nios2-tdep.c revision 1.9
1/* Target-machine dependent code for Nios II, for GDB.
2   Copyright (C) 2012-2020 Free Software Foundation, Inc.
3   Contributed by Peter Brookes (pbrookes@altera.com)
4   and Andrew Draper (adraper@altera.com).
5   Contributed by Mentor Graphics, Inc.
6
7   This file is part of GDB.
8
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 3 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
22#include "defs.h"
23#include "frame.h"
24#include "frame-unwind.h"
25#include "frame-base.h"
26#include "trad-frame.h"
27#include "dwarf2/frame.h"
28#include "symtab.h"
29#include "inferior.h"
30#include "gdbtypes.h"
31#include "gdbcore.h"
32#include "gdbcmd.h"
33#include "osabi.h"
34#include "target.h"
35#include "dis-asm.h"
36#include "regcache.h"
37#include "value.h"
38#include "symfile.h"
39#include "arch-utils.h"
40#include "infcall.h"
41#include "regset.h"
42#include "target-descriptions.h"
43
44/* To get entry_point_address.  */
45#include "objfiles.h"
46#include <algorithm>
47
48/* Nios II specific header.  */
49#include "nios2-tdep.h"
50
51#include "features/nios2.c"
52
53/* Control debugging information emitted in this file.  */
54
55static bool nios2_debug = false;
56
57/* The following structures are used in the cache for prologue
58   analysis; see the reg_value and reg_saved tables in
59   struct nios2_unwind_cache, respectively.  */
60
61/* struct reg_value is used to record that a register has reg's initial
62   value at the start of a function plus the given constant offset.
63   If reg == 0, then the value is just the offset.
64   If reg < 0, then the value is unknown.  */
65
66struct reg_value
67{
68  int reg;
69  int offset;
70};
71
72/* struct reg_saved is used to record that a register value has been saved at
73   basereg + addr, for basereg >= 0.  If basereg < 0, that indicates
74   that the register is not known to have been saved.  Note that when
75   basereg == NIOS2_Z_REGNUM (that is, r0, which holds value 0),
76   addr is an absolute address.  */
77
78struct reg_saved
79{
80  int basereg;
81  CORE_ADDR addr;
82};
83
84struct nios2_unwind_cache
85{
86  /* The frame's base, optionally used by the high-level debug info.  */
87  CORE_ADDR base;
88
89  /* The previous frame's inner most stack address.  Used as this
90     frame ID's stack_addr.  */
91  CORE_ADDR cfa;
92
93  /* The address of the first instruction in this function.  */
94  CORE_ADDR pc;
95
96  /* Which register holds the return address for the frame.  */
97  int return_regnum;
98
99  /* Table indicating what changes have been made to each register.  */
100  struct reg_value reg_value[NIOS2_NUM_REGS];
101
102  /* Table indicating where each register has been saved.  */
103  struct reg_saved reg_saved[NIOS2_NUM_REGS];
104};
105
106
107/* This array is a mapping from Dwarf-2 register numbering to GDB's.  */
108
109static int nios2_dwarf2gdb_regno_map[] =
110{
111  0, 1, 2, 3,
112  4, 5, 6, 7,
113  8, 9, 10, 11,
114  12, 13, 14, 15,
115  16, 17, 18, 19,
116  20, 21, 22, 23,
117  24, 25,
118  NIOS2_GP_REGNUM,        /* 26 */
119  NIOS2_SP_REGNUM,        /* 27 */
120  NIOS2_FP_REGNUM,        /* 28 */
121  NIOS2_EA_REGNUM,        /* 29 */
122  NIOS2_BA_REGNUM,        /* 30 */
123  NIOS2_RA_REGNUM,        /* 31 */
124  NIOS2_PC_REGNUM,        /* 32 */
125  NIOS2_STATUS_REGNUM,    /* 33 */
126  NIOS2_ESTATUS_REGNUM,   /* 34 */
127  NIOS2_BSTATUS_REGNUM,   /* 35 */
128  NIOS2_IENABLE_REGNUM,   /* 36 */
129  NIOS2_IPENDING_REGNUM,  /* 37 */
130  NIOS2_CPUID_REGNUM,     /* 38 */
131  39, /* CTL6 */          /* 39 */
132  NIOS2_EXCEPTION_REGNUM, /* 40 */
133  NIOS2_PTEADDR_REGNUM,   /* 41 */
134  NIOS2_TLBACC_REGNUM,    /* 42 */
135  NIOS2_TLBMISC_REGNUM,   /* 43 */
136  NIOS2_ECCINJ_REGNUM,    /* 44 */
137  NIOS2_BADADDR_REGNUM,   /* 45 */
138  NIOS2_CONFIG_REGNUM,    /* 46 */
139  NIOS2_MPUBASE_REGNUM,   /* 47 */
140  NIOS2_MPUACC_REGNUM     /* 48 */
141};
142
143gdb_static_assert (ARRAY_SIZE (nios2_dwarf2gdb_regno_map) == NIOS2_NUM_REGS);
144
145/* Implement the dwarf2_reg_to_regnum gdbarch method.  */
146
147static int
148nios2_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int dw_reg)
149{
150  if (dw_reg < 0 || dw_reg >= NIOS2_NUM_REGS)
151    return -1;
152
153  return nios2_dwarf2gdb_regno_map[dw_reg];
154}
155
156/* Canonical names for the 49 registers.  */
157
158static const char *const nios2_reg_names[NIOS2_NUM_REGS] =
159{
160  "zero", "at", "r2", "r3", "r4", "r5", "r6", "r7",
161  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
162  "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
163  "et", "bt", "gp", "sp", "fp", "ea", "sstatus", "ra",
164  "pc",
165  "status", "estatus", "bstatus", "ienable",
166  "ipending", "cpuid", "ctl6", "exception",
167  "pteaddr", "tlbacc", "tlbmisc", "eccinj",
168  "badaddr", "config", "mpubase", "mpuacc"
169};
170
171/* Implement the register_name gdbarch method.  */
172
173static const char *
174nios2_register_name (struct gdbarch *gdbarch, int regno)
175{
176  /* Use mnemonic aliases for GPRs.  */
177  if (regno >= 0 && regno < NIOS2_NUM_REGS)
178    return nios2_reg_names[regno];
179  else
180    return tdesc_register_name (gdbarch, regno);
181}
182
183/* Implement the register_type gdbarch method.  */
184
185static struct type *
186nios2_register_type (struct gdbarch *gdbarch, int regno)
187{
188  /* If the XML description has register information, use that to
189     determine the register type.  */
190  if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
191    return tdesc_register_type (gdbarch, regno);
192
193  if (regno == NIOS2_PC_REGNUM)
194    return builtin_type (gdbarch)->builtin_func_ptr;
195  else if (regno == NIOS2_SP_REGNUM)
196    return builtin_type (gdbarch)->builtin_data_ptr;
197  else
198    return builtin_type (gdbarch)->builtin_uint32;
199}
200
201/* Given a return value in REGCACHE with a type VALTYPE,
202   extract and copy its value into VALBUF.  */
203
204static void
205nios2_extract_return_value (struct gdbarch *gdbarch, struct type *valtype,
206			    struct regcache *regcache, gdb_byte *valbuf)
207{
208  int len = TYPE_LENGTH (valtype);
209
210  /* Return values of up to 8 bytes are returned in $r2 $r3.  */
211  if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
212    regcache->cooked_read (NIOS2_R2_REGNUM, valbuf);
213  else
214    {
215      gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
216			  + register_size (gdbarch, NIOS2_R3_REGNUM)));
217      regcache->cooked_read (NIOS2_R2_REGNUM, valbuf);
218      regcache->cooked_read (NIOS2_R3_REGNUM, valbuf + 4);
219    }
220}
221
222/* Write into appropriate registers a function return value
223   of type TYPE, given in virtual format.  */
224
225static void
226nios2_store_return_value (struct gdbarch *gdbarch, struct type *valtype,
227			  struct regcache *regcache, const gdb_byte *valbuf)
228{
229  int len = TYPE_LENGTH (valtype);
230
231  /* Return values of up to 8 bytes are returned in $r2 $r3.  */
232  if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
233    regcache->cooked_write (NIOS2_R2_REGNUM, valbuf);
234  else
235    {
236      gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
237			  + register_size (gdbarch, NIOS2_R3_REGNUM)));
238      regcache->cooked_write (NIOS2_R2_REGNUM, valbuf);
239      regcache->cooked_write (NIOS2_R3_REGNUM, valbuf + 4);
240    }
241}
242
243
244/* Set up the default values of the registers.  */
245
246static void
247nios2_setup_default (struct nios2_unwind_cache *cache)
248{
249  int i;
250
251  for (i = 0; i < NIOS2_NUM_REGS; i++)
252  {
253    /* All registers start off holding their previous values.  */
254    cache->reg_value[i].reg    = i;
255    cache->reg_value[i].offset = 0;
256
257    /* All registers start off not saved.  */
258    cache->reg_saved[i].basereg = -1;
259    cache->reg_saved[i].addr    = 0;
260  }
261}
262
263/* Initialize the unwind cache.  */
264
265static void
266nios2_init_cache (struct nios2_unwind_cache *cache, CORE_ADDR pc)
267{
268  cache->base = 0;
269  cache->cfa = 0;
270  cache->pc = pc;
271  cache->return_regnum = NIOS2_RA_REGNUM;
272  nios2_setup_default (cache);
273}
274
275/* Read and identify an instruction at PC.  If INSNP is non-null,
276   store the instruction word into that location.  Return the opcode
277   pointer or NULL if the memory couldn't be read or disassembled.  */
278
279static const struct nios2_opcode *
280nios2_fetch_insn (struct gdbarch *gdbarch, CORE_ADDR pc,
281		  unsigned int *insnp)
282{
283  LONGEST memword;
284  unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
285  unsigned int insn;
286
287  if (mach == bfd_mach_nios2r2)
288    {
289      if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE,
290				     BFD_ENDIAN_LITTLE, &memword)
291	  && !safe_read_memory_integer (pc, NIOS2_CDX_OPCODE_SIZE,
292					BFD_ENDIAN_LITTLE, &memword))
293	return NULL;
294    }
295  else if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE,
296				      gdbarch_byte_order (gdbarch), &memword))
297    return NULL;
298
299  insn = (unsigned int) memword;
300  if (insnp)
301    *insnp = insn;
302  return nios2_find_opcode_hash (insn, mach);
303}
304
305
306/* Match and disassemble an ADD-type instruction, with 3 register operands.
