5950  buf = rs->buf.data ();
5951
5952  /* Make sure that the features we assume are supported.  */
5953  if (startswith (buf, "vCont"))
5954    {
5955      char *p = &buf[5];
5956      int support_c, support_C;
5957
5958      rs->supports_vCont.s = 0;
5959      rs->supports_vCont.S = 0;
5960      support_c = 0;
5961      support_C = 0;
5962      rs->supports_vCont.t = 0;
5963      rs->supports_vCont.r = 0;
5964      while (p && *p == ';')
5965	{
5966	  p++;
5967	  if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5968	    rs->supports_vCont.s = 1;
5969	  else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5970	    rs->supports_vCont.S = 1;
5971	  else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5972	    support_c = 1;
5973	  else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5974	    support_C = 1;
5975	  else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5976	    rs->supports_vCont.t = 1;
5977	  else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5978	    rs->supports_vCont.r = 1;
5979
5980	  p = strchr (p, ';');
5981	}
5982
5983      /* If c, and C are not all supported, we can't use vCont.  Clearing
5984	 BUF will make packet_ok disable the packet.  */
5985      if (!support_c || !support_C)
5986	buf[0] = 0;
5987    }
5988
5989  packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
5990}
5991
5992/* Helper function for building "vCont" resumptions.  Write a
5993   resumption to P.  ENDP points to one-passed-the-end of the buffer
5994   we're allowed to write to.  Returns BUF+CHARACTERS_WRITTEN.  The
5995   thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5996   resumed thread should be single-stepped and/or signalled.  If PTID
5997   equals minus_one_ptid, then all threads are resumed; if PTID
5998   represents a process, then all threads of the process are resumed;
5999   the thread to be stepped and/or signalled is given in the global
6000   INFERIOR_PTID.  */
6001
6002char *
6003remote_target::append_resumption (char *p, char *endp,
6004				  ptid_t ptid, int step, gdb_signal siggnal)
6005{
6006  struct remote_state *rs = get_remote_state ();
6007
6008  if (step && siggnal != GDB_SIGNAL_0)
6009    p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6010  else if (step
6011	   /* GDB is willing to range step.  */
6012	   && use_range_stepping
6013	   /* Target supports range stepping.  */
6014	   && rs->supports_vCont.r
6015	   /* We don't currently support range stepping multiple
6016	      threads with a wildcard (though the protocol allows it,
6017	      so stubs shouldn't make an active effort to forbid
6018	      it).  */
6019	   && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6020    {
6021      struct thread_info *tp;
6022
6023      if (ptid == minus_one_ptid)
6024	{
6025	  /* If we don't know about the target thread's tid, then
6026	     we're resuming magic_null_ptid (see caller).  */
6027	  tp = find_thread_ptid (magic_null_ptid);
6028	}
6029      else
6030	tp = find_thread_ptid (ptid);
6031      gdb_assert (tp != NULL);
6032
6033      if (tp->control.may_range_step)
6034	{
6035	  int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6036
6037	  p += xsnprintf (p, endp - p, ";r%s,%s",
6038			  phex_nz (tp->control.step_range_start,
6039				   addr_size),
6040			  phex_nz (tp->control.step_range_end,
6041				   addr_size));
6042	}
6043      else
6044	p += xsnprintf (p, endp - p, ";s");
6045    }
6046  else if (step)
6047    p += xsnprintf (p, endp - p, ";s");
6048  else if (siggnal != GDB_SIGNAL_0)
6049    p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6050  else
6051    p += xsnprintf (p, endp - p, ";c");
6052
6053  if (remote_multi_process_p (rs) && ptid.is_pid ())
6054    {
6055      ptid_t nptid;
6056
6057      /* All (-1) threads of process.  */
6058      nptid = ptid_t (ptid.pid (), -1, 0);
6059
6060      p += xsnprintf (p, endp - p, ":");
6061      p = write_ptid (p, endp, nptid);
6062    }
6063  else if (ptid != minus_one_ptid)
6064    {
6065      p += xsnprintf (p, endp - p, ":");
6066      p = write_ptid (p, endp, ptid);
6067    }
6068
6069  return p;
6070}
6071
6072/* Clear the thread's private info on resume.  */
6073
6074static void
6075resume_clear_thread_private_info (struct thread_info *thread)
6076{
6077  if (thread->priv != NULL)
6078    {
6079      remote_thread_info *priv = get_remote_thread_info (thread);
6080
6081      priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6082      priv->watch_data_address = 0;
6083    }
6084}
6085
6086/* Append a vCont continue-with-signal action for threads that have a
6087   non-zero stop signal.  */
6088
6089char *
6090remote_target::append_pending_thread_resumptions (char *p, char *endp,
6091						  ptid_t ptid)
6092{
6093  for (thread_info *thread : all_non_exited_threads (ptid))
6094    if (inferior_ptid != thread->ptid
6095	&& thread->suspend.stop_signal != GDB_SIGNAL_0)
6096      {
6097	p = append_resumption (p, endp, thread->ptid,
6098			       0, thread->suspend.stop_signal);
6099	thread->suspend.stop_signal = GDB_SIGNAL_0;
6100	resume_clear_thread_private_info (thread);
6101      }
6102
6103  return p;
6104}
6105
6106/* Set the target running, using the packets that use Hc
6107   (c/s/C/S).  */
6108
6109void
6110remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6111				      gdb_signal siggnal)
6112{
6113  struct remote_state *rs = get_remote_state ();
6114  char *buf;
6115
6116  rs->last_sent_signal = siggnal;
6117  rs->last_sent_step = step;
6118
6119  /* The c/s/C/S resume packets use Hc, so set the continue
6120     thread.  */
6121  if (ptid == minus_one_ptid)
6122    set_continue_thread (any_thread_ptid);
6123  else
6124    set_continue_thread (ptid);
6125
6126  for (thread_info *thread : all_non_exited_threads ())
6127    resume_clear_thread_private_info (thread);
6128
6129  buf = rs->buf.data ();
6130  if (::execution_direction == EXEC_REVERSE)
6131    {
6132      /* We don't pass signals to the target in reverse exec mode.  */
6133      if (info_verbose && siggnal != GDB_SIGNAL_0)
6134	warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6135		 siggnal);
6136
6137      if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6138	error (_("Remote reverse-step not supported."));
6139      if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6140	error (_("Remote reverse-continue not supported."));
6141
6142      strcpy (buf, step ? "bs" : "bc");
6143    }
6144  else if (siggnal != GDB_SIGNAL_0)
6145    {
6146      buf[0] = step ? 'S' : 'C';
6147      buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6148      buf[2] = tohex (((int) siggnal) & 0xf);
6149      buf[3] = '\0';
6150    }
6151  else
6152    strcpy (buf, step ? "s" : "c");
6153
6154  putpkt (buf);
6155}
6156
6157/* Resume the remote inferior by using a "vCont" packet.  The thread
6158   to be resumed is PTID; STEP and SIGGNAL indicate whether the
6159   resumed thread should be single-stepped and/or signalled.  If PTID
6160   equals minus_one_ptid, then all threads are resumed; the thread to
6161   be stepped and/or signalled is given in the global INFERIOR_PTID.
6162   This function returns non-zero iff it resumes the inferior.
6163
6164   This function issues a strict subset of all possible vCont commands
6165   at the moment.  */
6166
6167int
6168remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6169					 enum gdb_signal siggnal)
6170{
6171  struct remote_state *rs = get_remote_state ();
6172  char *p;
6173  char *endp;
6174
6175  /* No reverse execution actions defined for vCont.  */
6176  if (::execution_direction == EXEC_REVERSE)
6177    return 0;
6178
6179  if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6180    remote_vcont_probe ();
6181
6182  if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6183    return 0;
6184
6185  p = rs->buf.data ();
6186  endp = p + get_remote_packet_size ();
6187
6188  /* If we could generate a wider range of packets, we'd have to worry
6189     about overflowing BUF.  Should there be a generic
6190     "multi-part-packet" packet?  */
6191
6192  p += xsnprintf (p, endp - p, "vCont");
6193
6194  if (ptid == magic_null_ptid)
6195    {
6196      /* MAGIC_NULL_PTID means that we don't have any active threads,
6197	 so we don't have any TID numbers the inferior will
6198	 understand.  Make sure to only send forms that do not specify
6199	 a TID.  */
6200      append_resumption (p, endp, minus_one_ptid, step, siggnal);
6201    }
6202  else if (ptid == minus_one_ptid || ptid.is_pid ())
6203    {
6204      /* Resume all threads (of all processes, or of a single
6205	 process), with preference for INFERIOR_PTID.  This assumes
6206	 inferior_ptid belongs to the set of all threads we are about
6207	 to resume.  */
6208      if (step || siggnal != GDB_SIGNAL_0)
6209	{
6210	  /* Step inferior_ptid, with or without signal.  */
6211	  p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6212	}
6213
6214      /* Also pass down any pending signaled resumption for other
6215	 threads not the current.  */
6216      p = append_pending_thread_resumptions (p, endp, ptid);
6217
6218      /* And continue others without a signal.  */
6219      append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6220    }
6221  else
6222    {
6223      /* Scheduler locking; resume only PTID.  */
6224      append_resumption (p, endp, ptid, step, siggnal);
6225    }
6226
6227  gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6228  putpkt (rs->buf);
6229
6230  if (target_is_non_stop_p ())
6231    {
6232      /* In non-stop, the stub replies to vCont with "OK".  The stop
6233	 reply will be reported asynchronously by means of a `%Stop'
6234	 notification.  */
6235      getpkt (&rs->buf, 0);
6236      if (strcmp (rs->buf.data (), "OK") != 0)
6237	error (_("Unexpected vCont reply in non-stop mode: %s"),
6238	       rs->buf.data ());
6239    }
6240
6241  return 1;
6242}
6243
6244/* Tell the remote machine to resume.  */
6245
6246void
6247remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6248{
6249  struct remote_state *rs = get_remote_state ();
6250
6251  /* When connected in non-stop mode, the core resumes threads
6252     individually.  Resuming remote threads directly in target_resume
6253     would thus result in sending one packet per thread.  Instead, to
6254     minimize roundtrip latency, here we just store the resume
6255     request; the actual remote resumption will be done in
6256     target_commit_resume / remote_commit_resume, where we'll be able
6257     to do vCont action coalescing.  */
6258  if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6259    {
6260      remote_thread_info *remote_thr;
6261
6262      if (minus_one_ptid == ptid || ptid.is_pid ())
6263	remote_thr = get_remote_thread_info (inferior_ptid);
6264      else
6265	remote_thr = get_remote_thread_info (ptid);
6266
6267      remote_thr->last_resume_step = step;
6268      remote_thr->last_resume_sig = siggnal;
6269      return;
6270    }
6271
6272  /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6273     (explained in remote-notif.c:handle_notification) so
6274     remote_notif_process is not called.  We need find a place where
6275     it is safe to start a 'vNotif' sequence.  It is good to do it
6276     before resuming inferior, because inferior was stopped and no RSP
6277     traffic at that moment.  */
6278  if (!target_is_non_stop_p ())
6279    remote_notif_process (rs->notif_state, &notif_client_stop);
6280
6281  rs->last_resume_exec_dir = ::execution_direction;
6282
6283  /* Prefer vCont, and fallback to s/c/S/C, which use Hc.  */
6284  if (!remote_resume_with_vcont (ptid, step, siggnal))
6285    remote_resume_with_hc (ptid, step, siggnal);
6286
6287  /* We are about to start executing the inferior, let's register it
6288     with the event loop.  NOTE: this is the one place where all the
6289     execution commands end up.  We could alternatively do this in each
6290     of the execution commands in infcmd.c.  */
6291  /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6292     into infcmd.c in order to allow inferior function calls to work
6293     NOT asynchronously.  */
6294  if (target_can_async_p ())
6295    target_async (1);
6296
6297  /* We've just told the target to resume.  The remote server will
6298     wait for the inferior to stop, and then send a stop reply.  In
6299     the mean time, we can't start another command/query ourselves
6300     because the stub wouldn't be ready to process it.  This applies
6301     only to the base all-stop protocol, however.  In non-stop (which
6302     only supports vCont), the stub replies with an "OK", and is
6303     immediate able to process further serial input.  */
6304  if (!target_is_non_stop_p ())
6305    rs->waiting_for_stop_reply = 1;
6306}
6307
6308static int is_pending_fork_parent_thread (struct thread_info *thread);
6309
6310/* Private per-inferior info for target remote processes.  */
6311
6312struct remote_inferior : public private_inferior
6313{
6314  /* Whether we can send a wildcard vCont for this process.  */
6315  bool may_wildcard_vcont = true;
6316};
6317
6318/* Get the remote private inferior data associated to INF.  */
6319
6320static remote_inferior *
6321get_remote_inferior (inferior *inf)
6322{
6323  if (inf->priv == NULL)
6324    inf->priv.reset (new remote_inferior);
6325
6326  return static_cast<remote_inferior *> (inf->priv.get ());
6327}
6328
6329/* Class used to track the construction of a vCont packet in the
6330   outgoing packet buffer.  This is used to send multiple vCont
6331   packets if we have more actions than would fit a single packet.  */
6332
6333class vcont_builder
6334{
6335public:
6336  explicit vcont_builder (remote_target *remote)
6337    : m_remote (remote)
6338  {
6339    restart ();
6340  }
6341
6342  void flush ();
6343  void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6344
6345private:
6346  void restart ();
6347
6348  /* The remote target.  */
6349  remote_target *m_remote;
6350
6351  /* Pointer to the first action.  P points here if no action has been
6352     appended yet.  */
6353  char *m_first_action;
6354
6355  /* Where the next action will be appended.  */
6356  char *m_p;
6357
6358  /* The end of the buffer.  Must never write past this.  */
6359  char *m_endp;
6360};
6361
6362/* Prepare the outgoing buffer for a new vCont packet.  */
6363
6364void
6365vcont_builder::restart ()
6366{
6367  struct remote_state *rs = m_remote->get_remote_state ();
6368
6369  m_p = rs->buf.data ();
6370  m_endp = m_p + m_remote->get_remote_packet_size ();
6371  m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6372  m_first_action = m_p;
6373}
6374
6375/* If the vCont packet being built has any action, send it to the
6376   remote end.  */
6377
6378void
6379vcont_builder::flush ()
6380{
6381  struct remote_state *rs;
6382
6383  if (m_p == m_first_action)
6384    return;
6385
6386  rs = m_remote->get_remote_state ();
6387  m_remote->putpkt (rs->buf);
6388  m_remote->getpkt (&rs->buf, 0);
6389  if (strcmp (rs->buf.data (), "OK") != 0)
6390    error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6391}
6392
6393/* The largest action is range-stepping, with its two addresses.  This
6394   is more than sufficient.  If a new, bigger action is created, it'll
6395   quickly trigger a failed assertion in append_resumption (and we'll
6396   just bump this).  */
6397#define MAX_ACTION_SIZE 200
6398
6399/* Append a new vCont action in the outgoing packet being built.  If
6400   the action doesn't fit the packet along with previous actions, push
6401   what we've got so far to the remote end and start over a new vCont
6402   packet (with the new action).  */
6403
6404void
6405vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6406{
6407  char buf[MAX_ACTION_SIZE + 1];
6408
6409  char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6410					    ptid, step, siggnal);
6411
6412  /* Check whether this new action would fit in the vCont packet along
6413     with previous actions.  If not, send what we've got so far and
6414     start a new vCont packet.  */
6415  size_t rsize = endp - buf;
6416  if (rsize > m_endp - m_p)
6417    {
6418      flush ();
6419      restart ();
6420
6421      /* Should now fit.  */
6422      gdb_assert (rsize <= m_endp - m_p);
6423    }
6424
6425  memcpy (m_p, buf, rsize);
6426  m_p += rsize;
6427  *m_p = '\0';
6428}
6429
6430/* to_commit_resume implementation.  */
6431
6432void
6433remote_target::commit_resume ()
6434{
6435  int any_process_wildcard;
6436  int may_global_wildcard_vcont;
6437
6438  /* If connected in all-stop mode, we'd send the remote resume
6439     request directly from remote_resume.  Likewise if
6440     reverse-debugging, as there are no defined vCont actions for
6441     reverse execution.  */
6442  if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6443    return;
6444
6445  /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6446     instead of resuming all threads of each process individually.
6447     However, if any thread of a process must remain halted, we can't
6448     send wildcard resumes and must send one action per thread.
6449
6450     Care must be taken to not resume threads/processes the server
6451     side already told us are stopped, but the core doesn't know about
6452     yet, because the events are still in the vStopped notification
6453     queue.  For example:
6454
6455       #1 => vCont s:p1.1;c
6456       #2 <= OK
6457       #3 <= %Stopped T05 p1.1
6458       #4 => vStopped
6459       #5 <= T05 p1.2
6460       #6 => vStopped
6461       #7 <= OK
6462       #8 (infrun handles the stop for p1.1 and continues stepping)
6463       #9 => vCont s:p1.1;c
6464
6465     The last vCont above would resume thread p1.2 by mistake, because
6466     the server has no idea that the event for p1.2 had not been
6467     handled yet.
6468
6469     The server side must similarly ignore resume actions for the
6470     thread that has a pending %Stopped notification (and any other
6471     threads with events pending), until GDB acks the notification
6472     with vStopped.  Otherwise, e.g., the following case is
6473     mishandled:
6474
6475       #1 => g  (or any other packet)
6476       #2 <= [registers]
6477       #3 <= %Stopped T05 p1.2
6478       #4 => vCont s:p1.1;c
6479       #5 <= OK
6480
6481     Above, the server must not resume thread p1.2.  GDB can't know
6482     that p1.2 stopped until it acks the %Stopped notification, and
6483     since from GDB's perspective all threads should be running, it
6484     sends a "c" action.
6485
6486     Finally, special care must also be given to handling fork/vfork
6487     events.  A (v)fork event actually tells us that two processes
6488     stopped -- the parent and the child.  Until we follow the fork,
6489     we must not resume the child.  Therefore, if we have a pending
6490     fork follow, we must not send a global wildcard resume action
6491     (vCont;c).  We can still send process-wide wildcards though.  */
6492
6493  /* Start by assuming a global wildcard (vCont;c) is possible.  */
6494  may_global_wildcard_vcont = 1;
6495
6496  /* And assume every process is individually wildcard-able too.  */
6497  for (inferior *inf : all_non_exited_inferiors ())
6498    {
6499      remote_inferior *priv = get_remote_inferior (inf);
6500
6501      priv->may_wildcard_vcont = true;
6502    }
6503
6504  /* Check for any pending events (not reported or processed yet) and
6505     disable process and global wildcard resumes appropriately.  */
6506  check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6507
6508  for (thread_info *tp : all_non_exited_threads ())
6509    {
6510      /* If a thread of a process is not meant to be resumed, then we
6511	 can't wildcard that process.  */
6512      if (!tp->executing)
6513	{
6514	  get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6515
6516	  /* And if we can't wildcard a process, we can't wildcard
6517	     everything either.  */
6518	  may_global_wildcard_vcont = 0;
6519	  continue;
6520	}
6521
6522      /* If a thread is the parent of an unfollowed fork, then we
6523	 can't do a global wildcard, as that would resume the fork
6524	 child.  */
6525      if (is_pending_fork_parent_thread (tp))
6526	may_global_wildcard_vcont = 0;
6527    }
6528
6529  /* Now let's build the vCont packet(s).  Actions must be appended
6530     from narrower to wider scopes (thread -> process -> global).  If
6531     we end up with too many actions for a single packet vcont_builder
6532     flushes the current vCont packet to the remote side and starts a
6533     new one.  */
6534  struct vcont_builder vcont_builder (this);
6535
6536  /* Threads first.  */
6537  for (thread_info *tp : all_non_exited_threads ())
6538    {
6539      remote_thread_info *remote_thr = get_remote_thread_info (tp);
6540
6541      if (!tp->executing || remote_thr->vcont_resumed)
6542	continue;
6543
6544      gdb_assert (!thread_is_in_step_over_chain (tp));
6545
6546      if (!remote_thr->last_resume_step
6547	  && remote_thr->last_resume_sig == GDB_SIGNAL_0
6548	  && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6549	{
6550	  /* We'll send a wildcard resume instead.  */
6551	  remote_thr->vcont_resumed = 1;
6552	  continue;
6553	}
6554
6555      vcont_builder.push_action (tp->ptid,
6556				 remote_thr->last_resume_step,
6557				 remote_thr->last_resume_sig);
6558      remote_thr->vcont_resumed = 1;
6559    }
6560
6561  /* Now check whether we can send any process-wide wildcard.  This is
6562     to avoid sending a global wildcard in the case nothing is
6563     supposed to be resumed.  */
6564  any_process_wildcard = 0;
6565
6566  for (inferior *inf : all_non_exited_inferiors ())
6567    {
6568      if (get_remote_inferior (inf)->may_wildcard_vcont)
6569	{
6570	  any_process_wildcard = 1;
6571	  break;
6572	}
6573    }
6574
6575  if (any_process_wildcard)
6576    {
6577      /* If all processes are wildcard-able, then send a single "c"
6578	 action, otherwise, send an "all (-1) threads of process"
6579	 continue action for each running process, if any.  */
6580      if (may_global_wildcard_vcont)
6581	{
6582	  vcont_builder.push_action (minus_one_ptid,
6583				     false, GDB_SIGNAL_0);
6584	}
6585      else
6586	{
6587	  for (inferior *inf : all_non_exited_inferiors ())
6588	    {
6589	      if (get_remote_inferior (inf)->may_wildcard_vcont)
6590		{
6591		  vcont_builder.push_action (ptid_t (inf->pid),
6592					     false, GDB_SIGNAL_0);
6593		}
6594	    }
6595	}
6596    }
6597
6598  vcont_builder.flush ();
6599}
6600
6601
6602
6603/* Non-stop version of target_stop.  Uses `vCont;t' to stop a remote
6604   thread, all threads of a remote process, or all threads of all
6605   processes.  */
6606
6607void
6608remote_target::remote_stop_ns (ptid_t ptid)
6609{
6610  struct remote_state *rs = get_remote_state ();
6611  char *p = rs->buf.data ();
6612  char *endp = p + get_remote_packet_size ();
6613
6614  if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6615    remote_vcont_probe ();
6616
6617  if (!rs->supports_vCont.t)
6618    error (_("Remote server does not support stopping threads"));
6619
6620  if (ptid == minus_one_ptid
6621      || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6622    p += xsnprintf (p, endp - p, "vCont;t");
6623  else
6624    {
6625      ptid_t nptid;
6626
6627      p += xsnprintf (p, endp - p, "vCont;t:");
6628
6629      if (ptid.is_pid ())
6630	  /* All (-1) threads of process.  */
6631	nptid = ptid_t (ptid.pid (), -1, 0);
6632      else
6633	{
6634	  /* Small optimization: if we already have a stop reply for
6635	     this thread, no use in telling the stub we want this
6636	     stopped.  */
6637	  if (peek_stop_reply (ptid))
6638	    return;
6639
6640	  nptid = ptid;
6641	}
6642
6643      write_ptid (p, endp, nptid);
6644    }
6645
6646  /* In non-stop, we get an immediate OK reply.  The stop reply will
6647     come in asynchronously by notification.  */
6648  putpkt (rs->buf);
6649  getpkt (&rs->buf, 0);
6650  if (strcmp (rs->buf.data (), "OK") != 0)
6651    error (_("Stopping %s failed: %s"), target_pid_to_str (ptid),
6652	   rs->buf.data ());
6653}
6654
6655/* All-stop version of target_interrupt.  Sends a break or a ^C to
6656   interrupt the remote target.  It is undefined which thread of which
6657   process reports the interrupt.  */
6658
6659void
6660remote_target::remote_interrupt_as ()
6661{
6662  struct remote_state *rs = get_remote_state ();
6663
6664  rs->ctrlc_pending_p = 1;
6665
6666  /* If the inferior is stopped already, but the core didn't know
6667     about it yet, just ignore the request.  The cached wait status
6668     will be collected in remote_wait.  */
6669  if (rs->cached_wait_status)
6670    return;
6671
6672  /* Send interrupt_sequence to remote target.  */
6673  send_interrupt_sequence ();
6674}
6675
6676/* Non-stop version of target_interrupt.  Uses `vCtrlC' to interrupt
6677   the remote target.  It is undefined which thread of which process
6678   reports the interrupt.  Throws an error if the packet is not
6679   supported by the server.  */
6680
6681void
6682remote_target::remote_interrupt_ns ()
6683{
6684  struct remote_state *rs = get_remote_state ();
6685  char *p = rs->buf.data ();
6686  char *endp = p + get_remote_packet_size ();
6687
6688  xsnprintf (p, endp - p, "vCtrlC");
6689
6690  /* In non-stop, we get an immediate OK reply.  The stop reply will
6691     come in asynchronously by notification.  */
6692  putpkt (rs->buf);
6693  getpkt (&rs->buf, 0);
6694
6695  switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6696    {
6697    case PACKET_OK:
6698      break;
6699    case PACKET_UNKNOWN:
6700      error (_("No support for interrupting the remote target."));
6701    case PACKET_ERROR:
6702      error (_("Interrupting target failed: %s"), rs->buf.data ());
6703    }
6704}
6705
6706/* Implement the to_stop function for the remote targets.  */
6707
6708void
6709remote_target::stop (ptid_t ptid)
6710{
6711  if (remote_debug)
6712    fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6713
6714  if (target_is_non_stop_p ())
6715    remote_stop_ns (ptid);
6716  else
6717    {
6718      /* We don't currently have a way to transparently pause the
6719	 remote target in all-stop mode.  Interrupt it instead.  */
6720      remote_interrupt_as ();
6721    }
6722}
6723
6724/* Implement the to_interrupt function for the remote targets.  */
6725
6726void
6727remote_target::interrupt ()
6728{
6729  if (remote_debug)
6730    fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6731
6732  if (target_is_non_stop_p ())
6733    remote_interrupt_ns ();
6734  else
6735    remote_interrupt_as ();
6736}
6737
6738/* Implement the to_pass_ctrlc function for the remote targets.  */
6739
6740void
6741remote_target::pass_ctrlc ()
6742{
6743  struct remote_state *rs = get_remote_state ();
6744
6745  if (remote_debug)
6746    fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6747
6748  /* If we're starting up, we're not fully synced yet.  Quit
6749     immediately.  */
6750  if (rs->starting_up)
6751    quit ();
6752  /* If ^C has already been sent once, offer to disconnect.  */
6753  else if (rs->ctrlc_pending_p)
6754    interrupt_query ();
6755  else
6756    target_interrupt ();
6757}
6758
6759/* Ask the user what to do when an interrupt is received.  */
6760
6761void
6762remote_target::interrupt_query ()
6763{
6764  struct remote_state *rs = get_remote_state ();
6765
6766  if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6767    {
6768      if (query (_("The target is not responding to interrupt requests.\n"
6769		   "Stop debugging it? ")))
6770	{
6771	  remote_unpush_target ();
6772	  throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6773	}
6774    }
6775  else
6776    {
6777      if (query (_("Interrupted while waiting for the program.\n"
6778		   "Give up waiting? ")))
6779	quit ();
6780    }
6781}
6782
6783/* Enable/disable target terminal ownership.  Most targets can use
6784   terminal groups to control terminal ownership.  Remote targets are
6785   different in that explicit transfer of ownership to/from GDB/target
6786   is required.  */
6787
6788void
6789remote_target::terminal_inferior ()
6790{
6791  /* NOTE: At this point we could also register our selves as the
6792     recipient of all input.  Any characters typed could then be
6793     passed on down to the target.  */
6794}
6795
6796void
6797remote_target::terminal_ours ()
6798{
6799}
6800
6801static void
6802remote_console_output (const char *msg)
6803{
6804  const char *p;
6805
6806  for (p = msg; p[0] && p[1]; p += 2)
6807    {
6808      char tb[2];
6809      char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6810
6811      tb[0] = c;
6812      tb[1] = 0;
6813      fputs_unfiltered (tb, gdb_stdtarg);
6814    }
6815  gdb_flush (gdb_stdtarg);
6816}
6817
6818DEF_VEC_O(cached_reg_t);
6819
6820typedef struct stop_reply
6821{
6822  struct notif_event base;
6823
6824  /* The identifier of the thread about this event  */
6825  ptid_t ptid;
6826
6827  /* The remote state this event is associated with.  When the remote
6828     connection, represented by a remote_state object, is closed,
6829     all the associated stop_reply events should be released.  */
6830  struct remote_state *rs;
6831
6832  struct target_waitstatus ws;
6833
6834  /* The architecture associated with the expedited registers.  */
6835  gdbarch *arch;
6836
6837  /* Expedited registers.  This makes remote debugging a bit more
6838     efficient for those targets that provide critical registers as
6839     part of their normal status mechanism (as another roundtrip to
6840     fetch them is avoided).  */
6841  VEC(cached_reg_t) *regcache;
6842
6843  enum target_stop_reason stop_reason;
6844
6845  CORE_ADDR watch_data_address;
6846
6847  int core;
6848} *stop_reply_p;
6849
6850static void
6851stop_reply_xfree (struct stop_reply *r)
6852{
6853  notif_event_xfree ((struct notif_event *) r);
6854}
6855
6856/* Return the length of the stop reply queue.  */
6857
6858int
6859remote_target::stop_reply_queue_length ()
6860{
6861  remote_state *rs = get_remote_state ();
6862  return rs->stop_reply_queue.size ();
6863}
6864
6865void
6866remote_notif_stop_parse (remote_target *remote,
6867			 struct notif_client *self, const char *buf,
6868			 struct notif_event *event)
6869{
6870  remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6871}
6872
6873static void
6874remote_notif_stop_ack (remote_target *remote,
6875		       struct notif_client *self, const char *buf,
6876		       struct notif_event *event)
6877{
6878  struct stop_reply *stop_reply = (struct stop_reply *) event;
6879
6880  /* acknowledge */
6881  putpkt (remote, self->ack_command);
6882
6883  if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6884    {
6885      /* We got an unknown stop reply.  */
6886      error (_("Unknown stop reply"));
6887    }
6888
6889  remote->push_stop_reply (stop_reply);
6890}
6891
6892static int
6893remote_notif_stop_can_get_pending_events (remote_target *remote,
6894					  struct notif_client *self)
6895{
6896  /* We can't get pending events in remote_notif_process for
6897     notification stop, and we have to do this in remote_wait_ns
6898     instead.  If we fetch all queued events from stub, remote stub
6899     may exit and we have no chance to process them back in
6900     remote_wait_ns.  */
6901  remote_state *rs = remote->get_remote_state ();
6902  mark_async_event_handler (rs->remote_async_inferior_event_token);
6903  return 0;
6904}
6905
6906static void
6907stop_reply_dtr (struct notif_event *event)
6908{
6909  struct stop_reply *r = (struct stop_reply *) event;
6910  cached_reg_t *reg;
6911  int ix;
6912
6913  for (ix = 0;
6914       VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6915       ix++)
6916    xfree (reg->data);
6917
6918  VEC_free (cached_reg_t, r->regcache);
6919}
6920
6921static struct notif_event *
6922remote_notif_stop_alloc_reply (void)
6923{
6924  /* We cast to a pointer to the "base class".  */
6925  struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6926
6927  r->dtr = stop_reply_dtr;
6928
6929  return r;
6930}
6931
6932/* A client of notification Stop.  */
6933
6934struct notif_client notif_client_stop =
6935{
6936  "Stop",
6937  "vStopped",
6938  remote_notif_stop_parse,
6939  remote_notif_stop_ack,
6940  remote_notif_stop_can_get_pending_events,
6941  remote_notif_stop_alloc_reply,
6942  REMOTE_NOTIF_STOP,
6943};
6944
6945/* Determine if THREAD_PTID is a pending fork parent thread.  ARG contains
6946   the pid of the process that owns the threads we want to check, or
6947   -1 if we want to check all threads.  */
6948
6949static int
6950is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6951			ptid_t thread_ptid)
6952{
6953  if (ws->kind == TARGET_WAITKIND_FORKED
6954      || ws->kind == TARGET_WAITKIND_VFORKED)
6955    {
6956      if (event_pid == -1 || event_pid == thread_ptid.pid ())
6957	return 1;
6958    }
6959
6960  return 0;
6961}
6962
6963/* Return the thread's pending status used to determine whether the
6964   thread is a fork parent stopped at a fork event.  */
6965
6966static struct target_waitstatus *
6967thread_pending_fork_status (struct thread_info *thread)
6968{
6969  if (thread->suspend.waitstatus_pending_p)
6970    return &thread->suspend.waitstatus;
6971  else
6972    return &thread->pending_follow;
6973}
6974
6975/* Determine if THREAD is a pending fork parent thread.  */
6976
6977static int
6978is_pending_fork_parent_thread (struct thread_info *thread)
6979{
6980  struct target_waitstatus *ws = thread_pending_fork_status (thread);
6981  int pid = -1;
6982
6983  return is_pending_fork_parent (ws, pid, thread->ptid);
6984}
6985
6986/* If CONTEXT contains any fork child threads that have not been
6987   reported yet, remove them from the CONTEXT list.  If such a
6988   thread exists it is because we are stopped at a fork catchpoint
6989   and have not yet called follow_fork, which will set up the
6990   host-side data structures for the new process.  */
6991
6992void
6993remote_target::remove_new_fork_children (threads_listing_context *context)
6994{
6995  int pid = -1;
6996  struct notif_client *notif = &notif_client_stop;
6997
6998  /* For any threads stopped at a fork event, remove the corresponding
6999     fork child threads from the CONTEXT list.  */
7000  for (thread_info *thread : all_non_exited_threads ())
7001    {
7002      struct target_waitstatus *ws = thread_pending_fork_status (thread);
7003
7004      if (is_pending_fork_parent (ws, pid, thread->ptid))
7005	context->remove_thread (ws->value.related_pid);
7006    }
7007
7008  /* Check for any pending fork events (not reported or processed yet)
7009     in process PID and remove those fork child threads from the
7010     CONTEXT list as well.  */
7011  remote_notif_get_pending_events (notif);
7012  for (auto &event : get_remote_state ()->stop_reply_queue)
7013    if (event->ws.kind == TARGET_WAITKIND_FORKED
7014	|| event->ws.kind == TARGET_WAITKIND_VFORKED
7015	|| event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7016      context->remove_thread (event->ws.value.related_pid);
7017}
7018
7019/* Check whether any event pending in the vStopped queue would prevent
7020   a global or process wildcard vCont action.  Clear
7021   *may_global_wildcard if we can't do a global wildcard (vCont;c),
7022   and clear the event inferior's may_wildcard_vcont flag if we can't
7023   do a process-wide wildcard resume (vCont;c:pPID.-1).  */
7024
7025void
7026remote_target::check_pending_events_prevent_wildcard_vcont
7027  (int *may_global_wildcard)
7028{
7029  struct notif_client *notif = &notif_client_stop;
7030
7031  remote_notif_get_pending_events (notif);
7032  for (auto &event : get_remote_state ()->stop_reply_queue)
7033    {
7034      if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7035	  || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7036	continue;
7037
7038      if (event->ws.kind == TARGET_WAITKIND_FORKED
7039	  || event->ws.kind == TARGET_WAITKIND_VFORKED)
7040	*may_global_wildcard = 0;
7041
7042      struct inferior *inf = find_inferior_ptid (event->ptid);
7043
7044      /* This may be the first time we heard about this process.