307   Returns true on success, and fills in the operand pointers.  */
308
309static int
310nios2_match_add (uint32_t insn, const struct nios2_opcode *op,
311		 unsigned long mach, int *ra, int *rb, int *rc)
312{
313  int is_r2 = (mach == bfd_mach_nios2r2);
314
315  if (!is_r2 && (op->match == MATCH_R1_ADD || op->match == MATCH_R1_MOV))
316    {
317      *ra = GET_IW_R_A (insn);
318      *rb = GET_IW_R_B (insn);
319      *rc = GET_IW_R_C (insn);
320      return 1;
321    }
322  else if (!is_r2)
323    return 0;
324  else if (op->match == MATCH_R2_ADD || op->match == MATCH_R2_MOV)
325    {
326      *ra = GET_IW_F3X6L5_A (insn);
327      *rb = GET_IW_F3X6L5_B (insn);
328      *rc = GET_IW_F3X6L5_C (insn);
329      return 1;
330    }
331  else if (op->match == MATCH_R2_ADD_N)
332    {
333      *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)];
334      *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)];
335      *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)];
336      return 1;
337    }
338  else if (op->match == MATCH_R2_MOV_N)
339    {
340      *ra = GET_IW_F2_A (insn);
341      *rb = 0;
342      *rc = GET_IW_F2_B (insn);
343      return 1;
344    }
345  return 0;
346}
347
348/* Match and disassemble a SUB-type instruction, with 3 register operands.
349   Returns true on success, and fills in the operand pointers.  */
350
351static int
352nios2_match_sub (uint32_t insn, const struct nios2_opcode *op,
353		 unsigned long mach, int *ra, int *rb, int *rc)
354{
355  int is_r2 = (mach == bfd_mach_nios2r2);
356
357  if (!is_r2 && op->match == MATCH_R1_SUB)
358    {
359      *ra = GET_IW_R_A (insn);
360      *rb = GET_IW_R_B (insn);
361      *rc = GET_IW_R_C (insn);
362      return 1;
363    }
364  else if (!is_r2)
365    return 0;
366  else if (op->match == MATCH_R2_SUB)
367    {
368      *ra = GET_IW_F3X6L5_A (insn);
369      *rb = GET_IW_F3X6L5_B (insn);
370      *rc = GET_IW_F3X6L5_C (insn);
371      return 1;
372    }
373  else if (op->match == MATCH_R2_SUB_N)
374    {
375      *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)];
376      *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)];
377      *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)];
378      return 1;
379    }
380  return 0;
381}
382
383/* Match and disassemble an ADDI-type instruction, with 2 register operands
384   and one immediate operand.
385   Returns true on success, and fills in the operand pointers.  */
386
387static int
388nios2_match_addi (uint32_t insn, const struct nios2_opcode *op,
389		  unsigned long mach, int *ra, int *rb, int *imm)
390{
391  int is_r2 = (mach == bfd_mach_nios2r2);
392
393  if (!is_r2 && op->match == MATCH_R1_ADDI)
394    {
395      *ra = GET_IW_I_A (insn);
396      *rb = GET_IW_I_B (insn);
397      *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
398      return 1;
399    }
400  else if (!is_r2)
401    return 0;
402  else if (op->match == MATCH_R2_ADDI)
403    {
404      *ra = GET_IW_F2I16_A (insn);
405      *rb = GET_IW_F2I16_B (insn);
406      *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
407      return 1;
408    }
409  else if (op->match == MATCH_R2_ADDI_N || op->match == MATCH_R2_SUBI_N)
410    {
411      *ra = nios2_r2_reg3_mappings[GET_IW_T2X1I3_A3 (insn)];
412      *rb = nios2_r2_reg3_mappings[GET_IW_T2X1I3_B3 (insn)];
413      *imm = nios2_r2_asi_n_mappings[GET_IW_T2X1I3_IMM3 (insn)];
414      if (op->match == MATCH_R2_SUBI_N)
415	*imm = - (*imm);
416      return 1;
417    }
418  else if (op->match == MATCH_R2_SPADDI_N)
419    {
420      *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
421      *rb = NIOS2_SP_REGNUM;
422      *imm = GET_IW_T1I7_IMM7 (insn) << 2;
423      return 1;
424    }
425  else if (op->match == MATCH_R2_SPINCI_N || op->match == MATCH_R2_SPDECI_N)
426    {
427      *ra = NIOS2_SP_REGNUM;
428      *rb = NIOS2_SP_REGNUM;
429      *imm = GET_IW_X1I7_IMM7 (insn) << 2;
430      if (op->match == MATCH_R2_SPDECI_N)
431	*imm = - (*imm);
432      return 1;
433    }
434  return 0;
435}
436
437/* Match and disassemble an ORHI-type instruction, with 2 register operands
438   and one unsigned immediate operand.
439   Returns true on success, and fills in the operand pointers.  */
440
441static int
442nios2_match_orhi (uint32_t insn, const struct nios2_opcode *op,
443		  unsigned long mach, int *ra, int *rb, unsigned int *uimm)
444{
445  int is_r2 = (mach == bfd_mach_nios2r2);
446
447  if (!is_r2 && op->match == MATCH_R1_ORHI)
448    {
449      *ra = GET_IW_I_A (insn);
450      *rb = GET_IW_I_B (insn);
451      *uimm = GET_IW_I_IMM16 (insn);
452      return 1;
453    }
454  else if (!is_r2)
455    return 0;
456  else if (op->match == MATCH_R2_ORHI)
457    {
458      *ra = GET_IW_F2I16_A (insn);
459      *rb = GET_IW_F2I16_B (insn);
460      *uimm = GET_IW_F2I16_IMM16 (insn);
461      return 1;
462    }
463  return 0;
464}
465
466/* Match and disassemble a STW-type instruction, with 2 register operands
467   and one immediate operand.
468   Returns true on success, and fills in the operand pointers.  */
469
470static int
471nios2_match_stw (uint32_t insn, const struct nios2_opcode *op,
472		 unsigned long mach, int *ra, int *rb, int *imm)
473{
474  int is_r2 = (mach == bfd_mach_nios2r2);
475
476  if (!is_r2 && (op->match == MATCH_R1_STW || op->match == MATCH_R1_STWIO))
477    {
478      *ra = GET_IW_I_A (insn);
479      *rb = GET_IW_I_B (insn);
480      *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
481      return 1;
482    }
483  else if (!is_r2)
484    return 0;
485  else if (op->match == MATCH_R2_STW)
486    {
487      *ra = GET_IW_F2I16_A (insn);
488      *rb = GET_IW_F2I16_B (insn);
489      *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
490      return 1;
491    }
492  else if (op->match == MATCH_R2_STWIO)
493    {
494      *ra = GET_IW_F2X4I12_A (insn);
495      *rb = GET_IW_F2X4I12_B (insn);
496      *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20;
497      return 1;
498    }
499  else if (op->match == MATCH_R2_STW_N)
500    {
501      *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)];
502      *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)];
503      *imm = GET_IW_T2I4_IMM4 (insn) << 2;
504      return 1;
505    }
506  else if (op->match == MATCH_R2_STWSP_N)
507    {
508      *ra = NIOS2_SP_REGNUM;
509      *rb = GET_IW_F1I5_B (insn);
510      *imm = GET_IW_F1I5_IMM5 (insn) << 2;
511      return 1;
512    }
513  else if (op->match == MATCH_R2_STWZ_N)
514    {
515      *ra = nios2_r2_reg3_mappings[GET_IW_T1X1I6_A3 (insn)];
516      *rb = 0;
517      *imm = GET_IW_T1X1I6_IMM6 (insn) << 2;
518      return 1;
519    }
520  return 0;
521}
522
523/* Match and disassemble a LDW-type instruction, with 2 register operands
524   and one immediate operand.
525   Returns true on success, and fills in the operand pointers.  */
526
527static int
528nios2_match_ldw (uint32_t insn, const struct nios2_opcode *op,
529		 unsigned long mach, int *ra, int *rb, int *imm)
530{
531  int is_r2 = (mach == bfd_mach_nios2r2);
532
533  if (!is_r2 && (op->match == MATCH_R1_LDW || op->match == MATCH_R1_LDWIO))
534    {
535      *ra = GET_IW_I_A (insn);
536      *rb = GET_IW_I_B (insn);
537      *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
538      return 1;
539    }
540  else if (!is_r2)
541    return 0;
542  else if (op->match == MATCH_R2_LDW)
543    {
544      *ra = GET_IW_F2I16_A (insn);
545      *rb = GET_IW_F2I16_B (insn);
546      *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
547      return 1;
548    }
549  else if (op->match == MATCH_R2_LDWIO)
550    {
551      *ra = GET_IW_F2X4I12_A (insn);
552      *rb = GET_IW_F2X4I12_B (insn);
553      *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20;
554      return 1;
555    }
556  else if (op->match == MATCH_R2_LDW_N)
557    {
558      *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)];
559      *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)];
560      *imm = GET_IW_T2I4_IMM4 (insn) << 2;
561      return 1;
562    }
563  else if (op->match == MATCH_R2_LDWSP_N)
564    {
565      *ra = NIOS2_SP_REGNUM;
566      *rb = GET_IW_F1I5_B (insn);
567      *imm = GET_IW_F1I5_IMM5 (insn) << 2;
568      return 1;
569    }
570  return 0;
571}
572
573/* Match and disassemble a RDCTL instruction, with 2 register operands.
574   Returns true on success, and fills in the operand pointers.  */
575
576static int
577nios2_match_rdctl (uint32_t insn, const struct nios2_opcode *op,
578		   unsigned long mach, int *ra, int *rc)
579{
580  int is_r2 = (mach == bfd_mach_nios2r2);
581
582  if (!is_r2 && (op->match == MATCH_R1_RDCTL))
583    {
584      *ra = GET_IW_R_IMM5 (insn);
585      *rc = GET_IW_R_C (insn);
586      return 1;
587    }
588  else if (!is_r2)
589    return 0;
590  else if (op->match == MATCH_R2_RDCTL)
591    {
592      *ra = GET_IW_F3X6L5_IMM5 (insn);
593      *rc = GET_IW_F3X6L5_C (insn);
594      return 1;
595    }
596  return 0;
597}
598
599/* Match and disassemble a PUSH.N or STWM instruction.
600   Returns true on success, and fills in the operand pointers.  */
601
602static int
603nios2_match_stwm (uint32_t insn, const struct nios2_opcode *op,
604		  unsigned long mach, unsigned int *reglist,
605		  int *ra, int *imm, int *wb, int *id)
606{
607  int is_r2 = (mach == bfd_mach_nios2r2);
608
609  if (!is_r2)
610    return 0;
611  else if (op->match == MATCH_R2_PUSH_N)
612    {
613      *reglist = 1 << 31;
614      if (GET_IW_L5I4X1_FP (insn))
615	*reglist |= (1 << 28);
616      if (GET_IW_L5I4X1_CS (insn))
617	{
618	  int val = GET_IW_L5I4X1_REGRANGE (insn);
619	  *reglist |= nios2_r2_reg_range_mappings[val];
620	}
621      *ra = NIOS2_SP_REGNUM;
622      *imm = GET_IW_L5I4X1_IMM4 (insn) << 2;
623      *wb = 1;
624      *id = 0;
625      return 1;
626    }
627  else if (op->match == MATCH_R2_STWM)
628    {
629      unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn);
630      if (GET_IW_F1X4L17_RS (insn))
631	{
632	  *reglist = ((rawmask << 14) & 0x00ffc000);
633	  if (rawmask & (1 << 10))
634	    *reglist |= (1 << 28);
635	  if (rawmask & (1 << 11))
636	    *reglist |= (1 << 31);
637	}
638      else
639	*reglist = rawmask << 2;
640      *ra = GET_IW_F1X4L17_A (insn);
641      *imm = 0;
642      *wb = GET_IW_F1X4L17_WB (insn);
643      *id = GET_IW_F1X4L17_ID (insn);
644      return 1;
645    }
646  return 0;
647}
648
649/* Match and disassemble a POP.N or LDWM instruction.
650   Returns true on success, and fills in the operand pointers.  */
651
652static int
653nios2_match_ldwm (uint32_t insn, const struct nios2_opcode *op,
654		  unsigned long mach, unsigned int *reglist,
655		  int *ra, int *imm, int *wb, int *id, int *ret)
656{
657  int is_r2 = (mach == bfd_mach_nios2r2);
658
659  if (!is_r2)
660    return 0;
661  else if (op->match == MATCH_R2_POP_N)
662    {
663      *reglist = 1 << 31;
664      if (GET_IW_L5I4X1_FP (insn))
665	*reglist |= (1 << 28);
666      if (GET_IW_L5I4X1_CS (insn))
667	{
668	  int val = GET_IW_L5I4X1_REGRANGE (insn);
669	  *reglist |= nios2_r2_reg_range_mappings[val];
670	}
671      *ra = NIOS2_SP_REGNUM;
672      *imm = GET_IW_L5I4X1_IMM4 (insn) << 2;
673      *wb = 1;
674      *id = 1;
675      *ret = 1;
676      return 1;
677    }
678  else if (op->match == MATCH_R2_LDWM)
679    {
680      unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn);
681      if (GET_IW_F1X4L17_RS (insn))
682	{
683	  *reglist = ((rawmask << 14) & 0x00ffc000);
684	  if (rawmask & (1 << 10))
685	    *reglist |= (1 << 28);
686	  if (rawmask & (1 << 11))
687	    *reglist |= (1 << 31);
688	}
689      else
690	*reglist = rawmask << 2;
691      *ra = GET_IW_F1X4L17_A (insn);
692      *imm = 0;
693      *wb = GET_IW_F1X4L17_WB (insn);
694      *id = GET_IW_F1X4L17_ID (insn);
695      *ret = GET_IW_F1X4L17_PC (insn);
696      return 1;
697    }
698  return 0;
699}
700
701/* Match and disassemble a branch instruction, with (potentially)
702   2 register operands and one immediate operand.
703   Returns true on success, and fills in the operand pointers.  */
704
705enum branch_condition {
706  branch_none,
707  branch_eq,
708  branch_ne,
709  branch_ge,
710  branch_geu,
711  branch_lt,
712  branch_ltu
713};
714
715static int
716nios2_match_branch (uint32_t insn, const struct nios2_opcode *op,
717		    unsigned long mach, int *ra, int *rb, int *imm,
718		    enum branch_condition *cond)
719{
720  int is_r2 = (mach == bfd_mach_nios2r2);
721
722  if (!is_r2)
723    {
724      switch (op->match)
725	{
726	case MATCH_R1_BR:
727	  *cond = branch_none;
728	  break;
729	case MATCH_R1_BEQ:
730	  *cond = branch_eq;
731	  break;
732	case MATCH_R1_BNE:
733	  *cond = branch_ne;
734	  break;
735	case MATCH_R1_BGE:
736	  *cond = branch_ge;
737	  break;
738	case MATCH_R1_BGEU:
739	  *cond = branch_geu;
740	  break;
741	case MATCH_R1_BLT:
742	  *cond = branch_lt;
743	  break;
744	case MATCH_R1_BLTU:
745	  *cond = branch_ltu;
746	  break;
747	default:
748	  return 0;
749	}
750      *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
751      *ra = GET_IW_I_A (insn);
752      *rb = GET_IW_I_B (insn);
753      return 1;
754    }
755  else
756    {
757      switch (op->match)
758	{
759	case MATCH_R2_BR_N:
760	  *cond = branch_none;
761	  *ra = NIOS2_Z_REGNUM;
762	  *rb = NIOS2_Z_REGNUM;
763	  *imm = (signed) ((GET_IW_I10_IMM10 (insn) << 1) << 21) >> 21;
764	  return 1;
765	case MATCH_R2_BEQZ_N:
766	  *cond = branch_eq;
767	  *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
768	  *rb = NIOS2_Z_REGNUM;
769	  *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24;
770	  return 1;
771	case MATCH_R2_BNEZ_N:
772	  *cond = branch_ne;
773	  *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
774	  *rb = NIOS2_Z_REGNUM;
775	  *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24;
776	  return 1;
777	case MATCH_R2_BR:
778	  *cond = branch_none;
779	  break;
780	case MATCH_R2_BEQ:
781	  *cond = branch_eq;
782	  break;
783	case MATCH_R2_BNE:
784	  *cond = branch_ne;
785	  break;
786	case MATCH_R2_BGE:
787	  *cond = branch_ge;
788	  break;
789	case MATCH_R2_BGEU:
790	  *cond = branch_geu;
791	  break;
792	case MATCH_R2_BLT:
793	  *cond = branch_lt;
794	  break;
795	case MATCH_R2_BLTU:
796	  *cond = branch_ltu;
797	  break;
798	default:
799	  return 0;
800	}
801      *ra = GET_IW_F2I16_A (insn);
802      *rb = GET_IW_F2I16_B (insn);
803      *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
804      return 1;
805    }
806  return 0;
807}
808
809/* Match and disassemble a direct jump instruction, with an
810   unsigned operand.  Returns true on success, and fills in the operand
811   pointer.  */
812
813static int
814nios2_match_jmpi (uint32_t insn, const struct nios2_opcode *op,
815		  unsigned long mach, unsigned int *uimm)
816{
817  int is_r2 = (mach == bfd_mach_nios2r2);