7045	 Regardless, we must not do a global wildcard resume, otherwise
7046	 we'd resume this process too.  */
7047      *may_global_wildcard = 0;
7048      if (inf != NULL)
7049	get_remote_inferior (inf)->may_wildcard_vcont = false;
7050    }
7051}
7052
7053/* Discard all pending stop replies of inferior INF.  */
7054
7055void
7056remote_target::discard_pending_stop_replies (struct inferior *inf)
7057{
7058  struct stop_reply *reply;
7059  struct remote_state *rs = get_remote_state ();
7060  struct remote_notif_state *rns = rs->notif_state;
7061
7062  /* This function can be notified when an inferior exists.  When the
7063     target is not remote, the notification state is NULL.  */
7064  if (rs->remote_desc == NULL)
7065    return;
7066
7067  reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7068
7069  /* Discard the in-flight notification.  */
7070  if (reply != NULL && reply->ptid.pid () == inf->pid)
7071    {
7072      stop_reply_xfree (reply);
7073      rns->pending_event[notif_client_stop.id] = NULL;
7074    }
7075
7076  /* Discard the stop replies we have already pulled with
7077     vStopped.  */
7078  auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7079			      rs->stop_reply_queue.end (),
7080			      [=] (const stop_reply_up &event)
7081			      {
7082				return event->ptid.pid () == inf->pid;
7083			      });
7084  rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7085}
7086
7087/* Discard the stop replies for RS in stop_reply_queue.  */
7088
7089void
7090remote_target::discard_pending_stop_replies_in_queue ()
7091{
7092  remote_state *rs = get_remote_state ();
7093
7094  /* Discard the stop replies we have already pulled with
7095     vStopped.  */
7096  auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7097			      rs->stop_reply_queue.end (),
7098			      [=] (const stop_reply_up &event)
7099			      {
7100				return event->rs == rs;
7101			      });
7102  rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7103}
7104
7105/* Remove the first reply in 'stop_reply_queue' which matches
7106   PTID.  */
7107
7108struct stop_reply *
7109remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7110{
7111  remote_state *rs = get_remote_state ();
7112
7113  auto iter = std::find_if (rs->stop_reply_queue.begin (),
7114			    rs->stop_reply_queue.end (),
7115			    [=] (const stop_reply_up &event)
7116			    {
7117			      return event->ptid.matches (ptid);
7118			    });
7119  struct stop_reply *result;
7120  if (iter == rs->stop_reply_queue.end ())
7121    result = nullptr;
7122  else
7123    {
7124      result = iter->release ();
7125      rs->stop_reply_queue.erase (iter);
7126    }
7127
7128  if (notif_debug)
7129    fprintf_unfiltered (gdb_stdlog,
7130			"notif: discard queued event: 'Stop' in %s\n",
7131			target_pid_to_str (ptid));
7132
7133  return result;
7134}
7135
7136/* Look for a queued stop reply belonging to PTID.  If one is found,
7137   remove it from the queue, and return it.  Returns NULL if none is
7138   found.  If there are still queued events left to process, tell the
7139   event loop to get back to target_wait soon.  */
7140
7141struct stop_reply *
7142remote_target::queued_stop_reply (ptid_t ptid)
7143{
7144  remote_state *rs = get_remote_state ();
7145  struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7146
7147  if (!rs->stop_reply_queue.empty ())
7148    {
7149      /* There's still at least an event left.  */
7150      mark_async_event_handler (rs->remote_async_inferior_event_token);
7151    }
7152
7153  return r;
7154}
7155
7156/* Push a fully parsed stop reply in the stop reply queue.  Since we
7157   know that we now have at least one queued event left to pass to the
7158   core side, tell the event loop to get back to target_wait soon.  */
7159
7160void
7161remote_target::push_stop_reply (struct stop_reply *new_event)
7162{
7163  remote_state *rs = get_remote_state ();
7164  rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7165
7166  if (notif_debug)
7167    fprintf_unfiltered (gdb_stdlog,
7168			"notif: push 'Stop' %s to queue %d\n",
7169			target_pid_to_str (new_event->ptid),
7170			int (rs->stop_reply_queue.size ()));
7171
7172  mark_async_event_handler (rs->remote_async_inferior_event_token);
7173}
7174
7175/* Returns true if we have a stop reply for PTID.  */
7176
7177int
7178remote_target::peek_stop_reply (ptid_t ptid)
7179{
7180  remote_state *rs = get_remote_state ();
7181  for (auto &event : rs->stop_reply_queue)
7182    if (ptid == event->ptid
7183	&& event->ws.kind == TARGET_WAITKIND_STOPPED)
7184      return 1;
7185  return 0;
7186}
7187
7188/* Helper for remote_parse_stop_reply.  Return nonzero if the substring
7189   starting with P and ending with PEND matches PREFIX.  */
7190
7191static int
7192strprefix (const char *p, const char *pend, const char *prefix)
7193{
7194  for ( ; p < pend; p++, prefix++)
7195    if (*p != *prefix)
7196      return 0;
7197  return *prefix == '\0';
7198}
7199
7200/* Parse the stop reply in BUF.  Either the function succeeds, and the
7201   result is stored in EVENT, or throws an error.  */
7202
7203void
7204remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7205{
7206  remote_arch_state *rsa = NULL;
7207  ULONGEST addr;
7208  const char *p;
7209  int skipregs = 0;
7210
7211  event->ptid = null_ptid;
7212  event->rs = get_remote_state ();
7213  event->ws.kind = TARGET_WAITKIND_IGNORE;
7214  event->ws.value.integer = 0;
7215  event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7216  event->regcache = NULL;
7217  event->core = -1;
7218
7219  switch (buf[0])
7220    {
7221    case 'T':		/* Status with PC, SP, FP, ...	*/
7222      /* Expedited reply, containing Signal, {regno, reg} repeat.  */
7223      /*  format is:  'Tssn...:r...;n...:r...;n...:r...;#cc', where
7224	    ss = signal number
7225	    n... = register number
7226	    r... = register contents
7227      */
7228
7229      p = &buf[3];	/* after Txx */
7230      while (*p)
7231	{
7232	  const char *p1;
7233	  int fieldsize;
7234
7235	  p1 = strchr (p, ':');
7236	  if (p1 == NULL)
7237	    error (_("Malformed packet(a) (missing colon): %s\n\
7238Packet: '%s'\n"),
7239		   p, buf);
7240	  if (p == p1)
7241	    error (_("Malformed packet(a) (missing register number): %s\n\
7242Packet: '%s'\n"),
7243		   p, buf);
7244
7245	  /* Some "registers" are actually extended stop information.
7246	     Note if you're adding a new entry here: GDB 7.9 and
7247	     earlier assume that all register "numbers" that start
7248	     with an hex digit are real register numbers.  Make sure
7249	     the server only sends such a packet if it knows the
7250	     client understands it.  */
7251
7252	  if (strprefix (p, p1, "thread"))
7253	    event->ptid = read_ptid (++p1, &p);
7254	  else if (strprefix (p, p1, "syscall_entry"))
7255	    {
7256	      ULONGEST sysno;
7257
7258	      event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7259	      p = unpack_varlen_hex (++p1, &sysno);
7260	      event->ws.value.syscall_number = (int) sysno;
7261	    }
7262	  else if (strprefix (p, p1, "syscall_return"))
7263	    {
7264	      ULONGEST sysno;
7265
7266	      event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7267	      p = unpack_varlen_hex (++p1, &sysno);
7268	      event->ws.value.syscall_number = (int) sysno;
7269	    }
7270	  else if (strprefix (p, p1, "watch")
7271		   || strprefix (p, p1, "rwatch")
7272		   || strprefix (p, p1, "awatch"))
7273	    {
7274	      event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7275	      p = unpack_varlen_hex (++p1, &addr);
7276	      event->watch_data_address = (CORE_ADDR) addr;
7277	    }
7278	  else if (strprefix (p, p1, "swbreak"))
7279	    {
7280	      event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7281
7282	      /* Make sure the stub doesn't forget to indicate support
7283		 with qSupported.  */
7284	      if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7285		error (_("Unexpected swbreak stop reason"));
7286
7287	      /* The value part is documented as "must be empty",
7288		 though we ignore it, in case we ever decide to make
7289		 use of it in a backward compatible way.  */
7290	      p = strchrnul (p1 + 1, ';');
7291	    }
7292	  else if (strprefix (p, p1, "hwbreak"))
7293	    {
7294	      event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7295
7296	      /* Make sure the stub doesn't forget to indicate support
7297		 with qSupported.  */
7298	      if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7299		error (_("Unexpected hwbreak stop reason"));
7300
7301	      /* See above.  */
7302	      p = strchrnul (p1 + 1, ';');
7303	    }
7304	  else if (strprefix (p, p1, "library"))
7305	    {
7306	      event->ws.kind = TARGET_WAITKIND_LOADED;
7307	      p = strchrnul (p1 + 1, ';');
7308	    }
7309	  else if (strprefix (p, p1, "replaylog"))
7310	    {
7311	      event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7312	      /* p1 will indicate "begin" or "end", but it makes
7313		 no difference for now, so ignore it.  */
7314	      p = strchrnul (p1 + 1, ';');
7315	    }
7316	  else if (strprefix (p, p1, "core"))
7317	    {
7318	      ULONGEST c;
7319
7320	      p = unpack_varlen_hex (++p1, &c);
7321	      event->core = c;
7322	    }
7323	  else if (strprefix (p, p1, "fork"))
7324	    {
7325	      event->ws.value.related_pid = read_ptid (++p1, &p);
7326	      event->ws.kind = TARGET_WAITKIND_FORKED;
7327	    }
7328	  else if (strprefix (p, p1, "vfork"))
7329	    {
7330	      event->ws.value.related_pid = read_ptid (++p1, &p);
7331	      event->ws.kind = TARGET_WAITKIND_VFORKED;
7332	    }
7333	  else if (strprefix (p, p1, "vforkdone"))
7334	    {
7335	      event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7336	      p = strchrnul (p1 + 1, ';');
7337	    }
7338	  else if (strprefix (p, p1, "exec"))
7339	    {
7340	      ULONGEST ignored;
7341	      int pathlen;
7342
7343	      /* Determine the length of the execd pathname.  */
7344	      p = unpack_varlen_hex (++p1, &ignored);
7345	      pathlen = (p - p1) / 2;
7346
7347	      /* Save the pathname for event reporting and for
7348		 the next run command.  */
7349	      char *pathname = (char *) xmalloc (pathlen + 1);
7350	      struct cleanup *old_chain = make_cleanup (xfree, pathname);
7351	      hex2bin (p1, (gdb_byte *) pathname, pathlen);
7352	      pathname[pathlen] = '\0';
7353	      discard_cleanups (old_chain);
7354
7355	      /* This is freed during event handling.  */
7356	      event->ws.value.execd_pathname = pathname;
7357	      event->ws.kind = TARGET_WAITKIND_EXECD;
7358
7359	      /* Skip the registers included in this packet, since
7360		 they may be for an architecture different from the
7361		 one used by the original program.  */
7362	      skipregs = 1;
7363	    }
7364	  else if (strprefix (p, p1, "create"))
7365	    {
7366	      event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7367	      p = strchrnul (p1 + 1, ';');
7368	    }
7369	  else
7370	    {
7371	      ULONGEST pnum;
7372	      const char *p_temp;
7373
7374	      if (skipregs)
7375		{
7376		  p = strchrnul (p1 + 1, ';');
7377		  p++;
7378		  continue;
7379		}
7380
7381	      /* Maybe a real ``P'' register number.  */
7382	      p_temp = unpack_varlen_hex (p, &pnum);
7383	      /* If the first invalid character is the colon, we got a
7384		 register number.  Otherwise, it's an unknown stop
7385		 reason.  */
7386	      if (p_temp == p1)
7387		{
7388		  /* If we haven't parsed the event's thread yet, find
7389		     it now, in order to find the architecture of the
7390		     reported expedited registers.  */
7391		  if (event->ptid == null_ptid)
7392		    {
7393		      const char *thr = strstr (p1 + 1, ";thread:");
7394		      if (thr != NULL)
7395			event->ptid = read_ptid (thr + strlen (";thread:"),
7396						 NULL);
7397		      else
7398			{
7399			  /* Either the current thread hasn't changed,
7400			     or the inferior is not multi-threaded.
7401			     The event must be for the thread we last
7402			     set as (or learned as being) current.  */
7403			  event->ptid = event->rs->general_thread;
7404			}
7405		    }
7406
7407		  if (rsa == NULL)
7408		    {
7409		      inferior *inf = (event->ptid == null_ptid
7410				       ? NULL
7411				       : find_inferior_ptid (event->ptid));
7412		      /* If this is the first time we learn anything
7413			 about this process, skip the registers
7414			 included in this packet, since we don't yet
7415			 know which architecture to use to parse them.
7416			 We'll determine the architecture later when
7417			 we process the stop reply and retrieve the
7418			 target description, via
7419			 remote_notice_new_inferior ->
7420			 post_create_inferior.  */
7421		      if (inf == NULL)
7422			{
7423			  p = strchrnul (p1 + 1, ';');
7424			  p++;
7425			  continue;
7426			}
7427
7428		      event->arch = inf->gdbarch;
7429		      rsa = event->rs->get_remote_arch_state (event->arch);
7430		    }
7431
7432		  packet_reg *reg
7433		    = packet_reg_from_pnum (event->arch, rsa, pnum);
7434		  cached_reg_t cached_reg;
7435
7436		  if (reg == NULL)
7437		    error (_("Remote sent bad register number %s: %s\n\
7438Packet: '%s'\n"),
7439			   hex_string (pnum), p, buf);
7440
7441		  cached_reg.num = reg->regnum;
7442		  cached_reg.data = (gdb_byte *)
7443		    xmalloc (register_size (event->arch, reg->regnum));
7444
7445		  p = p1 + 1;
7446		  fieldsize = hex2bin (p, cached_reg.data,
7447				       register_size (event->arch, reg->regnum));
7448		  p += 2 * fieldsize;
7449		  if (fieldsize < register_size (event->arch, reg->regnum))
7450		    warning (_("Remote reply is too short: %s"), buf);
7451
7452		  VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
7453		}
7454	      else
7455		{
7456		  /* Not a number.  Silently skip unknown optional
7457		     info.  */
7458		  p = strchrnul (p1 + 1, ';');
7459		}
7460	    }
7461
7462	  if (*p != ';')
7463	    error (_("Remote register badly formatted: %s\nhere: %s"),
7464		   buf, p);
7465	  ++p;
7466	}
7467
7468      if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7469	break;
7470
7471      /* fall through */
7472    case 'S':		/* Old style status, just signal only.  */
7473      {
7474	int sig;
7475
7476	event->ws.kind = TARGET_WAITKIND_STOPPED;
7477	sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7478	if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7479	  event->ws.value.sig = (enum gdb_signal) sig;
7480	else
7481	  event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7482      }
7483      break;
7484    case 'w':		/* Thread exited.  */
7485      {
7486	ULONGEST value;
7487
7488	event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7489	p = unpack_varlen_hex (&buf[1], &value);
7490	event->ws.value.integer = value;
7491	if (*p != ';')
7492	  error (_("stop reply packet badly formatted: %s"), buf);
7493	event->ptid = read_ptid (++p, NULL);
7494	break;
7495      }
7496    case 'W':		/* Target exited.  */
7497    case 'X':
7498      {
7499	int pid;
7500	ULONGEST value;
7501
7502	/* GDB used to accept only 2 hex chars here.  Stubs should
7503	   only send more if they detect GDB supports multi-process
7504	   support.  */
7505	p = unpack_varlen_hex (&buf[1], &value);
7506
7507	if (buf[0] == 'W')
7508	  {
7509	    /* The remote process exited.  */
7510	    event->ws.kind = TARGET_WAITKIND_EXITED;
7511	    event->ws.value.integer = value;
7512	  }
7513	else
7514	  {
7515	    /* The remote process exited with a signal.  */
7516	    event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7517	    if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7518	      event->ws.value.sig = (enum gdb_signal) value;
7519	    else
7520	      event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7521	  }
7522
7523	/* If no process is specified, assume inferior_ptid.  */
7524	pid = inferior_ptid.pid ();
7525	if (*p == '\0')
7526	  ;
7527	else if (*p == ';')
7528	  {
7529	    p++;
7530
7531	    if (*p == '\0')
7532	      ;
7533	    else if (startswith (p, "process:"))
7534	      {
7535		ULONGEST upid;
7536
7537		p += sizeof ("process:") - 1;
7538		unpack_varlen_hex (p, &upid);
7539		pid = upid;
7540	      }
7541	    else
7542	      error (_("unknown stop reply packet: %s"), buf);
7543	  }
7544	else
7545	  error (_("unknown stop reply packet: %s"), buf);
7546	event->ptid = ptid_t (pid);
7547      }
7548      break;
7549    case 'N':
7550      event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7551      event->ptid = minus_one_ptid;
7552      break;
7553    }
7554
7555  if (target_is_non_stop_p () && event->ptid == null_ptid)
7556    error (_("No process or thread specified in stop reply: %s"), buf);
7557}
7558
7559/* When the stub wants to tell GDB about a new notification reply, it
7560   sends a notification (%Stop, for example).  Those can come it at
7561   any time, hence, we have to make sure that any pending
7562   putpkt/getpkt sequence we're making is finished, before querying
7563   the stub for more events with the corresponding ack command
7564   (vStopped, for example).  E.g., if we started a vStopped sequence
7565   immediately upon receiving the notification, something like this
7566   could happen:
7567
7568    1.1) --> Hg 1
7569    1.2) <-- OK
7570    1.3) --> g
7571    1.4) <-- %Stop
7572    1.5) --> vStopped
7573    1.6) <-- (registers reply to step #1.3)
7574
7575   Obviously, the reply in step #1.6 would be unexpected to a vStopped
7576   query.
7577
7578   To solve this, whenever we parse a %Stop notification successfully,
7579   we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7580   doing whatever we were doing:
7581
7582    2.1) --> Hg 1
7583    2.2) <-- OK
7584    2.3) --> g
7585    2.4) <-- %Stop
7586      <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7587    2.5) <-- (registers reply to step #2.3)
7588
7589   Eventualy after step #2.5, we return to the event loop, which
7590   notices there's an event on the
7591   REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7592   associated callback --- the function below.  At this point, we're
7593   always safe to start a vStopped sequence. :
7594
7595    2.6) --> vStopped
7596    2.7) <-- T05 thread:2
7597    2.8) --> vStopped
7598    2.9) --> OK
7599*/
7600
7601void
7602remote_target::remote_notif_get_pending_events (notif_client *nc)
7603{
7604  struct remote_state *rs = get_remote_state ();
7605
7606  if (rs->notif_state->pending_event[nc->id] != NULL)
7607    {
7608      if (notif_debug)
7609	fprintf_unfiltered (gdb_stdlog,
7610			    "notif: process: '%s' ack pending event\n",
7611			    nc->name);
7612
7613      /* acknowledge */
7614      nc->ack (this, nc, rs->buf.data (),
7615	       rs->notif_state->pending_event[nc->id]);
7616      rs->notif_state->pending_event[nc->id] = NULL;
7617
7618      while (1)
7619	{
7620	  getpkt (&rs->buf, 0);
7621	  if (strcmp (rs->buf.data (), "OK") == 0)
7622	    break;
7623	  else
7624	    remote_notif_ack (this, nc, rs->buf.data ());
7625	}
7626    }
7627  else
7628    {
7629      if (notif_debug)
7630	fprintf_unfiltered (gdb_stdlog,
7631			    "notif: process: '%s' no pending reply\n",
7632			    nc->name);
7633    }
7634}
7635
7636/* Wrapper around remote_target::remote_notif_get_pending_events to
7637   avoid having to export the whole remote_target class.  */
7638
7639void
7640remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7641{
7642  remote->remote_notif_get_pending_events (nc);
7643}
7644
7645/* Called when it is decided that STOP_REPLY holds the info of the
7646   event that is to be returned to the core.  This function always
7647   destroys STOP_REPLY.  */
7648
7649ptid_t
7650remote_target::process_stop_reply (struct stop_reply *stop_reply,
7651				   struct target_waitstatus *status)
7652{
7653  ptid_t ptid;
7654
7655  *status = stop_reply->ws;
7656  ptid = stop_reply->ptid;
7657
7658  /* If no thread/process was reported by the stub, assume the current
7659     inferior.  */
7660  if (ptid == null_ptid)
7661    ptid = inferior_ptid;
7662
7663  if (status->kind != TARGET_WAITKIND_EXITED
7664      && status->kind != TARGET_WAITKIND_SIGNALLED
7665      && status->kind != TARGET_WAITKIND_NO_RESUMED)
7666    {
7667      /* Expedited registers.  */
7668      if (stop_reply->regcache)
7669	{
7670	  struct regcache *regcache
7671	    = get_thread_arch_regcache (ptid, stop_reply->arch);
7672	  cached_reg_t *reg;
7673	  int ix;
7674
7675	  for (ix = 0;
7676	       VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7677	       ix++)
7678	  {
7679	    regcache->raw_supply (reg->num, reg->data);
7680	    xfree (reg->data);
7681	  }
7682
7683	  VEC_free (cached_reg_t, stop_reply->regcache);
7684	}
7685
7686      remote_notice_new_inferior (ptid, 0);
7687      remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7688      remote_thr->core = stop_reply->core;
7689      remote_thr->stop_reason = stop_reply->stop_reason;
7690      remote_thr->watch_data_address = stop_reply->watch_data_address;
7691      remote_thr->vcont_resumed = 0;
7692    }
7693
7694  stop_reply_xfree (stop_reply);
7695  return ptid;
7696}
7697
7698/* The non-stop mode version of target_wait.  */
7699
7700ptid_t
7701remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7702{
7703  struct remote_state *rs = get_remote_state ();
7704  struct stop_reply *stop_reply;
7705  int ret;
7706  int is_notif = 0;
7707
7708  /* If in non-stop mode, get out of getpkt even if a
7709     notification is received.	*/
7710
7711  ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7712  while (1)
7713    {
7714      if (ret != -1 && !is_notif)
7715	switch (rs->buf[0])
7716	  {
7717	  case 'E':		/* Error of some sort.	*/
7718	    /* We're out of sync with the target now.  Did it continue
7719	       or not?  We can't tell which thread it was in non-stop,
7720	       so just ignore this.  */
7721	    warning (_("Remote failure reply: %s"), rs->buf.data ());
7722	    break;
7723	  case 'O':		/* Console output.  */
7724	    remote_console_output (&rs->buf[1]);
7725	    break;
7726	  default:
7727	    warning (_("Invalid remote reply: %s"), rs->buf.data ());
7728	    break;
7729	  }
7730
7731      /* Acknowledge a pending stop reply that may have arrived in the
7732	 mean time.  */
7733      if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7734	remote_notif_get_pending_events (&notif_client_stop);
7735
7736      /* If indeed we noticed a stop reply, we're done.  */
7737      stop_reply = queued_stop_reply (ptid);
7738      if (stop_reply != NULL)
7739	return process_stop_reply (stop_reply, status);
7740
7741      /* Still no event.  If we're just polling for an event, then
7742	 return to the event loop.  */
7743      if (options & TARGET_WNOHANG)
7744	{
7745	  status->kind = TARGET_WAITKIND_IGNORE;
7746	  return minus_one_ptid;
7747	}
7748
7749      /* Otherwise do a blocking wait.  */
7750      ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7751    }
7752}
7753
7754/* Wait until the remote machine stops, then return, storing status in
7755   STATUS just as `wait' would.  */
7756
7757ptid_t
7758remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7759{
7760  struct remote_state *rs = get_remote_state ();
7761  ptid_t event_ptid = null_ptid;
7762  char *buf;
7763  struct stop_reply *stop_reply;
7764
7765 again:
7766
7767  status->kind = TARGET_WAITKIND_IGNORE;
7768  status->value.integer = 0;
7769
7770  stop_reply = queued_stop_reply (ptid);
7771  if (stop_reply != NULL)
7772    return process_stop_reply (stop_reply, status);
7773
7774  if (rs->cached_wait_status)
7775    /* Use the cached wait status, but only once.  */
7776    rs->cached_wait_status = 0;
7777  else
7778    {
7779      int ret;
7780      int is_notif;
7781      int forever = ((options & TARGET_WNOHANG) == 0
7782		     && rs->wait_forever_enabled_p);
7783
7784      if (!rs->waiting_for_stop_reply)
7785	{
7786	  status->kind = TARGET_WAITKIND_NO_RESUMED;
7787	  return minus_one_ptid;
7788	}
7789
7790      /* FIXME: cagney/1999-09-27: If we're in async mode we should
7791	 _never_ wait for ever -> test on target_is_async_p().
7792	 However, before we do that we need to ensure that the caller
7793	 knows how to take the target into/out of async mode.  */
7794      ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7795
7796      /* GDB gets a notification.  Return to core as this event is
7797	 not interesting.  */
7798      if (ret != -1 && is_notif)
7799	return minus_one_ptid;
7800
7801      if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7802	return minus_one_ptid;
7803    }
7804
7805  buf = rs->buf.data ();
7806
7807  /* Assume that the target has acknowledged Ctrl-C unless we receive
7808     an 'F' or 'O' packet.  */
7809  if (buf[0] != 'F' && buf[0] != 'O')
7810    rs->ctrlc_pending_p = 0;
7811
7812  switch (buf[0])
7813    {
7814    case 'E':		/* Error of some sort.	*/
7815      /* We're out of sync with the target now.  Did it continue or
7816	 not?  Not is more likely, so report a stop.  */
7817      rs->waiting_for_stop_reply = 0;
7818
7819      warning (_("Remote failure reply: %s"), buf);
7820      status->kind = TARGET_WAITKIND_STOPPED;
7821      status->value.sig = GDB_SIGNAL_0;
7822      break;
7823    case 'F':		/* File-I/O request.  */
7824      /* GDB may access the inferior memory while handling the File-I/O
7825	 request, but we don't want GDB accessing memory while waiting
7826	 for a stop reply.  See the comments in putpkt_binary.  Set
7827	 waiting_for_stop_reply to 0 temporarily.  */
7828      rs->waiting_for_stop_reply = 0;
7829      remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7830      rs->ctrlc_pending_p = 0;
7831      /* GDB handled the File-I/O request, and the target is running
7832	 again.  Keep waiting for events.  */
7833      rs->waiting_for_stop_reply = 1;
7834      break;
7835    case 'N': case 'T': case 'S': case 'X': case 'W':
7836      {
7837	/* There is a stop reply to handle.  */
7838	rs->waiting_for_stop_reply = 0;
7839
7840	stop_reply
7841	  = (struct stop_reply *) remote_notif_parse (this,
7842						      &notif_client_stop,
7843						      rs->buf.data ());
7844
7845	event_ptid = process_stop_reply (stop_reply, status);
7846	break;
7847      }
7848    case 'O':		/* Console output.  */
7849      remote_console_output (buf + 1);
7850      break;
7851    case '\0':
7852      if (rs->last_sent_signal != GDB_SIGNAL_0)
7853	{
7854	  /* Zero length reply means that we tried 'S' or 'C' and the
7855	     remote system doesn't support it.  */
7856	  target_terminal::ours_for_output ();
7857	  printf_filtered
7858	    ("Can't send signals to this remote system.  %s not sent.\n",
7859	     gdb_signal_to_name (rs->last_sent_signal));
7860	  rs->last_sent_signal = GDB_SIGNAL_0;
7861	  target_terminal::inferior ();
7862
7863	  strcpy (buf, rs->last_sent_step ? "s" : "c");
7864	  putpkt (buf);
7865	  break;
7866	}
7867      /* fallthrough */
7868    default:
7869      warning (_("Invalid remote reply: %s"), buf);
7870      break;
7871    }
7872
7873  if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7874    return minus_one_ptid;
7875  else if (status->kind == TARGET_WAITKIND_IGNORE)
7876    {
7877      /* Nothing interesting happened.  If we're doing a non-blocking
7878	 poll, we're done.  Otherwise, go back to waiting.  */
7879      if (options & TARGET_WNOHANG)
7880	return minus_one_ptid;
7881      else
7882	goto again;
7883    }
7884  else if (status->kind != TARGET_WAITKIND_EXITED
7885	   && status->kind != TARGET_WAITKIND_SIGNALLED)
7886    {
7887      if (event_ptid != null_ptid)
7888	record_currthread (rs, event_ptid);
7889      else
7890	event_ptid = inferior_ptid;
7891    }
7892  else
7893    /* A process exit.  Invalidate our notion of current thread.  */
7894    record_currthread (rs, minus_one_ptid);
7895
7896  return event_ptid;
7897}
7898
7899/* Wait until the remote machine stops, then return, storing status in
7900   STATUS just as `wait' would.  */
7901
7902ptid_t
7903remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7904{
7905  ptid_t event_ptid;
7906
7907  if (target_is_non_stop_p ())
7908    event_ptid = wait_ns (ptid, status, options);
7909  else
7910    event_ptid = wait_as (ptid, status, options);
7911
7912  if (target_is_async_p ())
7913    {
7914      remote_state *rs = get_remote_state ();
7915
7916      /* If there are are events left in the queue tell the event loop
7917	 to return here.  */
7918      if (!rs->stop_reply_queue.empty ())
7919	mark_async_event_handler (rs->remote_async_inferior_event_token);
7920    }
7921
7922  return event_ptid;
7923}
7924
7925/* Fetch a single register using a 'p' packet.  */
7926
7927int
7928remote_target::fetch_register_using_p (struct regcache *regcache,
7929				       packet_reg *reg)
7930{
7931  struct gdbarch *gdbarch = regcache->arch ();
7932  struct remote_state *rs = get_remote_state ();
7933  char *buf, *p;
7934  gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7935  int i;
7936
7937  if (packet_support (PACKET_p) == PACKET_DISABLE)
7938    return 0;
7939
7940  if (reg->pnum == -1)
7941    return 0;
7942
7943  p = rs->buf.data ();
7944  *p++ = 'p';
7945  p += hexnumstr (p, reg->pnum);
7946  *p++ = '\0';
7947  putpkt (rs->buf);
7948  getpkt (&rs->buf, 0);
7949
7950  buf = rs->buf.data ();
7951
7952  switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
7953    {
7954    case PACKET_OK:
7955      break;
7956    case PACKET_UNKNOWN:
7957      return 0;
7958    case PACKET_ERROR:
7959      error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7960	     gdbarch_register_name (regcache->arch (),
7961				    reg->regnum),
7962	     buf);
7963    }
7964
7965  /* If this register is unfetchable, tell the regcache.  */
7966  if (buf[0] == 'x')
7967    {
7968      regcache->raw_supply (reg->regnum, NULL);
7969      return 1;
7970    }
7971
7972  /* Otherwise, parse and supply the value.  */
7973  p = buf;
7974  i = 0;
7975  while (p[0] != 0)
7976    {
7977      if (p[1] == 0)
7978	error (_("fetch_register_using_p: early buf termination"));
7979
7980      regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7981      p += 2;
7982    }
7983  regcache->raw_supply (reg->regnum, regp);
7984  return 1;
7985}
7986
7987/* Fetch the registers included in the target's 'g' packet.  */
7988
7989int
7990remote_target::send_g_packet ()
7991{
7992  struct remote_state *rs = get_remote_state ();
7993  int buf_len;
7994
7995  xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
7996  putpkt (rs->buf);
7997  getpkt (&rs->buf, 0);
7998  if (packet_check_result (rs->buf) == PACKET_ERROR)
7999    error (_("Could not read registers; remote failure reply '%s'"),
8000           rs->buf.data ());
8001
8002  /* We can get out of synch in various cases.  If the first character
8003     in the buffer is not a hex character, assume that has happened
8004     and try to fetch another packet to read.  */
8005  while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8006	 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8007	 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8008	 && rs->buf[0] != 'x')	/* New: unavailable register value.  */
8009    {
8010      if (remote_debug)
8011	fprintf_unfiltered (gdb_stdlog,
8012			    "Bad register packet; fetching a new packet\n");
8013      getpkt (&rs->buf, 0);
8014    }
8015
8016  buf_len = strlen (rs->buf.data ());
8017
8018  /* Sanity check the received packet.  */
8019  if (buf_len % 2 != 0)
8020    error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8021
8022  return buf_len / 2;
8023}
8024
8025void
8026remote_target::process_g_packet (struct regcache *regcache)
8027{
8028  struct gdbarch *gdbarch = regcache->arch ();
8029  struct remote_state *rs = get_remote_state ();
8030  remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8031  int i, buf_len;
8032  char *p;
8033  char *regs;
8034
8035  buf_len = strlen (rs->buf.data ());
8036
8037  /* Further sanity checks, with knowledge of the architecture.  */
8038  if (buf_len > 2 * rsa->sizeof_g_packet)
8039    error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8040	     "bytes): %s"),
8041	   rsa->sizeof_g_packet, buf_len / 2,
8042	   rs->buf.data ());
8043
8044  /* Save the size of the packet sent to us by the target.  It is used
8045     as a heuristic when determining the max size of packets that the
8046     target can safely receive.  */
8047  if (rsa->actual_register_packet_size == 0)
8048    rsa->actual_register_packet_size = buf_len;
8049
8050  /* If this is smaller than we guessed the 'g' packet would be,
8051     update our records.  A 'g' reply that doesn't include a register's
8052     value implies either that the register is not available, or that
8053     the 'p' packet must be used.  */
8054  if (buf_len < 2 * rsa->sizeof_g_packet)
8055    {
8056      long sizeof_g_packet = buf_len / 2;
8057
8058      for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8059	{
8060	  long offset = rsa->regs[i].offset;
8061	  long reg_size = register_size (gdbarch, i);
8062
8063	  if (rsa->regs[i].pnum == -1)
8064	    continue;
8065
8066	  if (offset >= sizeof_g_packet)
8067	    rsa->regs[i].in_g_packet = 0;
8068	  else if (offset + reg_size > sizeof_g_packet)
8069	    error (_("Truncated register %d in remote 'g' packet"), i);
8070	  else
8071	    rsa->regs[i].in_g_packet = 1;
8072	}
8073
8074      /* Looks valid enough, we can assume this is the correct length
8075         for a 'g' packet.  It's important not to adjust
8076         rsa->sizeof_g_packet if we have truncated registers otherwise
8077         this "if" won't be run the next time the method is called
8078         with a packet of the same size and one of the internal errors
8079         below will trigger instead.  */
8080      rsa->sizeof_g_packet = sizeof_g_packet;
8081    }
8082
8083  regs = (char *) alloca (rsa->sizeof_g_packet);
8084
8085  /* Unimplemented registers read as all bits zero.  */
8086  memset (regs, 0, rsa->sizeof_g_packet);
8087
8088  /* Reply describes registers byte by byte, each byte encoded as two
8089     hex characters.  Suck them all up, then supply them to the
8090     register cacheing/storage mechanism.  */
8091
8092  p = rs->buf.data ();
8093  for (i = 0; i < rsa->sizeof_g_packet; i++)
8094    {
8095      if (p[0] == 0 || p[1] == 0)
8096	/* This shouldn't happen - we adjusted sizeof_g_packet above.  */
8097	internal_error (__FILE__, __LINE__,
8098			_("unexpected end of 'g' packet reply"));
8099
8100      if (p[0] == 'x' && p[1] == 'x')
8101	regs[i] = 0;		/* 'x' */
8102      else
8103	regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8104      p += 2;
8105    }
8106
8107  for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8108    {
8109      struct packet_reg *r = &rsa->regs[i];
8110      long reg_size = register_size (gdbarch, i);
8111
8112      if (r->in_g_packet)
8113	{
8114	  if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8115	    /* This shouldn't happen - we adjusted in_g_packet above.  */
8116	    internal_error (__FILE__, __LINE__,
8117			    _("unexpected end of 'g' packet reply"));
8118	  else if (rs->buf[r->offset * 2] == 'x')
8119	    {
8120	      gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8121	      /* The register isn't available, mark it as such (at
8122		 the same time setting the value to zero).  */
8123	      regcache->raw_supply (r->regnum, NULL);
8124	    }
8125	  else
8126	    regcache->raw_supply (r->regnum, regs + r->offset);
8127	}
8128    }
8129}
8130
8131void
8132remote_target::fetch_registers_using_g (struct regcache *regcache)
8133{
8134  send_g_packet ();
8135  process_g_packet (regcache);
8136}
8137
8138/* Make the remote selected traceframe match GDB's selected
8139   traceframe.  */
8140
8141void
8142remote_target::set_remote_traceframe ()
8143{
8144  int newnum;
8145  struct remote_state *rs = get_remote_state ();
8146
8147  if (rs->remote_traceframe_number == get_traceframe_number ())
8148    return;
8149
8150  /* Avoid recursion, remote_trace_find calls us again.  */
8151  rs->remote_traceframe_number = get_traceframe_number ();
8152
8153  newnum = target_trace_find (tfind_number,
8154			      get_traceframe_number (), 0, 0, NULL);
8155
8156  /* Should not happen.  If it does, all bets are off.  */
8157  if (newnum != get_traceframe_number ())
8158    warning (_("could not set remote traceframe"));
8159}
8160
8161void
8162remote_target::fetch_registers (struct regcache *regcache, int regnum)
8163{
8164  struct gdbarch *gdbarch = regcache->arch ();
8165  struct remote_state *rs = get_remote_state ();
8166  remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8167  int i;
8168
8169  set_remote_traceframe ();
8170  set_general_thread (regcache->ptid ());
8171
8172  if (regnum >= 0)
8173    {
8174      packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8175
8176      gdb_assert (reg != NULL);
8177
8178      /* If this register might be in the 'g' packet, try that first -
8179	 we are likely to read more than one register.  If this is the
8180	 first 'g' packet, we might be overly optimistic about its
8181	 contents, so fall back to 'p'.  */
8182      if (reg->in_g_packet)
8183	{
8184	  fetch_registers_using_g (regcache);
8185	  if (reg->in_g_packet)
8186	    return;
8187	}
8188
8189      if (fetch_register_using_p (regcache, reg))
8190	return;
8191
8192      /* This register is not available.  */
8193      regcache->raw_supply (reg->regnum, NULL);
8194
8195      return;
8196    }
8197
8198  fetch_registers_using_g (regcache);
8199
8200  for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8201    if (!rsa->regs[i].in_g_packet)
8202      if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8203	{
8204	  /* This register is not available.  */
8205	  regcache->raw_supply (i, NULL);
8206	}
8207}
8208
8209/* Prepare to store registers.  Since we may send them all (using a
8210   'G' request), we have to read out the ones we don't want to change
8211   first.  */
8212
8213void
8214remote_target::prepare_to_store (struct regcache *regcache)
8215{
8216  struct remote_state *rs = get_remote_state ();
8217  remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8218  int i;
8219
8220  /* Make sure the entire registers array is valid.  */
8221  switch (packet_support (PACKET_P))
8222    {
8223    case PACKET_DISABLE:
8224    case PACKET_SUPPORT_UNKNOWN:
8225      /* Make sure all the necessary registers are cached.  */
8226      for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8227	if (rsa->regs[i].in_g_packet)
8228	  regcache->raw_update (rsa->regs[i].regnum);
8229      break;
8230    case PACKET_ENABLE:
8231      break;
8232    }
8233}
8234
8235/* Helper: Attempt to store REGNUM using the P packet.  Return fail IFF
8236   packet was not recognized.  */
8237
8238int
8239remote_target::store_register_using_P (const struct regcache *regcache,
8240				       packet_reg *reg)
8241{
8242  struct gdbarch *gdbarch = regcache->arch ();
8243  struct remote_state *rs = get_remote_state ();
8244  /* Try storing a single register.  */
8245  char *buf = rs->buf.data ();
8246  gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8247  char *p;
8248
8249  if (packet_support (PACKET_P) == PACKET_DISABLE)
8250    return 0;
8251
8252  if (reg->pnum == -1)
8253    return 0;
8254
8255  xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8256  p = buf + strlen (buf);
8257  regcache->raw_collect (reg->regnum, regp);
8258  bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8259  putpkt (rs->buf);
8260  getpkt (&rs->buf, 0);
8261
8262  switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8263    {
8264    case PACKET_OK:
8265      return 1;
8266    case PACKET_ERROR:
8267      error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8268	     gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8269    case PACKET_UNKNOWN:
8270      return 0;
8271    default:
8272      internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8273    }
8274}
8275
8276/* Store register REGNUM, or all registers if REGNUM == -1, from the
8277   contents of the register cache buffer.  FIXME: ignores errors.  */
8278
8279void
8280remote_target::store_registers_using_G (const struct regcache *regcache)
8281{
8282  struct remote_state *rs = get_remote_state ();
8283  remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8284  gdb_byte *regs;
8285  char *p;
8286
8287  /* Extract all the registers in the regcache copying them into a
8288     local buffer.  */
8289  {
8290    int i;
8291
8292    regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8293    memset (regs, 0, rsa->sizeof_g_packet);
8294    for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8295      {
8296	struct packet_reg *r = &rsa->regs[i];
8297
8298	if (r->in_g_packet)
8299	  regcache->raw_collect (r->regnum, regs + r->offset);
8300      }
8301  }
8302
8303  /* Command describes registers byte by byte,
8304     each byte encoded as two hex characters.  */
8305  p = rs->buf.data ();
8306  *p++ = 'G';
8307  bin2hex (regs, p, rsa->sizeof_g_packet);
8308  putpkt (rs->buf);
8309  getpkt (&rs->buf, 0);
8310  if (packet_check_result (rs->buf) == PACKET_ERROR)
8311    error (_("Could not write registers; remote failure reply '%s'"),
8312	   rs->buf.data ());
8313}
8314
8315/* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8316   of the register cache buffer.  FIXME: ignores errors.  */
8317
8318void
8319remote_target::store_registers (struct regcache *regcache, int regnum)
8320{
8321  struct gdbarch *gdbarch = regcache->arch ();
8322  struct remote_state *rs = get_remote_state ();
8323  remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8324  int i;
8325
8326  set_remote_traceframe ();
8327  set_general_thread (regcache->ptid ());
8328
8329  if (regnum >= 0)
8330    {
8331      packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8332
8333      gdb_assert (reg != NULL);
8334
8335      /* Always prefer to store registers using the 'P' packet if
8336	 possible; we often change only a small number of registers.
8337	 Sometimes we change a larger number; we'd need help from a
8338	 higher layer to know to use 'G'.  */
8339      if (store_register_using_P (regcache, reg))
8340	return;
8341
8342      /* For now, don't complain if we have no way to write the
8343	 register.  GDB loses track of unavailable registers too
8344	 easily.  Some day, this may be an error.  We don't have
8345	 any way to read the register, either...  */
8346      if (!reg->in_g_packet)
8347	return;
8348
8349      store_registers_using_G (regcache);
8350      return;
8351    }
8352
8353  store_registers_using_G (regcache);
8354
8355  for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8356    if (!rsa->regs[i].in_g_packet)
8357      if (!store_register_using_P (regcache, &rsa->regs[i]))
8358	/* See above for why we do not issue an error here.  */
8359	continue;
8360}
8361
8362
8363/* Return the number of hex digits in num.  */
8364
8365static int
8366hexnumlen (ULONGEST num)
8367{
8368  int i;
8369
8370  for (i = 0; num != 0; i++)
8371    num >>= 4;
8372
8373  return std::max (i, 1);
8374}
8375
8376/* Set BUF to the minimum number of hex digits representing NUM.  */
8377
8378static int
8379hexnumstr (char *buf, ULONGEST num)
8380{
8381  int len = hexnumlen (num);
8382
8383  return hexnumnstr (buf, num, len);
8384}
8385
8386
8387/* Set BUF to the hex digits representing NUM, padded to WIDTH characters.  */
8388
8389static int
8390hexnumnstr (char *buf, ULONGEST num, int width)
8391{
8392  int i;
8393
8394  buf[width] = '\0';
8395
8396  for (i = width - 1; i >= 0; i--)
8397    {
8398      buf[i] = "0123456789abcdef"[(num & 0xf)];
8399      num >>= 4;
8400    }
8401
8402  return width;
8403}
8404
8405/* Mask all but the least significant REMOTE_ADDRESS_SIZE bits.  */
8406
8407static CORE_ADDR
8408remote_address_masked (CORE_ADDR addr)
8409{
8410  unsigned int address_size = remote_address_size;
8411
8412  /* If "remoteaddresssize" was not set, default to target address size.  */
8413  if (!address_size)
8414    address_size = gdbarch_addr_bit (target_gdbarch ());
8415
8416  if (address_size > 0
8417      && address_size < (sizeof (ULONGEST) * 8))
8418    {
8419      /* Only create a mask when that mask can safely be constructed
8420         in a ULONGEST variable.  */
8421      ULONGEST mask = 1;
8422
8423      mask = (mask << address_size) - 1;
8424      addr &= mask;
8425    }
8426  return addr;
8427}
8428
8429/* Determine whether the remote target supports binary downloading.
8430   This is accomplished by sending a no-op memory write of zero length
8431   to the target at the specified address. It does not suffice to send
8432   the whole packet, since many stubs strip the eighth bit and
8433   subsequently compute a wrong checksum, which causes real havoc with
8434   remote_write_bytes.
8435
8436   NOTE: This can still lose if the serial line is not eight-bit
8437   clean.  In cases like this, the user should clear "remote
8438   X-packet".  */
8439
8440void
8441remote_target::check_binary_download (CORE_ADDR addr)
8442{
8443  struct remote_state *rs = get_remote_state ();
8444
8445  switch (packet_support (PACKET_X))
8446    {
8447    case PACKET_DISABLE:
8448      break;
8449    case PACKET_ENABLE:
8450      break;
8451    case PACKET_SUPPORT_UNKNOWN:
8452      {
8453	char *p;
8454
8455	p = rs->buf.data ();
8456	*p++ = 'X';
8457	p += hexnumstr (p, (ULONGEST) addr);
8458	*p++ = ',';
8459	p += hexnumstr (p, (ULONGEST) 0);
8460	*p++ = ':';
8461	*p = '\0';
8462
8463	putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8464	getpkt (&rs->buf, 0);
8465
8466	if (rs->buf[0] == '\0')
8467	  {
8468	    if (remote_debug)
8469	      fprintf_unfiltered (gdb_stdlog,
8470				  "binary downloading NOT "
8471				  "supported by target\n");
8472	    remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8473	  }
8474	else
8475	  {
8476	    if (remote_debug)
8477	      fprintf_unfiltered (gdb_stdlog,
8478				  "binary downloading supported by target\n");
8479	    remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8480	  }
8481	break;
8482      }
8483    }
8484}
8485
8486/* Helper function to resize the payload in order to try to get a good
8487   alignment.  We try to write an amount of data such that the next write will
8488   start on an address aligned on REMOTE_ALIGN_WRITES.  */
8489
8490static int
8491align_for_efficient_write (int todo, CORE_ADDR memaddr)
8492{
8493  return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8494}
8495
8496/* Write memory data directly to the remote machine.
8497   This does not inform the data cache; the data cache uses this.
8498   HEADER is the starting part of the packet.
8499   MEMADDR is the address in the remote memory space.
8500   MYADDR is the address of the buffer in our space.
8501   LEN_UNITS is the number of addressable units to write.
8502   UNIT_SIZE is the length in bytes of an addressable unit.
8503   PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8504   should send data as binary ('X'), or hex-encoded ('M').
8505
8506   The function creates packet of the form
8507       <HEADER><ADDRESS>,<LENGTH>:<DATA>
8508
8509   where encoding of <DATA> is terminated by PACKET_FORMAT.
8510
8511   If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8512   are omitted.
8513
8514   Return the transferred status, error or OK (an
8515   'enum target_xfer_status' value).  Save the number of addressable units
8516   transferred in *XFERED_LEN_UNITS.  Only transfer a single packet.
8517
8518   On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8519   exchange between gdb and the stub could look like (?? in place of the
8520   checksum):
8521
8522   -> $m1000,4#??
8523   <- aaaabbbbccccdddd
8524
8525   -> $M1000,3:eeeeffffeeee#??
8526   <- OK
8527
8528   -> $m1000,4#??
8529   <- eeeeffffeeeedddd  */
8530
8531target_xfer_status
8532remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8533				       const gdb_byte *myaddr,
8534				       ULONGEST len_units,
8535				       int unit_size,
8536				       ULONGEST *xfered_len_units,
8537				       char packet_format, int use_length)
8538{
8539  struct remote_state *rs = get_remote_state ();
8540  char *p;
8541  char *plen = NULL;
8542  int plenlen = 0;
8543  int todo_units;
8544  int units_written;
8545  int payload_capacity_bytes;
8546  int payload_length_bytes;
8547
8548  if (packet_format != 'X' && packet_format != 'M')
8549    internal_error (__FILE__, __LINE__,
8550		    _("remote_write_bytes_aux: bad packet format"));
8551
8552  if (len_units == 0)
8553    return TARGET_XFER_EOF;
8554
8555  payload_capacity_bytes = get_memory_write_packet_size ();
8556
8557  /* The packet buffer will be large enough for the payload;
8558     get_memory_packet_size ensures this.  */
8559  rs->buf[0] = '\0';
8560
8561  /* Compute the size of the actual payload by subtracting out the
8562     packet header and footer overhead: "$M<memaddr>,<len>:...#nn".  */
8563
8564  payload_capacity_bytes -= strlen ("$,:#NN");
8565  if (!use_length)
8566    /* The comma won't be used.  */
8567    payload_capacity_bytes += 1;
8568  payload_capacity_bytes -= strlen (header);
8569  payload_capacity_bytes -= hexnumlen (memaddr);
8570
8571  /* Construct the packet excluding the data: "<header><memaddr>,<len>:".  */
8572
8573  strcat (rs->buf.data (), header);
8574  p = rs->buf.data () + strlen (header);
8575
8576  /* Compute a best guess of the number of bytes actually transfered.  */
8577  if (packet_format == 'X')
8578    {
8579      /* Best guess at number of bytes that will fit.  */
8580      todo_units = std::min (len_units,
8581			     (ULONGEST) payload_capacity_bytes / unit_size);
8582      if (use_length)
8583	payload_capacity_bytes -= hexnumlen (todo_units);
8584      todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8585    }
8586  else
8587    {
8588      /* Number of bytes that will fit.  */
8589      todo_units
8590	= std::min (len_units,
8591		    (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8592      if (use_length)
8593	payload_capacity_bytes -= hexnumlen (todo_units);
8594      todo_units = std::min (todo_units,
8595			     (payload_capacity_bytes / unit_size) / 2);
8596    }
8597
8598  if (todo_units <= 0)
8599    internal_error (__FILE__, __LINE__,
8600		    _("minimum packet size too small to write data"));
8601
8602  /* If we already need another packet, then try to align the end
8603     of this packet to a useful boundary.  */
8604  if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8605    todo_units = align_for_efficient_write (todo_units, memaddr);
8606
8607  /* Append "<memaddr>".  */
8608  memaddr = remote_address_masked (memaddr);
8609  p += hexnumstr (p, (ULONGEST) memaddr);
8610
8611  if (use_length)
8612    {
8613      /* Append ",".  */
8614      *p++ = ',';
8615
8616      /* Append the length and retain its location and size.  It may need to be
8617         adjusted once the packet body has been created.  */
8618      plen = p;
8619      plenlen = hexnumstr (p, (ULONGEST) todo_units);
8620      p += plenlen;
8621    }
8622
8623  /* Append ":".  */
8624  *p++ = ':';
8625  *p = '\0';
8626
8627  /* Append the packet body.  */
8628  if (packet_format == 'X')
8629    {
8630      /* Binary mode.  Send target system values byte by byte, in
8631	 increasing byte addresses.  Only escape certain critical
8632	 characters.  */
8633      payload_length_bytes =
8634	  remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8635				&units_written, payload_capacity_bytes);
8636
8637      /* If not all TODO units fit, then we'll need another packet.  Make
8638	 a second try to keep the end of the packet aligned.  Don't do
8639	 this if the packet is tiny.  */
8640      if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8641	{
8642	  int new_todo_units;
8643
8644	  new_todo_units = align_for_efficient_write (units_written, memaddr);
8645
8646	  if (new_todo_units != units_written)
8647	    payload_length_bytes =
8648		remote_escape_output (myaddr, new_todo_units, unit_size,
8649				      (gdb_byte *) p, &units_written,
8650				      payload_capacity_bytes);
8651	}
8652
8653      p += payload_length_bytes;
8654      if (use_length && units_written < todo_units)
8655	{
8656	  /* Escape chars have filled up the buffer prematurely,
8657	     and we have actually sent fewer units than planned.
8658	     Fix-up the length field of the packet.  Use the same
8659	     number of characters as before.  */
8660	  plen += hexnumnstr (plen, (ULONGEST) units_written,
8661			      plenlen);
8662	  *plen = ':';  /* overwrite \0 from hexnumnstr() */
8663	}
8664    }
8665  else
8666    {
8667      /* Normal mode: Send target system values byte by byte, in
8668	 increasing byte addresses.  Each byte is encoded as a two hex
8669	 value.  */
8670      p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8671      units_written = todo_units;
8672    }
8673
8674  putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8675  getpkt (&rs->buf, 0);
8676
8677  if (rs->buf[0] == 'E')
8678    return TARGET_XFER_E_IO;
8679
8680  /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8681     send fewer units than we'd planned.  */
8682  *xfered_len_units = (ULONGEST) units_written;
8683  return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8684}
8685
8686/* Write memory data directly to the remote machine.
8687   This does not inform the data cache; the data cache uses this.
8688   MEMADDR is the address in the remote memory space.
8689   MYADDR is the address of the buffer in our space.
8690   LEN is the number of bytes.
8691
8692   Return the transferred status, error or OK (an
8693   'enum target_xfer_status' value).  Save the number of bytes
8694   transferred in *XFERED_LEN.  Only transfer a single packet.  */
8695
8696target_xfer_status
8697remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8698				   ULONGEST len, int unit_size,
8699				   ULONGEST *xfered_len)
8700{
8701  const char *packet_format = NULL;
8702
8703  /* Check whether the target supports binary download.  */
8704  check_binary_download (memaddr);
8705
8706  switch (packet_support (PACKET_X))
8707    {
8708    case PACKET_ENABLE:
8709      packet_format = "X";
8710      break;
8711    case PACKET_DISABLE:
8712      packet_format = "M";
8713      break;
8714    case PACKET_SUPPORT_UNKNOWN:
8715      internal_error (__FILE__, __LINE__,
8716		      _("remote_write_bytes: bad internal state"));
8717    default:
8718      internal_error (__FILE__, __LINE__, _("bad switch"));
8719    }
8720
8721  return remote_write_bytes_aux (packet_format,
8722				 memaddr, myaddr, len, unit_size, xfered_len,
8723				 packet_format[0], 1);
8724}
8725
8726/* Read memory data directly from the remote machine.
8727   This does not use the data cache; the data cache uses this.
8728   MEMADDR is the address in the remote memory space.
8729   MYADDR is the address of the buffer in our space.
8730   LEN_UNITS is the number of addressable memory units to read..
8731   UNIT_SIZE is the length in bytes of an addressable unit.
8732
8733   Return the transferred status, error or OK (an
8734   'enum target_xfer_status' value).  Save the number of bytes
8735   transferred in *XFERED_LEN_UNITS.
8736
8737   See the comment of remote_write_bytes_aux for an example of
8738   memory read/write exchange between gdb and the stub.  */
8739
8740target_xfer_status
8741remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8742				    ULONGEST len_units,
8743				    int unit_size, ULONGEST *xfered_len_units)
8744{
8745  struct remote_state *rs = get_remote_state ();
8746  int buf_size_bytes;		/* Max size of packet output buffer.  */
8747  char *p;
8748  int todo_units;
8749  int decoded_bytes;
8750
8751  buf_size_bytes = get_memory_read_packet_size ();
8752  /* The packet buffer will be large enough for the payload;
8753     get_memory_packet_size ensures this.  */
8754
8755  /* Number of units that will fit.  */
8756  todo_units = std::min (len_units,
8757			 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8758
8759  /* Construct "m"<memaddr>","<len>".  */
8760  memaddr = remote_address_masked (memaddr);
8761  p = rs->buf.data ();
8762  *p++ = 'm';
8763  p += hexnumstr (p, (ULONGEST) memaddr);
8764  *p++ = ',';
8765  p += hexnumstr (p, (ULONGEST) todo_units);
8766  *p = '\0';
8767  putpkt (rs->buf);
8768  getpkt (&rs->buf, 0);
8769  if (rs->buf[0] == 'E'
8770      && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8771      && rs->buf[3] == '\0')
8772    return TARGET_XFER_E_IO;
8773  /* Reply describes memory byte by byte, each byte encoded as two hex
8774     characters.  */
8775  p = rs->buf.data ();
8776  decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8777  /* Return what we have.  Let higher layers handle partial reads.  */
8778  *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8779  return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8780}
8781
8782/* Using the set of read-only target sections of remote, read live
8783   read-only memory.
8784
8785   For interface/parameters/return description see target.h,
8786   to_xfer_partial.  */
8787
8788target_xfer_status
8789remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8790						  ULONGEST memaddr,
8791						  ULONGEST len,
8792						  int unit_size,
8793						  ULONGEST *xfered_len)
8794{
8795  struct target_section *secp;
8796  struct target_section_table *table;
8797
8798  secp = target_section_by_addr (this, memaddr);
8799  if (secp != NULL
8800      && (bfd_get_section_flags (secp->the_bfd_section->owner,
8801				 secp->the_bfd_section)
8802	  & SEC_READONLY))
8803    {
8804      struct target_section *p;
8805      ULONGEST memend = memaddr + len;
8806
8807      table = target_get_section_table (this);
8808
8809      for (p = table->sections; p < table->sections_end; p++)
8810	{
8811	  if (memaddr >= p->addr)
8812	    {
8813	      if (memend <= p->endaddr)
8814		{
8815		  /* Entire transfer is within this section.  */
8816		  return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8817					      xfered_len);
8818		}
8819	      else if (memaddr >= p->endaddr)
8820		{
8821		  /* This section ends before the transfer starts.  */
8822		  continue;
8823		}
8824	      else
8825		{
8826		  /* This section overlaps the transfer.  Just do half.  */
8827		  len = p->endaddr - memaddr;
8828		  return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8829					      xfered_len);
8830		}
8831	    }
8832	}
8833    }
8834
8835  return TARGET_XFER_EOF;
8836}
8837
8838/* Similar to remote_read_bytes_1, but it reads from the remote stub
8839   first if the requested memory is unavailable in traceframe.
8840   Otherwise, fall back to remote_read_bytes_1.  */
8841
8842target_xfer_status
8843remote_target::remote_read_bytes (CORE_ADDR memaddr,
8844				  gdb_byte *myaddr, ULONGEST len, int unit_size,
8845				  ULONGEST *xfered_len)
8846{
8847  if (len == 0)
8848    return TARGET_XFER_EOF;
8849
8850  if (get_traceframe_number () != -1)
8851    {
8852      std::vector<mem_range> available;
8853
8854      /* If we fail to get the set of available memory, then the
8855	 target does not support querying traceframe info, and so we
8856	 attempt reading from the traceframe anyway (assuming the
8857	 target implements the old QTro packet then).  */
8858      if (traceframe_available_memory (&available, memaddr, len))
8859	{
8860	  if (available.empty () || available[0].start != memaddr)
8861	    {
8862	      enum target_xfer_status res;
8863
8864	      /* Don't read into the traceframe's available
8865		 memory.  */
8866	      if (!available.empty ())
8867		{
8868		  LONGEST oldlen = len;
8869
8870		  len = available[0].start - memaddr;
8871		  gdb_assert (len <= oldlen);
8872		}
8873
8874	      /* This goes through the topmost target again.  */
8875	      res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8876						       len, unit_size, xfered_len);
8877	      if (res == TARGET_XFER_OK)
8878		return TARGET_XFER_OK;
8879	      else
8880		{
8881		  /* No use trying further, we know some memory starting
8882		     at MEMADDR isn't available.  */
8883		  *xfered_len = len;
8884		  return (*xfered_len != 0) ?
8885		    TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8886		}
8887	    }
8888
8889	  /* Don't try to read more than how much is available, in
8890	     case the target implements the deprecated QTro packet to
8891	     cater for older GDBs (the target's knowledge of read-only
8892	     sections may be outdated by now).  */
8893	  len = available[0].length;
8894	}
8895    }
8896
8897  return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8898}
8899
8900
8901
8902/* Sends a packet with content determined by the printf format string
8903   FORMAT and the remaining arguments, then gets the reply.  Returns
8904   whether the packet was a success, a failure, or unknown.  */
8905
8906packet_result
8907remote_target::remote_send_printf (const char *format, ...)
8908{
8909  struct remote_state *rs = get_remote_state ();
8910  int max_size = get_remote_packet_size ();
8911  va_list ap;
8912
8913  va_start (ap, format);
8914
8915  rs->buf[0] = '\0';
8916  int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8917
8918  va_end (ap);
8919
8920  if (size >= max_size)
8921    internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8922
8923  if (putpkt (rs->buf) < 0)
8924    error (_("Communication problem with target."));
8925
8926  rs->buf[0] = '\0';
8927  getpkt (&rs->buf, 0);
8928
8929  return packet_check_result (rs->buf);
8930}
8931
8932/* Flash writing can take quite some time.  We'll set
8933   effectively infinite timeout for flash operations.
8934   In future, we'll need to decide on a better approach.  */
8935static const int remote_flash_timeout = 1000;
8936
8937void
8938remote_target::flash_erase (ULONGEST address, LONGEST length)
8939{
8940  int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8941  enum packet_result ret;
8942  scoped_restore restore_timeout
8943    = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8944
8945  ret = remote_send_printf ("vFlashErase:%s,%s",
8946			    phex (address, addr_size),
8947			    phex (length, 4));
8948  switch (ret)
8949    {
8950    case PACKET_UNKNOWN:
8951      error (_("Remote target does not support flash erase"));
8952    case PACKET_ERROR:
8953      error (_("Error erasing flash with vFlashErase packet"));
8954    default:
8955      break;
8956    }
8957}
8958
8959target_xfer_status
8960remote_target::remote_flash_write (ULONGEST address,
8961				   ULONGEST length, ULONGEST *xfered_len,
8962				   const gdb_byte *data)
8963{
8964  scoped_restore restore_timeout
8965    = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8966  return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8967				 xfered_len,'X', 0);
8968}
8969
8970void
8971remote_target::flash_done ()
8972{
8973  int ret;
8974
8975  scoped_restore restore_timeout
8976    = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8977
8978  ret = remote_send_printf ("vFlashDone");
8979
8980  switch (ret)
8981    {
8982    case PACKET_UNKNOWN:
8983      error (_("Remote target does not support vFlashDone"));
8984    case PACKET_ERROR:
8985      error (_("Error finishing flash operation"));
8986    default:
8987      break;
8988    }
8989}
8990
8991void
8992remote_target::files_info ()
8993{
8994  puts_filtered ("Debugging a target over a serial line.\n");
8995}
8996
8997/* Stuff for dealing with the packets which are part of this protocol.
8998   See comment at top of file for details.  */
8999
9000/* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9001   error to higher layers.  Called when a serial error is detected.
9002   The exception message is STRING, followed by a colon and a blank,
9003   the system error message for errno at function entry and final dot
9004   for output compatibility with throw_perror_with_name.  */
9005
9006static void
9007unpush_and_perror (const char *string)
9008{
9009  int saved_errno = errno;
9010
9011  remote_unpush_target ();
9012  throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9013	       safe_strerror (saved_errno));
9014}
9015
9016/* Read a single character from the remote end.  The current quit
9017   handler is overridden to avoid quitting in the middle of packet
9018   sequence, as that would break communication with the remote server.
9019   See remote_serial_quit_handler for more detail.  */
9020
9021int
9022remote_target::readchar (int timeout)
9023{
9024  int ch;
9025  struct remote_state *rs = get_remote_state ();
9026
9027  {
9028    scoped_restore restore_quit_target
9029      = make_scoped_restore (&curr_quit_handler_target, this);
9030    scoped_restore restore_quit
9031      = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9032
9033    rs->got_ctrlc_during_io = 0;
9034
9035    ch = serial_readchar (rs->remote_desc, timeout);
9036
9037    if (rs->got_ctrlc_during_io)
9038      set_quit_flag ();
9039  }
9040
9041  if (ch >= 0)
9042    return ch;
9043
9044  switch ((enum serial_rc) ch)
9045    {
9046    case SERIAL_EOF:
9047      remote_unpush_target ();
9048      throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9049      /* no return */
9050    case SERIAL_ERROR:
9051      unpush_and_perror (_("Remote communication error.  "
9052			   "Target disconnected."));
9053      /* no return */
9054    case SERIAL_TIMEOUT:
9055      break;
9056    }
9057  return ch;
9058}
9059
9060/* Wrapper for serial_write that closes the target and throws if
9061   writing fails.  The current quit handler is overridden to avoid
9062   quitting in the middle of packet sequence, as that would break
9063   communication with the remote server.  See
9064   remote_serial_quit_handler for more detail.  */
9065
9066void
9067remote_target::remote_serial_write (const char *str, int len)
9068{
9069  struct remote_state *rs = get_remote_state ();
9070
9071  scoped_restore restore_quit_target
9072    = make_scoped_restore (&curr_quit_handler_target, this);
9073  scoped_restore restore_quit
9074    = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9075
9076  rs->got_ctrlc_during_io = 0;
9077
9078  if (serial_write (rs->remote_desc, str, len))
9079    {
9080      unpush_and_perror (_("Remote communication error.  "
9081			   "Target disconnected."));
9082    }
9083
9084  if (rs->got_ctrlc_during_io)
9085    set_quit_flag ();
9086}
9087
9088/* Return a string representing an escaped version of BUF, of len N.
9089   E.g. \n is converted to \\n, \t to \\t, etc.  */
9090
9091static std::string
9092escape_buffer (const char *buf, int n)
9093{
9094  string_file stb;
9095
9096  stb.putstrn (buf, n, '\\');
9097  return std::move (stb.string ());
9098}
9099
9100/* Display a null-terminated packet on stdout, for debugging, using C
9101   string notation.  */
9102
9103static void
9104print_packet (const char *buf)
9105{
9106  puts_filtered ("\"");
9107  fputstr_filtered (buf, '"', gdb_stdout);
9108  puts_filtered ("\"");
9109}
9110
9111int
9112remote_target::putpkt (const char *buf)
9113{
9114  return putpkt_binary (buf, strlen (buf));
9115}
9116
9117/* Wrapper around remote_target::putpkt to avoid exporting
9118   remote_target.  */
9119
9120int
9121putpkt (remote_target *remote, const char *buf)
9122{
9123  return remote->putpkt (buf);
9124}
9125
9126/* Send a packet to the remote machine, with error checking.  The data
9127   of the packet is in BUF.  The string in BUF can be at most
9128   get_remote_packet_size () - 5 to account for the $, # and checksum,
9129   and for a possible /0 if we are debugging (remote_debug) and want
9130   to print the sent packet as a string.  */
9131
9132int
9133remote_target::putpkt_binary (const char *buf, int cnt)
9134{
9135  struct remote_state *rs = get_remote_state ();
9136  int i;
9137  unsigned char csum = 0;
9138  gdb::def_vector<char> data (cnt + 6);
9139  char *buf2 = data.data ();
9140
9141  int ch;
9142  int tcount = 0;
9143  char *p;
9144
9145  /* Catch cases like trying to read memory or listing threads while
9146     we're waiting for a stop reply.  The remote server wouldn't be
9147     ready to handle this request, so we'd hang and timeout.  We don't
9148     have to worry about this in synchronous mode, because in that
9149     case it's not possible to issue a command while the target is
9150     running.  This is not a problem in non-stop mode, because in that
9151     case, the stub is always ready to process serial input.  */
9152  if (!target_is_non_stop_p ()
9153      && target_is_async_p ()
9154      && rs->waiting_for_stop_reply)
9155    {
9156      error (_("Cannot execute this command while the target is running.\n"
9157	       "Use the \"interrupt\" command to stop the target\n"
9158	       "and then try again."));
9159    }
9160
9161  /* We're sending out a new packet.  Make sure we don't look at a
9162     stale cached response.  */
9163  rs->cached_wait_status = 0;
9164
9165  /* Copy the packet into buffer BUF2, encapsulating it
9166     and giving it a checksum.  */
9167
9168  p = buf2;
9169  *p++ = '$';
9170
9171  for (i = 0; i < cnt; i++)
9172    {
9173      csum += buf[i];
9174      *p++ = buf[i];
9175    }
9176  *p++ = '#';
9177  *p++ = tohex ((csum >> 4) & 0xf);
9178  *p++ = tohex (csum & 0xf);
9179
9180  /* Send it over and over until we get a positive ack.  */
9181
9182  while (1)
9183    {
9184      int started_error_output = 0;
9185
9186      if (remote_debug)
9187	{
9188	  *p = '\0';
9189
9190	  int len = (int) (p - buf2);
9191
9192	  std::string str
9193	    = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
9194
9195	  fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9196
9197	  if (len > REMOTE_DEBUG_MAX_CHAR)
9198	    fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9199				len - REMOTE_DEBUG_MAX_CHAR);
9200
9201	  fprintf_unfiltered (gdb_stdlog, "...");
9202
9203	  gdb_flush (gdb_stdlog);
9204	}
9205      remote_serial_write (buf2, p - buf2);
9206
9207      /* If this is a no acks version of the remote protocol, send the
9208	 packet and move on.  */
9209      if (rs->noack_mode)
9210        break;
9211
9212      /* Read until either a timeout occurs (-2) or '+' is read.