818
819  if (!is_r2 && op->match == MATCH_R1_JMPI)
820    {
821      *uimm = GET_IW_J_IMM26 (insn) << 2;
822      return 1;
823    }
824  else if (!is_r2)
825    return 0;
826  else if (op->match == MATCH_R2_JMPI)
827    {
828      *uimm = GET_IW_L26_IMM26 (insn) << 2;
829      return 1;
830    }
831  return 0;
832}
833
834/* Match and disassemble a direct call instruction, with an
835   unsigned operand.  Returns true on success, and fills in the operand
836   pointer.  */
837
838static int
839nios2_match_calli (uint32_t insn, const struct nios2_opcode *op,
840		   unsigned long mach, unsigned int *uimm)
841{
842  int is_r2 = (mach == bfd_mach_nios2r2);
843
844  if (!is_r2 && op->match == MATCH_R1_CALL)
845    {
846      *uimm = GET_IW_J_IMM26 (insn) << 2;
847      return 1;
848    }
849  else if (!is_r2)
850    return 0;
851  else if (op->match == MATCH_R2_CALL)
852    {
853      *uimm = GET_IW_L26_IMM26 (insn) << 2;
854      return 1;
855    }
856  return 0;
857}
858
859/* Match and disassemble an indirect jump instruction, with a
860   (possibly implicit) register operand.  Returns true on success, and fills
861   in the operand pointer.  */
862
863static int
864nios2_match_jmpr (uint32_t insn, const struct nios2_opcode *op,
865		  unsigned long mach, int *ra)
866{
867  int is_r2 = (mach == bfd_mach_nios2r2);
868
869  if (!is_r2)
870    switch (op->match)
871      {
872      case MATCH_R1_JMP:
873	*ra = GET_IW_I_A (insn);
874	return 1;
875      case MATCH_R1_RET:
876	*ra = NIOS2_RA_REGNUM;
877	return 1;
878      case MATCH_R1_ERET:
879	*ra = NIOS2_EA_REGNUM;
880	return 1;
881      case MATCH_R1_BRET:
882	*ra = NIOS2_BA_REGNUM;
883	return 1;
884      default:
885	return 0;
886      }
887  else
888    switch (op->match)
889      {
890      case MATCH_R2_JMP:
891	*ra = GET_IW_F2I16_A (insn);
892	return 1;
893      case MATCH_R2_JMPR_N:
894	*ra = GET_IW_F1X1_A (insn);
895	return 1;
896      case MATCH_R2_RET:
897      case MATCH_R2_RET_N:
898	*ra = NIOS2_RA_REGNUM;
899	return 1;
900      case MATCH_R2_ERET:
901	*ra = NIOS2_EA_REGNUM;
902	return 1;
903      case MATCH_R2_BRET:
904	*ra = NIOS2_BA_REGNUM;
905	return 1;
906      default:
907	return 0;
908      }
909  return 0;
910}
911
912/* Match and disassemble an indirect call instruction, with a register
913   operand.  Returns true on success, and fills in the operand pointer.  */
914
915static int
916nios2_match_callr (uint32_t insn, const struct nios2_opcode *op,
917		   unsigned long mach, int *ra)
918{
919  int is_r2 = (mach == bfd_mach_nios2r2);
920
921  if (!is_r2 && op->match == MATCH_R1_CALLR)
922    {
923      *ra = GET_IW_I_A (insn);
924      return 1;
925    }
926  else if (!is_r2)
927    return 0;
928  else if (op->match == MATCH_R2_CALLR)
929    {
930      *ra = GET_IW_F2I16_A (insn);
931      return 1;
932    }
933  else if (op->match == MATCH_R2_CALLR_N)
934    {
935      *ra = GET_IW_F1X1_A (insn);
936      return 1;
937    }
938  return 0;
939}
940
941/* Match and disassemble a break instruction, with an unsigned operand.
942   Returns true on success, and fills in the operand pointer.  */
943
944static int
945nios2_match_break (uint32_t insn, const struct nios2_opcode *op,
946		  unsigned long mach, unsigned int *uimm)
947{
948  int is_r2 = (mach == bfd_mach_nios2r2);
949
950  if (!is_r2 && op->match == MATCH_R1_BREAK)
951    {
952      *uimm = GET_IW_R_IMM5 (insn);
953      return 1;
954    }
955  else if (!is_r2)
956    return 0;
957  else if (op->match == MATCH_R2_BREAK)
958    {
959      *uimm = GET_IW_F3X6L5_IMM5 (insn);
960      return 1;
961    }
962  else if (op->match == MATCH_R2_BREAK_N)
963    {
964      *uimm = GET_IW_X2L5_IMM5 (insn);
965      return 1;
966    }
967  return 0;
968}
969
970/* Match and disassemble a trap instruction, with an unsigned operand.
971   Returns true on success, and fills in the operand pointer.  */
972
973static int
974nios2_match_trap (uint32_t insn, const struct nios2_opcode *op,
975		  unsigned long mach, unsigned int *uimm)
976{
977  int is_r2 = (mach == bfd_mach_nios2r2);
978
979  if (!is_r2 && op->match == MATCH_R1_TRAP)
980    {
981      *uimm = GET_IW_R_IMM5 (insn);
982      return 1;
983    }
984  else if (!is_r2)
985    return 0;
986  else if (op->match == MATCH_R2_TRAP)
987    {
988      *uimm = GET_IW_F3X6L5_IMM5 (insn);
989      return 1;
990    }
991  else if (op->match == MATCH_R2_TRAP_N)
992    {
993      *uimm = GET_IW_X2L5_IMM5 (insn);
994      return 1;
995    }
996  return 0;
997}
998
999/* Helper function to identify when we're in a function epilogue;
1000   that is, the part of the function from the point at which the
1001   stack adjustments are made, to the return or sibcall.
1002   Note that we may have several stack adjustment instructions, and
1003   this function needs to test whether the stack teardown has already
1004   started before current_pc, not whether it has completed.  */
1005
1006static int
1007nios2_in_epilogue_p (struct gdbarch *gdbarch,
1008		     CORE_ADDR current_pc,
1009		     CORE_ADDR start_pc)
1010{
1011  unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1012  int is_r2 = (mach == bfd_mach_nios2r2);
1013  /* Maximum number of possibly-epilogue instructions to check.
1014     Note that this number should not be too large, else we can
1015     potentially end up iterating through unmapped memory.  */
1016  int ninsns, max_insns = 5;
1017  unsigned int insn;
1018  const struct nios2_opcode *op = NULL;
1019  unsigned int uimm;
1020  int imm;
1021  int wb, id, ret;
1022  int ra, rb, rc;
1023  enum branch_condition cond;
1024  CORE_ADDR pc;
1025
1026  /* There has to be a previous instruction in the function.  */
1027  if (current_pc <= start_pc)
1028    return 0;
1029
1030  /* Find the previous instruction before current_pc.  For R2, it might
1031     be either a 16-bit or 32-bit instruction; the only way to know for
1032     sure is to scan through from the beginning of the function,
1033     disassembling as we go.  */
1034  if (is_r2)
1035    for (pc = start_pc; ; )
1036      {
1037	op = nios2_fetch_insn (gdbarch, pc, &insn);
1038	if (op == NULL)
1039	  return 0;
1040	if (pc + op->size < current_pc)
1041	  pc += op->size;
1042	else
1043	  break;
1044	/* We can skip over insns to a forward branch target.  Since
1045	   the branch offset is relative to the next instruction,
1046	   it's correct to do this after incrementing the pc above.  */
1047	if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)
1048	    && imm > 0
1049	    && pc + imm < current_pc)
1050	  pc += imm;
1051      }
1052  /* Otherwise just go back to the previous 32-bit insn.  */
1053  else
1054    pc = current_pc - NIOS2_OPCODE_SIZE;
1055
1056  /* Beginning with the previous instruction we just located, check whether
1057     we are in a sequence of at least one stack adjustment instruction.
1058     Possible instructions here include:
1059	 ADDI sp, sp, n
1060	 ADD sp, sp, rn
1061	 LDW sp, n(sp)
1062	 SPINCI.N n
1063	 LDWSP.N sp, n(sp)
1064	 LDWM {reglist}, (sp)++, wb */
1065  for (ninsns = 0; ninsns < max_insns; ninsns++)
1066    {
1067      int ok = 0;
1068
1069      /* Fetch the insn at pc.  */
1070      op = nios2_fetch_insn (gdbarch, pc, &insn);
1071      if (op == NULL)
1072	return 0;
1073      pc += op->size;
1074
1075      /* Was it a stack adjustment?  */
1076      if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm))
1077	ok = (rb == NIOS2_SP_REGNUM);
1078      else if (nios2_match_add (insn, op, mach, &ra, &rb, &rc))
1079	ok = (rc == NIOS2_SP_REGNUM);
1080      else if (nios2_match_ldw (insn, op, mach, &ra, &rb, &imm))
1081	ok = (rb == NIOS2_SP_REGNUM);
1082      else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra,
1083				 &imm, &wb, &ret, &id))
1084	ok = (ra == NIOS2_SP_REGNUM && wb && id);
1085      if (!ok)
1086	break;
1087    }
1088
1089  /* No stack adjustments found.  */
1090  if (ninsns == 0)
1091    return 0;
1092
1093  /* We found more stack adjustments than we expect GCC to be generating.