9213	 Handle any notification that arrives in the mean time.  */
9214      while (1)
9215	{
9216	  ch = readchar (remote_timeout);
9217
9218	  if (remote_debug)
9219	    {
9220	      switch (ch)
9221		{
9222		case '+':
9223		case '-':
9224		case SERIAL_TIMEOUT:
9225		case '$':
9226		case '%':
9227		  if (started_error_output)
9228		    {
9229		      putchar_unfiltered ('\n');
9230		      started_error_output = 0;
9231		    }
9232		}
9233	    }
9234
9235	  switch (ch)
9236	    {
9237	    case '+':
9238	      if (remote_debug)
9239		fprintf_unfiltered (gdb_stdlog, "Ack\n");
9240	      return 1;
9241	    case '-':
9242	      if (remote_debug)
9243		fprintf_unfiltered (gdb_stdlog, "Nak\n");
9244	      /* FALLTHROUGH */
9245	    case SERIAL_TIMEOUT:
9246	      tcount++;
9247	      if (tcount > 3)
9248		return 0;
9249	      break;		/* Retransmit buffer.  */
9250	    case '$':
9251	      {
9252	        if (remote_debug)
9253		  fprintf_unfiltered (gdb_stdlog,
9254				      "Packet instead of Ack, ignoring it\n");
9255		/* It's probably an old response sent because an ACK
9256		   was lost.  Gobble up the packet and ack it so it
9257		   doesn't get retransmitted when we resend this
9258		   packet.  */
9259		skip_frame ();
9260		remote_serial_write ("+", 1);
9261		continue;	/* Now, go look for +.  */
9262	      }
9263
9264	    case '%':
9265	      {
9266		int val;
9267
9268		/* If we got a notification, handle it, and go back to looking
9269		   for an ack.  */
9270		/* We've found the start of a notification.  Now
9271		   collect the data.  */
9272		val = read_frame (&rs->buf);
9273		if (val >= 0)
9274		  {
9275		    if (remote_debug)
9276		      {
9277			std::string str = escape_buffer (rs->buf.data (), val);
9278
9279			fprintf_unfiltered (gdb_stdlog,
9280					    "  Notification received: %s\n",
9281					    str.c_str ());
9282		      }
9283		    handle_notification (rs->notif_state, rs->buf.data ());
9284		    /* We're in sync now, rewait for the ack.  */
9285		    tcount = 0;
9286		  }
9287		else
9288		  {
9289		    if (remote_debug)
9290		      {
9291			if (!started_error_output)
9292			  {
9293			    started_error_output = 1;
9294			    fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9295			  }
9296			fputc_unfiltered (ch & 0177, gdb_stdlog);
9297			fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9298		      }
9299		  }
9300		continue;
9301	      }
9302	      /* fall-through */
9303	    default:
9304	      if (remote_debug)
9305		{
9306		  if (!started_error_output)
9307		    {
9308		      started_error_output = 1;
9309		      fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9310		    }
9311		  fputc_unfiltered (ch & 0177, gdb_stdlog);
9312		}
9313	      continue;
9314	    }
9315	  break;		/* Here to retransmit.  */
9316	}
9317
9318#if 0
9319      /* This is wrong.  If doing a long backtrace, the user should be
9320         able to get out next time we call QUIT, without anything as
9321         violent as interrupt_query.  If we want to provide a way out of
9322         here without getting to the next QUIT, it should be based on
9323         hitting ^C twice as in remote_wait.  */
9324      if (quit_flag)
9325	{
9326	  quit_flag = 0;
9327	  interrupt_query ();
9328	}
9329#endif
9330    }
9331
9332  return 0;
9333}
9334
9335/* Come here after finding the start of a frame when we expected an
9336   ack.  Do our best to discard the rest of this packet.  */
9337
9338void
9339remote_target::skip_frame ()
9340{
9341  int c;
9342
9343  while (1)
9344    {
9345      c = readchar (remote_timeout);
9346      switch (c)
9347	{
9348	case SERIAL_TIMEOUT:
9349	  /* Nothing we can do.  */
9350	  return;
9351	case '#':
9352	  /* Discard the two bytes of checksum and stop.  */
9353	  c = readchar (remote_timeout);
9354	  if (c >= 0)
9355	    c = readchar (remote_timeout);
9356
9357	  return;
9358	case '*':		/* Run length encoding.  */
9359	  /* Discard the repeat count.  */
9360	  c = readchar (remote_timeout);
9361	  if (c < 0)
9362	    return;
9363	  break;
9364	default:
9365	  /* A regular character.  */
9366	  break;
9367	}
9368    }
9369}
9370
9371/* Come here after finding the start of the frame.  Collect the rest
9372   into *BUF, verifying the checksum, length, and handling run-length
9373   compression.  NUL terminate the buffer.  If there is not enough room,
9374   expand *BUF.
9375
9376   Returns -1 on error, number of characters in buffer (ignoring the
9377   trailing NULL) on success. (could be extended to return one of the
9378   SERIAL status indications).  */
9379
9380long
9381remote_target::read_frame (gdb::char_vector *buf_p)
9382{
9383  unsigned char csum;
9384  long bc;
9385  int c;
9386  char *buf = buf_p->data ();
9387  struct remote_state *rs = get_remote_state ();
9388
9389  csum = 0;
9390  bc = 0;
9391
9392  while (1)
9393    {
9394      c = readchar (remote_timeout);
9395      switch (c)
9396	{
9397	case SERIAL_TIMEOUT:
9398	  if (remote_debug)
9399	    fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9400	  return -1;
9401	case '$':
9402	  if (remote_debug)
9403	    fputs_filtered ("Saw new packet start in middle of old one\n",
9404			    gdb_stdlog);
9405	  return -1;		/* Start a new packet, count retries.  */
9406	case '#':
9407	  {
9408	    unsigned char pktcsum;
9409	    int check_0 = 0;
9410	    int check_1 = 0;
9411
9412	    buf[bc] = '\0';
9413
9414	    check_0 = readchar (remote_timeout);
9415	    if (check_0 >= 0)
9416	      check_1 = readchar (remote_timeout);
9417
9418	    if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9419	      {
9420		if (remote_debug)
9421		  fputs_filtered ("Timeout in checksum, retrying\n",
9422				  gdb_stdlog);
9423		return -1;
9424	      }
9425	    else if (check_0 < 0 || check_1 < 0)
9426	      {
9427		if (remote_debug)
9428		  fputs_filtered ("Communication error in checksum\n",
9429				  gdb_stdlog);
9430		return -1;
9431	      }
9432
9433	    /* Don't recompute the checksum; with no ack packets we
9434	       don't have any way to indicate a packet retransmission
9435	       is necessary.  */
9436	    if (rs->noack_mode)
9437	      return bc;
9438
9439	    pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9440	    if (csum == pktcsum)
9441              return bc;
9442
9443	    if (remote_debug)
9444	      {
9445		std::string str = escape_buffer (buf, bc);
9446
9447		fprintf_unfiltered (gdb_stdlog,
9448				    "Bad checksum, sentsum=0x%x, "
9449				    "csum=0x%x, buf=%s\n",
9450				    pktcsum, csum, str.c_str ());
9451	      }
9452	    /* Number of characters in buffer ignoring trailing
9453               NULL.  */
9454	    return -1;
9455	  }
9456	case '*':		/* Run length encoding.  */
9457          {
9458	    int repeat;
9459
9460 	    csum += c;
9461	    c = readchar (remote_timeout);
9462	    csum += c;
9463	    repeat = c - ' ' + 3;	/* Compute repeat count.  */
9464
9465	    /* The character before ``*'' is repeated.  */
9466
9467	    if (repeat > 0 && repeat <= 255 && bc > 0)
9468	      {
9469		if (bc + repeat - 1 >= buf_p->size () - 1)
9470		  {
9471		    /* Make some more room in the buffer.  */
9472		    buf_p->resize (buf_p->size () + repeat);
9473		    buf = buf_p->data ();
9474		  }
9475
9476		memset (&buf[bc], buf[bc - 1], repeat);
9477		bc += repeat;
9478		continue;
9479	      }
9480
9481	    buf[bc] = '\0';
9482	    printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9483	    return -1;
9484	  }
9485	default:
9486	  if (bc >= buf_p->size () - 1)
9487	    {
9488	      /* Make some more room in the buffer.  */
9489	      buf_p->resize (buf_p->size () * 2);
9490	      buf = buf_p->data ();
9491	    }
9492
9493	  buf[bc++] = c;
9494	  csum += c;
9495	  continue;
9496	}
9497    }
9498}
9499
9500/* Read a packet from the remote machine, with error checking, and
9501   store it in *BUF.  Resize *BUF if necessary to hold the result.  If
9502   FOREVER, wait forever rather than timing out; this is used (in
9503   synchronous mode) to wait for a target that is is executing user
9504   code to stop.  */
9505/* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9506   don't have to change all the calls to getpkt to deal with the
9507   return value, because at the moment I don't know what the right
9508   thing to do it for those.  */
9509
9510void
9511remote_target::getpkt (gdb::char_vector *buf, int forever)
9512{
9513  getpkt_sane (buf, forever);
9514}
9515
9516
9517/* Read a packet from the remote machine, with error checking, and
9518   store it in *BUF.  Resize *BUF if necessary to hold the result.  If
9519   FOREVER, wait forever rather than timing out; this is used (in
9520   synchronous mode) to wait for a target that is is executing user
9521   code to stop.  If FOREVER == 0, this function is allowed to time
9522   out gracefully and return an indication of this to the caller.
9523   Otherwise return the number of bytes read.  If EXPECTING_NOTIF,
9524   consider receiving a notification enough reason to return to the
9525   caller.  *IS_NOTIF is an output boolean that indicates whether *BUF
9526   holds a notification or not (a regular packet).  */
9527
9528int
9529remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9530				       int forever, int expecting_notif,
9531				       int *is_notif)
9532{
9533  struct remote_state *rs = get_remote_state ();
9534  int c;
9535  int tries;
9536  int timeout;
9537  int val = -1;
9538
9539  /* We're reading a new response.  Make sure we don't look at a
9540     previously cached response.  */
9541  rs->cached_wait_status = 0;
9542
9543  strcpy (buf->data (), "timeout");
9544
9545  if (forever)
9546    timeout = watchdog > 0 ? watchdog : -1;
9547  else if (expecting_notif)
9548    timeout = 0; /* There should already be a char in the buffer.  If
9549		    not, bail out.  */
9550  else
9551    timeout = remote_timeout;
9552
9553#define MAX_TRIES 3
9554
9555  /* Process any number of notifications, and then return when
9556     we get a packet.  */
9557  for (;;)
9558    {
9559      /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9560	 times.  */
9561      for (tries = 1; tries <= MAX_TRIES; tries++)
9562	{
9563	  /* This can loop forever if the remote side sends us
9564	     characters continuously, but if it pauses, we'll get
9565	     SERIAL_TIMEOUT from readchar because of timeout.  Then
9566	     we'll count that as a retry.
9567
9568	     Note that even when forever is set, we will only wait
9569	     forever prior to the start of a packet.  After that, we
9570	     expect characters to arrive at a brisk pace.  They should
9571	     show up within remote_timeout intervals.  */
9572	  do
9573	    c = readchar (timeout);
9574	  while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9575
9576	  if (c == SERIAL_TIMEOUT)
9577	    {
9578	      if (expecting_notif)
9579		return -1; /* Don't complain, it's normal to not get
9580			      anything in this case.  */
9581
9582	      if (forever)	/* Watchdog went off?  Kill the target.  */
9583		{
9584		  remote_unpush_target ();
9585		  throw_error (TARGET_CLOSE_ERROR,
9586			       _("Watchdog timeout has expired.  "
9587				 "Target detached."));
9588		}
9589	      if (remote_debug)
9590		fputs_filtered ("Timed out.\n", gdb_stdlog);
9591	    }
9592	  else
9593	    {
9594	      /* We've found the start of a packet or notification.
9595		 Now collect the data.  */
9596	      val = read_frame (buf);
9597	      if (val >= 0)
9598		break;
9599	    }
9600
9601	  remote_serial_write ("-", 1);
9602	}
9603
9604      if (tries > MAX_TRIES)
9605	{
9606	  /* We have tried hard enough, and just can't receive the
9607	     packet/notification.  Give up.  */
9608	  printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9609
9610	  /* Skip the ack char if we're in no-ack mode.  */
9611	  if (!rs->noack_mode)
9612	    remote_serial_write ("+", 1);
9613	  return -1;
9614	}
9615
9616      /* If we got an ordinary packet, return that to our caller.  */
9617      if (c == '$')
9618	{
9619	  if (remote_debug)
9620	    {
9621	      std::string str
9622		= escape_buffer (buf->data (),
9623				 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9624
9625	      fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9626				  str.c_str ());
9627
9628	      if (val > REMOTE_DEBUG_MAX_CHAR)
9629		fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9630				    val - REMOTE_DEBUG_MAX_CHAR);
9631
9632	      fprintf_unfiltered (gdb_stdlog, "\n");
9633	    }
9634
9635	  /* Skip the ack char if we're in no-ack mode.  */
9636	  if (!rs->noack_mode)
9637	    remote_serial_write ("+", 1);
9638	  if (is_notif != NULL)
9639	    *is_notif = 0;
9640	  return val;
9641	}
9642
9643       /* If we got a notification, handle it, and go back to looking
9644	 for a packet.  */
9645      else
9646	{
9647	  gdb_assert (c == '%');
9648
9649	  if (remote_debug)
9650	    {
9651	      std::string str = escape_buffer (buf->data (), val);
9652
9653	      fprintf_unfiltered (gdb_stdlog,
9654				  "  Notification received: %s\n",
9655				  str.c_str ());
9656	    }
9657	  if (is_notif != NULL)
9658	    *is_notif = 1;
9659
9660	  handle_notification (rs->notif_state, buf->data ());
9661
9662	  /* Notifications require no acknowledgement.  */
9663
9664	  if (expecting_notif)
9665	    return val;
9666	}
9667    }
9668}
9669
9670int
9671remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9672{
9673  return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9674}
9675
9676int
9677remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9678				     int *is_notif)
9679{
9680  return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9681}
9682
9683/* Kill any new fork children of process PID that haven't been
9684   processed by follow_fork.  */
9685
9686void
9687remote_target::kill_new_fork_children (int pid)
9688{
9689  remote_state *rs = get_remote_state ();
9690  struct notif_client *notif = &notif_client_stop;
9691
9692  /* Kill the fork child threads of any threads in process PID
9693     that are stopped at a fork event.  */
9694  for (thread_info *thread : all_non_exited_threads ())
9695    {
9696      struct target_waitstatus *ws = &thread->pending_follow;
9697
9698      if (is_pending_fork_parent (ws, pid, thread->ptid))
9699	{
9700	  int child_pid = ws->value.related_pid.pid ();
9701	  int res;
9702
9703	  res = remote_vkill (child_pid);
9704	  if (res != 0)
9705	    error (_("Can't kill fork child process %d"), child_pid);
9706	}
9707    }
9708
9709  /* Check for any pending fork events (not reported or processed yet)
9710     in process PID and kill those fork child threads as well.  */
9711  remote_notif_get_pending_events (notif);
9712  for (auto &event : rs->stop_reply_queue)
9713    if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9714      {
9715	int child_pid = event->ws.value.related_pid.pid ();
9716	int res;
9717
9718	res = remote_vkill (child_pid);
9719	if (res != 0)
9720	  error (_("Can't kill fork child process %d"), child_pid);
9721      }
9722}
9723
9724
9725/* Target hook to kill the current inferior.  */
9726
9727void
9728remote_target::kill ()
9729{
9730  int res = -1;
9731  int pid = inferior_ptid.pid ();
9732  struct remote_state *rs = get_remote_state ();
9733
9734  if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9735    {
9736      /* If we're stopped while forking and we haven't followed yet,
9737	 kill the child task.  We need to do this before killing the
9738	 parent task because if this is a vfork then the parent will
9739	 be sleeping.  */
9740      kill_new_fork_children (pid);
9741
9742      res = remote_vkill (pid);
9743      if (res == 0)
9744	{
9745	  target_mourn_inferior (inferior_ptid);
9746	  return;
9747	}
9748    }
9749
9750  /* If we are in 'target remote' mode and we are killing the only
9751     inferior, then we will tell gdbserver to exit and unpush the
9752     target.  */
9753  if (res == -1 && !remote_multi_process_p (rs)
9754      && number_of_live_inferiors () == 1)
9755    {
9756      remote_kill_k ();
9757
9758      /* We've killed the remote end, we get to mourn it.  If we are
9759	 not in extended mode, mourning the inferior also unpushes
9760	 remote_ops from the target stack, which closes the remote
9761	 connection.  */
9762      target_mourn_inferior (inferior_ptid);
9763
9764      return;
9765    }
9766
9767  error (_("Can't kill process"));
9768}
9769
9770/* Send a kill request to the target using the 'vKill' packet.  */
9771
9772int
9773remote_target::remote_vkill (int pid)
9774{
9775  if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9776    return -1;
9777
9778  remote_state *rs = get_remote_state ();
9779
9780  /* Tell the remote target to detach.  */
9781  xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9782  putpkt (rs->buf);
9783  getpkt (&rs->buf, 0);
9784
9785  switch (packet_ok (rs->buf,
9786		     &remote_protocol_packets[PACKET_vKill]))
9787    {
9788    case PACKET_OK:
9789      return 0;
9790    case PACKET_ERROR:
9791      return 1;
9792    case PACKET_UNKNOWN:
9793      return -1;
9794    default:
9795      internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9796    }
9797}
9798
9799/* Send a kill request to the target using the 'k' packet.  */
9800
9801void
9802remote_target::remote_kill_k ()
9803{
9804  /* Catch errors so the user can quit from gdb even when we
9805     aren't on speaking terms with the remote system.  */
9806  TRY
9807    {
9808      putpkt ("k");
9809    }
9810  CATCH (ex, RETURN_MASK_ERROR)
9811    {
9812      if (ex.error == TARGET_CLOSE_ERROR)
9813	{
9814	  /* If we got an (EOF) error that caused the target
9815	     to go away, then we're done, that's what we wanted.
9816	     "k" is susceptible to cause a premature EOF, given
9817	     that the remote server isn't actually required to
9818	     reply to "k", and it can happen that it doesn't
9819	     even get to reply ACK to the "k".  */
9820	  return;
9821	}
9822
9823      /* Otherwise, something went wrong.  We didn't actually kill
9824	 the target.  Just propagate the exception, and let the
9825	 user or higher layers decide what to do.  */
9826      throw_exception (ex);
9827    }
9828  END_CATCH
9829}
9830
9831void
9832remote_target::mourn_inferior ()
9833{
9834  struct remote_state *rs = get_remote_state ();
9835
9836  /* We're no longer interested in notification events of an inferior
9837     that exited or was killed/detached.  */
9838  discard_pending_stop_replies (current_inferior ());
9839
9840  /* In 'target remote' mode with one inferior, we close the connection.  */
9841  if (!rs->extended && number_of_live_inferiors () <= 1)
9842    {
9843      unpush_target (this);
9844
9845      /* remote_close takes care of doing most of the clean up.  */
9846      generic_mourn_inferior ();
9847      return;
9848    }
9849
9850  /* In case we got here due to an error, but we're going to stay
9851     connected.  */
9852  rs->waiting_for_stop_reply = 0;
9853
9854  /* If the current general thread belonged to the process we just
9855     detached from or has exited, the remote side current general
9856     thread becomes undefined.  Considering a case like this:
9857
9858     - We just got here due to a detach.
9859     - The process that we're detaching from happens to immediately
9860       report a global breakpoint being hit in non-stop mode, in the
9861       same thread we had selected before.
9862     - GDB attaches to this process again.
9863     - This event happens to be the next event we handle.
9864
9865     GDB would consider that the current general thread didn't need to
9866     be set on the stub side (with Hg), since for all it knew,
9867     GENERAL_THREAD hadn't changed.
9868
9869     Notice that although in all-stop mode, the remote server always
9870     sets the current thread to the thread reporting the stop event,
9871     that doesn't happen in non-stop mode; in non-stop, the stub *must
9872     not* change the current thread when reporting a breakpoint hit,
9873     due to the decoupling of event reporting and event handling.
9874
9875     To keep things simple, we always invalidate our notion of the
9876     current thread.  */
9877  record_currthread (rs, minus_one_ptid);
9878
9879  /* Call common code to mark the inferior as not running.  */
9880  generic_mourn_inferior ();
9881
9882  if (!have_inferiors ())
9883    {
9884      if (!remote_multi_process_p (rs))
9885	{
9886	  /* Check whether the target is running now - some remote stubs
9887	     automatically restart after kill.	*/
9888	  putpkt ("?");
9889	  getpkt (&rs->buf, 0);
9890
9891	  if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9892	    {
9893	      /* Assume that the target has been restarted.  Set
9894		 inferior_ptid so that bits of core GDB realizes
9895		 there's something here, e.g., so that the user can
9896		 say "kill" again.  */
9897	      inferior_ptid = magic_null_ptid;
9898	    }
9899	}
9900    }
9901}
9902
9903bool
9904extended_remote_target::supports_disable_randomization ()
9905{
9906  return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9907}
9908
9909void
9910remote_target::extended_remote_disable_randomization (int val)
9911{
9912  struct remote_state *rs = get_remote_state ();
9913  char *reply;
9914
9915  xsnprintf (rs->buf.data (), get_remote_packet_size (),
9916	     "QDisableRandomization:%x", val);
9917  putpkt (rs->buf);
9918  reply = remote_get_noisy_reply ();
9919  if (*reply == '\0')
9920    error (_("Target does not support QDisableRandomization."));
9921  if (strcmp (reply, "OK") != 0)
9922    error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9923}
9924
9925int
9926remote_target::extended_remote_run (const std::string &args)
9927{
9928  struct remote_state *rs = get_remote_state ();
9929  int len;
9930  const char *remote_exec_file = get_remote_exec_file ();
9931
9932  /* If the user has disabled vRun support, or we have detected that
9933     support is not available, do not try it.  */
9934  if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9935    return -1;
9936
9937  strcpy (rs->buf.data (), "vRun;");
9938  len = strlen (rs->buf.data ());
9939
9940  if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9941    error (_("Remote file name too long for run packet"));
9942  len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
9943		      strlen (remote_exec_file));
9944
9945  if (!args.empty ())
9946    {
9947      int i;
9948
9949      gdb_argv argv (args.c_str ());
9950      for (i = 0; argv[i] != NULL; i++)
9951	{
9952	  if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9953	    error (_("Argument list too long for run packet"));
9954	  rs->buf[len++] = ';';
9955	  len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
9956			      strlen (argv[i]));
9957	}
9958    }
9959
9960  rs->buf[len++] = '\0';
9961
9962  putpkt (rs->buf);
9963  getpkt (&rs->buf, 0);
9964
9965  switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9966    {
9967    case PACKET_OK:
9968      /* We have a wait response.  All is well.  */
9969      return 0;
9970    case PACKET_UNKNOWN:
9971      return -1;
9972    case PACKET_ERROR:
9973      if (remote_exec_file[0] == '\0')
9974	error (_("Running the default executable on the remote target failed; "
9975		 "try \"set remote exec-file\"?"));
9976      else
9977	error (_("Running \"%s\" on the remote target failed"),
9978	       remote_exec_file);
9979    default:
9980      gdb_assert_not_reached (_("bad switch"));
9981    }
9982}
9983
9984/* Helper function to send set/unset environment packets.  ACTION is
9985   either "set" or "unset".  PACKET is either "QEnvironmentHexEncoded"
9986   or "QEnvironmentUnsetVariable".  VALUE is the variable to be
9987   sent.  */
9988
9989void
9990remote_target::send_environment_packet (const char *action,
9991					const char *packet,
9992					const char *value)
9993{
9994  remote_state *rs = get_remote_state ();
9995
9996  /* Convert the environment variable to an hex string, which
9997     is the best format to be transmitted over the wire.  */
9998  std::string encoded_value = bin2hex ((const gdb_byte *) value,
9999					 strlen (value));
10000
10001  xsnprintf (rs->buf.data (), get_remote_packet_size (),
10002	     "%s:%s", packet, encoded_value.c_str ());
10003
10004  putpkt (rs->buf);
10005  getpkt (&rs->buf, 0);
10006  if (strcmp (rs->buf.data (), "OK") != 0)
10007    warning (_("Unable to %s environment variable '%s' on remote."),
10008	     action, value);
10009}
10010
10011/* Helper function to handle the QEnvironment* packets.  */
10012
10013void
10014remote_target::extended_remote_environment_support ()
10015{
10016  remote_state *rs = get_remote_state ();
10017
10018  if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10019    {
10020      putpkt ("QEnvironmentReset");
10021      getpkt (&rs->buf, 0);
10022      if (strcmp (rs->buf.data (), "OK") != 0)
10023	warning (_("Unable to reset environment on remote."));
10024    }
10025
10026  gdb_environ *e = &current_inferior ()->environment;
10027
10028  if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10029    for (const std::string &el : e->user_set_env ())
10030      send_environment_packet ("set", "QEnvironmentHexEncoded",
10031			       el.c_str ());
10032
10033  if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10034    for (const std::string &el : e->user_unset_env ())
10035      send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10036}
10037
10038/* Helper function to set the current working directory for the
10039   inferior in the remote target.  */
10040
10041void
10042remote_target::extended_remote_set_inferior_cwd ()
10043{
10044  if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10045    {
10046      const char *inferior_cwd = get_inferior_cwd ();
10047      remote_state *rs = get_remote_state ();
10048
10049      if (inferior_cwd != NULL)
10050	{
10051	  std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10052					 strlen (inferior_cwd));
10053
10054	  xsnprintf (rs->buf.data (), get_remote_packet_size (),
10055		     "QSetWorkingDir:%s", hexpath.c_str ());
10056	}
10057      else
10058	{
10059	  /* An empty inferior_cwd means that the user wants us to
10060	     reset the remote server's inferior's cwd.  */
10061	  xsnprintf (rs->buf.data (), get_remote_packet_size (),
10062		     "QSetWorkingDir:");
10063	}
10064
10065      putpkt (rs->buf);
10066      getpkt (&rs->buf, 0);
10067      if (packet_ok (rs->buf,
10068		     &remote_protocol_packets[PACKET_QSetWorkingDir])
10069	  != PACKET_OK)
10070	error (_("\
10071Remote replied unexpectedly while setting the inferior's working\n\
10072directory: %s"),
10073	       rs->buf.data ());
10074
10075    }
10076}
10077
10078/* In the extended protocol we want to be able to do things like
10079   "run" and have them basically work as expected.  So we need
10080   a special create_inferior function.  We support changing the
10081   executable file and the command line arguments, but not the
10082   environment.  */
10083
10084void
10085extended_remote_target::create_inferior (const char *exec_file,
10086					 const std::string &args,
10087					 char **env, int from_tty)
10088{
10089  int run_worked;
10090  char *stop_reply;
10091  struct remote_state *rs = get_remote_state ();
10092  const char *remote_exec_file = get_remote_exec_file ();
10093
10094  /* If running asynchronously, register the target file descriptor
10095     with the event loop.  */
10096  if (target_can_async_p ())
10097    target_async (1);
10098
10099  /* Disable address space randomization if requested (and supported).  */
10100  if (supports_disable_randomization ())
10101    extended_remote_disable_randomization (disable_randomization);
10102
10103  /* If startup-with-shell is on, we inform gdbserver to start the
10104     remote inferior using a shell.  */
10105  if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10106    {
10107      xsnprintf (rs->buf.data (), get_remote_packet_size (),
10108		 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10109      putpkt (rs->buf);
10110      getpkt (&rs->buf, 0);
10111      if (strcmp (rs->buf.data (), "OK") != 0)
10112	error (_("\
10113Remote replied unexpectedly while setting startup-with-shell: %s"),
10114	       rs->buf.data ());
10115    }
10116
10117  extended_remote_environment_support ();
10118
10119  extended_remote_set_inferior_cwd ();
10120
10121  /* Now restart the remote server.  */
10122  run_worked = extended_remote_run (args) != -1;
10123  if (!run_worked)
10124    {
10125      /* vRun was not supported.  Fail if we need it to do what the
10126	 user requested.  */
10127      if (remote_exec_file[0])
10128	error (_("Remote target does not support \"set remote exec-file\""));
10129      if (!args.empty ())
10130	error (_("Remote target does not support \"set args\" or run ARGS"));
10131
10132      /* Fall back to "R".  */
10133      extended_remote_restart ();
10134    }
10135
10136  /* vRun's success return is a stop reply.  */
10137  stop_reply = run_worked ? rs->buf.data () : NULL;
10138  add_current_inferior_and_thread (stop_reply);
10139
10140  /* Get updated offsets, if the stub uses qOffsets.  */
10141  get_offsets ();
10142}
10143
10144
10145/* Given a location's target info BP_TGT and the packet buffer BUF,  output
10146   the list of conditions (in agent expression bytecode format), if any, the
10147   target needs to evaluate.  The output is placed into the packet buffer
10148   started from BUF and ended at BUF_END.  */
10149
10150static int
10151remote_add_target_side_condition (struct gdbarch *gdbarch,
10152				  struct bp_target_info *bp_tgt, char *buf,
10153				  char *buf_end)
10154{
10155  if (bp_tgt->conditions.empty ())
10156    return 0;
10157
10158  buf += strlen (buf);
10159  xsnprintf (buf, buf_end - buf, "%s", ";");
10160  buf++;
10161
10162  /* Send conditions to the target.  */
10163  for (agent_expr *aexpr : bp_tgt->conditions)
10164    {
10165      xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10166      buf += strlen (buf);
10167      for (int i = 0; i < aexpr->len; ++i)
10168	buf = pack_hex_byte (buf, aexpr->buf[i]);
10169      *buf = '\0';
10170    }
10171  return 0;
10172}
10173
10174static void
10175remote_add_target_side_commands (struct gdbarch *gdbarch,
10176				 struct bp_target_info *bp_tgt, char *buf)
10177{
10178  if (bp_tgt->tcommands.empty ())
10179    return;
10180
10181  buf += strlen (buf);
10182
10183  sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10184  buf += strlen (buf);
10185
10186  /* Concatenate all the agent expressions that are commands into the
10187     cmds parameter.  */
10188  for (agent_expr *aexpr : bp_tgt->tcommands)
10189    {
10190      sprintf (buf, "X%x,", aexpr->len);
10191      buf += strlen (buf);
10192      for (int i = 0; i < aexpr->len; ++i)
10193	buf = pack_hex_byte (buf, aexpr->buf[i]);
10194      *buf = '\0';
10195    }
10196}
10197
10198/* Insert a breakpoint.  On targets that have software breakpoint
10199   support, we ask the remote target to do the work; on targets
10200   which don't, we insert a traditional memory breakpoint.  */
10201
10202int
10203remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10204				  struct bp_target_info *bp_tgt)
10205{
10206  /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10207     If it succeeds, then set the support to PACKET_ENABLE.  If it
10208     fails, and the user has explicitly requested the Z support then
10209     report an error, otherwise, mark it disabled and go on.  */
10210
10211  if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10212    {
10213      CORE_ADDR addr = bp_tgt->reqstd_address;
10214      struct remote_state *rs;
10215      char *p, *endbuf;
10216
10217      /* Make sure the remote is pointing at the right process, if
10218	 necessary.  */
10219      if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10220	set_general_process ();
10221
10222      rs = get_remote_state ();
10223      p = rs->buf.data ();
10224      endbuf = p + get_remote_packet_size ();
10225
10226      *(p++) = 'Z';
10227      *(p++) = '0';
10228      *(p++) = ',';
10229      addr = (ULONGEST) remote_address_masked (addr);
10230      p += hexnumstr (p, addr);
10231      xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10232
10233      if (supports_evaluation_of_breakpoint_conditions ())
10234	remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10235
10236      if (can_run_breakpoint_commands ())
10237	remote_add_target_side_commands (gdbarch, bp_tgt, p);
10238
10239      putpkt (rs->buf);
10240      getpkt (&rs->buf, 0);
10241
10242      switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10243	{
10244	case PACKET_ERROR:
10245	  return -1;
10246	case PACKET_OK:
10247	  return 0;
10248	case PACKET_UNKNOWN:
10249	  break;
10250	}
10251    }
10252
10253  /* If this breakpoint has target-side commands but this stub doesn't
10254     support Z0 packets, throw error.  */
10255  if (!bp_tgt->tcommands.empty ())
10256    throw_error (NOT_SUPPORTED_ERROR, _("\
10257Target doesn't support breakpoints that have target side commands."));
10258
10259  return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10260}
10261
10262int
10263remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10264				  struct bp_target_info *bp_tgt,
10265				  enum remove_bp_reason reason)
10266{
10267  CORE_ADDR addr = bp_tgt->placed_address;
10268  struct remote_state *rs = get_remote_state ();
10269
10270  if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10271    {
10272      char *p = rs->buf.data ();
10273      char *endbuf = p + get_remote_packet_size ();
10274
10275      /* Make sure the remote is pointing at the right process, if
10276	 necessary.  */
10277      if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10278	set_general_process ();
10279
10280      *(p++) = 'z';
10281      *(p++) = '0';
10282      *(p++) = ',';
10283
10284      addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10285      p += hexnumstr (p, addr);
10286      xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10287
10288      putpkt (rs->buf);
10289      getpkt (&rs->buf, 0);
10290
10291      return (rs->buf[0] == 'E');
10292    }
10293
10294  return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10295}
10296
10297static enum Z_packet_type
10298watchpoint_to_Z_packet (int type)
10299{
10300  switch (type)
10301    {
10302    case hw_write:
10303      return Z_PACKET_WRITE_WP;
10304      break;
10305    case hw_read:
10306      return Z_PACKET_READ_WP;
10307      break;
10308    case hw_access:
10309      return Z_PACKET_ACCESS_WP;
10310      break;
10311    default:
10312      internal_error (__FILE__, __LINE__,
10313		      _("hw_bp_to_z: bad watchpoint type %d"), type);
10314    }
10315}
10316
10317int
10318remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10319				  enum target_hw_bp_type type, struct expression *cond)
10320{
10321  struct remote_state *rs = get_remote_state ();
10322  char *endbuf = rs->buf.data () + get_remote_packet_size ();
10323  char *p;
10324  enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10325
10326  if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10327    return 1;
10328
10329  /* Make sure the remote is pointing at the right process, if
10330     necessary.  */
10331  if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10332    set_general_process ();
10333
10334  xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10335  p = strchr (rs->buf.data (), '\0');
10336  addr = remote_address_masked (addr);
10337  p += hexnumstr (p, (ULONGEST) addr);
10338  xsnprintf (p, endbuf - p, ",%x", len);
10339
10340  putpkt (rs->buf);
10341  getpkt (&rs->buf, 0);
10342
10343  switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10344    {
10345    case PACKET_ERROR:
10346      return -1;
10347    case PACKET_UNKNOWN:
10348      return 1;
10349    case PACKET_OK:
10350      return 0;
10351    }
10352  internal_error (__FILE__, __LINE__,
10353		  _("remote_insert_watchpoint: reached end of function"));
10354}
10355
10356bool
10357remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10358					     CORE_ADDR start, int length)
10359{
10360  CORE_ADDR diff = remote_address_masked (addr - start);
10361
10362  return diff < length;
10363}
10364
10365
10366int
10367remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10368				  enum target_hw_bp_type type, struct expression *cond)
10369{
10370  struct remote_state *rs = get_remote_state ();
10371  char *endbuf = rs->buf.data () + get_remote_packet_size ();
10372  char *p;
10373  enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10374
10375  if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10376    return -1;
10377
10378  /* Make sure the remote is pointing at the right process, if
10379     necessary.  */
10380  if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10381    set_general_process ();
10382
10383  xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10384  p = strchr (rs->buf.data (), '\0');
10385  addr = remote_address_masked (addr);
10386  p += hexnumstr (p, (ULONGEST) addr);
10387  xsnprintf (p, endbuf - p, ",%x", len);
10388  putpkt (rs->buf);
10389  getpkt (&rs->buf, 0);
10390
10391  switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10392    {
10393    case PACKET_ERROR:
10394    case PACKET_UNKNOWN:
10395      return -1;
10396    case PACKET_OK:
10397      return 0;
10398    }
10399  internal_error (__FILE__, __LINE__,
10400		  _("remote_remove_watchpoint: reached end of function"));
10401}
10402
10403
10404int remote_hw_watchpoint_limit = -1;
10405int remote_hw_watchpoint_length_limit = -1;
10406int remote_hw_breakpoint_limit = -1;
10407
10408int
10409remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10410{
10411  if (remote_hw_watchpoint_length_limit == 0)
10412    return 0;
10413  else if (remote_hw_watchpoint_length_limit < 0)
10414    return 1;
10415  else if (len <= remote_hw_watchpoint_length_limit)
10416    return 1;
10417  else
10418    return 0;
10419}
10420
10421int
10422remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10423{
10424  if (type == bp_hardware_breakpoint)
10425    {
10426      if (remote_hw_breakpoint_limit == 0)
10427	return 0;
10428      else if (remote_hw_breakpoint_limit < 0)
10429	return 1;
10430      else if (cnt <= remote_hw_breakpoint_limit)
10431	return 1;
10432    }
10433  else
10434    {
10435      if (remote_hw_watchpoint_limit == 0)
10436	return 0;
10437      else if (remote_hw_watchpoint_limit < 0)
10438	return 1;
10439      else if (ot)
10440	return -1;
10441      else if (cnt <= remote_hw_watchpoint_limit)
10442	return 1;
10443    }
10444  return -1;
10445}
10446
10447/* The to_stopped_by_sw_breakpoint method of target remote.  */
10448
10449bool
10450remote_target::stopped_by_sw_breakpoint ()
10451{
10452  struct thread_info *thread = inferior_thread ();
10453
10454  return (thread->priv != NULL
10455	  && (get_remote_thread_info (thread)->stop_reason
10456	      == TARGET_STOPPED_BY_SW_BREAKPOINT));
10457}
10458
10459/* The to_supports_stopped_by_sw_breakpoint method of target
10460   remote.  */
10461
10462bool
10463remote_target::supports_stopped_by_sw_breakpoint ()
10464{
10465  return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10466}
10467
10468/* The to_stopped_by_hw_breakpoint method of target remote.  */
10469
10470bool
10471remote_target::stopped_by_hw_breakpoint ()
10472{
10473  struct thread_info *thread = inferior_thread ();
10474
10475  return (thread->priv != NULL
10476	  && (get_remote_thread_info (thread)->stop_reason
10477	      == TARGET_STOPPED_BY_HW_BREAKPOINT));
10478}
10479
10480/* The to_supports_stopped_by_hw_breakpoint method of target
10481   remote.  */
10482
10483bool
10484remote_target::supports_stopped_by_hw_breakpoint ()
10485{
10486  return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10487}
10488
10489bool
10490remote_target::stopped_by_watchpoint ()
10491{
10492  struct thread_info *thread = inferior_thread ();
10493
10494  return (thread->priv != NULL
10495	  && (get_remote_thread_info (thread)->stop_reason
10496	      == TARGET_STOPPED_BY_WATCHPOINT));
10497}
10498
10499bool
10500remote_target::stopped_data_address (CORE_ADDR *addr_p)
10501{
10502  struct thread_info *thread = inferior_thread ();
10503
10504  if (thread->priv != NULL
10505      && (get_remote_thread_info (thread)->stop_reason
10506	  == TARGET_STOPPED_BY_WATCHPOINT))
10507    {
10508      *addr_p = get_remote_thread_info (thread)->watch_data_address;
10509      return true;
10510    }
10511
10512  return false;
10513}
10514
10515
10516int
10517remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10518				     struct bp_target_info *bp_tgt)
10519{
10520  CORE_ADDR addr = bp_tgt->reqstd_address;
10521  struct remote_state *rs;
10522  char *p, *endbuf;
10523  char *message;
10524
10525  if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10526    return -1;
10527
10528  /* Make sure the remote is pointing at the right process, if
10529     necessary.  */
10530  if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10531    set_general_process ();
10532
10533  rs = get_remote_state ();
10534  p = rs->buf.data ();
10535  endbuf = p + get_remote_packet_size ();
10536
10537  *(p++) = 'Z';
10538  *(p++) = '1';
10539  *(p++) = ',';
10540
10541  addr = remote_address_masked (addr);
10542  p += hexnumstr (p, (ULONGEST) addr);
10543  xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10544
10545  if (supports_evaluation_of_breakpoint_conditions ())
10546    remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10547
10548  if (can_run_breakpoint_commands ())
10549    remote_add_target_side_commands (gdbarch, bp_tgt, p);
10550
10551  putpkt (rs->buf);
10552  getpkt (&rs->buf, 0);
10553
10554  switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10555    {
10556    case PACKET_ERROR:
10557      if (rs->buf[1] == '.')
10558        {
10559          message = strchr (&rs->buf[2], '.');
10560          if (message)
10561            error (_("Remote failure reply: %s"), message + 1);
10562        }
10563      return -1;
10564    case PACKET_UNKNOWN:
10565      return -1;
10566    case PACKET_OK:
10567      return 0;
10568    }
10569  internal_error (__FILE__, __LINE__,
10570		  _("remote_insert_hw_breakpoint: reached end of function"));
10571}
10572
10573
10574int
10575remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10576				     struct bp_target_info *bp_tgt)
10577{
10578  CORE_ADDR addr;
10579  struct remote_state *rs = get_remote_state ();
10580  char *p = rs->buf.data ();
10581  char *endbuf = p + get_remote_packet_size ();
10582
10583  if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10584    return -1;
10585
10586  /* Make sure the remote is pointing at the right process, if
10587     necessary.  */
10588  if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10589    set_general_process ();
10590
10591  *(p++) = 'z';
10592  *(p++) = '1';
10593  *(p++) = ',';
10594
10595  addr = remote_address_masked (bp_tgt->placed_address);
10596  p += hexnumstr (p, (ULONGEST) addr);
10597  xsnprintf (p, endbuf  - p, ",%x", bp_tgt->kind);
10598
10599  putpkt (rs->buf);
10600  getpkt (&rs->buf, 0);
10601
10602  switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10603    {
10604    case PACKET_ERROR:
10605    case PACKET_UNKNOWN:
10606      return -1;
10607    case PACKET_OK:
10608      return 0;
10609    }
10610  internal_error (__FILE__, __LINE__,
10611		  _("remote_remove_hw_breakpoint: reached end of function"));
10612}
10613
10614/* Verify memory using the "qCRC:" request.  */
10615
10616int
10617remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10618{
10619  struct remote_state *rs = get_remote_state ();
10620  unsigned long host_crc, target_crc;
10621  char *tmp;
10622
10623  /* It doesn't make sense to use qCRC if the remote target is
10624     connected but not running.  */
10625  if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10626    {
10627      enum packet_result result;
10628
10629      /* Make sure the remote is pointing at the right process.  */
10630      set_general_process ();
10631
10632      /* FIXME: assumes lma can fit into long.  */
10633      xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10634		 (long) lma, (long) size);
10635      putpkt (rs->buf);
10636
10637      /* Be clever; compute the host_crc before waiting for target
10638	 reply.  */
10639      host_crc = xcrc32 (data, size, 0xffffffff);
10640
10641      getpkt (&rs->buf, 0);
10642
10643      result = packet_ok (rs->buf,
10644			  &remote_protocol_packets[PACKET_qCRC]);
10645      if (result == PACKET_ERROR)
10646	return -1;
10647      else if (result == PACKET_OK)
10648	{
10649	  for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10650	    target_crc = target_crc * 16 + fromhex (*tmp);
10651
10652	  return (host_crc == target_crc);
10653	}
10654    }
10655
10656  return simple_verify_memory (this, data, lma, size);
10657}
10658
10659/* compare-sections command
10660
10661   With no arguments, compares each loadable section in the exec bfd
10662   with the same memory range on the target, and reports mismatches.
10663   Useful for verifying the image on the target against the exec file.  */
10664
10665static void
10666compare_sections_command (const char *args, int from_tty)
10667{
10668  asection *s;
10669  const char *sectname;
10670  bfd_size_type size;
10671  bfd_vma lma;
10672  int matched = 0;
10673  int mismatched = 0;
10674  int res;
10675  int read_only = 0;
10676
10677  if (!exec_bfd)
10678    error (_("command cannot be used without an exec file"));
10679
10680  if (args != NULL && strcmp (args, "-r") == 0)
10681    {
10682      read_only = 1;
10683      args = NULL;
10684    }
10685
10686  for (s = exec_bfd->sections; s; s = s->next)
10687    {
10688      if (!(s->flags & SEC_LOAD))
10689	continue;		/* Skip non-loadable section.  */
10690
10691      if (read_only && (s->flags & SEC_READONLY) == 0)
10692	continue;		/* Skip writeable sections */
10693
10694      size = bfd_get_section_size (s);
10695      if (size == 0)
10696	continue;		/* Skip zero-length section.  */
10697
10698      sectname = bfd_get_section_name (exec_bfd, s);
10699      if (args && strcmp (args, sectname) != 0)
10700	continue;		/* Not the section selected by user.  */
10701
10702      matched = 1;		/* Do this section.  */
10703      lma = s->lma;
10704
10705      gdb::byte_vector sectdata (size);
10706      bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10707
10708      res = target_verify_memory (sectdata.data (), lma, size);
10709
10710      if (res == -1)
10711	error (_("target memory fault, section %s, range %s -- %s"), sectname,
10712	       paddress (target_gdbarch (), lma),
10713	       paddress (target_gdbarch (), lma + size));
10714
10715      printf_filtered ("Section %s, range %s -- %s: ", sectname,
10716		       paddress (target_gdbarch (), lma),
10717		       paddress (target_gdbarch (), lma + size));
10718      if (res)
10719	printf_filtered ("matched.\n");
10720      else
10721	{
10722	  printf_filtered ("MIS-MATCHED!\n");
10723	  mismatched++;
10724	}
10725    }
10726  if (mismatched > 0)
10727    warning (_("One or more sections of the target image does not match\n\
10728the loaded file\n"));
10729  if (args && !matched)
10730    printf_filtered (_("No loaded section named '%s'.\n"), args);
10731}
10732
10733/* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10734   into remote target.  The number of bytes written to the remote
10735   target is returned, or -1 for error.  */
10736
10737target_xfer_status
10738remote_target::remote_write_qxfer (const char *object_name,
10739				   const char *annex, const gdb_byte *writebuf,
10740				   ULONGEST offset, LONGEST len,
10741				   ULONGEST *xfered_len,
10742				   struct packet_config *packet)
10743{
10744  int i, buf_len;
10745  ULONGEST n;
10746  struct remote_state *rs = get_remote_state ();
10747  int max_size = get_memory_write_packet_size ();
10748
10749  if (packet_config_support (packet) == PACKET_DISABLE)
10750    return TARGET_XFER_E_IO;
10751
10752  /* Insert header.  */
10753  i = snprintf (rs->buf.data (), max_size,
10754		"qXfer:%s:write:%s:%s:",
10755		object_name, annex ? annex : "",
10756		phex_nz (offset, sizeof offset));
10757  max_size -= (i + 1);
10758
10759  /* Escape as much data as fits into rs->buf.  */
10760  buf_len = remote_escape_output
10761    (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10762
10763  if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10764      || getpkt_sane (&rs->buf, 0) < 0
10765      || packet_ok (rs->buf, packet) != PACKET_OK)
10766    return TARGET_XFER_E_IO;
10767
10768  unpack_varlen_hex (rs->buf.data (), &n);
10769
10770  *xfered_len = n;
10771  return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10772}
10773
10774/* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10775   Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10776   number of bytes read is returned, or 0 for EOF, or -1 for error.
10777   The number of bytes read may be less than LEN without indicating an
10778   EOF.  PACKET is checked and updated to indicate whether the remote
10779   target supports this object.  */
10780
10781target_xfer_status
10782remote_target::remote_read_qxfer (const char *object_name,
10783				  const char *annex,
10784				  gdb_byte *readbuf, ULONGEST offset,
10785				  LONGEST len,
10786				  ULONGEST *xfered_len,
10787				  struct packet_config *packet)
10788{
10789  struct remote_state *rs = get_remote_state ();
10790  LONGEST i, n, packet_len;
10791
10792  if (packet_config_support (packet) == PACKET_DISABLE)
10793    return TARGET_XFER_E_IO;
10794
10795  /* Check whether we've cached an end-of-object packet that matches
10796     this request.  */
10797  if (rs->finished_object)
10798    {
10799      if (strcmp (object_name, rs->finished_object) == 0
10800	  && strcmp (annex ? annex : "", rs->finished_annex) == 0
10801	  && offset == rs->finished_offset)
10802	return TARGET_XFER_EOF;
10803
10804
10805      /* Otherwise, we're now reading something different.  Discard
10806	 the cache.  */
10807      xfree (rs->finished_object);
10808      xfree (rs->finished_annex);
10809      rs->finished_object = NULL;
10810      rs->finished_annex = NULL;
10811    }
10812
10813  /* Request only enough to fit in a single packet.  The actual data
10814     may not, since we don't know how much of it will need to be escaped;
10815     the target is free to respond with slightly less data.  We subtract
10816     five to account for the response type and the protocol frame.  */
10817  n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10818  snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10819	    "qXfer:%s:read:%s:%s,%s",
10820	    object_name, annex ? annex : "",
10821	    phex_nz (offset, sizeof offset),
10822	    phex_nz (n, sizeof n));
10823  i = putpkt (rs->buf);
10824  if (i < 0)
10825    return TARGET_XFER_E_IO;
10826
10827  rs->buf[0] = '\0';
10828  packet_len = getpkt_sane (&rs->buf, 0);
10829  if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10830    return TARGET_XFER_E_IO;
10831
10832  if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10833    error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10834
10835  /* 'm' means there is (or at least might be) more data after this
10836     batch.  That does not make sense unless there's at least one byte
10837     of data in this reply.  */
10838  if (rs->buf[0] == 'm' && packet_len == 1)
10839    error (_("Remote qXfer reply contained no data."));
10840
10841  /* Got some data.  */
10842  i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10843			     packet_len - 1, readbuf, n);
10844
10845  /* 'l' is an EOF marker, possibly including a final block of data,
10846     or possibly empty.  If we have the final block of a non-empty
10847     object, record this fact to bypass a subsequent partial read.  */
10848  if (rs->buf[0] == 'l' && offset + i > 0)
10849    {
10850      rs->finished_object = xstrdup (object_name);
10851      rs->finished_annex = xstrdup (annex ? annex : "");
10852      rs->finished_offset = offset + i;
10853    }
10854
10855  if (i == 0)
10856    return TARGET_XFER_EOF;
10857  else
10858    {
10859      *xfered_len = i;
10860      return TARGET_XFER_OK;
10861    }
10862}
10863
10864enum target_xfer_status
10865remote_target::xfer_partial (enum target_object object,
10866			     const char *annex, gdb_byte *readbuf,
10867			     const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10868			     ULONGEST *xfered_len)
10869{
10870  struct remote_state *rs;
10871  int i;
10872  char *p2;
10873  char query_type;
10874  int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10875
10876  set_remote_traceframe ();
10877  set_general_thread (inferior_ptid);
10878
10879  rs = get_remote_state ();
10880
10881  /* Handle memory using the standard memory routines.  */
10882  if (object == TARGET_OBJECT_MEMORY)
10883    {
10884      /* If the remote target is connected but not running, we should
10885	 pass this request down to a lower stratum (e.g. the executable
10886	 file).  */
10887      if (!target_has_execution)
10888	return TARGET_XFER_EOF;
10889
10890      if (writebuf != NULL)
10891	return remote_write_bytes (offset, writebuf, len, unit_size,
10892				   xfered_len);
10893      else
10894	return remote_read_bytes (offset, readbuf, len, unit_size,
10895				  xfered_len);
10896    }
10897
10898  /* Handle SPU memory using qxfer packets.  */
10899  if (object == TARGET_OBJECT_SPU)
10900    {
10901      if (readbuf)
10902	return remote_read_qxfer ("spu", annex, readbuf, offset, len,
10903				  xfered_len, &remote_protocol_packets
10904				  [PACKET_qXfer_spu_read]);
10905      else
10906	return remote_write_qxfer ("spu", annex, writebuf, offset, len,
10907				   xfered_len, &remote_protocol_packets
10908				   [PACKET_qXfer_spu_write]);
10909    }
10910
10911  /* Handle extra signal info using qxfer packets.  */
10912  if (object == TARGET_OBJECT_SIGNAL_INFO)
10913    {
10914      if (readbuf)
10915	return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10916				  xfered_len, &remote_protocol_packets
10917				  [PACKET_qXfer_siginfo_read]);
10918      else
10919	return remote_write_qxfer ("siginfo", annex,
10920				   writebuf, offset, len, xfered_len,
10921				   &remote_protocol_packets
10922				   [PACKET_qXfer_siginfo_write]);
10923    }
10924
10925  if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10926    {
10927      if (readbuf)
10928	return remote_read_qxfer ("statictrace", annex,
10929				  readbuf, offset, len, xfered_len,
10930				  &remote_protocol_packets
10931				  [PACKET_qXfer_statictrace_read]);
10932      else
10933	return TARGET_XFER_E_IO;
10934    }
10935
10936  /* Only handle flash writes.  */
10937  if (writebuf != NULL)
10938    {
10939      switch (object)
10940	{
10941	case TARGET_OBJECT_FLASH:
10942	  return remote_flash_write (offset, len, xfered_len,
10943				     writebuf);
10944
10945	default:
10946	  return TARGET_XFER_E_IO;
10947	}
10948    }
10949
10950  /* Map pre-existing objects onto letters.  DO NOT do this for new
10951     objects!!!  Instead specify new query packets.  */
10952  switch (object)
10953    {
10954    case TARGET_OBJECT_AVR:
10955      query_type = 'R';
10956      break;
10957
10958    case TARGET_OBJECT_AUXV:
10959      gdb_assert (annex == NULL);
10960      return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10961				xfered_len,
10962				&remote_protocol_packets[PACKET_qXfer_auxv]);
10963
10964    case TARGET_OBJECT_AVAILABLE_FEATURES:
10965      return remote_read_qxfer
10966	("features", annex, readbuf, offset, len, xfered_len,
10967	 &remote_protocol_packets[PACKET_qXfer_features]);
10968
10969    case TARGET_OBJECT_LIBRARIES:
10970      return remote_read_qxfer
10971	("libraries", annex, readbuf, offset, len, xfered_len,
10972	 &remote_protocol_packets[PACKET_qXfer_libraries]);
10973
10974    case TARGET_OBJECT_LIBRARIES_SVR4:
10975      return remote_read_qxfer
10976	("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10977	 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10978
10979    case TARGET_OBJECT_MEMORY_MAP:
10980      gdb_assert (annex == NULL);
10981      return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10982				 xfered_len,
10983				&remote_protocol_packets[PACKET_qXfer_memory_map]);
10984
10985    case TARGET_OBJECT_OSDATA:
10986      /* Should only get here if we're connected.  */
10987      gdb_assert (rs->remote_desc);
10988      return remote_read_qxfer
10989	("osdata", annex, readbuf, offset, len, xfered_len,
10990        &remote_protocol_packets[PACKET_qXfer_osdata]);
10991
10992    case TARGET_OBJECT_THREADS:
10993      gdb_assert (annex == NULL);
10994      return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10995				xfered_len,
10996				&remote_protocol_packets[PACKET_qXfer_threads]);
10997
10998    case TARGET_OBJECT_TRACEFRAME_INFO:
10999      gdb_assert (annex == NULL);
11000      return remote_read_qxfer
11001	("traceframe-info", annex, readbuf, offset, len, xfered_len,
11002	 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11003
11004    case TARGET_OBJECT_FDPIC:
11005      return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11006				xfered_len,
11007				&remote_protocol_packets[PACKET_qXfer_fdpic]);
11008
11009    case TARGET_OBJECT_OPENVMS_UIB:
11010      return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11011				xfered_len,
11012				&remote_protocol_packets[PACKET_qXfer_uib]);
11013
11014    case TARGET_OBJECT_BTRACE:
11015      return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11016				xfered_len,
11017        &remote_protocol_packets[PACKET_qXfer_btrace]);
11018
11019    case TARGET_OBJECT_BTRACE_CONF:
11020      return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11021				len, xfered_len,
11022	&remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11023
11024    case TARGET_OBJECT_EXEC_FILE:
11025      return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11026				len, xfered_len,
11027	&remote_protocol_packets[PACKET_qXfer_exec_file]);
11028
11029    default:
11030      return TARGET_XFER_E_IO;
11031    }
11032
11033  /* Minimum outbuf size is get_remote_packet_size ().  If LEN is not
11034     large enough let the caller deal with it.  */
11035  if (len < get_remote_packet_size ())
11036    return TARGET_XFER_E_IO;
11037  len = get_remote_packet_size ();
11038
11039  /* Except for querying the minimum buffer size, target must be open.  */
11040  if (!rs->remote_desc)
11041    error (_("remote query is only available after target open"));
11042
11043  gdb_assert (annex != NULL);
11044  gdb_assert (readbuf != NULL);
11045
11046  p2 = rs->buf.data ();
11047  *p2++ = 'q';
11048  *p2++ = query_type;
11049
11050  /* We used one buffer char for the remote protocol q command and
11051     another for the query type.  As the remote protocol encapsulation
11052     uses 4 chars plus one extra in case we are debugging
11053     (remote_debug), we have PBUFZIZ - 7 left to pack the query
11054     string.  */
11055  i = 0;
11056  while (annex[i] && (i < (get_remote_packet_size () - 8)))
11057    {
11058      /* Bad caller may have sent forbidden characters.  */
11059      gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11060      *p2++ = annex[i];
11061      i++;
11062    }
11063  *p2 = '\0';
11064  gdb_assert (annex[i] == '\0');
11065
11066  i = putpkt (rs->buf);
11067  if (i < 0)
11068    return TARGET_XFER_E_IO;
11069
11070  getpkt (&rs->buf, 0);
11071  strcpy ((char *) readbuf, rs->buf.data ());
11072
11073  *xfered_len = strlen ((char *) readbuf);
11074  return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11075}
11076
11077/* Implementation of to_get_memory_xfer_limit.  */
11078
11079ULONGEST
11080remote_target::get_memory_xfer_limit ()
11081{
11082  return get_memory_write_packet_size ();
11083}
11084
11085int
11086remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11087			      const gdb_byte *pattern, ULONGEST pattern_len,
11088			      CORE_ADDR *found_addrp)
11089{
11090  int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11091  struct remote_state *rs = get_remote_state ();
11092  int max_size = get_memory_write_packet_size ();
11093  struct packet_config *packet =
11094    &remote_protocol_packets[PACKET_qSearch_memory];
11095  /* Number of packet bytes used to encode the pattern;
11096     this could be more than PATTERN_LEN due to escape characters.  */
11097  int escaped_pattern_len;
11098  /* Amount of pattern that was encodable in the packet.  */
11099  int used_pattern_len;
11100  int i;
11101  int found;
11102  ULONGEST found_addr;
11103
11104  /* Don't go to the target if we don't have to.  This is done before
11105     checking packet_config_support to avoid the possibility that a
11106     success for this edge case means the facility works in
11107     general.  */
11108  if (pattern_len > search_space_len)
11109    return 0;
11110  if (pattern_len == 0)
11111    {
11112      *found_addrp = start_addr;
11113      return 1;
11114    }
11115
11116  /* If we already know the packet isn't supported, fall back to the simple
11117     way of searching memory.  */
11118
11119  if (packet_config_support (packet) == PACKET_DISABLE)
11120    {
11121      /* Target doesn't provided special support, fall back and use the
11122	 standard support (copy memory and do the search here).  */
11123      return simple_search_memory (this, start_addr, search_space_len,
11124				   pattern, pattern_len, found_addrp);
11125    }
11126
11127  /* Make sure the remote is pointing at the right process.  */
11128  set_general_process ();
11129
11130  /* Insert header.  */
11131  i = snprintf (rs->buf.data (), max_size,
11132		"qSearch:memory:%s;%s;",
11133		phex_nz (start_addr, addr_size),
11134		phex_nz (search_space_len, sizeof (search_space_len)));
11135  max_size -= (i + 1);
11136
11137  /* Escape as much data as fits into rs->buf.  */
11138  escaped_pattern_len =
11139    remote_escape_output (pattern, pattern_len, 1,
11140			  (gdb_byte *) rs->buf.data () + i,
11141			  &used_pattern_len, max_size);
11142
11143  /* Bail if the pattern is too large.  */
11144  if (used_pattern_len != pattern_len)
11145    error (_("Pattern is too large to transmit to remote target."));
11146
11147  if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11148      || getpkt_sane (&rs->buf, 0) < 0
11149      || packet_ok (rs->buf, packet) != PACKET_OK)
11150    {
11151      /* The request may not have worked because the command is not
11152	 supported.  If so, fall back to the simple way.  */
11153      if (packet_config_support (packet) == PACKET_DISABLE)
11154	{
11155	  return simple_search_memory (this, start_addr, search_space_len,
11156				       pattern, pattern_len, found_addrp);
11157	}
11158      return -1;
11159    }
11160
11161  if (rs->buf[0] == '0')
11162    found = 0;
11163  else if (rs->buf[0] == '1')
11164    {
11165      found = 1;
11166      if (rs->buf[1] != ',')
11167	error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11168      unpack_varlen_hex (&rs->buf[2], &found_addr);
11169      *found_addrp = found_addr;
11170    }
11171  else
11172    error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11173
11174  return found;
11175}
11176
11177void
11178remote_target::rcmd (const char *command, struct ui_file *outbuf)
11179{
11180  struct remote_state *rs = get_remote_state ();
11181  char *p = rs->buf.data ();
11182
11183  if (!rs->remote_desc)
11184    error (_("remote rcmd is only available after target open"));
11185
11186  /* Send a NULL command across as an empty command.  */
11187  if (command == NULL)
11188    command = "";
11189
11190  /* The query prefix.  */
11191  strcpy (rs->buf.data (), "qRcmd,");
11192  p = strchr (rs->buf.data (), '\0');
11193
11194  if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11195      > get_remote_packet_size ())
11196    error (_("\"monitor\" command ``%s'' is too long."), command);
11197
11198  /* Encode the actual command.  */
11199  bin2hex ((const gdb_byte *) command, p, strlen (command));
11200
11201  if (putpkt (rs->buf) < 0)
11202    error (_("Communication problem with target."));
11203
11204  /* get/display the response */
11205  while (1)
11206    {
11207      char *buf;
11208
11209      /* XXX - see also remote_get_noisy_reply().  */
11210      QUIT;			/* Allow user to bail out with ^C.  */
11211      rs->buf[0] = '\0';
11212      if (getpkt_sane (&rs->buf, 0) == -1)
11213        {
11214          /* Timeout.  Continue to (try to) read responses.
11215             This is better than stopping with an error, assuming the stub
11216             is still executing the (long) monitor command.