1094     Since it looks like a stack unwind might be in progress tell GDB to
1095     treat it as such.  */
1096  if (ninsns == max_insns)
1097    return 1;
1098
1099  /* The next instruction following the stack adjustments must be a
1100     return, jump, or unconditional branch, or a CDX pop.n or ldwm
1101     that does an implicit return.  */
1102  if (nios2_match_jmpr (insn, op, mach, &ra)
1103      || nios2_match_jmpi (insn, op, mach, &uimm)
1104      || (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret)
1105	  && ret)
1106      || (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)
1107	  && cond == branch_none))
1108    return 1;
1109
1110  return 0;
1111}
1112
1113/* Implement the stack_frame_destroyed_p gdbarch method.  */
1114
1115static int
1116nios2_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1117{
1118  CORE_ADDR func_addr;
1119
1120  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1121    return nios2_in_epilogue_p (gdbarch, pc, func_addr);
1122
1123  return 0;
1124}
1125
1126/* Do prologue analysis, returning the PC of the first instruction
1127   after the function prologue.  Assumes CACHE has already been
1128   initialized.  THIS_FRAME can be null, in which case we are only
1129   interested in skipping the prologue.  Otherwise CACHE is filled in
1130   from the frame information.
1131
1132   The prologue may consist of the following parts:
1133     1) Profiling instrumentation.  For non-PIC code it looks like:
1134	  mov	 r8, ra
1135	  call	 mcount
1136	  mov	 ra, r8
1137
1138     2) A stack adjustment and save of R4-R7 for varargs functions.
1139        For R2 CDX this is typically handled with a STWM, otherwise
1140	this is typically merged with item 3.
1141
1142     3) A stack adjustment and save of the callee-saved registers.
1143        For R2 CDX these are typically handled with a PUSH.N or STWM,
1144	otherwise as an explicit SP decrement and individual register
1145	saves.
1146
1147        There may also be a stack switch here in an exception handler
1148	in place of a stack adjustment.  It looks like:
1149	  movhi  rx, %hiadj(newstack)
1150	  addhi  rx, rx, %lo(newstack)
1151	  stw    sp, constant(rx)
1152	  mov    sp, rx
1153
1154     4) A frame pointer save, which can be either a MOV or ADDI.
1155
1156     5) A further stack pointer adjustment.  This is normally included
1157        adjustment in step 3 unless the total adjustment is too large
1158	to be done in one step.
1159
1160     7) A stack overflow check, which can take either of these forms:
1161	  bgeu   sp, rx, +8
1162	  trap  3
1163	or
1164	  bltu   sp, rx, .Lstack_overflow
1165	  ...
1166	.Lstack_overflow:
1167	  trap  3
1168
1169	Older versions of GCC emitted "break 3" instead of "trap 3" here,
1170	so we check for both cases.
1171
1172	Older GCC versions emitted stack overflow checks after the SP
1173	adjustments in both steps 3 and 4.  Starting with GCC 6, there is
1174	at most one overflow check, which is placed before the first
1175	stack adjustment for R2 CDX and after the first stack adjustment
1176	otherwise.
1177
1178    The prologue instructions may be combined or interleaved with other
1179    instructions.
1180
1181    To cope with all this variability we decode all the instructions
1182    from the start of the prologue until we hit an instruction that
1183    cannot possibly be a prologue instruction, such as a branch, call,
1184    return, or epilogue instruction.  The prologue is considered to end
1185    at the last instruction that can definitely be considered a
1186    prologue instruction.  */
1187
1188static CORE_ADDR
1189nios2_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
1190			const CORE_ADDR current_pc,
1191			struct nios2_unwind_cache *cache,
1192			struct frame_info *this_frame)
1193{
1194  /* Maximum number of possibly-prologue instructions to check.
1195     Note that this number should not be too large, else we can
1196     potentially end up iterating through unmapped memory.  */
1197  int ninsns, max_insns = 50;
1198  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1199  unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1200
1201  /* Does the frame set up the FP register?  */
1202  int base_reg = 0;
1203
1204  struct reg_value *value = cache->reg_value;
1205  struct reg_value temp_value[NIOS2_NUM_REGS];
1206
1207  /* Save the starting PC so we can correct the pc after running
1208     through the prolog, using symbol info.  */
1209  CORE_ADDR pc = start_pc;
1210
1211  /* Is this an exception handler?  */
1212  int exception_handler = 0;
1213
1214  /* What was the original value of SP (or fake original value for
1215     functions which switch stacks?  */
1216  CORE_ADDR frame_high;
1217
1218  /* The last definitely-prologue instruction seen.  */
1219  CORE_ADDR prologue_end;
1220
1221  /* Is this the innermost function?  */
1222  int innermost = (this_frame ? (frame_relative_level (this_frame) == 0) : 1);
1223
1224  if (nios2_debug)
1225    fprintf_unfiltered (gdb_stdlog,
1226			"{ nios2_analyze_prologue start=%s, current=%s ",
1227			paddress (gdbarch, start_pc),
1228			paddress (gdbarch, current_pc));
1229
1230  /* Set up the default values of the registers.  */
1231  nios2_setup_default (cache);
1232
1233  /* Find the prologue instructions.  */
1234  prologue_end = start_pc;
1235  for (ninsns = 0; ninsns < max_insns; ninsns++)
1236    {
1237      /* Present instruction.  */
1238      uint32_t insn;
1239      const struct nios2_opcode *op;
1240      int ra, rb, rc, imm;
1241      unsigned int uimm;
1242      unsigned int reglist;
1243      int wb, id, ret;
1244      enum branch_condition cond;
1245
1246      if (pc == current_pc)
1247      {
1248	/* When we reach the current PC we must save the current
1249	   register state (for the backtrace) but keep analysing
1250	   because there might be more to find out (eg. is this an
1251	   exception handler).  */
1252	memcpy (temp_value, value, sizeof (temp_value));
1253	value = temp_value;
1254	if (nios2_debug)
1255	  fprintf_unfiltered (gdb_stdlog, "*");
1256      }
1257
1258      op = nios2_fetch_insn (gdbarch, pc, &insn);
1259
1260      /* Unknown opcode?  Stop scanning.  */
1261      if (op == NULL)
1262	break;
1263      pc += op->size;
1264
1265      if (nios2_debug)
1266	{
1267	  if (op->size == 2)
1268	    fprintf_unfiltered (gdb_stdlog, "[%04X]", insn & 0xffff);
1269	  else
1270	    fprintf_unfiltered (gdb_stdlog, "[%08X]", insn);
1271	}
1272
1273      /* The following instructions can appear in the prologue.  */
1274
1275      if (nios2_match_add (insn, op, mach, &ra, &rb, &rc))
1276	{
1277	  /* ADD   rc, ra, rb  (also used for MOV) */
1278	  if (rc == NIOS2_SP_REGNUM
1279	      && rb == 0
1280	      && value[ra].reg == cache->reg_saved[NIOS2_SP_REGNUM].basereg)
1281	    {
1282	      /* If the previous value of SP is available somewhere
1283		 near the new stack pointer value then this is a
1284		 stack switch.  */
1285
1286	      /* If any registers were saved on the stack before then
1287		 we can't backtrace into them now.  */
1288	      for (int i = 0 ; i < NIOS2_NUM_REGS ; i++)
1289		{
1290		  if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
1291		    cache->reg_saved[i].basereg = -1;
1292		  if (value[i].reg == NIOS2_SP_REGNUM)
1293		    value[i].reg = -1;
1294		}
1295
1296	      /* Create a fake "high water mark" 4 bytes above where SP
1297		 was stored and fake up the registers to be consistent
1298		 with that.  */
1299	      value[NIOS2_SP_REGNUM].reg = NIOS2_SP_REGNUM;
1300	      value[NIOS2_SP_REGNUM].offset
1301		= (value[ra].offset
1302		   - cache->reg_saved[NIOS2_SP_REGNUM].addr
1303		   - 4);
1304	      cache->reg_saved[NIOS2_SP_REGNUM].basereg = NIOS2_SP_REGNUM;
1305	      cache->reg_saved[NIOS2_SP_REGNUM].addr = -4;
1306	    }
1307
1308	  else if (rc == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM)
1309	    /* This is setting SP from FP.  This only happens in the
1310	       function epilogue.  */
1311	    break;
1312
1313	  else if (rc != 0)
1314	    {
1315	      if (value[rb].reg == 0)
1316		value[rc].reg = value[ra].reg;
1317	      else if (value[ra].reg == 0)
1318		value[rc].reg = value[rb].reg;
1319	      else
1320		value[rc].reg = -1;
1321	      value[rc].offset = value[ra].offset + value[rb].offset;
1322	    }
1323
1324	  /* The add/move is only considered a prologue instruction
1325	     if the destination is SP or FP.  */
1326	  if (rc == NIOS2_SP_REGNUM || rc == NIOS2_FP_REGNUM)
1327	    prologue_end = pc;
1328	}
1329
1330      else if (nios2_match_sub (insn, op, mach, &ra, &rb, &rc))
1331	{
1332	  /* SUB   rc, ra, rb */
1333	  if (rc == NIOS2_SP_REGNUM && rb == NIOS2_SP_REGNUM
1334	      && value[rc].reg != 0)
1335	    /* If we are decrementing the SP by a non-constant amount,
1336	       this is alloca, not part of the prologue.  */
1337	    break;
1338	  else if (rc != 0)
1339	    {
1340	      if (value[rb].reg == 0)
1341		value[rc].reg = value[ra].reg;
1342	      else
1343		value[rc].reg = -1;
1344	      value[rc].offset = value[ra].offset - value[rb].offset;
1345	    }
1346	}
1347
1348      else if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm))
1349	{
1350	  /* ADDI    rb, ra, imm */
1351
1352	  /* A positive stack adjustment has to be part of the epilogue.  */
1353	  if (rb == NIOS2_SP_REGNUM
1354	      && (imm > 0 || value[ra].reg != NIOS2_SP_REGNUM))
1355	    break;
1356
1357	  /* Likewise restoring SP from FP.  */
1358	  else if (rb == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM)
1359	    break;
1360
1361	  if (rb != 0)
1362	    {
1363	      value[rb].reg    = value[ra].reg;
1364	      value[rb].offset = value[ra].offset + imm;
1365	    }
1366
1367	  /* The add is only considered a prologue instruction
1368	     if the destination is SP or FP.  */
1369	  if (rb == NIOS2_SP_REGNUM || rb == NIOS2_FP_REGNUM)
1370	    prologue_end = pc;
1371	}
1372
1373      else if (nios2_match_orhi (insn, op, mach, &ra, &rb, &uimm))
1374	{
1375	  /* ORHI  rb, ra, uimm   (also used for MOVHI) */
1376	  if (rb != 0)
1377	    {
1378  	      value[rb].reg    = (value[ra].reg == 0) ? 0 : -1;
1379	      value[rb].offset = value[ra].offset | (uimm << 16);
1380	    }
1381	}
1382
1383      else if (nios2_match_stw (insn, op, mach, &ra, &rb, &imm))
1384        {
1385	  /* STW rb, imm(ra) */
1386
1387	  /* Are we storing the original value of a register to the stack?