11217             If needed, the user can interrupt gdb using C-c, obtaining
11218             an effect similar to stop on timeout.  */
11219          continue;
11220        }
11221      buf = rs->buf.data ();
11222      if (buf[0] == '\0')
11223	error (_("Target does not support this command."));
11224      if (buf[0] == 'O' && buf[1] != 'K')
11225	{
11226	  remote_console_output (buf + 1); /* 'O' message from stub.  */
11227	  continue;
11228	}
11229      if (strcmp (buf, "OK") == 0)
11230	break;
11231      if (strlen (buf) == 3 && buf[0] == 'E'
11232	  && isdigit (buf[1]) && isdigit (buf[2]))
11233	{
11234	  error (_("Protocol error with Rcmd"));
11235	}
11236      for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11237	{
11238	  char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11239
11240	  fputc_unfiltered (c, outbuf);
11241	}
11242      break;
11243    }
11244}
11245
11246std::vector<mem_region>
11247remote_target::memory_map ()
11248{
11249  std::vector<mem_region> result;
11250  gdb::optional<gdb::char_vector> text
11251    = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11252
11253  if (text)
11254    result = parse_memory_map (text->data ());
11255
11256  return result;
11257}
11258
11259static void
11260packet_command (const char *args, int from_tty)
11261{
11262  remote_target *remote = get_current_remote_target ();
11263
11264  if (remote == nullptr)
11265    error (_("command can only be used with remote target"));
11266
11267  remote->packet_command (args, from_tty);
11268}
11269
11270void
11271remote_target::packet_command (const char *args, int from_tty)
11272{
11273  if (!args)
11274    error (_("remote-packet command requires packet text as argument"));
11275
11276  puts_filtered ("sending: ");
11277  print_packet (args);
11278  puts_filtered ("\n");
11279  putpkt (args);
11280
11281  remote_state *rs = get_remote_state ();
11282
11283  getpkt (&rs->buf, 0);
11284  puts_filtered ("received: ");
11285  print_packet (rs->buf.data ());
11286  puts_filtered ("\n");
11287}
11288
11289#if 0
11290/* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11291
11292static void display_thread_info (struct gdb_ext_thread_info *info);
11293
11294static void threadset_test_cmd (char *cmd, int tty);
11295
11296static void threadalive_test (char *cmd, int tty);
11297
11298static void threadlist_test_cmd (char *cmd, int tty);
11299
11300int get_and_display_threadinfo (threadref *ref);
11301
11302static void threadinfo_test_cmd (char *cmd, int tty);
11303
11304static int thread_display_step (threadref *ref, void *context);
11305
11306static void threadlist_update_test_cmd (char *cmd, int tty);
11307
11308static void init_remote_threadtests (void);
11309
11310#define SAMPLE_THREAD  0x05060708	/* Truncated 64 bit threadid.  */
11311
11312static void
11313threadset_test_cmd (const char *cmd, int tty)
11314{
11315  int sample_thread = SAMPLE_THREAD;
11316
11317  printf_filtered (_("Remote threadset test\n"));
11318  set_general_thread (sample_thread);
11319}
11320
11321
11322static void
11323threadalive_test (const char *cmd, int tty)
11324{
11325  int sample_thread = SAMPLE_THREAD;
11326  int pid = inferior_ptid.pid ();
11327  ptid_t ptid = ptid_t (pid, sample_thread, 0);
11328
11329  if (remote_thread_alive (ptid))
11330    printf_filtered ("PASS: Thread alive test\n");
11331  else
11332    printf_filtered ("FAIL: Thread alive test\n");
11333}
11334
11335void output_threadid (char *title, threadref *ref);
11336
11337void
11338output_threadid (char *title, threadref *ref)
11339{
11340  char hexid[20];
11341
11342  pack_threadid (&hexid[0], ref);	/* Convert threead id into hex.  */
11343  hexid[16] = 0;
11344  printf_filtered ("%s  %s\n", title, (&hexid[0]));
11345}
11346
11347static void
11348threadlist_test_cmd (const char *cmd, int tty)
11349{
11350  int startflag = 1;
11351  threadref nextthread;
11352  int done, result_count;
11353  threadref threadlist[3];
11354
11355  printf_filtered ("Remote Threadlist test\n");
11356  if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11357			      &result_count, &threadlist[0]))
11358    printf_filtered ("FAIL: threadlist test\n");
11359  else
11360    {
11361      threadref *scan = threadlist;
11362      threadref *limit = scan + result_count;
11363
11364      while (scan < limit)
11365	output_threadid (" thread ", scan++);
11366    }
11367}
11368
11369void
11370display_thread_info (struct gdb_ext_thread_info *info)
11371{
11372  output_threadid ("Threadid: ", &info->threadid);
11373  printf_filtered ("Name: %s\n ", info->shortname);
11374  printf_filtered ("State: %s\n", info->display);
11375  printf_filtered ("other: %s\n\n", info->more_display);
11376}
11377
11378int
11379get_and_display_threadinfo (threadref *ref)
11380{
11381  int result;
11382  int set;
11383  struct gdb_ext_thread_info threadinfo;
11384
11385  set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11386    | TAG_MOREDISPLAY | TAG_DISPLAY;
11387  if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11388    display_thread_info (&threadinfo);
11389  return result;
11390}
11391
11392static void
11393threadinfo_test_cmd (const char *cmd, int tty)
11394{
11395  int athread = SAMPLE_THREAD;
11396  threadref thread;
11397  int set;
11398
11399  int_to_threadref (&thread, athread);
11400  printf_filtered ("Remote Threadinfo test\n");
11401  if (!get_and_display_threadinfo (&thread))
11402    printf_filtered ("FAIL cannot get thread info\n");
11403}
11404
11405static int
11406thread_display_step (threadref *ref, void *context)
11407{
11408  /* output_threadid(" threadstep ",ref); *//* simple test */
11409  return get_and_display_threadinfo (ref);
11410}
11411
11412static void
11413threadlist_update_test_cmd (const char *cmd, int tty)
11414{
11415  printf_filtered ("Remote Threadlist update test\n");
11416  remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11417}
11418
11419static void
11420init_remote_threadtests (void)
11421{
11422  add_com ("tlist", class_obscure, threadlist_test_cmd,
11423	   _("Fetch and print the remote list of "
11424	     "thread identifiers, one pkt only"));
11425  add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11426	   _("Fetch and display info about one thread"));
11427  add_com ("tset", class_obscure, threadset_test_cmd,
11428	   _("Test setting to a different thread"));
11429  add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11430	   _("Iterate through updating all remote thread info"));
11431  add_com ("talive", class_obscure, threadalive_test,
11432	   _(" Remote thread alive test "));
11433}
11434
11435#endif /* 0 */
11436
11437/* Convert a thread ID to a string.  Returns the string in a static
11438   buffer.  */
11439
11440const char *
11441remote_target::pid_to_str (ptid_t ptid)
11442{
11443  static char buf[64];
11444  struct remote_state *rs = get_remote_state ();
11445
11446  if (ptid == null_ptid)
11447    return normal_pid_to_str (ptid);
11448  else if (ptid.is_pid ())
11449    {
11450      /* Printing an inferior target id.  */
11451
11452      /* When multi-process extensions are off, there's no way in the
11453	 remote protocol to know the remote process id, if there's any
11454	 at all.  There's one exception --- when we're connected with
11455	 target extended-remote, and we manually attached to a process
11456	 with "attach PID".  We don't record anywhere a flag that
11457	 allows us to distinguish that case from the case of
11458	 connecting with extended-remote and the stub already being
11459	 attached to a process, and reporting yes to qAttached, hence
11460	 no smart special casing here.  */
11461      if (!remote_multi_process_p (rs))
11462	{
11463	  xsnprintf (buf, sizeof buf, "Remote target");
11464	  return buf;
11465	}
11466
11467      return normal_pid_to_str (ptid);
11468    }
11469  else
11470    {
11471      if (magic_null_ptid == ptid)
11472	xsnprintf (buf, sizeof buf, "Thread <main>");
11473      else if (remote_multi_process_p (rs))
11474	if (ptid.lwp () == 0)
11475	  return normal_pid_to_str (ptid);
11476	else
11477	  xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11478		     ptid.pid (), ptid.lwp ());
11479      else
11480	xsnprintf (buf, sizeof buf, "Thread %ld",
11481		   ptid.lwp ());
11482      return buf;
11483    }
11484}
11485
11486/* Get the address of the thread local variable in OBJFILE which is
11487   stored at OFFSET within the thread local storage for thread PTID.  */
11488
11489CORE_ADDR
11490remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11491					 CORE_ADDR offset)
11492{
11493  if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11494    {
11495      struct remote_state *rs = get_remote_state ();
11496      char *p = rs->buf.data ();
11497      char *endp = p + get_remote_packet_size ();
11498      enum packet_result result;
11499
11500      strcpy (p, "qGetTLSAddr:");
11501      p += strlen (p);
11502      p = write_ptid (p, endp, ptid);
11503      *p++ = ',';
11504      p += hexnumstr (p, offset);
11505      *p++ = ',';
11506      p += hexnumstr (p, lm);
11507      *p++ = '\0';
11508
11509      putpkt (rs->buf);
11510      getpkt (&rs->buf, 0);
11511      result = packet_ok (rs->buf,
11512			  &remote_protocol_packets[PACKET_qGetTLSAddr]);
11513      if (result == PACKET_OK)
11514	{
11515	  ULONGEST addr;
11516
11517	  unpack_varlen_hex (rs->buf.data (), &addr);
11518	  return addr;
11519	}
11520      else if (result == PACKET_UNKNOWN)
11521	throw_error (TLS_GENERIC_ERROR,
11522		     _("Remote target doesn't support qGetTLSAddr packet"));
11523      else
11524	throw_error (TLS_GENERIC_ERROR,
11525		     _("Remote target failed to process qGetTLSAddr request"));
11526    }
11527  else
11528    throw_error (TLS_GENERIC_ERROR,
11529		 _("TLS not supported or disabled on this target"));
11530  /* Not reached.  */
11531  return 0;
11532}
11533
11534/* Provide thread local base, i.e. Thread Information Block address.
11535   Returns 1 if ptid is found and thread_local_base is non zero.  */
11536
11537bool
11538remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11539{
11540  if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11541    {
11542      struct remote_state *rs = get_remote_state ();
11543      char *p = rs->buf.data ();
11544      char *endp = p + get_remote_packet_size ();
11545      enum packet_result result;
11546
11547      strcpy (p, "qGetTIBAddr:");
11548      p += strlen (p);
11549      p = write_ptid (p, endp, ptid);
11550      *p++ = '\0';
11551
11552      putpkt (rs->buf);
11553      getpkt (&rs->buf, 0);
11554      result = packet_ok (rs->buf,
11555			  &remote_protocol_packets[PACKET_qGetTIBAddr]);
11556      if (result == PACKET_OK)
11557	{
11558	  ULONGEST val;
11559	  unpack_varlen_hex (rs->buf.data (), &val);
11560	  if (addr)
11561	    *addr = (CORE_ADDR) val;
11562	  return true;
11563	}
11564      else if (result == PACKET_UNKNOWN)
11565	error (_("Remote target doesn't support qGetTIBAddr packet"));
11566      else
11567	error (_("Remote target failed to process qGetTIBAddr request"));
11568    }
11569  else
11570    error (_("qGetTIBAddr not supported or disabled on this target"));
11571  /* Not reached.  */
11572  return false;
11573}
11574
11575/* Support for inferring a target description based on the current
11576   architecture and the size of a 'g' packet.  While the 'g' packet
11577   can have any size (since optional registers can be left off the
11578   end), some sizes are easily recognizable given knowledge of the
11579   approximate architecture.  */
11580
11581struct remote_g_packet_guess
11582{
11583  remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11584    : bytes (bytes_),
11585      tdesc (tdesc_)
11586  {
11587  }
11588
11589  int bytes;
11590  const struct target_desc *tdesc;
11591};
11592
11593struct remote_g_packet_data : public allocate_on_obstack
11594{
11595  std::vector<remote_g_packet_guess> guesses;
11596};
11597
11598static struct gdbarch_data *remote_g_packet_data_handle;
11599
11600static void *
11601remote_g_packet_data_init (struct obstack *obstack)
11602{
11603  return new (obstack) remote_g_packet_data;
11604}
11605
11606void
11607register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11608				const struct target_desc *tdesc)
11609{
11610  struct remote_g_packet_data *data
11611    = ((struct remote_g_packet_data *)
11612       gdbarch_data (gdbarch, remote_g_packet_data_handle));
11613
11614  gdb_assert (tdesc != NULL);
11615
11616  for (const remote_g_packet_guess &guess : data->guesses)
11617    if (guess.bytes == bytes)
11618      internal_error (__FILE__, __LINE__,
11619		      _("Duplicate g packet description added for size %d"),
11620		      bytes);
11621
11622  data->guesses.emplace_back (bytes, tdesc);
11623}
11624
11625/* Return true if remote_read_description would do anything on this target
11626   and architecture, false otherwise.  */
11627
11628static bool
11629remote_read_description_p (struct target_ops *target)
11630{
11631  struct remote_g_packet_data *data
11632    = ((struct remote_g_packet_data *)
11633       gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11634
11635  return !data->guesses.empty ();
11636}
11637
11638const struct target_desc *
11639remote_target::read_description ()
11640{
11641  struct remote_g_packet_data *data
11642    = ((struct remote_g_packet_data *)
11643       gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11644
11645  /* Do not try this during initial connection, when we do not know
11646     whether there is a running but stopped thread.  */
11647  if (!target_has_execution || inferior_ptid == null_ptid)
11648    return beneath ()->read_description ();
11649
11650  if (!data->guesses.empty ())
11651    {
11652      int bytes = send_g_packet ();
11653
11654      for (const remote_g_packet_guess &guess : data->guesses)
11655	if (guess.bytes == bytes)
11656	  return guess.tdesc;
11657
11658      /* We discard the g packet.  A minor optimization would be to
11659	 hold on to it, and fill the register cache once we have selected
11660	 an architecture, but it's too tricky to do safely.  */
11661    }
11662
11663  return beneath ()->read_description ();
11664}
11665
11666/* Remote file transfer support.  This is host-initiated I/O, not
11667   target-initiated; for target-initiated, see remote-fileio.c.  */
11668
11669/* If *LEFT is at least the length of STRING, copy STRING to
11670   *BUFFER, update *BUFFER to point to the new end of the buffer, and
11671   decrease *LEFT.  Otherwise raise an error.  */
11672
11673static void
11674remote_buffer_add_string (char **buffer, int *left, const char *string)
11675{
11676  int len = strlen (string);
11677
11678  if (len > *left)
11679    error (_("Packet too long for target."));
11680
11681  memcpy (*buffer, string, len);
11682  *buffer += len;
11683  *left -= len;
11684
11685  /* NUL-terminate the buffer as a convenience, if there is
11686     room.  */
11687  if (*left)
11688    **buffer = '\0';
11689}
11690
11691/* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11692   *BUFFER, update *BUFFER to point to the new end of the buffer, and
11693   decrease *LEFT.  Otherwise raise an error.  */
11694
11695static void
11696remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11697			 int len)
11698{
11699  if (2 * len > *left)
11700    error (_("Packet too long for target."));
11701
11702  bin2hex (bytes, *buffer, len);
11703  *buffer += 2 * len;
11704  *left -= 2 * len;
11705
11706  /* NUL-terminate the buffer as a convenience, if there is
11707     room.  */
11708  if (*left)
11709    **buffer = '\0';
11710}
11711
11712/* If *LEFT is large enough, convert VALUE to hex and add it to
11713   *BUFFER, update *BUFFER to point to the new end of the buffer, and
11714   decrease *LEFT.  Otherwise raise an error.  */
11715
11716static void
11717remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11718{
11719  int len = hexnumlen (value);
11720
11721  if (len > *left)
11722    error (_("Packet too long for target."));
11723
11724  hexnumstr (*buffer, value);
11725  *buffer += len;
11726  *left -= len;
11727
11728  /* NUL-terminate the buffer as a convenience, if there is
11729     room.  */
11730  if (*left)
11731    **buffer = '\0';
11732}
11733
11734/* Parse an I/O result packet from BUFFER.  Set RETCODE to the return
11735   value, *REMOTE_ERRNO to the remote error number or zero if none
11736   was included, and *ATTACHMENT to point to the start of the annex
11737   if any.  The length of the packet isn't needed here; there may
11738   be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11739
11740   Return 0 if the packet could be parsed, -1 if it could not.  If
11741   -1 is returned, the other variables may not be initialized.  */
11742
11743static int
11744remote_hostio_parse_result (char *buffer, int *retcode,
11745			    int *remote_errno, char **attachment)
11746{
11747  char *p, *p2;
11748
11749  *remote_errno = 0;
11750  *attachment = NULL;
11751
11752  if (buffer[0] != 'F')
11753    return -1;
11754
11755  errno = 0;
11756  *retcode = strtol (&buffer[1], &p, 16);
11757  if (errno != 0 || p == &buffer[1])
11758    return -1;
11759
11760  /* Check for ",errno".  */
11761  if (*p == ',')
11762    {
11763      errno = 0;
11764      *remote_errno = strtol (p + 1, &p2, 16);
11765      if (errno != 0 || p + 1 == p2)
11766	return -1;
11767      p = p2;
11768    }
11769
11770  /* Check for ";attachment".  If there is no attachment, the
11771     packet should end here.  */
11772  if (*p == ';')
11773    {
11774      *attachment = p + 1;
11775      return 0;
11776    }
11777  else if (*p == '\0')
11778    return 0;
11779  else
11780    return -1;
11781}
11782
11783/* Send a prepared I/O packet to the target and read its response.
11784   The prepared packet is in the global RS->BUF before this function
11785   is called, and the answer is there when we return.
11786
11787   COMMAND_BYTES is the length of the request to send, which may include
11788   binary data.  WHICH_PACKET is the packet configuration to check
11789   before attempting a packet.  If an error occurs, *REMOTE_ERRNO
11790   is set to the error number and -1 is returned.  Otherwise the value
11791   returned by the function is returned.
11792
11793   ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11794   attachment is expected; an error will be reported if there's a
11795   mismatch.  If one is found, *ATTACHMENT will be set to point into
11796   the packet buffer and *ATTACHMENT_LEN will be set to the
11797   attachment's length.  */
11798
11799int
11800remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11801					   int *remote_errno, char **attachment,
11802					   int *attachment_len)
11803{
11804  struct remote_state *rs = get_remote_state ();
11805  int ret, bytes_read;
11806  char *attachment_tmp;
11807
11808  if (packet_support (which_packet) == PACKET_DISABLE)
11809    {
11810      *remote_errno = FILEIO_ENOSYS;
11811      return -1;
11812    }
11813
11814  putpkt_binary (rs->buf.data (), command_bytes);
11815  bytes_read = getpkt_sane (&rs->buf, 0);
11816
11817  /* If it timed out, something is wrong.  Don't try to parse the
11818     buffer.  */
11819  if (bytes_read < 0)
11820    {
11821      *remote_errno = FILEIO_EINVAL;
11822      return -1;
11823    }
11824
11825  switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11826    {
11827    case PACKET_ERROR:
11828      *remote_errno = FILEIO_EINVAL;
11829      return -1;
11830    case PACKET_UNKNOWN:
11831      *remote_errno = FILEIO_ENOSYS;
11832      return -1;
11833    case PACKET_OK:
11834      break;
11835    }
11836
11837  if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11838				  &attachment_tmp))
11839    {
11840      *remote_errno = FILEIO_EINVAL;
11841      return -1;
11842    }
11843
11844  /* Make sure we saw an attachment if and only if we expected one.  */
11845  if ((attachment_tmp == NULL && attachment != NULL)
11846      || (attachment_tmp != NULL && attachment == NULL))
11847    {
11848      *remote_errno = FILEIO_EINVAL;
11849      return -1;
11850    }
11851
11852  /* If an attachment was found, it must point into the packet buffer;
11853     work out how many bytes there were.  */
11854  if (attachment_tmp != NULL)
11855    {
11856      *attachment = attachment_tmp;
11857      *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11858    }
11859
11860  return ret;
11861}
11862
11863/* See declaration.h.  */
11864
11865void
11866readahead_cache::invalidate ()
11867{
11868  this->fd = -1;
11869}
11870
11871/* See declaration.h.  */
11872
11873void
11874readahead_cache::invalidate_fd (int fd)
11875{
11876  if (this->fd == fd)
11877    this->fd = -1;
11878}
11879
11880/* Set the filesystem remote_hostio functions that take FILENAME
11881   arguments will use.  Return 0 on success, or -1 if an error
11882   occurs (and set *REMOTE_ERRNO).  */
11883
11884int
11885remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11886					     int *remote_errno)
11887{
11888  struct remote_state *rs = get_remote_state ();
11889  int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11890  char *p = rs->buf.data ();
11891  int left = get_remote_packet_size () - 1;
11892  char arg[9];
11893  int ret;
11894
11895  if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11896    return 0;
11897
11898  if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11899    return 0;
11900
11901  remote_buffer_add_string (&p, &left, "vFile:setfs:");
11902
11903  xsnprintf (arg, sizeof (arg), "%x", required_pid);
11904  remote_buffer_add_string (&p, &left, arg);
11905
11906  ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11907				    remote_errno, NULL, NULL);
11908
11909  if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11910    return 0;
11911
11912  if (ret == 0)
11913    rs->fs_pid = required_pid;
11914
11915  return ret;
11916}
11917
11918/* Implementation of to_fileio_open.  */
11919
11920int
11921remote_target::remote_hostio_open (inferior *inf, const char *filename,
11922				   int flags, int mode, int warn_if_slow,
11923				   int *remote_errno)
11924{
11925  struct remote_state *rs = get_remote_state ();
11926  char *p = rs->buf.data ();
11927  int left = get_remote_packet_size () - 1;
11928
11929  if (warn_if_slow)
11930    {
11931      static int warning_issued = 0;
11932
11933      printf_unfiltered (_("Reading %s from remote target...\n"),
11934			 filename);
11935
11936      if (!warning_issued)
11937	{
11938	  warning (_("File transfers from remote targets can be slow."
11939		     " Use \"set sysroot\" to access files locally"
11940		     " instead."));
11941	  warning_issued = 1;
11942	}
11943    }
11944
11945  if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11946    return -1;
11947
11948  remote_buffer_add_string (&p, &left, "vFile:open:");
11949
11950  remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11951			   strlen (filename));
11952  remote_buffer_add_string (&p, &left, ",");
11953
11954  remote_buffer_add_int (&p, &left, flags);
11955  remote_buffer_add_string (&p, &left, ",");
11956
11957  remote_buffer_add_int (&p, &left, mode);
11958
11959  return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
11960				     remote_errno, NULL, NULL);
11961}
11962
11963int
11964remote_target::fileio_open (struct inferior *inf, const char *filename,
11965			    int flags, int mode, int warn_if_slow,
11966			    int *remote_errno)
11967{
11968  return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11969			     remote_errno);
11970}
11971
11972/* Implementation of to_fileio_pwrite.  */
11973
11974int
11975remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11976				     ULONGEST offset, int *remote_errno)
11977{
11978  struct remote_state *rs = get_remote_state ();
11979  char *p = rs->buf.data ();
11980  int left = get_remote_packet_size ();
11981  int out_len;
11982
11983  rs->readahead_cache.invalidate_fd (fd);
11984
11985  remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11986
11987  remote_buffer_add_int (&p, &left, fd);
11988  remote_buffer_add_string (&p, &left, ",");
11989
11990  remote_buffer_add_int (&p, &left, offset);
11991  remote_buffer_add_string (&p, &left, ",");
11992
11993  p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11994			     (get_remote_packet_size ()
11995			      - (p - rs->buf.data ())));
11996
11997  return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
11998				     remote_errno, NULL, NULL);
11999}
12000
12001int
12002remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12003			      ULONGEST offset, int *remote_errno)
12004{
12005  return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12006}
12007
12008/* Helper for the implementation of to_fileio_pread.  Read the file
12009   from the remote side with vFile:pread.  */
12010
12011int
12012remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12013					  ULONGEST offset, int *remote_errno)
12014{
12015  struct remote_state *rs = get_remote_state ();
12016  char *p = rs->buf.data ();
12017  char *attachment;
12018  int left = get_remote_packet_size ();
12019  int ret, attachment_len;
12020  int read_len;
12021
12022  remote_buffer_add_string (&p, &left, "vFile:pread:");
12023
12024  remote_buffer_add_int (&p, &left, fd);
12025  remote_buffer_add_string (&p, &left, ",");
12026
12027  remote_buffer_add_int (&p, &left, len);
12028  remote_buffer_add_string (&p, &left, ",");
12029
12030  remote_buffer_add_int (&p, &left, offset);
12031
12032  ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12033				    remote_errno, &attachment,
12034				    &attachment_len);
12035
12036  if (ret < 0)
12037    return ret;
12038
12039  read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12040				    read_buf, len);
12041  if (read_len != ret)
12042    error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12043
12044  return ret;
12045}
12046
12047/* See declaration.h.  */
12048
12049int
12050readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12051			ULONGEST offset)
12052{
12053  if (this->fd == fd
12054      && this->offset <= offset
12055      && offset < this->offset + this->bufsize)
12056    {
12057      ULONGEST max = this->offset + this->bufsize;
12058
12059      if (offset + len > max)
12060	len = max - offset;
12061
12062      memcpy (read_buf, this->buf + offset - this->offset, len);
12063      return len;
12064    }
12065
12066  return 0;
12067}
12068
12069/* Implementation of to_fileio_pread.  */
12070
12071int
12072remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12073				    ULONGEST offset, int *remote_errno)
12074{
12075  int ret;
12076  struct remote_state *rs = get_remote_state ();
12077  readahead_cache *cache = &rs->readahead_cache;
12078
12079  ret = cache->pread (fd, read_buf, len, offset);
12080  if (ret > 0)
12081    {
12082      cache->hit_count++;
12083
12084      if (remote_debug)
12085	fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12086			    pulongest (cache->hit_count));
12087      return ret;
12088    }
12089
12090  cache->miss_count++;
12091  if (remote_debug)
12092    fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12093			pulongest (cache->miss_count));
12094
12095  cache->fd = fd;
12096  cache->offset = offset;
12097  cache->bufsize = get_remote_packet_size ();
12098  cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12099
12100  ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12101				   cache->offset, remote_errno);
12102  if (ret <= 0)
12103    {
12104      cache->invalidate_fd (fd);
12105      return ret;
12106    }
12107
12108  cache->bufsize = ret;
12109  return cache->pread (fd, read_buf, len, offset);
12110}
12111
12112int
12113remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12114			     ULONGEST offset, int *remote_errno)
12115{
12116  return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12117}
12118
12119/* Implementation of to_fileio_close.  */
12120
12121int
12122remote_target::remote_hostio_close (int fd, int *remote_errno)
12123{
12124  struct remote_state *rs = get_remote_state ();
12125  char *p = rs->buf.data ();
12126  int left = get_remote_packet_size () - 1;
12127
12128  rs->readahead_cache.invalidate_fd (fd);
12129
12130  remote_buffer_add_string (&p, &left, "vFile:close:");
12131
12132  remote_buffer_add_int (&p, &left, fd);
12133
12134  return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12135				     remote_errno, NULL, NULL);
12136}
12137
12138int
12139remote_target::fileio_close (int fd, int *remote_errno)
12140{
12141  return remote_hostio_close (fd, remote_errno);
12142}
12143
12144/* Implementation of to_fileio_unlink.  */
12145
12146int
12147remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12148				     int *remote_errno)
12149{
12150  struct remote_state *rs = get_remote_state ();
12151  char *p = rs->buf.data ();
12152  int left = get_remote_packet_size () - 1;
12153
12154  if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12155    return -1;
12156
12157  remote_buffer_add_string (&p, &left, "vFile:unlink:");
12158
12159  remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12160			   strlen (filename));
12161
12162  return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12163				     remote_errno, NULL, NULL);
12164}
12165
12166int
12167remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12168			      int *remote_errno)
12169{
12170  return remote_hostio_unlink (inf, filename, remote_errno);
12171}
12172
12173/* Implementation of to_fileio_readlink.  */
12174
12175gdb::optional<std::string>
12176remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12177				int *remote_errno)
12178{
12179  struct remote_state *rs = get_remote_state ();
12180  char *p = rs->buf.data ();
12181  char *attachment;
12182  int left = get_remote_packet_size ();
12183  int len, attachment_len;
12184  int read_len;
12185
12186  if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12187    return {};
12188
12189  remote_buffer_add_string (&p, &left, "vFile:readlink:");
12190
12191  remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12192			   strlen (filename));
12193
12194  len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12195				    remote_errno, &attachment,
12196				    &attachment_len);
12197
12198  if (len < 0)
12199    return {};
12200
12201  std::string ret (len, '\0');
12202
12203  read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12204				    (gdb_byte *) &ret[0], len);
12205  if (read_len != len)
12206    error (_("Readlink returned %d, but %d bytes."), len, read_len);
12207
12208  return ret;
12209}
12210
12211/* Implementation of to_fileio_fstat.  */
12212
12213int
12214remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12215{
12216  struct remote_state *rs = get_remote_state ();
12217  char *p = rs->buf.data ();
12218  int left = get_remote_packet_size ();
12219  int attachment_len, ret;
12220  char *attachment;
12221  struct fio_stat fst;
12222  int read_len;
12223
12224  remote_buffer_add_string (&p, &left, "vFile:fstat:");
12225
12226  remote_buffer_add_int (&p, &left, fd);
12227
12228  ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12229				    remote_errno, &attachment,
12230				    &attachment_len);
12231  if (ret < 0)
12232    {
12233      if (*remote_errno != FILEIO_ENOSYS)
12234	return ret;
12235
12236      /* Strictly we should return -1, ENOSYS here, but when
12237	 "set sysroot remote:" was implemented in August 2008
12238	 BFD's need for a stat function was sidestepped with
12239	 this hack.  This was not remedied until March 2015
12240	 so we retain the previous behavior to avoid breaking
12241	 compatibility.
12242
12243	 Note that the memset is a March 2015 addition; older
12244	 GDBs set st_size *and nothing else* so the structure
12245	 would have garbage in all other fields.  This might
12246	 break something but retaining the previous behavior
12247	 here would be just too wrong.  */
12248
12249      memset (st, 0, sizeof (struct stat));
12250      st->st_size = INT_MAX;
12251      return 0;
12252    }
12253
12254  read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12255				    (gdb_byte *) &fst, sizeof (fst));
12256
12257  if (read_len != ret)
12258    error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12259
12260  if (read_len != sizeof (fst))
12261    error (_("vFile:fstat returned %d bytes, but expecting %d."),
12262	   read_len, (int) sizeof (fst));
12263
12264  remote_fileio_to_host_stat (&fst, st);
12265
12266  return 0;
12267}
12268
12269/* Implementation of to_filesystem_is_local.  */
12270
12271bool
12272remote_target::filesystem_is_local ()
12273{
12274  /* Valgrind GDB presents itself as a remote target but works
12275     on the local filesystem: it does not implement remote get
12276     and users are not expected to set a sysroot.  To handle
12277     this case we treat the remote filesystem as local if the
12278     sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12279     does not support vFile:open.  */
12280  if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12281    {
12282      enum packet_support ps = packet_support (PACKET_vFile_open);
12283
12284      if (ps == PACKET_SUPPORT_UNKNOWN)
12285	{
12286	  int fd, remote_errno;
12287
12288	  /* Try opening a file to probe support.  The supplied
12289	     filename is irrelevant, we only care about whether
12290	     the stub recognizes the packet or not.  */
12291	  fd = remote_hostio_open (NULL, "just probing",
12292				   FILEIO_O_RDONLY, 0700, 0,
12293				   &remote_errno);
12294
12295	  if (fd >= 0)
12296	    remote_hostio_close (fd, &remote_errno);
12297
12298	  ps = packet_support (PACKET_vFile_open);
12299	}
12300
12301      if (ps == PACKET_DISABLE)
12302	{
12303	  static int warning_issued = 0;
12304
12305	  if (!warning_issued)
12306	    {
12307	      warning (_("remote target does not support file"
12308			 " transfer, attempting to access files"
12309			 " from local filesystem."));
12310	      warning_issued = 1;
12311	    }
12312
12313	  return true;
12314	}
12315    }
12316
12317  return false;
12318}
12319
12320static int
12321remote_fileio_errno_to_host (int errnum)
12322{
12323  switch (errnum)
12324    {
12325      case FILEIO_EPERM:
12326        return EPERM;
12327      case FILEIO_ENOENT:
12328        return ENOENT;
12329      case FILEIO_EINTR:
12330        return EINTR;
12331      case FILEIO_EIO:
12332        return EIO;
12333      case FILEIO_EBADF:
12334        return EBADF;
12335      case FILEIO_EACCES:
12336        return EACCES;
12337      case FILEIO_EFAULT:
12338        return EFAULT;
12339      case FILEIO_EBUSY:
12340        return EBUSY;
12341      case FILEIO_EEXIST:
12342        return EEXIST;
12343      case FILEIO_ENODEV:
12344        return ENODEV;
12345      case FILEIO_ENOTDIR:
12346        return ENOTDIR;
12347      case FILEIO_EISDIR:
12348        return EISDIR;
12349      case FILEIO_EINVAL:
12350        return EINVAL;
12351      case FILEIO_ENFILE:
12352        return ENFILE;
12353      case FILEIO_EMFILE:
12354        return EMFILE;
12355      case FILEIO_EFBIG:
12356        return EFBIG;
12357      case FILEIO_ENOSPC:
12358        return ENOSPC;
12359      case FILEIO_ESPIPE:
12360        return ESPIPE;
12361      case FILEIO_EROFS:
12362        return EROFS;
12363      case FILEIO_ENOSYS:
12364        return ENOSYS;
12365      case FILEIO_ENAMETOOLONG:
12366        return ENAMETOOLONG;
12367    }
12368  return -1;
12369}
12370
12371static char *
12372remote_hostio_error (int errnum)
12373{
12374  int host_error = remote_fileio_errno_to_host (errnum);
12375
12376  if (host_error == -1)
12377    error (_("Unknown remote I/O error %d"), errnum);
12378  else
12379    error (_("Remote I/O error: %s"), safe_strerror (host_error));
12380}
12381
12382/* A RAII wrapper around a remote file descriptor.  */
12383
12384class scoped_remote_fd
12385{
12386public:
12387  scoped_remote_fd (remote_target *remote, int fd)
12388    : m_remote (remote), m_fd (fd)
12389  {
12390  }
12391
12392  ~scoped_remote_fd ()
12393  {
12394    if (m_fd != -1)
12395      {
12396	try
12397	  {
12398	    int remote_errno;
12399	    m_remote->remote_hostio_close (m_fd, &remote_errno);
12400	  }
12401	catch (...)