1388	     For exception handlers the value of EA-4 (return
1389	     address from interrupts etc) is sometimes stored.  */
1390	  int orig = value[rb].reg;
1391	  if (orig > 0
1392	      && (value[rb].offset == 0
1393		  || (orig == NIOS2_EA_REGNUM && value[rb].offset == -4))
1394	      && value[ra].reg == NIOS2_SP_REGNUM)
1395	    {
1396	      if (pc < current_pc)
1397		{
1398		  /* Save off callee saved registers.  */
1399		  cache->reg_saved[orig].basereg = value[ra].reg;
1400		  cache->reg_saved[orig].addr = value[ra].offset + imm;
1401		}
1402
1403	      prologue_end = pc;
1404
1405	      if (orig == NIOS2_EA_REGNUM || orig == NIOS2_ESTATUS_REGNUM)
1406		exception_handler = 1;
1407	    }
1408	  else
1409	    /* Non-stack memory writes cannot appear in the prologue.  */
1410	    break;
1411        }
1412
1413      else if (nios2_match_stwm (insn, op, mach,
1414				 &reglist, &ra, &imm, &wb, &id))
1415	{
1416	  /* PUSH.N {reglist}, adjust
1417	     or
1418	     STWM {reglist}, --(SP)[, writeback] */
1419	  int off = 0;
1420
1421	  if (ra != NIOS2_SP_REGNUM || id != 0)
1422	    /* This is a non-stack-push memory write and cannot be
1423	       part of the prologue.  */
1424	    break;
1425
1426	  for (int i = 31; i >= 0; i--)
1427	    if (reglist & (1 << i))
1428	      {
1429		int orig = value[i].reg;
1430
1431		off += 4;
1432		if (orig > 0 && value[i].offset == 0 && pc < current_pc)
1433		  {
1434		    cache->reg_saved[orig].basereg
1435		      = value[NIOS2_SP_REGNUM].reg;
1436		    cache->reg_saved[orig].addr
1437		      = value[NIOS2_SP_REGNUM].offset - off;
1438		  }
1439	      }
1440
1441	  if (wb)
1442	    value[NIOS2_SP_REGNUM].offset -= off;
1443	  value[NIOS2_SP_REGNUM].offset -= imm;
1444
1445	  prologue_end = pc;
1446	}
1447
1448      else if (nios2_match_rdctl (insn, op, mach, &ra, &rc))
1449	{
1450	  /* RDCTL rC, ctlN
1451	     This can appear in exception handlers in combination with
1452	     a subsequent save to the stack frame.  */
1453	  if (rc != 0)
1454	    {
1455	      value[rc].reg    = NIOS2_STATUS_REGNUM + ra;
1456	      value[rc].offset = 0;
1457	    }
1458        }
1459
1460      else if (nios2_match_calli (insn, op, mach, &uimm))
1461	{
1462	  if (value[8].reg == NIOS2_RA_REGNUM
1463	      && value[8].offset == 0
1464	      && value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM
1465	      && value[NIOS2_SP_REGNUM].offset == 0)
1466	    {
1467	      /* A CALL instruction.  This is treated as a call to mcount
1468		 if ra has been stored into r8 beforehand and if it's
1469		 before the stack adjust.
1470		 Note mcount corrupts r2-r3, r9-r15 & ra.  */
1471	      for (int i = 2 ; i <= 3 ; i++)
1472		value[i].reg = -1;
1473	      for (int i = 9 ; i <= 15 ; i++)
1474		value[i].reg = -1;
1475	      value[NIOS2_RA_REGNUM].reg = -1;
1476
1477	      prologue_end = pc;
1478	    }
1479
1480	  /* Other calls are not part of the prologue.  */
1481	  else
1482	    break;
1483	}
1484
1485      else if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond))
1486	{
1487	  /* Branches not involving a stack overflow check aren't part of
1488	     the prologue.  */
1489	  if (ra != NIOS2_SP_REGNUM)
1490	    break;
1491	  else if (cond == branch_geu)
1492	    {
1493	      /* BGEU sp, rx, +8
1494		 TRAP 3  (or BREAK 3)
1495		 This instruction sequence is used in stack checking;
1496		 we can ignore it.  */
1497	      unsigned int next_insn;
1498	      const struct nios2_opcode *next_op
1499		= nios2_fetch_insn (gdbarch, pc, &next_insn);
1500	      if (next_op != NULL
1501		  && (nios2_match_trap (next_insn, op, mach, &uimm)
1502		      || nios2_match_break (next_insn, op, mach, &uimm)))
1503		pc += next_op->size;
1504	      else
1505		break;
1506	    }
1507	  else if (cond == branch_ltu)
1508	    {
1509	      /* BLTU sp, rx, .Lstackoverflow
1510		 If the location branched to holds a TRAP or BREAK
1511		 instruction then this is also stack overflow detection.  */
1512	      unsigned int next_insn;
1513	      const struct nios2_opcode *next_op
1514		= nios2_fetch_insn (gdbarch, pc + imm, &next_insn);
1515	      if (next_op != NULL
1516		  && (nios2_match_trap (next_insn, op, mach, &uimm)
1517		      || nios2_match_break (next_insn, op, mach, &uimm)))
1518		;
1519	      else
1520		break;
1521	    }
1522	  else
1523	    break;
1524	}
1525
1526      /* All other calls, jumps, returns, TRAPs, or BREAKs terminate
1527	 the prologue.  */
1528      else if (nios2_match_callr (insn, op, mach, &ra)
1529	       || nios2_match_jmpr (insn, op, mach, &ra)
1530	       || nios2_match_jmpi (insn, op, mach, &uimm)
1531	       || (nios2_match_ldwm (insn, op, mach, &reglist, &ra,
1532				     &imm, &wb, &id, &ret)
1533		   && ret)
1534	       || nios2_match_trap (insn, op, mach, &uimm)
1535	       || nios2_match_break (insn, op, mach, &uimm))
1536	break;
1537    }
1538
1539  /* If THIS_FRAME is NULL, we are being called from skip_prologue
1540     and are only interested in the PROLOGUE_END value, so just
1541     return that now and skip over the cache updates, which depend
1542     on having frame information.  */
1543  if (this_frame == NULL)
1544    return prologue_end;
1545
1546  /* If we are in the function epilogue and have already popped
1547     registers off the stack in preparation for returning, then we
1548     want to go back to the original register values.  */
1549  if (innermost && nios2_in_epilogue_p (gdbarch, current_pc, start_pc))
1550    nios2_setup_default (cache);
1551
1552  /* Exception handlers use a different return address register.  */
1553  if (exception_handler)
1554    cache->return_regnum = NIOS2_EA_REGNUM;
1555
1556  if (nios2_debug)
1557    fprintf_unfiltered (gdb_stdlog, "\n-> retreg=%d, ", cache->return_regnum);
1558
1559  if (cache->reg_value[NIOS2_FP_REGNUM].reg == NIOS2_SP_REGNUM)
1560    /* If the FP now holds an offset from the CFA then this is a
1561       normal frame which uses the frame pointer.  */
1562    base_reg = NIOS2_FP_REGNUM;
1563  else if (cache->reg_value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM)
1564    /* FP doesn't hold an offset from the CFA.  If SP still holds an
1565       offset from the CFA then we might be in a function which omits
1566       the frame pointer, or we might be partway through the prologue.
1567       In both cases we can find the CFA using SP.  */
1568    base_reg = NIOS2_SP_REGNUM;
1569  else
1570    {
1571      /* Somehow the stack pointer has been corrupted.
1572	 We can't return.  */
1573      if (nios2_debug)
1574	fprintf_unfiltered (gdb_stdlog, "<can't reach cfa> }\n");
1575      return 0;
1576    }
1577
1578  if (cache->reg_value[base_reg].offset == 0
1579      || cache->reg_saved[NIOS2_RA_REGNUM].basereg != NIOS2_SP_REGNUM
1580      || cache->reg_saved[cache->return_regnum].basereg != NIOS2_SP_REGNUM)
1581    {
1582      /* If the frame didn't adjust the stack, didn't save RA or
1583	 didn't save EA in an exception handler then it must either
1584	 be a leaf function (doesn't call any other functions) or it
1585	 can't return.  If it has called another function then it
1586	 can't be a leaf, so set base == 0 to indicate that we can't
1587	 backtrace past it.  */
1588
1589      if (!innermost)
1590	{
1591	  /* If it isn't the innermost function then it can't be a
1592	     leaf, unless it was interrupted.  Check whether RA for
1593	     this frame is the same as PC.  If so then it probably
1594	     wasn't interrupted.  */
1595	  CORE_ADDR ra
1596	    = get_frame_register_unsigned (this_frame, NIOS2_RA_REGNUM);
1597
1598	  if (ra == current_pc)
1599	    {
1600	      if (nios2_debug)
1601		fprintf_unfiltered
1602		  (gdb_stdlog,
1603		   "<noreturn ADJUST %s, r31@r%d+?>, r%d@r%d+?> }\n",
1604		   paddress (gdbarch, cache->reg_value[base_reg].offset),
1605		   cache->reg_saved[NIOS2_RA_REGNUM].basereg,
1606		   cache->return_regnum,
1607		   cache->reg_saved[cache->return_regnum].basereg);
1608	      return 0;
1609	    }
1610	}
1611    }
1612
1613  /* Get the value of whichever register we are using for the
1614     base.  */
1615  cache->base = get_frame_register_unsigned (this_frame, base_reg);
1616
1617  /* What was the value of SP at the start of this function (or just
1618     after the stack switch).  */
1619  frame_high = cache->base - cache->reg_value[base_reg].offset;
1620
1621  /* Adjust all the saved registers such that they contain addresses
1622     instead of offsets.  */
1623  for (int i = 0; i < NIOS2_NUM_REGS; i++)
1624    if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
1625      {
1626	cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
1627	cache->reg_saved[i].addr += frame_high;
1628      }
1629
1630  for (int i = 0; i < NIOS2_NUM_REGS; i++)
1631    if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
1632      {
1633	CORE_ADDR gp = get_frame_register_unsigned (this_frame,
1634						    NIOS2_GP_REGNUM);
1635
1636	for ( ; i < NIOS2_NUM_REGS; i++)
1637	  if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
1638	    {
1639	      cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
1640	      cache->reg_saved[i].addr += gp;
1641	    }
1642      }
1643
1644  /* Work out what the value of SP was on the first instruction of
1645     this function.  If we didn't switch stacks then this can be
1646     trivially computed from the base address.  */
1647  if (cache->reg_saved[NIOS2_SP_REGNUM].basereg == NIOS2_Z_REGNUM)
1648    cache->cfa
1649      = read_memory_unsigned_integer (cache->reg_saved[NIOS2_SP_REGNUM].addr,
1650				      4, byte_order);
1651  else
1652    cache->cfa = frame_high;
1653
1654  /* Exception handlers restore ESTATUS into STATUS.  */
1655  if (exception_handler)
1656    {
1657      cache->reg_saved[NIOS2_STATUS_REGNUM]
1658	= cache->reg_saved[NIOS2_ESTATUS_REGNUM];
1659      cache->reg_saved[NIOS2_ESTATUS_REGNUM].basereg = -1;
1660    }
1661
1662  if (nios2_debug)
1663    fprintf_unfiltered (gdb_stdlog, "cfa=%s }\n",
1664			paddress (gdbarch, cache->cfa));
1665
1666  return prologue_end;
1667}
1668
1669/* Implement the skip_prologue gdbarch hook.  */
1670
1671static CORE_ADDR
1672nios2_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1673{
1674  CORE_ADDR func_addr;
1675
1676  struct nios2_unwind_cache cache;
1677
1678  /* See if we can determine the end of the prologue via the symbol
1679     table.  If so, then return either PC, or the PC after the
1680     prologue, whichever is greater.  */
1681  if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1682    {
1683      CORE_ADDR post_prologue_pc
1684        = skip_prologue_using_sal (gdbarch, func_addr);
1685
1686      if (post_prologue_pc != 0)
1687        return std::max (start_pc, post_prologue_pc);
1688    }
1689
1690  /* Prologue analysis does the rest....  */
1691  nios2_init_cache (&cache, start_pc);
1692  return nios2_analyze_prologue (gdbarch, start_pc, start_pc, &cache, NULL);
1693}
1694
1695/* Implement the breakpoint_kind_from_pc gdbarch method.  */
1696
1697static int
1698nios2_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1699{
1700  unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1701
1702  if (mach == bfd_mach_nios2r2)
1703    {
1704      unsigned int insn;
1705      const struct nios2_opcode *op
1706	= nios2_fetch_insn (gdbarch, *pcptr, &insn);
1707
1708      if (op && op->size == NIOS2_CDX_OPCODE_SIZE)
1709	return NIOS2_CDX_OPCODE_SIZE;
1710      else
1711	return NIOS2_OPCODE_SIZE;
1712    }
1713  else
1714    return NIOS2_OPCODE_SIZE;
1715}
1716
1717/* Implement the sw_breakpoint_from_kind gdbarch method.  */
1718
1719static const gdb_byte *
1720nios2_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1721{
1722/* The Nios II ABI for Linux says: "Userspace programs should not use
1723   the break instruction and userspace debuggers should not insert
1724   one." and "Userspace breakpoints are accomplished using the trap
1725   instruction with immediate operand 31 (all ones)."
1726
1727   So, we use "trap 31" consistently as the breakpoint on bare-metal
1728   as well as Linux targets.  */
1729
1730  /* R2 trap encoding:
1731     ((0x2d << 26) | (0x1f << 21) | (0x1d << 16) | (0x20 << 0))
1732     0xb7fd0020
1733     CDX trap.n encoding:
1734     ((0xd << 12) | (0x1f << 6) | (0x9 << 0))
1735     0xd7c9
1736     Note that code is always little-endian on R2.  */
1737  *size = kind;
1738
1739  if (kind == NIOS2_CDX_OPCODE_SIZE)
1740    {
1741      static const gdb_byte cdx_breakpoint_le[] = {0xc9, 0xd7};
1742
1743      return cdx_breakpoint_le;
1744    }
1745  else
1746    {
1747      unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1748
1749      if (mach == bfd_mach_nios2r2)
1750	{
1751	  static const gdb_byte r2_breakpoint_le[] = {0x20, 0x00, 0xfd, 0xb7};
1752
1753	  return r2_breakpoint_le;
1754	}
1755      else
1756	{
1757	  enum bfd_endian byte_order_for_code
1758	    = gdbarch_byte_order_for_code (gdbarch);
1759	  /* R1 trap encoding:
1760	     ((0x1d << 17) | (0x2d << 11) | (0x1f << 6) | (0x3a << 0))
1761	     0x003b6ffa */
1762	  static const gdb_byte r1_breakpoint_le[] = {0xfa, 0x6f, 0x3b, 0x0};
1763	  static const gdb_byte r1_breakpoint_be[] = {0x0, 0x3b, 0x6f, 0xfa};
1764
1765	  if (byte_order_for_code == BFD_ENDIAN_BIG)
1766	    return r1_breakpoint_be;
1767	  else
1768	    return r1_breakpoint_le;
1769	}
1770    }
1771}
1772
1773/* Implement the frame_align gdbarch method.  */
1774
1775static CORE_ADDR
1776nios2_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1777{
1778  return align_down (addr, 4);
1779}
1780
1781
1782/* Implement the return_value gdbarch method.  */
1783
1784static enum return_value_convention
1785nios2_return_value (struct gdbarch *gdbarch, struct value *function,
1786		    struct type *type, struct regcache *regcache,
1787		    gdb_byte *readbuf, const gdb_byte *writebuf)
1788{
1789  if (TYPE_LENGTH (type) > 8)
1790    return RETURN_VALUE_STRUCT_CONVENTION;
1791
1792  if (readbuf)
1793    nios2_extract_return_value (gdbarch, type, regcache, readbuf);
1794  if (writebuf)
1795    nios2_store_return_value (gdbarch, type, regcache, writebuf);
1796
1797  return RETURN_VALUE_REGISTER_CONVENTION;
1798}
1799
1800/* Implement the push_dummy_call gdbarch method.  */
1801
1802static CORE_ADDR
1803nios2_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1804                       struct regcache *regcache, CORE_ADDR bp_addr,
1805                       int nargs, struct value **args, CORE_ADDR sp,
1806		       function_call_return_method return_method,
1807		       CORE_ADDR struct_addr)
1808{
1809  int argreg;
1810  int argnum;
1811  int arg_space = 0;
1812  int stack_offset = 0;
1813  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1814
1815  /* Set the return address register to point to the entry point of
1816     the program, where a breakpoint lies in wait.  */