12402	  {
12403	    /* Swallow exception before it escapes the dtor.  If
12404	       something goes wrong, likely the connection is gone,
12405	       and there's nothing else that can be done.  */
12406	  }
12407      }
12408  }
12409
12410  DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12411
12412  /* Release ownership of the file descriptor, and return it.  */
12413  int release () noexcept
12414  {
12415    int fd = m_fd;
12416    m_fd = -1;
12417    return fd;
12418  }
12419
12420  /* Return the owned file descriptor.  */
12421  int get () const noexcept
12422  {
12423    return m_fd;
12424  }
12425
12426private:
12427  /* The remote target.  */
12428  remote_target *m_remote;
12429
12430  /* The owned remote I/O file descriptor.  */
12431  int m_fd;
12432};
12433
12434void
12435remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12436{
12437  remote_target *remote = get_current_remote_target ();
12438
12439  if (remote == nullptr)
12440    error (_("command can only be used with remote target"));
12441
12442  remote->remote_file_put (local_file, remote_file, from_tty);
12443}
12444
12445void
12446remote_target::remote_file_put (const char *local_file, const char *remote_file,
12447				int from_tty)
12448{
12449  int retcode, remote_errno, bytes, io_size;
12450  int bytes_in_buffer;
12451  int saw_eof;
12452  ULONGEST offset;
12453
12454  gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12455  if (file == NULL)
12456    perror_with_name (local_file);
12457
12458  scoped_remote_fd fd
12459    (this, remote_hostio_open (NULL,
12460			       remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12461					     | FILEIO_O_TRUNC),
12462			       0700, 0, &remote_errno));
12463  if (fd.get () == -1)
12464    remote_hostio_error (remote_errno);
12465
12466  /* Send up to this many bytes at once.  They won't all fit in the
12467     remote packet limit, so we'll transfer slightly fewer.  */
12468  io_size = get_remote_packet_size ();
12469  gdb::byte_vector buffer (io_size);
12470
12471  bytes_in_buffer = 0;
12472  saw_eof = 0;
12473  offset = 0;
12474  while (bytes_in_buffer || !saw_eof)
12475    {
12476      if (!saw_eof)
12477	{
12478	  bytes = fread (buffer.data () + bytes_in_buffer, 1,
12479			 io_size - bytes_in_buffer,
12480			 file.get ());
12481	  if (bytes == 0)
12482	    {
12483	      if (ferror (file.get ()))
12484		error (_("Error reading %s."), local_file);
12485	      else
12486		{
12487		  /* EOF.  Unless there is something still in the
12488		     buffer from the last iteration, we are done.  */
12489		  saw_eof = 1;
12490		  if (bytes_in_buffer == 0)
12491		    break;
12492		}
12493	    }
12494	}
12495      else
12496	bytes = 0;
12497
12498      bytes += bytes_in_buffer;
12499      bytes_in_buffer = 0;
12500
12501      retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12502				      offset, &remote_errno);
12503
12504      if (retcode < 0)
12505	remote_hostio_error (remote_errno);
12506      else if (retcode == 0)
12507	error (_("Remote write of %d bytes returned 0!"), bytes);
12508      else if (retcode < bytes)
12509	{
12510	  /* Short write.  Save the rest of the read data for the next
12511	     write.  */
12512	  bytes_in_buffer = bytes - retcode;
12513	  memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12514	}
12515
12516      offset += retcode;
12517    }
12518
12519  if (remote_hostio_close (fd.release (), &remote_errno))
12520    remote_hostio_error (remote_errno);
12521
12522  if (from_tty)
12523    printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12524}
12525
12526void
12527remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12528{
12529  remote_target *remote = get_current_remote_target ();
12530
12531  if (remote == nullptr)
12532    error (_("command can only be used with remote target"));
12533
12534  remote->remote_file_get (remote_file, local_file, from_tty);
12535}
12536
12537void
12538remote_target::remote_file_get (const char *remote_file, const char *local_file,
12539				int from_tty)
12540{
12541  int remote_errno, bytes, io_size;
12542  ULONGEST offset;
12543
12544  scoped_remote_fd fd
12545    (this, remote_hostio_open (NULL,
12546			       remote_file, FILEIO_O_RDONLY, 0, 0,
12547			       &remote_errno));
12548  if (fd.get () == -1)
12549    remote_hostio_error (remote_errno);
12550
12551  gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12552  if (file == NULL)
12553    perror_with_name (local_file);
12554
12555  /* Send up to this many bytes at once.  They won't all fit in the
12556     remote packet limit, so we'll transfer slightly fewer.  */
12557  io_size = get_remote_packet_size ();
12558  gdb::byte_vector buffer (io_size);
12559
12560  offset = 0;
12561  while (1)
12562    {
12563      bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12564				   &remote_errno);
12565      if (bytes == 0)
12566	/* Success, but no bytes, means end-of-file.  */
12567	break;
12568      if (bytes == -1)
12569	remote_hostio_error (remote_errno);
12570
12571      offset += bytes;
12572
12573      bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12574      if (bytes == 0)
12575	perror_with_name (local_file);
12576    }
12577
12578  if (remote_hostio_close (fd.release (), &remote_errno))
12579    remote_hostio_error (remote_errno);
12580
12581  if (from_tty)
12582    printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12583}
12584
12585void
12586remote_file_delete (const char *remote_file, int from_tty)
12587{
12588  remote_target *remote = get_current_remote_target ();
12589
12590  if (remote == nullptr)
12591    error (_("command can only be used with remote target"));
12592
12593  remote->remote_file_delete (remote_file, from_tty);
12594}
12595
12596void
12597remote_target::remote_file_delete (const char *remote_file, int from_tty)
12598{
12599  int retcode, remote_errno;
12600
12601  retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12602  if (retcode == -1)
12603    remote_hostio_error (remote_errno);
12604
12605  if (from_tty)
12606    printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12607}
12608
12609static void
12610remote_put_command (const char *args, int from_tty)
12611{
12612  if (args == NULL)
12613    error_no_arg (_("file to put"));
12614
12615  gdb_argv argv (args);
12616  if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12617    error (_("Invalid parameters to remote put"));
12618
12619  remote_file_put (argv[0], argv[1], from_tty);
12620}
12621
12622static void
12623remote_get_command (const char *args, int from_tty)
12624{
12625  if (args == NULL)
12626    error_no_arg (_("file to get"));
12627
12628  gdb_argv argv (args);
12629  if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12630    error (_("Invalid parameters to remote get"));
12631
12632  remote_file_get (argv[0], argv[1], from_tty);
12633}
12634
12635static void
12636remote_delete_command (const char *args, int from_tty)
12637{
12638  if (args == NULL)
12639    error_no_arg (_("file to delete"));
12640
12641  gdb_argv argv (args);
12642  if (argv[0] == NULL || argv[1] != NULL)
12643    error (_("Invalid parameters to remote delete"));
12644
12645  remote_file_delete (argv[0], from_tty);
12646}
12647
12648static void
12649remote_command (const char *args, int from_tty)
12650{
12651  help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12652}
12653
12654bool
12655remote_target::can_execute_reverse ()
12656{
12657  if (packet_support (PACKET_bs) == PACKET_ENABLE
12658      || packet_support (PACKET_bc) == PACKET_ENABLE)
12659    return true;
12660  else
12661    return false;
12662}
12663
12664bool
12665remote_target::supports_non_stop ()
12666{
12667  return true;
12668}
12669
12670bool
12671remote_target::supports_disable_randomization ()
12672{
12673  /* Only supported in extended mode.  */
12674  return false;
12675}
12676
12677bool
12678remote_target::supports_multi_process ()
12679{
12680  struct remote_state *rs = get_remote_state ();
12681
12682  return remote_multi_process_p (rs);
12683}
12684
12685static int
12686remote_supports_cond_tracepoints ()
12687{
12688  return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12689}
12690
12691bool
12692remote_target::supports_evaluation_of_breakpoint_conditions ()
12693{
12694  return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12695}
12696
12697static int
12698remote_supports_fast_tracepoints ()
12699{
12700  return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12701}
12702
12703static int
12704remote_supports_static_tracepoints ()
12705{
12706  return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12707}
12708
12709static int
12710remote_supports_install_in_trace ()
12711{
12712  return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12713}
12714
12715bool
12716remote_target::supports_enable_disable_tracepoint ()
12717{
12718  return (packet_support (PACKET_EnableDisableTracepoints_feature)
12719	  == PACKET_ENABLE);
12720}
12721
12722bool
12723remote_target::supports_string_tracing ()
12724{
12725  return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12726}
12727
12728bool
12729remote_target::can_run_breakpoint_commands ()
12730{
12731  return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12732}
12733
12734void
12735remote_target::trace_init ()
12736{
12737  struct remote_state *rs = get_remote_state ();
12738
12739  putpkt ("QTinit");
12740  remote_get_noisy_reply ();
12741  if (strcmp (rs->buf.data (), "OK") != 0)
12742    error (_("Target does not support this command."));
12743}
12744
12745/* Recursive routine to walk through command list including loops, and
12746   download packets for each command.  */
12747
12748void
12749remote_target::remote_download_command_source (int num, ULONGEST addr,
12750					       struct command_line *cmds)
12751{
12752  struct remote_state *rs = get_remote_state ();
12753  struct command_line *cmd;
12754
12755  for (cmd = cmds; cmd; cmd = cmd->next)
12756    {
12757      QUIT;	/* Allow user to bail out with ^C.  */
12758      strcpy (rs->buf.data (), "QTDPsrc:");
12759      encode_source_string (num, addr, "cmd", cmd->line,
12760			    rs->buf.data () + strlen (rs->buf.data ()),
12761			    rs->buf.size () - strlen (rs->buf.data ()));
12762      putpkt (rs->buf);
12763      remote_get_noisy_reply ();
12764      if (strcmp (rs->buf.data (), "OK"))
12765	warning (_("Target does not support source download."));
12766
12767      if (cmd->control_type == while_control
12768	  || cmd->control_type == while_stepping_control)
12769	{
12770	  remote_download_command_source (num, addr, cmd->body_list_0.get ());
12771
12772	  QUIT;	/* Allow user to bail out with ^C.  */
12773	  strcpy (rs->buf.data (), "QTDPsrc:");
12774	  encode_source_string (num, addr, "cmd", "end",
12775				rs->buf.data () + strlen (rs->buf.data ()),
12776				rs->buf.size () - strlen (rs->buf.data ()));
12777	  putpkt (rs->buf);
12778	  remote_get_noisy_reply ();
12779	  if (strcmp (rs->buf.data (), "OK"))
12780	    warning (_("Target does not support source download."));
12781	}
12782    }
12783}
12784
12785void
12786remote_target::download_tracepoint (struct bp_location *loc)
12787{
12788  CORE_ADDR tpaddr;
12789  char addrbuf[40];
12790  std::vector<std::string> tdp_actions;
12791  std::vector<std::string> stepping_actions;
12792  char *pkt;
12793  struct breakpoint *b = loc->owner;
12794  struct tracepoint *t = (struct tracepoint *) b;
12795  struct remote_state *rs = get_remote_state ();
12796  int ret;
12797  const char *err_msg = _("Tracepoint packet too large for target.");
12798  size_t size_left;
12799
12800  /* We use a buffer other than rs->buf because we'll build strings
12801     across multiple statements, and other statements in between could
12802     modify rs->buf.  */
12803  gdb::char_vector buf (get_remote_packet_size ());
12804
12805  encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12806
12807  tpaddr = loc->address;
12808  sprintf_vma (addrbuf, tpaddr);
12809  ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12810		  b->number, addrbuf, /* address */
12811		  (b->enable_state == bp_enabled ? 'E' : 'D'),
12812		  t->step_count, t->pass_count);
12813
12814  if (ret < 0 || ret >= buf.size ())
12815    error ("%s", err_msg);
12816
12817  /* Fast tracepoints are mostly handled by the target, but we can
12818     tell the target how big of an instruction block should be moved
12819     around.  */
12820  if (b->type == bp_fast_tracepoint)
12821    {
12822      /* Only test for support at download time; we may not know
12823	 target capabilities at definition time.  */
12824      if (remote_supports_fast_tracepoints ())
12825	{
12826	  if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12827						NULL))
12828	    {
12829	      size_left = buf.size () - strlen (buf.data ());
12830	      ret = snprintf (buf.data () + strlen (buf.data ()),
12831			      size_left, ":F%x",
12832			      gdb_insn_length (loc->gdbarch, tpaddr));
12833
12834	      if (ret < 0 || ret >= size_left)
12835		error ("%s", err_msg);
12836	    }
12837	  else
12838	    /* If it passed validation at definition but fails now,
12839	       something is very wrong.  */
12840	    internal_error (__FILE__, __LINE__,
12841			    _("Fast tracepoint not "
12842			      "valid during download"));
12843	}
12844      else
12845	/* Fast tracepoints are functionally identical to regular
12846	   tracepoints, so don't take lack of support as a reason to
12847	   give up on the trace run.  */
12848	warning (_("Target does not support fast tracepoints, "
12849		   "downloading %d as regular tracepoint"), b->number);
12850    }
12851  else if (b->type == bp_static_tracepoint)
12852    {
12853      /* Only test for support at download time; we may not know
12854	 target capabilities at definition time.  */
12855      if (remote_supports_static_tracepoints ())
12856	{
12857	  struct static_tracepoint_marker marker;
12858
12859	  if (target_static_tracepoint_marker_at (tpaddr, &marker))
12860	    {
12861	      size_left = buf.size () - strlen (buf.data ());
12862	      ret = snprintf (buf.data () + strlen (buf.data ()),
12863			      size_left, ":S");
12864
12865	      if (ret < 0 || ret >= size_left)
12866		error ("%s", err_msg);
12867	    }
12868	  else
12869	    error (_("Static tracepoint not valid during download"));
12870	}
12871      else
12872	/* Fast tracepoints are functionally identical to regular
12873	   tracepoints, so don't take lack of support as a reason
12874	   to give up on the trace run.  */
12875	error (_("Target does not support static tracepoints"));
12876    }
12877  /* If the tracepoint has a conditional, make it into an agent
12878     expression and append to the definition.  */
12879  if (loc->cond)
12880    {
12881      /* Only test support at download time, we may not know target
12882	 capabilities at definition time.  */
12883      if (remote_supports_cond_tracepoints ())
12884	{
12885	  agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12886						   loc->cond.get ());
12887
12888	  size_left = buf.size () - strlen (buf.data ());
12889
12890	  ret = snprintf (buf.data () + strlen (buf.data ()),
12891			  size_left, ":X%x,", aexpr->len);
12892
12893	  if (ret < 0 || ret >= size_left)
12894	    error ("%s", err_msg);
12895
12896	  size_left = buf.size () - strlen (buf.data ());
12897
12898	  /* Two bytes to encode each aexpr byte, plus the terminating
12899	     null byte.  */
12900	  if (aexpr->len * 2 + 1 > size_left)
12901	    error ("%s", err_msg);
12902
12903	  pkt = buf.data () + strlen (buf.data ());
12904
12905	  for (int ndx = 0; ndx < aexpr->len; ++ndx)
12906	    pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12907	  *pkt = '\0';
12908	}
12909      else
12910	warning (_("Target does not support conditional tracepoints, "
12911		   "ignoring tp %d cond"), b->number);
12912    }
12913
12914  if (b->commands || *default_collect)
12915    {
12916      size_left = buf.size () - strlen (buf.data ());
12917
12918      ret = snprintf (buf.data () + strlen (buf.data ()),
12919		      size_left, "-");
12920
12921      if (ret < 0 || ret >= size_left)
12922	error ("%s", err_msg);
12923    }
12924
12925  putpkt (buf.data ());
12926  remote_get_noisy_reply ();
12927  if (strcmp (rs->buf.data (), "OK"))
12928    error (_("Target does not support tracepoints."));
12929
12930  /* do_single_steps (t); */
12931  for (auto action_it = tdp_actions.begin ();
12932       action_it != tdp_actions.end (); action_it++)
12933    {
12934      QUIT;	/* Allow user to bail out with ^C.  */
12935
12936      bool has_more = ((action_it + 1) != tdp_actions.end ()
12937		       || !stepping_actions.empty ());
12938
12939      ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12940		      b->number, addrbuf, /* address */
12941		      action_it->c_str (),
12942		      has_more ? '-' : 0);
12943
12944      if (ret < 0 || ret >= buf.size ())
12945	error ("%s", err_msg);
12946
12947      putpkt (buf.data ());
12948      remote_get_noisy_reply ();
12949      if (strcmp (rs->buf.data (), "OK"))
12950	error (_("Error on target while setting tracepoints."));
12951    }
12952
12953  for (auto action_it = stepping_actions.begin ();
12954       action_it != stepping_actions.end (); action_it++)
12955    {
12956      QUIT;	/* Allow user to bail out with ^C.  */
12957
12958      bool is_first = action_it == stepping_actions.begin ();
12959      bool has_more = (action_it + 1) != stepping_actions.end ();
12960
12961      ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12962		      b->number, addrbuf, /* address */
12963		      is_first ? "S" : "",
12964		      action_it->c_str (),
12965		      has_more ? "-" : "");
12966
12967      if (ret < 0 || ret >= buf.size ())
12968	error ("%s", err_msg);
12969
12970      putpkt (buf.data ());
12971      remote_get_noisy_reply ();
12972      if (strcmp (rs->buf.data (), "OK"))
12973	error (_("Error on target while setting tracepoints."));
12974    }
12975
12976  if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12977    {
12978      if (b->location != NULL)
12979	{
12980	  ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12981
12982	  if (ret < 0 || ret >= buf.size ())
12983	    error ("%s", err_msg);
12984
12985	  encode_source_string (b->number, loc->address, "at",
12986				event_location_to_string (b->location.get ()),
12987				buf.data () + strlen (buf.data ()),
12988				buf.size () - strlen (buf.data ()));
12989	  putpkt (buf.data ());
12990	  remote_get_noisy_reply ();
12991	  if (strcmp (rs->buf.data (), "OK"))
12992	    warning (_("Target does not support source download."));
12993	}
12994      if (b->cond_string)
12995	{
12996	  ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12997
12998	  if (ret < 0 || ret >= buf.size ())
12999	    error ("%s", err_msg);
13000
13001	  encode_source_string (b->number, loc->address,
13002				"cond", b->cond_string,
13003				buf.data () + strlen (buf.data ()),
13004				buf.size () - strlen (buf.data ()));
13005	  putpkt (buf.data ());
13006	  remote_get_noisy_reply ();
13007	  if (strcmp (rs->buf.data (), "OK"))
13008	    warning (_("Target does not support source download."));
13009	}
13010      remote_download_command_source (b->number, loc->address,
13011				      breakpoint_commands (b));
13012    }
13013}
13014
13015bool
13016remote_target::can_download_tracepoint ()
13017{
13018  struct remote_state *rs = get_remote_state ();
13019  struct trace_status *ts;
13020  int status;
13021
13022  /* Don't try to install tracepoints until we've relocated our
13023     symbols, and fetched and merged the target's tracepoint list with
13024     ours.  */
13025  if (rs->starting_up)
13026    return false;
13027
13028  ts = current_trace_status ();
13029  status = get_trace_status (ts);
13030
13031  if (status == -1 || !ts->running_known || !ts->running)
13032    return false;
13033
13034  /* If we are in a tracing experiment, but remote stub doesn't support
13035     installing tracepoint in trace, we have to return.  */
13036  if (!remote_supports_install_in_trace ())
13037    return false;
13038
13039  return true;
13040}
13041
13042
13043void
13044remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13045{
13046  struct remote_state *rs = get_remote_state ();
13047  char *p;
13048
13049  xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13050	     tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13051	     tsv.builtin);
13052  p = rs->buf.data () + strlen (rs->buf.data ());
13053  if ((p - rs->buf.data ()) + tsv.name.length () * 2
13054      >= get_remote_packet_size ())
13055    error (_("Trace state variable name too long for tsv definition packet"));
13056  p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13057  *p++ = '\0';
13058  putpkt (rs->buf);
13059  remote_get_noisy_reply ();
13060  if (rs->buf[0] == '\0')
13061    error (_("Target does not support this command."));
13062  if (strcmp (rs->buf.data (), "OK") != 0)
13063    error (_("Error on target while downloading trace state variable."));
13064}
13065
13066void
13067remote_target::enable_tracepoint (struct bp_location *location)
13068{
13069  struct remote_state *rs = get_remote_state ();
13070  char addr_buf[40];
13071
13072  sprintf_vma (addr_buf, location->address);
13073  xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13074	     location->owner->number, addr_buf);
13075  putpkt (rs->buf);
13076  remote_get_noisy_reply ();
13077  if (rs->buf[0] == '\0')
13078    error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13079  if (strcmp (rs->buf.data (), "OK") != 0)
13080    error (_("Error on target while enabling tracepoint."));
13081}
13082
13083void
13084remote_target::disable_tracepoint (struct bp_location *location)
13085{
13086  struct remote_state *rs = get_remote_state ();
13087  char addr_buf[40];
13088
13089  sprintf_vma (addr_buf, location->address);
13090  xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13091	     location->owner->number, addr_buf);
13092  putpkt (rs->buf);
13093  remote_get_noisy_reply ();
13094  if (rs->buf[0] == '\0')
13095    error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13096  if (strcmp (rs->buf.data (), "OK") != 0)
13097    error (_("Error on target while disabling tracepoint."));
13098}
13099
13100void
13101remote_target::trace_set_readonly_regions ()
13102{
13103  asection *s;
13104  bfd *abfd = NULL;
13105  bfd_size_type size;
13106  bfd_vma vma;
13107  int anysecs = 0;
13108  int offset = 0;
13109
13110  if (!exec_bfd)
13111    return;			/* No information to give.  */
13112
13113  struct remote_state *rs = get_remote_state ();
13114
13115  strcpy (rs->buf.data (), "QTro");
13116  offset = strlen (rs->buf.data ());
13117  for (s = exec_bfd->sections; s; s = s->next)
13118    {
13119      char tmp1[40], tmp2[40];
13120      int sec_length;
13121
13122      if ((s->flags & SEC_LOAD) == 0 ||
13123      /*  (s->flags & SEC_CODE) == 0 || */
13124	  (s->flags & SEC_READONLY) == 0)
13125	continue;
13126
13127      anysecs = 1;
13128      vma = bfd_get_section_vma (abfd, s);
13129      size = bfd_get_section_size (s);
13130      sprintf_vma (tmp1, vma);
13131      sprintf_vma (tmp2, vma + size);
13132      sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13133      if (offset + sec_length + 1 > rs->buf.size ())
13134	{
13135	  if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13136	    warning (_("\
13137Too many sections for read-only sections definition packet."));
13138	  break;
13139	}
13140      xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13141		 tmp1, tmp2);
13142      offset += sec_length;
13143    }
13144  if (anysecs)
13145    {
13146      putpkt (rs->buf);
13147      getpkt (&rs->buf, 0);
13148    }
13149}
13150
13151void
13152remote_target::trace_start ()
13153{
13154  struct remote_state *rs = get_remote_state ();
13155
13156  putpkt ("QTStart");
13157  remote_get_noisy_reply ();
13158  if (rs->buf[0] == '\0')
13159    error (_("Target does not support this command."));
13160  if (strcmp (rs->buf.data (), "OK") != 0)
13161    error (_("Bogus reply from target: %s"), rs->buf.data ());
13162}
13163
13164int
13165remote_target::get_trace_status (struct trace_status *ts)
13166{
13167  /* Initialize it just to avoid a GCC false warning.  */
13168  char *p = NULL;
13169  /* FIXME we need to get register block size some other way.  */
13170  extern int trace_regblock_size;
13171  enum packet_result result;
13172  struct remote_state *rs = get_remote_state ();
13173
13174  if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13175    return -1;
13176
13177  trace_regblock_size
13178    = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13179
13180  putpkt ("qTStatus");
13181
13182  TRY
13183    {
13184      p = remote_get_noisy_reply ();
13185    }
13186  CATCH (ex, RETURN_MASK_ERROR)
13187    {
13188      if (ex.error != TARGET_CLOSE_ERROR)
13189	{
13190	  exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13191	  return -1;
13192	}
13193      throw_exception (ex);
13194    }
13195  END_CATCH
13196
13197  result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13198
13199  /* If the remote target doesn't do tracing, flag it.  */
13200  if (result == PACKET_UNKNOWN)
13201    return -1;
13202
13203  /* We're working with a live target.  */
13204  ts->filename = NULL;
13205
13206  if (*p++ != 'T')
13207    error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13208
13209  /* Function 'parse_trace_status' sets default value of each field of
13210     'ts' at first, so we don't have to do it here.  */
13211  parse_trace_status (p, ts);
13212
13213  return ts->running;
13214}
13215
13216void
13217remote_target::get_tracepoint_status (struct breakpoint *bp,
13218				      struct uploaded_tp *utp)
13219{
13220  struct remote_state *rs = get_remote_state ();
13221  char *reply;
13222  struct bp_location *loc;
13223  struct tracepoint *tp = (struct tracepoint *) bp;
13224  size_t size = get_remote_packet_size ();
13225
13226  if (tp)
13227    {
13228      tp->hit_count = 0;
13229      tp->traceframe_usage = 0;
13230      for (loc = tp->loc; loc; loc = loc->next)
13231	{
13232	  /* If the tracepoint was never downloaded, don't go asking for
13233	     any status.  */
13234	  if (tp->number_on_target == 0)
13235	    continue;
13236	  xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13237		     phex_nz (loc->address, 0));
13238	  putpkt (rs->buf);
13239	  reply = remote_get_noisy_reply ();
13240	  if (reply && *reply)
13241	    {
13242	      if (*reply == 'V')
13243		parse_tracepoint_status (reply + 1, bp, utp);
13244	    }
13245	}
13246    }
13247  else if (utp)
13248    {
13249      utp->hit_count = 0;
13250      utp->traceframe_usage = 0;
13251      xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13252		 phex_nz (utp->addr, 0));
13253      putpkt (rs->buf);
13254      reply = remote_get_noisy_reply ();
13255      if (reply && *reply)
13256	{
13257	  if (*reply == 'V')
13258	    parse_tracepoint_status (reply + 1, bp, utp);
13259	}
13260    }
13261}
13262
13263void
13264remote_target::trace_stop ()
13265{
13266  struct remote_state *rs = get_remote_state ();
13267
13268  putpkt ("QTStop");
13269  remote_get_noisy_reply ();
13270  if (rs->buf[0] == '\0')
13271    error (_("Target does not support this command."));
13272  if (strcmp (rs->buf.data (), "OK") != 0)
13273    error (_("Bogus reply from target: %s"), rs->buf.data ());
13274}
13275
13276int
13277remote_target::trace_find (enum trace_find_type type, int num,
13278			   CORE_ADDR addr1, CORE_ADDR addr2,
13279			   int *tpp)
13280{
13281  struct remote_state *rs = get_remote_state ();
13282  char *endbuf = rs->buf.data () + get_remote_packet_size ();
13283  char *p, *reply;
13284  int target_frameno = -1, target_tracept = -1;
13285
13286  /* Lookups other than by absolute frame number depend on the current
13287     trace selected, so make sure it is correct on the remote end
13288     first.  */
13289  if (type != tfind_number)
13290    set_remote_traceframe ();
13291
13292  p = rs->buf.data ();
13293  strcpy (p, "QTFrame:");
13294  p = strchr (p, '\0');
13295  switch (type)
13296    {
13297    case tfind_number:
13298      xsnprintf (p, endbuf - p, "%x", num);
13299      break;
13300    case tfind_pc:
13301      xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13302      break;
13303    case tfind_tp:
13304      xsnprintf (p, endbuf - p, "tdp:%x", num);
13305      break;
13306    case tfind_range:
13307      xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13308		 phex_nz (addr2, 0));
13309      break;
13310    case tfind_outside:
13311      xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13312		 phex_nz (addr2, 0));
13313      break;
13314    default:
13315      error (_("Unknown trace find type %d"), type);
13316    }
13317
13318  putpkt (rs->buf);
13319  reply = remote_get_noisy_reply ();
13320  if (*reply == '\0')
13321    error (_("Target does not support this command."));
13322
13323  while (reply && *reply)
13324    switch (*reply)
13325      {
13326      case 'F':
13327	p = ++reply;
13328	target_frameno = (int) strtol (p, &reply, 16);
13329	if (reply == p)
13330	  error (_("Unable to parse trace frame number"));
13331	/* Don't update our remote traceframe number cache on failure
13332	   to select a remote traceframe.  */
13333	if (target_frameno == -1)
13334	  return -1;
13335	break;
13336      case 'T':
13337	p = ++reply;
13338	target_tracept = (int) strtol (p, &reply, 16);
13339	if (reply == p)
13340	  error (_("Unable to parse tracepoint number"));
13341	break;
13342      case 'O':		/* "OK"? */
13343	if (reply[1] == 'K' && reply[2] == '\0')
13344	  reply += 2;
13345	else
13346	  error (_("Bogus reply from target: %s"), reply);
13347	break;
13348      default:
13349	error (_("Bogus reply from target: %s"), reply);
13350      }
13351  if (tpp)
13352    *tpp = target_tracept;
13353
13354  rs->remote_traceframe_number = target_frameno;
13355  return target_frameno;
13356}
13357
13358bool
13359remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13360{
13361  struct remote_state *rs = get_remote_state ();
13362  char *reply;
13363  ULONGEST uval;
13364
13365  set_remote_traceframe ();
13366
13367  xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13368  putpkt (rs->buf);
13369  reply = remote_get_noisy_reply ();
13370  if (reply && *reply)
13371    {
13372      if (*reply == 'V')
13373	{
13374	  unpack_varlen_hex (reply + 1, &uval);
13375	  *val = (LONGEST) uval;
13376	  return true;
13377	}
13378    }
13379  return false;
13380}
13381
13382int
13383remote_target::save_trace_data (const char *filename)
13384{
13385  struct remote_state *rs = get_remote_state ();
13386  char *p, *reply;
13387
13388  p = rs->buf.data ();
13389  strcpy (p, "QTSave:");
13390  p += strlen (p);
13391  if ((p - rs->buf.data ()) + strlen (filename) * 2
13392      >= get_remote_packet_size ())
13393    error (_("Remote file name too long for trace save packet"));
13394  p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13395  *p++ = '\0';
13396  putpkt (rs->buf);
13397  reply = remote_get_noisy_reply ();
13398  if (*reply == '\0')
13399    error (_("Target does not support this command."));
13400  if (strcmp (reply, "OK") != 0)
13401    error (_("Bogus reply from target: %s"), reply);
13402  return 0;
13403}
13404
13405/* This is basically a memory transfer, but needs to be its own packet
13406   because we don't know how the target actually organizes its trace
13407   memory, plus we want to be able to ask for as much as possible, but
13408   not be unhappy if we don't get as much as we ask for.  */
13409
13410LONGEST
13411remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13412{
13413  struct remote_state *rs = get_remote_state ();
13414  char *reply;
13415  char *p;
13416  int rslt;
13417
13418  p = rs->buf.data ();
13419  strcpy (p, "qTBuffer:");
13420  p += strlen (p);
13421  p += hexnumstr (p, offset);
13422  *p++ = ',';
13423  p += hexnumstr (p, len);
13424  *p++ = '\0';
13425
13426  putpkt (rs->buf);
13427  reply = remote_get_noisy_reply ();
13428  if (reply && *reply)
13429    {
13430      /* 'l' by itself means we're at the end of the buffer and
13431	 there is nothing more to get.  */
13432      if (*reply == 'l')
13433	return 0;
13434
13435      /* Convert the reply into binary.  Limit the number of bytes to
13436	 convert according to our passed-in buffer size, rather than
13437	 what was returned in the packet; if the target is
13438	 unexpectedly generous and gives us a bigger reply than we
13439	 asked for, we don't want to crash.  */
13440      rslt = hex2bin (reply, buf, len);
13441      return rslt;
13442    }
13443
13444  /* Something went wrong, flag as an error.  */
13445  return -1;
13446}
13447
13448void
13449remote_target::set_disconnected_tracing (int val)
13450{
13451  struct remote_state *rs = get_remote_state ();
13452
13453  if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13454    {
13455      char *reply;
13456
13457      xsnprintf (rs->buf.data (), get_remote_packet_size (),
13458		 "QTDisconnected:%x", val);
13459      putpkt (rs->buf);
13460      reply = remote_get_noisy_reply ();
13461      if (*reply == '\0')
13462	error (_("Target does not support this command."));
13463      if (strcmp (reply, "OK") != 0)
13464        error (_("Bogus reply from target: %s"), reply);
13465    }
13466  else if (val)
13467    warning (_("Target does not support disconnected tracing."));
13468}
13469
13470int
13471remote_target::core_of_thread (ptid_t ptid)
13472{
13473  struct thread_info *info = find_thread_ptid (ptid);
13474
13475  if (info != NULL && info->priv != NULL)
13476    return get_remote_thread_info (info)->core;
13477
13478  return -1;
13479}
13480
13481void
13482remote_target::set_circular_trace_buffer (int val)
13483{
13484  struct remote_state *rs = get_remote_state ();
13485  char *reply;
13486
13487  xsnprintf (rs->buf.data (), get_remote_packet_size (),
13488	     "QTBuffer:circular:%x", val);
13489  putpkt (rs->buf);
13490  reply = remote_get_noisy_reply ();
13491  if (*reply == '\0')
13492    error (_("Target does not support this command."));
13493  if (strcmp (reply, "OK") != 0)
13494    error (_("Bogus reply from target: %s"), reply);
13495}
13496
13497traceframe_info_up
13498remote_target::traceframe_info ()
13499{
13500  gdb::optional<gdb::char_vector> text
13501    = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13502			    NULL);
13503  if (text)
13504    return parse_traceframe_info (text->data ());
13505
13506  return NULL;
13507}
13508
13509/* Handle the qTMinFTPILen packet.  Returns the minimum length of
13510   instruction on which a fast tracepoint may be placed.  Returns -1
13511   if the packet is not supported, and 0 if the minimum instruction
13512   length is unknown.  */
13513
13514int
13515remote_target::get_min_fast_tracepoint_insn_len ()
13516{
13517  struct remote_state *rs = get_remote_state ();
13518  char *reply;
13519
13520  /* If we're not debugging a process yet, the IPA can't be
13521     loaded.  */
13522  if (!target_has_execution)
13523    return 0;
13524
13525  /* Make sure the remote is pointing at the right process.  */
13526  set_general_process ();
13527
13528  xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13529  putpkt (rs->buf);
13530  reply = remote_get_noisy_reply ();
13531  if (*reply == '\0')
13532    return -1;
13533  else
13534    {
13535      ULONGEST min_insn_len;
13536
13537      unpack_varlen_hex (reply, &min_insn_len);
13538
13539      return (int) min_insn_len;
13540    }
13541}
13542
13543void
13544remote_target::set_trace_buffer_size (LONGEST val)
13545{
13546  if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13547    {
13548      struct remote_state *rs = get_remote_state ();
13549      char *buf = rs->buf.data ();
13550      char *endbuf = buf + get_remote_packet_size ();
13551      enum packet_result result;
13552
13553      gdb_assert (val >= 0 || val == -1);
13554      buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13555      /* Send -1 as literal "-1" to avoid host size dependency.  */
13556      if (val < 0)
13557	{
13558	  *buf++ = '-';
13559          buf += hexnumstr (buf, (ULONGEST) -val);
13560	}
13561      else
13562	buf += hexnumstr (buf, (ULONGEST) val);
13563
13564      putpkt (rs->buf);
13565      remote_get_noisy_reply ();
13566      result = packet_ok (rs->buf,
13567		  &remote_protocol_packets[PACKET_QTBuffer_size]);
13568
13569      if (result != PACKET_OK)
13570	warning (_("Bogus reply from target: %s"), rs->buf.data ());
13571    }
13572}
13573
13574bool
13575remote_target::set_trace_notes (const char *user, const char *notes,
13576				const char *stop_notes)
13577{
13578  struct remote_state *rs = get_remote_state ();
13579  char *reply;
13580  char *buf = rs->buf.data ();
13581  char *endbuf = buf + get_remote_packet_size ();
13582  int nbytes;
13583
13584  buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13585  if (user)
13586    {
13587      buf += xsnprintf (buf, endbuf - buf, "user:");
13588      nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13589      buf += 2 * nbytes;
13590      *buf++ = ';';
13591    }
13592  if (notes)
13593    {
13594      buf += xsnprintf (buf, endbuf - buf, "notes:");
13595      nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13596      buf += 2 * nbytes;
13597      *buf++ = ';';
13598    }
13599  if (stop_notes)
13600    {
13601      buf += xsnprintf (buf, endbuf - buf, "tstop:");
13602      nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13603      buf += 2 * nbytes;
13604      *buf++ = ';';
13605    }
13606  /* Ensure the buffer is terminated.  */
13607  *buf = '\0';
13608
13609  putpkt (rs->buf);
13610  reply = remote_get_noisy_reply ();
13611  if (*reply == '\0')
13612    return false;
13613
13614  if (strcmp (reply, "OK") != 0)
13615    error (_("Bogus reply from target: %s"), reply);
13616
13617  return true;
13618}
13619
13620bool
13621remote_target::use_agent (bool use)
13622{
13623  if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13624    {
13625      struct remote_state *rs = get_remote_state ();
13626
13627      /* If the stub supports QAgent.  */
13628      xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13629      putpkt (rs->buf);
13630      getpkt (&rs->buf, 0);
13631
13632      if (strcmp (rs->buf.data (), "OK") == 0)
13633	{
13634	  ::use_agent = use;
13635	  return true;
13636	}
13637    }
13638
13639  return false;
13640}
13641
13642bool
13643remote_target::can_use_agent ()
13644{
13645  return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13646}
13647
13648struct btrace_target_info
13649{
13650  /* The ptid of the traced thread.  */
13651  ptid_t ptid;
13652
13653  /* The obtained branch trace configuration.  */
13654  struct btrace_config conf;
13655};
13656
13657/* Reset our idea of our target's btrace configuration.  */
13658
13659static void
13660remote_btrace_reset (remote_state *rs)
13661{
13662  memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13663}
13664
13665/* Synchronize the configuration with the target.  */
13666
13667void
13668remote_target::btrace_sync_conf (const btrace_config *conf)
13669{
13670  struct packet_config *packet;
13671  struct remote_state *rs;
13672  char *buf, *pos, *endbuf;
13673
13674  rs = get_remote_state ();
13675  buf = rs->buf.data ();
13676  endbuf = buf + get_remote_packet_size ();
13677
13678  packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13679  if (packet_config_support (packet) == PACKET_ENABLE
13680      && conf->bts.size != rs->btrace_config.bts.size)
13681    {
13682      pos = buf;
13683      pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13684                        conf->bts.size);
13685
13686      putpkt (buf);
13687      getpkt (&rs->buf, 0);
13688
13689      if (packet_ok (buf, packet) == PACKET_ERROR)
13690	{
13691	  if (buf[0] == 'E' && buf[1] == '.')
13692	    error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13693	  else
13694	    error (_("Failed to configure the BTS buffer size."));
13695	}
13696
13697      rs->btrace_config.bts.size = conf->bts.size;
13698    }
13699
13700  packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13701  if (packet_config_support (packet) == PACKET_ENABLE
13702      && conf->pt.size != rs->btrace_config.pt.size)
13703    {
13704      pos = buf;
13705      pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13706                        conf->pt.size);
13707
13708      putpkt (buf);
13709      getpkt (&rs->buf, 0);
13710
13711      if (packet_ok (buf, packet) == PACKET_ERROR)
13712	{
13713	  if (buf[0] == 'E' && buf[1] == '.')
13714	    error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13715	  else
13716	    error (_("Failed to configure the trace buffer size."));
13717	}
13718
13719      rs->btrace_config.pt.size = conf->pt.size;
13720    }
13721}
13722
13723/* Read the current thread's btrace configuration from the target and
13724   store it into CONF.  */
13725
13726static void
13727btrace_read_config (struct btrace_config *conf)
13728{
13729  gdb::optional<gdb::char_vector> xml
13730    = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13731  if (xml)
13732    parse_xml_btrace_conf (conf, xml->data ());
13733}
13734
13735/* Maybe reopen target btrace.  */
13736
13737void
13738remote_target::remote_btrace_maybe_reopen ()
13739{
13740  struct remote_state *rs = get_remote_state ();
13741  int btrace_target_pushed = 0;
13742#if !defined (HAVE_LIBIPT)
13743  int warned = 0;
13744#endif
13745
13746  scoped_restore_current_thread restore_thread;
13747
13748  for (thread_info *tp : all_non_exited_threads ())
13749    {
13750      set_general_thread (tp->ptid);
13751
13752      memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13753      btrace_read_config (&rs->btrace_config);
13754
13755      if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13756	continue;
13757
13758#if !defined (HAVE_LIBIPT)
13759      if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13760	{
13761	  if (!warned)
13762	    {
13763	      warned = 1;
13764	      warning (_("Target is recording using Intel Processor Trace "
13765			 "but support was disabled at compile time."));
13766	    }
13767
13768	  continue;
13769	}
13770#endif /* !defined (HAVE_LIBIPT) */
13771
13772      /* Push target, once, but before anything else happens.  This way our
13773	 changes to the threads will be cleaned up by unpushing the target
13774	 in case btrace_read_config () throws.  */
13775      if (!btrace_target_pushed)
13776	{
13777	  btrace_target_pushed = 1;
13778	  record_btrace_push_target ();
13779	  printf_filtered (_("Target is recording using %s.\n"),
13780			   btrace_format_string (rs->btrace_config.format));
13781	}
13782
13783      tp->btrace.target = XCNEW (struct btrace_target_info);
13784      tp->btrace.target->ptid = tp->ptid;
13785      tp->btrace.target->conf = rs->btrace_config;
13786    }
13787}
13788
13789/* Enable branch tracing.  */
13790
13791struct btrace_target_info *
13792remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13793{
13794  struct btrace_target_info *tinfo = NULL;
13795  struct packet_config *packet = NULL;
13796  struct remote_state *rs = get_remote_state ();
13797  char *buf = rs->buf.data ();
13798  char *endbuf = buf + get_remote_packet_size ();
13799
13800  switch (conf->format)
13801    {
13802      case BTRACE_FORMAT_BTS:
13803	packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13804	break;
13805
13806      case BTRACE_FORMAT_PT:
13807	packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13808	break;
13809    }
13810
13811  if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13812    error (_("Target does not support branch tracing."));
13813
13814  btrace_sync_conf (conf);
13815
13816  set_general_thread (ptid);
13817
13818  buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13819  putpkt (rs->buf);
13820  getpkt (&rs->buf, 0);
13821
13822  if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13823    {
13824      if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13825	error (_("Could not enable branch tracing for %s: %s"),
13826	       target_pid_to_str (ptid), &rs->buf[2]);
13827      else
13828	error (_("Could not enable branch tracing for %s."),
13829	       target_pid_to_str (ptid));
13830    }
13831
13832  tinfo = XCNEW (struct btrace_target_info);
13833  tinfo->ptid = ptid;
13834
13835  /* If we fail to read the configuration, we lose some information, but the
13836     tracing itself is not impacted.  */
13837  TRY
13838    {
13839      btrace_read_config (&tinfo->conf);
13840    }
13841  CATCH (err, RETURN_MASK_ERROR)
13842    {
13843      if (err.message != NULL)
13844	warning ("%s", err.message);
13845    }
13846  END_CATCH
13847
13848  return tinfo;
13849}
13850
13851/* Disable branch tracing.  */
13852
13853void
13854remote_target::disable_btrace (struct btrace_target_info *tinfo)
13855{
13856  struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13857  struct remote_state *rs = get_remote_state ();
13858  char *buf = rs->buf.data ();
13859  char *endbuf = buf + get_remote_packet_size ();
13860
13861  if (packet_config_support (packet) != PACKET_ENABLE)
13862    error (_("Target does not support branch tracing."));
13863
13864  set_general_thread (tinfo->ptid);
13865
13866  buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13867  putpkt (rs->buf);
13868  getpkt (&rs->buf, 0);
13869
13870  if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13871    {
13872      if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13873	error (_("Could not disable branch tracing for %s: %s"),
13874	       target_pid_to_str (tinfo->ptid), &rs->buf[2]);
13875      else
13876	error (_("Could not disable branch tracing for %s."),
13877	       target_pid_to_str (tinfo->ptid));
13878    }
13879
13880  xfree (tinfo);
13881}
13882
13883/* Teardown branch tracing.  */
13884
13885void
13886remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13887{
13888  /* We must not talk to the target during teardown.  */
13889  xfree (tinfo);
13890}
13891
13892/* Read the branch trace.  */
13893
13894enum btrace_error
13895remote_target::read_btrace (struct btrace_data *btrace,
13896			    struct btrace_target_info *tinfo,
13897			    enum btrace_read_type type)
13898{
13899  struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13900  const char *annex;
13901
13902  if (packet_config_support (packet) != PACKET_ENABLE)
13903    error (_("Target does not support branch tracing."));
13904
13905#if !defined(HAVE_LIBEXPAT)
13906  error (_("Cannot process branch tracing result. XML parsing not supported."));
13907#endif
13908
13909  switch (type)
13910    {
13911    case BTRACE_READ_ALL:
13912      annex = "all";
13913      break;
13914    case BTRACE_READ_NEW:
13915      annex = "new";
13916      break;
13917    case BTRACE_READ_DELTA:
13918      annex = "delta";
13919      break;
13920    default:
13921      internal_error (__FILE__, __LINE__,
13922		      _("Bad branch tracing read type: %u."),
13923		      (unsigned int) type);
13924    }
13925
13926  gdb::optional<gdb::char_vector> xml
13927    = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13928  if (!xml)
13929    return BTRACE_ERR_UNKNOWN;
13930
13931  parse_xml_btrace (btrace, xml->data ());
13932
13933  return BTRACE_ERR_NONE;
13934}
13935
13936const struct btrace_config *
13937remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13938{
13939  return &tinfo->conf;
13940}
13941
13942bool
13943remote_target::augmented_libraries_svr4_read ()
13944{
13945  return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13946	  == PACKET_ENABLE);
13947}
13948
13949/* Implementation of to_load.  */
13950
13951void
13952remote_target::load (const char *name, int from_tty)
13953{
13954  generic_load (name, from_tty);
13955}
13956
13957/* Accepts an integer PID; returns a string representing a file that
13958   can be opened on the remote side to get the symbols for the child
13959   process.  Returns NULL if the operation is not supported.  */
13960
13961char *
13962remote_target::pid_to_exec_file (int pid)
13963{
13964  static gdb::optional<gdb::char_vector> filename;
13965  struct inferior *inf;
13966  char *annex = NULL;
13967
13968  if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13969    return NULL;
13970
13971  inf = find_inferior_pid (pid);
13972  if (inf == NULL)
13973    internal_error (__FILE__, __LINE__,
13974		    _("not currently attached to process %d"), pid);
13975
13976  if (!inf->fake_pid_p)
13977    {
13978      const int annex_size = 9;
13979
13980      annex = (char *) alloca (annex_size);
13981      xsnprintf (annex, annex_size, "%x", pid);
13982    }
13983
13984  filename = target_read_stralloc (current_top_target (),
13985				   TARGET_OBJECT_EXEC_FILE, annex);
13986
13987  return filename ? filename->data () : nullptr;
13988}
13989
13990/* Implement the to_can_do_single_step target_ops method.  */
13991
13992int
13993remote_target::can_do_single_step ()
13994{
13995  /* We can only tell whether target supports single step or not by
13996     supported s and S vCont actions if the stub supports vContSupported
13997     feature.  If the stub doesn't support vContSupported feature,
13998     we have conservatively to think target doesn't supports single
13999     step.  */
14000  if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14001    {
14002      struct remote_state *rs = get_remote_state ();
14003
14004      if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14005	remote_vcont_probe ();
14006
14007      return rs->supports_vCont.s && rs->supports_vCont.S;
14008    }
14009  else
14010    return 0;
14011}
14012
14013/* Implementation of the to_execution_direction method for the remote
14014   target.  */
14015
14016enum exec_direction_kind
14017remote_target::execution_direction ()
14018{
14019  struct remote_state *rs = get_remote_state ();
14020
14021  return rs->last_resume_exec_dir;
14022}
14023
14024/* Return pointer to the thread_info struct which corresponds to
14025   THREAD_HANDLE (having length HANDLE_LEN).  */
14026
14027thread_info *
14028remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14029					     int handle_len,
14030					     inferior *inf)
14031{
14032  for (thread_info *tp : all_non_exited_threads ())
14033    {
14034      remote_thread_info *priv = get_remote_thread_info (tp);
14035
14036      if (tp->inf == inf && priv != NULL)
14037        {
14038	  if (handle_len != priv->thread_handle.size ())
14039	    error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14040	           handle_len, priv->thread_handle.size ());
14041	  if (memcmp (thread_handle, priv->thread_handle.data (),
14042	              handle_len) == 0)
14043	    return tp;
14044	}
14045    }
14046
14047  return NULL;
14048}
14049
14050bool
14051remote_target::can_async_p ()
14052{
14053  struct remote_state *rs = get_remote_state ();
14054
14055  /* We don't go async if the user has explicitly prevented it with the
14056     "maint set target-async" command.  */
14057  if (!target_async_permitted)
14058    return false;
14059
14060  /* We're async whenever the serial device is.  */
14061  return serial_can_async_p (rs->remote_desc);
14062}
14063
14064bool
14065remote_target::is_async_p ()
14066{
14067  struct remote_state *rs = get_remote_state ();
14068
14069  if (!target_async_permitted)
14070    /* We only enable async when the user specifically asks for it.  */
14071    return false;
14072
14073  /* We're async whenever the serial device is.  */
14074  return serial_is_async_p (rs->remote_desc);
14075}
14076
14077/* Pass the SERIAL event on and up to the client.  One day this code
14078   will be able to delay notifying the client of an event until the
14079   point where an entire packet has been received.  */
14080
14081static serial_event_ftype remote_async_serial_handler;
14082
14083static void
14084remote_async_serial_handler (struct serial *scb, void *context)
14085{
14086  /* Don't propogate error information up to the client.  Instead let
14087     the client find out about the error by querying the target.  */
14088  inferior_event_handler (INF_REG_EVENT, NULL);
14089}
14090
14091static void
14092remote_async_inferior_event_handler (gdb_client_data data)
14093{
14094  inferior_event_handler (INF_REG_EVENT, data);
14095}
14096
14097void
14098remote_target::async (int enable)
14099{
14100  struct remote_state *rs = get_remote_state ();
14101
14102  if (enable)
14103    {
14104      serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14105
14106      /* If there are pending events in the stop reply queue tell the
14107	 event loop to process them.  */
14108      if (!rs->stop_reply_queue.empty ())
14109	mark_async_event_handler (rs->remote_async_inferior_event_token);
14110      /* For simplicity, below we clear the pending events token
14111	 without remembering whether it is marked, so here we always
14112	 mark it.  If there's actually no pending notification to
14113	 process, this ends up being a no-op (other than a spurious
14114	 event-loop wakeup).  */
14115      if (target_is_non_stop_p ())
14116	mark_async_event_handler (rs->notif_state->get_pending_events_token);
14117    }
14118  else
14119    {
14120      serial_async (rs->remote_desc, NULL, NULL);
14121      /* If the core is disabling async, it doesn't want to be
14122	 disturbed with target events.  Clear all async event sources
14123	 too.  */
14124      clear_async_event_handler (rs->remote_async_inferior_event_token);
14125      if (target_is_non_stop_p ())
14126	clear_async_event_handler (rs->notif_state->get_pending_events_token);
14127    }
14128}
14129
14130/* Implementation of the to_thread_events method.  */
14131
14132void
14133remote_target::thread_events (int enable)
14134{
14135  struct remote_state *rs = get_remote_state ();
14136  size_t size = get_remote_packet_size ();
14137
14138  if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14139    return;
14140
14141  xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14142  putpkt (rs->buf);
14143  getpkt (&rs->buf, 0);
14144
14145  switch (packet_ok (rs->buf,
14146		     &remote_protocol_packets[PACKET_QThreadEvents]))
14147    {
14148    case PACKET_OK:
14149      if (strcmp (rs->buf.data (), "OK") != 0)
14150	error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14151      break;
14152    case PACKET_ERROR:
14153      warning (_("Remote failure reply: %s"), rs->buf.data ());
14154      break;
14155    case PACKET_UNKNOWN:
14156      break;
14157    }
14158}
14159
14160static void
14161set_remote_cmd (const char *args, int from_tty)
14162{
14163  help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14164}
14165
14166static void
14167show_remote_cmd (const char *args, int from_tty)
14168{
14169  /* We can't just use cmd_show_list here, because we want to skip
14170     the redundant "show remote Z-packet" and the legacy aliases.  */
14171  struct cmd_list_element *list = remote_show_cmdlist;
14172  struct ui_out *uiout = current_uiout;
14173
14174  ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14175  for (; list != NULL; list = list->next)
14176    if (strcmp (list->name, "Z-packet") == 0)
14177      continue;
14178    else if (list->type == not_set_cmd)
14179      /* Alias commands are exactly like the original, except they
14180	 don't have the normal type.  */
14181      continue;
14182    else
14183      {
14184	ui_out_emit_tuple option_emitter (uiout, "option");
14185
14186	uiout->field_string ("name", list->name);
14187	uiout->text (":  ");
14188	if (list->type == show_cmd)
14189	  do_show_command (NULL, from_tty, list);
14190	else
14191	  cmd_func (list, NULL, from_tty);
14192      }
14193}
14194
14195
14196/* Function to be called whenever a new objfile (shlib) is detected.  */
14197static void
14198remote_new_objfile (struct objfile *objfile)
14199{
14200  remote_target *remote = get_current_remote_target ();
14201
14202  if (remote != NULL)			/* Have a remote connection.  */
14203    remote->remote_check_symbols ();
14204}
14205
14206/* Pull all the tracepoints defined on the target and create local
14207   data structures representing them.  We don't want to create real
14208   tracepoints yet, we don't want to mess up the user's existing
14209   collection.  */
14210
14211int
14212remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14213{
14214  struct remote_state *rs = get_remote_state ();
14215  char *p;
14216
14217  /* Ask for a first packet of tracepoint definition.  */
14218  putpkt ("qTfP");
14219  getpkt (&rs->buf, 0);
14220  p = rs->buf.data ();
14221  while (*p && *p != 'l')
14222    {
14223      parse_tracepoint_definition (p, utpp);
14224      /* Ask for another packet of tracepoint definition.  */
14225      putpkt ("qTsP");
14226      getpkt (&rs->buf, 0);
14227      p = rs->buf.data ();
14228    }
14229  return 0;
14230}
14231
14232int
14233remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14234{
14235  struct remote_state *rs = get_remote_state ();
14236  char *p;
14237
14238  /* Ask for a first packet of variable definition.  */
14239  putpkt ("qTfV");
14240  getpkt (&rs->buf, 0);
14241  p = rs->buf.data ();
14242  while (*p && *p != 'l')
14243    {
14244      parse_tsv_definition (p, utsvp);
14245      /* Ask for another packet of variable definition.  */
14246      putpkt ("qTsV");
14247      getpkt (&rs->buf, 0);
14248      p = rs->buf.data ();
14249    }
14250  return 0;
14251}
14252
14253/* The "set/show range-stepping" show hook.  */
14254
14255static void
14256show_range_stepping (struct ui_file *file, int from_tty,
14257		     struct cmd_list_element *c,
14258		     const char *value)
14259{
14260  fprintf_filtered (file,
14261		    _("Debugger's willingness to use range stepping "
14262		      "is %s.\n"), value);
14263}
14264
14265/* Return true if the vCont;r action is supported by the remote
14266   stub.  */
14267
14268bool
14269remote_target::vcont_r_supported ()
14270{
14271  if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14272    remote_vcont_probe ();
14273
14274  return (packet_support (PACKET_vCont) == PACKET_ENABLE
14275	  && get_remote_state ()->supports_vCont.r);
14276}
14277
14278/* The "set/show range-stepping" set hook.  */
14279
14280static void
14281set_range_stepping (const char *ignore_args, int from_tty,
14282		    struct cmd_list_element *c)
14283{
14284  /* When enabling, check whether range stepping is actually supported
14285     by the target, and warn if not.  */
14286  if (use_range_stepping)
14287    {
14288      remote_target *remote = get_current_remote_target ();
14289      if (remote == NULL
14290	  || !remote->vcont_r_supported ())
14291	warning (_("Range stepping is not supported by the current target"));
14292    }
14293}
14294
14295void
14296_initialize_remote (void)
14297{
14298  struct cmd_list_element *cmd;
14299  const char *cmd_name;
14300
14301  /* architecture specific data */
14302  remote_g_packet_data_handle =
14303    gdbarch_data_register_pre_init (remote_g_packet_data_init);
14304
14305  remote_pspace_data
14306    = register_program_space_data_with_cleanup (NULL,
14307						remote_pspace_data_cleanup);
14308
14309  add_target (remote_target_info, remote_target::open);
14310  add_target (extended_remote_target_info, extended_remote_target::open);
14311
14312  /* Hook into new objfile notification.  */
14313  gdb::observers::new_objfile.attach (remote_new_objfile);
14314
14315#if 0
14316  init_remote_threadtests ();
14317#endif
14318
14319  /* set/show remote ...  */
14320
14321  add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14322Remote protocol specific variables\n\
14323Configure various remote-protocol specific variables such as\n\
14324the packets being used"),
14325		  &remote_set_cmdlist, "set remote ",
14326		  0 /* allow-unknown */, &setlist);
14327  add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14328Remote protocol specific variables\n\
14329Configure various remote-protocol specific variables such as\n\
14330the packets being used"),
14331		  &remote_show_cmdlist, "show remote ",
14332		  0 /* allow-unknown */, &showlist);
14333
14334  add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14335Compare section data on target to the exec file.\n\
14336Argument is a single section name (default: all loaded sections).\n\
14337To compare only read-only loaded sections, specify the -r option."),
14338	   &cmdlist);
14339
14340  add_cmd ("packet", class_maintenance, packet_command, _("\
14341Send an arbitrary packet to a remote target.\n\
14342   maintenance packet TEXT\n\
14343If GDB is talking to an inferior via the GDB serial protocol, then\n\
14344this command sends the string TEXT to the inferior, and displays the\n\
14345response packet.  GDB supplies the initial `$' character, and the\n\
14346terminating `#' character and checksum."),
14347	   &maintenancelist);
14348
14349  add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14350Set whether to send break if interrupted."), _("\
14351Show whether to send break if interrupted."), _("\
14352If set, a break, instead of a cntrl-c, is sent to the remote target."),
14353			   set_remotebreak, show_remotebreak,
14354			   &setlist, &showlist);
14355  cmd_name = "remotebreak";
14356  cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14357  deprecate_cmd (cmd, "set remote interrupt-sequence");
14358  cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14359  cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14360  deprecate_cmd (cmd, "show remote interrupt-sequence");
14361
14362  add_setshow_enum_cmd ("interrupt-sequence", class_support,
14363			interrupt_sequence_modes, &interrupt_sequence_mode,
14364			_("\
14365Set interrupt sequence to remote target."), _("\
14366Show interrupt sequence to remote target."), _("\
14367Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14368			NULL, show_interrupt_sequence,
14369			&remote_set_cmdlist,
14370			&remote_show_cmdlist);
14371
14372  add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14373			   &interrupt_on_connect, _("\
14374Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("		\
14375Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("		\
14376If set, interrupt sequence is sent to remote target."),
14377			   NULL, NULL,
14378			   &remote_set_cmdlist, &remote_show_cmdlist);
14379
14380  /* Install commands for configuring memory read/write packets.  */
14381
14382  add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14383Set the maximum number of bytes per memory write packet (deprecated)."),
14384	   &setlist);
14385  add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14386Show the maximum number of bytes per memory write packet (deprecated)."),
14387	   &showlist);
14388  add_cmd ("memory-write-packet-size", no_class,
14389	   set_memory_write_packet_size, _("\
14390Set the maximum number of bytes per memory-write packet.\n\
14391Specify the number of bytes in a packet or 0 (zero) for the\n\
14392default packet size.  The actual limit is further reduced\n\
14393dependent on the target.  Specify ``fixed'' to disable the\n\
14394further restriction and ``limit'' to enable that restriction."),
14395	   &remote_set_cmdlist);
14396  add_cmd ("memory-read-packet-size", no_class,
14397	   set_memory_read_packet_size, _("\
14398Set the maximum number of bytes per memory-read packet.\n\
14399Specify the number of bytes in a packet or 0 (zero) for the\n\
14400default packet size.  The actual limit is further reduced\n\
14401dependent on the target.  Specify ``fixed'' to disable the\n\
14402further restriction and ``limit'' to enable that restriction."),
14403	   &remote_set_cmdlist);
14404  add_cmd ("memory-write-packet-size", no_class,
14405	   show_memory_write_packet_size,
14406	   _("Show the maximum number of bytes per memory-write packet."),
14407	   &remote_show_cmdlist);
14408  add_cmd ("memory-read-packet-size", no_class,
14409	   show_memory_read_packet_size,
14410	   _("Show the maximum number of bytes per memory-read packet."),
14411	   &remote_show_cmdlist);
14412
14413  add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14414			    &remote_hw_watchpoint_limit, _("\
14415Set the maximum number of target hardware watchpoints."), _("\
14416Show the maximum number of target hardware watchpoints."), _("\
14417Specify \"unlimited\" for unlimited hardware watchpoints."),
14418			    NULL, show_hardware_watchpoint_limit,
14419			    &remote_set_cmdlist,
14420			    &remote_show_cmdlist);
14421  add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14422			    no_class,
14423			    &remote_hw_watchpoint_length_limit, _("\
14424Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14425Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14426Specify \"unlimited\" to allow watchpoints of unlimited size."),
14427			    NULL, show_hardware_watchpoint_length_limit,
14428			    &remote_set_cmdlist, &remote_show_cmdlist);
14429  add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14430			    &remote_hw_breakpoint_limit, _("\
14431Set the maximum number of target hardware breakpoints."), _("\
14432Show the maximum number of target hardware breakpoints."), _("\
14433Specify \"unlimited\" for unlimited hardware breakpoints."),
14434			    NULL, show_hardware_breakpoint_limit,
14435			    &remote_set_cmdlist, &remote_show_cmdlist);
14436
14437  add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14438			     &remote_address_size, _("\
14439Set the maximum size of the address (in bits) in a memory packet."), _("\
14440Show the maximum size of the address (in bits) in a memory packet."), NULL,
14441			     NULL,
14442			     NULL, /* FIXME: i18n: */
14443			     &setlist, &showlist);
14444
14445  init_all_packet_configs ();
14446
14447  add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14448			 "X", "binary-download", 1);
14449
14450  add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14451			 "vCont", "verbose-resume", 0);
14452
14453  add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14454			 "QPassSignals", "pass-signals", 0);
14455
14456  add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14457			 "QCatchSyscalls", "catch-syscalls", 0);
14458
14459  add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14460			 "QProgramSignals", "program-signals", 0);
14461
14462  add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14463			 "QSetWorkingDir", "set-working-dir", 0);
14464
14465  add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14466			 "QStartupWithShell", "startup-with-shell", 0);
14467
14468  add_packet_config_cmd (&remote_protocol_packets
14469			 [PACKET_QEnvironmentHexEncoded],
14470			 "QEnvironmentHexEncoded", "environment-hex-encoded",
14471			 0);
14472
14473  add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14474			 "QEnvironmentReset", "environment-reset",
14475			 0);
14476
14477  add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14478			 "QEnvironmentUnset", "environment-unset",
14479			 0);
14480
14481  add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14482			 "qSymbol", "symbol-lookup", 0);
14483
14484  add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14485			 "P", "set-register", 1);
14486
14487  add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14488			 "p", "fetch-register", 1);
14489
14490  add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14491			 "Z0", "software-breakpoint", 0);
14492
14493  add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14494			 "Z1", "hardware-breakpoint", 0);
14495
14496  add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14497			 "Z2", "write-watchpoint", 0);
14498
14499  add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14500			 "Z3", "read-watchpoint", 0);
14501
14502  add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14503			 "Z4", "access-watchpoint", 0);
14504
14505  add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14506			 "qXfer:auxv:read", "read-aux-vector", 0);
14507
14508  add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14509			 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14510
14511  add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14512			 "qXfer:features:read", "target-features", 0);
14513
14514  add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14515			 "qXfer:libraries:read", "library-info", 0);
14516
14517  add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14518			 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14519
14520  add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14521			 "qXfer:memory-map:read", "memory-map", 0);
14522
14523  add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14524                         "qXfer:spu:read", "read-spu-object", 0);
14525
14526  add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14527                         "qXfer:spu:write", "write-spu-object", 0);
14528
14529  add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14530                        "qXfer:osdata:read", "osdata", 0);
14531
14532  add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14533			 "qXfer:threads:read", "threads", 0);
14534
14535  add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14536                         "qXfer:siginfo:read", "read-siginfo-object", 0);
14537
14538  add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14539                         "qXfer:siginfo:write", "write-siginfo-object", 0);
14540
14541  add_packet_config_cmd
14542    (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14543     "qXfer:traceframe-info:read", "traceframe-info", 0);
14544
14545  add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14546			 "qXfer:uib:read", "unwind-info-block", 0);
14547
14548  add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14549			 "qGetTLSAddr", "get-thread-local-storage-address",
14550			 0);
14551
14552  add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14553			 "qGetTIBAddr", "get-thread-information-block-address",
14554			 0);
14555
14556  add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14557			 "bc", "reverse-continue", 0);
14558
14559  add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14560			 "bs", "reverse-step", 0);
14561
14562  add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14563			 "qSupported", "supported-packets", 0);
14564
14565  add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14566			 "qSearch:memory", "search-memory", 0);
14567
14568  add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14569			 "qTStatus", "trace-status", 0);
14570
14571  add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14572			 "vFile:setfs", "hostio-setfs", 0);
14573
14574  add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14575			 "vFile:open", "hostio-open", 0);
14576
14577  add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14578			 "vFile:pread", "hostio-pread", 0);
14579
14580  add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14581			 "vFile:pwrite", "hostio-pwrite", 0);
14582
14583  add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14584			 "vFile:close", "hostio-close", 0);
14585
14586  add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14587			 "vFile:unlink", "hostio-unlink", 0);
14588
14589  add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14590			 "vFile:readlink", "hostio-readlink", 0);
14591
14592  add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14593			 "vFile:fstat", "hostio-fstat", 0);
14594
14595  add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14596			 "vAttach", "attach", 0);
14597
14598  add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14599			 "vRun", "run", 0);
14600
14601  add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14602			 "QStartNoAckMode", "noack", 0);
14603
14604  add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14605			 "vKill", "kill", 0);
14606
14607  add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14608			 "qAttached", "query-attached", 0);
14609
14610  add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14611			 "ConditionalTracepoints",
14612			 "conditional-tracepoints", 0);
14613
14614  add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14615			 "ConditionalBreakpoints",
14616			 "conditional-breakpoints", 0);
14617
14618  add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14619			 "BreakpointCommands",
14620			 "breakpoint-commands", 0);
14621
14622  add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14623			 "FastTracepoints", "fast-tracepoints", 0);
14624
14625  add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14626			 "TracepointSource", "TracepointSource", 0);
14627
14628  add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14629			 "QAllow", "allow", 0);
14630
14631  add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14632			 "StaticTracepoints", "static-tracepoints", 0);
14633
14634  add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14635			 "InstallInTrace", "install-in-trace", 0);
14636
14637  add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14638                         "qXfer:statictrace:read", "read-sdata-object", 0);
14639
14640  add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14641			 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14642
14643  add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14644			 "QDisableRandomization", "disable-randomization", 0);
14645
14646  add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14647			 "QAgent", "agent", 0);
14648
14649  add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14650			 "QTBuffer:size", "trace-buffer-size", 0);
14651
14652  add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14653       "Qbtrace:off", "disable-btrace", 0);
14654
14655  add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14656       "Qbtrace:bts", "enable-btrace-bts", 0);
14657
14658  add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14659       "Qbtrace:pt", "enable-btrace-pt", 0);
14660
14661  add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14662       "qXfer:btrace", "read-btrace", 0);
14663
14664  add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14665       "qXfer:btrace-conf", "read-btrace-conf", 0);
14666
14667  add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14668       "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14669
14670  add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14671       "multiprocess-feature", "multiprocess-feature", 0);
14672
14673  add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14674                         "swbreak-feature", "swbreak-feature", 0);
14675
14676  add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14677                         "hwbreak-feature", "hwbreak-feature", 0);
14678
14679  add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14680			 "fork-event-feature", "fork-event-feature", 0);
14681
14682  add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14683			 "vfork-event-feature", "vfork-event-feature", 0);
14684
14685  add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14686       "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14687
14688  add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14689			 "vContSupported", "verbose-resume-supported", 0);
14690
14691  add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14692			 "exec-event-feature", "exec-event-feature", 0);
14693
14694  add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14695			 "vCtrlC", "ctrl-c", 0);
14696
14697  add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14698			 "QThreadEvents", "thread-events", 0);
14699
14700  add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14701			 "N stop reply", "no-resumed-stop-reply", 0);
14702
14703  /* Assert that we've registered "set remote foo-packet" commands
14704     for all packet configs.  */
14705  {
14706    int i;
14707
14708    for (i = 0; i < PACKET_MAX; i++)
14709      {
14710	/* Ideally all configs would have a command associated.  Some
14711	   still don't though.  */
14712	int excepted;
14713
14714	switch (i)
14715	  {
14716	  case PACKET_QNonStop:
14717	  case PACKET_EnableDisableTracepoints_feature:
14718	  case PACKET_tracenz_feature:
14719	  case PACKET_DisconnectedTracing_feature:
14720	  case PACKET_augmented_libraries_svr4_read_feature:
14721	  case PACKET_qCRC:
14722	    /* Additions to this list need to be well justified:
14723	       pre-existing packets are OK; new packets are not.  */
14724	    excepted = 1;
14725	    break;
14726	  default:
14727	    excepted = 0;
14728	    break;
14729	  }
14730
14731	/* This catches both forgetting to add a config command, and
14732	   forgetting to remove a packet from the exception list.  */
14733	gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14734      }
14735  }
14736
14737  /* Keep the old ``set remote Z-packet ...'' working.  Each individual
14738     Z sub-packet has its own set and show commands, but users may
14739     have sets to this variable in their .gdbinit files (or in their
14740     documentation).  */
14741  add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14742				&remote_Z_packet_detect, _("\
14743Set use of remote protocol `Z' packets"), _("\
14744Show use of remote protocol `Z' packets "), _("\
14745When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14746packets."),
14747				set_remote_protocol_Z_packet_cmd,
14748				show_remote_protocol_Z_packet_cmd,
14749				/* FIXME: i18n: Use of remote protocol
14750				   `Z' packets is %s.  */
14751				&remote_set_cmdlist, &remote_show_cmdlist);
14752
14753  add_prefix_cmd ("remote", class_files, remote_command, _("\
14754Manipulate files on the remote system\n\
14755Transfer files to and from the remote target system."),
14756		  &remote_cmdlist, "remote ",
14757		  0 /* allow-unknown */, &cmdlist);
14758
14759  add_cmd ("put", class_files, remote_put_command,
14760	   _("Copy a local file to the remote system."),
14761	   &remote_cmdlist);
14762
14763  add_cmd ("get", class_files, remote_get_command,
14764	   _("Copy a remote file to the local system."),
14765	   &remote_cmdlist);
14766
14767  add_cmd ("delete", class_files, remote_delete_command,
14768	   _("Delete a remote file."),
14769	   &remote_cmdlist);
14770
14771  add_setshow_string_noescape_cmd ("exec-file", class_files,
14772				   &remote_exec_file_var, _("\
14773Set the remote pathname for \"run\""), _("\
14774Show the remote pathname for \"run\""), NULL,
14775				   set_remote_exec_file,
14776				   show_remote_exec_file,
14777				   &remote_set_cmdlist,
14778				   &remote_show_cmdlist);
14779
14780  add_setshow_boolean_cmd ("range-stepping", class_run,
14781			   &use_range_stepping, _("\
14782Enable or disable range stepping."), _("\
14783Show whether target-assisted range stepping is enabled."), _("\
14784If on, and the target supports it, when stepping a source line, GDB\n\
14785tells the target to step the corresponding range of addresses itself instead\n\
14786of issuing multiple single-steps.  This speeds up source level\n\
14787stepping.  If off, GDB always issues single-steps, even if range\n\
14788stepping is supported by the target.  The default is on."),
14789			   set_range_stepping,
14790			   show_range_stepping,
14791			   &setlist,
14792			   &showlist);
14793
14794  /* Eventually initialize fileio.  See fileio.c */
14795  initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14796
14797  /* Take advantage of the fact that the TID field is not used, to tag
14798     special ptids with it set to != 0.  */
14799  magic_null_ptid = ptid_t (42000, -1, 1);
14800  not_sent_ptid = ptid_t (42000, -2, 1);
14801  any_thread_ptid = ptid_t (42000, 0, 1);
14802}
14803