1817  regcache_cooked_write_signed (regcache, NIOS2_RA_REGNUM, bp_addr);
1818
1819  /* Now make space on the stack for the args.  */
1820  for (argnum = 0; argnum < nargs; argnum++)
1821    arg_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1822  sp -= arg_space;
1823
1824  /* Initialize the register pointer.  */
1825  argreg = NIOS2_FIRST_ARGREG;
1826
1827  /* The struct_return pointer occupies the first parameter-passing
1828     register.  */
1829  if (return_method == return_method_struct)
1830    regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1831
1832  /* Now load as many as possible of the first arguments into
1833     registers, and push the rest onto the stack.  Loop through args
1834     from first to last.  */
1835  for (argnum = 0; argnum < nargs; argnum++)
1836    {
1837      const gdb_byte *val;
1838      struct value *arg = args[argnum];
1839      struct type *arg_type = check_typedef (value_type (arg));
1840      int len = TYPE_LENGTH (arg_type);
1841
1842      val = value_contents (arg);
1843
1844      /* Copy the argument to general registers or the stack in
1845         register-sized pieces.  Large arguments are split between
1846         registers and stack.  */
1847      while (len > 0)
1848        {
1849	  int partial_len = (len < 4 ? len : 4);
1850
1851	  if (argreg <= NIOS2_LAST_ARGREG)
1852	    {
1853	      /* The argument is being passed in a register.  */
1854	      CORE_ADDR regval = extract_unsigned_integer (val, partial_len,
1855							   byte_order);
1856
1857	      regcache_cooked_write_unsigned (regcache, argreg, regval);
1858	      argreg++;
1859	    }
1860	  else
1861	    {
1862	      /* The argument is being passed on the stack.  */
1863	      CORE_ADDR addr = sp + stack_offset;
1864
1865	      write_memory (addr, val, partial_len);
1866	      stack_offset += align_up (partial_len, 4);
1867	    }
1868
1869	  len -= partial_len;
1870	  val += partial_len;
1871	}
1872    }
1873
1874  regcache_cooked_write_signed (regcache, NIOS2_SP_REGNUM, sp);
1875
1876  /* Return adjusted stack pointer.  */
1877  return sp;
1878}
1879
1880/* Implement the unwind_pc gdbarch method.  */
1881
1882static CORE_ADDR
1883nios2_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1884{
1885  gdb_byte buf[4];
1886
1887  frame_unwind_register (next_frame, NIOS2_PC_REGNUM, buf);
1888  return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1889}
1890
1891/* Use prologue analysis to fill in the register cache
1892   *THIS_PROLOGUE_CACHE for THIS_FRAME.  This function initializes
1893   *THIS_PROLOGUE_CACHE first.  */
1894
1895static struct nios2_unwind_cache *
1896nios2_frame_unwind_cache (struct frame_info *this_frame,
1897			  void **this_prologue_cache)
1898{
1899  struct gdbarch *gdbarch = get_frame_arch (this_frame);
1900  CORE_ADDR current_pc;
1901  struct nios2_unwind_cache *cache;
1902
1903  if (*this_prologue_cache)
1904    return (struct nios2_unwind_cache *) *this_prologue_cache;
1905
1906  cache = FRAME_OBSTACK_ZALLOC (struct nios2_unwind_cache);
1907  *this_prologue_cache = cache;
1908
1909  /* Zero all fields.  */
1910  nios2_init_cache (cache, get_frame_func (this_frame));
1911
1912  /* Prologue analysis does the rest...  */
1913  current_pc = get_frame_pc (this_frame);
1914  if (cache->pc != 0)
1915    nios2_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
1916
1917  return cache;
1918}
1919
1920/* Implement the this_id function for the normal unwinder.  */
1921
1922static void
1923nios2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1924		     struct frame_id *this_id)
1925{
1926  struct nios2_unwind_cache *cache =
1927    nios2_frame_unwind_cache (this_frame, this_cache);
1928
1929  /* This marks the outermost frame.  */
1930  if (cache->base == 0)
1931    return;
1932
1933  *this_id = frame_id_build (cache->cfa, cache->pc);
1934}
1935
1936/* Implement the prev_register function for the normal unwinder.  */
1937
1938static struct value *
1939nios2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1940			   int regnum)
1941{
1942  struct nios2_unwind_cache *cache =
1943    nios2_frame_unwind_cache (this_frame, this_cache);
1944
1945  gdb_assert (regnum >= 0 && regnum < NIOS2_NUM_REGS);
1946
1947  /* The PC of the previous frame is stored in the RA register of
1948     the current frame.  Frob regnum so that we pull the value from
1949     the correct place.  */
1950  if (regnum == NIOS2_PC_REGNUM)
1951    regnum = cache->return_regnum;
1952
1953  if (regnum == NIOS2_SP_REGNUM && cache->cfa)
1954    return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
1955
1956  /* If we've worked out where a register is stored then load it from
1957     there.  */
1958  if (cache->reg_saved[regnum].basereg == NIOS2_Z_REGNUM)
1959    return frame_unwind_got_memory (this_frame, regnum,
1960				    cache->reg_saved[regnum].addr);
1961
1962  return frame_unwind_got_register (this_frame, regnum, regnum);
1963}
1964
1965/* Implement the this_base, this_locals, and this_args hooks
1966   for the normal unwinder.  */
1967
1968static CORE_ADDR
1969nios2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1970{
1971  struct nios2_unwind_cache *info
1972    = nios2_frame_unwind_cache (this_frame, this_cache);
1973
1974  return info->base;
1975}
1976
1977/* Data structures for the normal prologue-analysis-based
1978   unwinder.  */
1979
1980static const struct frame_unwind nios2_frame_unwind =
1981{
1982  NORMAL_FRAME,
1983  default_frame_unwind_stop_reason,
1984  nios2_frame_this_id,
1985  nios2_frame_prev_register,
1986  NULL,
1987  default_frame_sniffer
1988};
1989
1990static const struct frame_base nios2_frame_base =
1991{
1992  &nios2_frame_unwind,
1993  nios2_frame_base_address,
1994  nios2_frame_base_address,
1995  nios2_frame_base_address
1996};
1997
1998/* Fill in the register cache *THIS_CACHE for THIS_FRAME for use
1999   in the stub unwinder.  */
2000
2001static struct trad_frame_cache *
2002nios2_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
2003{
2004  CORE_ADDR pc;
2005  CORE_ADDR start_addr;
2006  CORE_ADDR stack_addr;
2007  struct trad_frame_cache *this_trad_cache;
2008  struct gdbarch *gdbarch = get_frame_arch (this_frame);
2009
2010  if (*this_cache != NULL)
2011    return (struct trad_frame_cache *) *this_cache;
2012  this_trad_cache = trad_frame_cache_zalloc (this_frame);
2013  *this_cache = this_trad_cache;
2014
2015  /* The return address is in the link register.  */
2016  trad_frame_set_reg_realreg (this_trad_cache,
2017                              gdbarch_pc_regnum (gdbarch),
2018                              NIOS2_RA_REGNUM);
2019
2020  /* Frame ID, since it's a frameless / stackless function, no stack
2021     space is allocated and SP on entry is the current SP.  */
2022  pc = get_frame_pc (this_frame);
2023  find_pc_partial_function (pc, NULL, &start_addr, NULL);
2024  stack_addr = get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM);
2025  trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2026  /* Assume that the frame's base is the same as the stack pointer.  */
2027  trad_frame_set_this_base (this_trad_cache, stack_addr);
2028
2029  return this_trad_cache;
2030}
2031
2032/* Implement the this_id function for the stub unwinder.  */
2033
2034static void
2035nios2_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
2036                          struct frame_id *this_id)
2037{
2038  struct trad_frame_cache *this_trad_cache
2039    = nios2_stub_frame_cache (this_frame, this_cache);
2040
2041  trad_frame_get_id (this_trad_cache, this_id);
2042}
2043
2044/* Implement the prev_register function for the stub unwinder.  */
2045
2046static struct value *
2047nios2_stub_frame_prev_register (struct frame_info *this_frame,
2048			        void **this_cache, int regnum)
2049{
2050  struct trad_frame_cache *this_trad_cache
2051    = nios2_stub_frame_cache (this_frame, this_cache);
2052
2053  return trad_frame_get_register (this_trad_cache, this_frame, regnum);
2054}
2055
2056/* Implement the sniffer function for the stub unwinder.
2057   This unwinder is used for cases where the normal
2058   prologue-analysis-based unwinder can't work,
2059   such as PLT stubs.  */
2060
2061static int
2062nios2_stub_frame_sniffer (const struct frame_unwind *self,
2063			  struct frame_info *this_frame, void **cache)
2064{
2065  gdb_byte dummy[4];
2066  CORE_ADDR pc = get_frame_address_in_block (this_frame);
2067
2068  /* Use the stub unwinder for unreadable code.  */
2069  if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
2070    return 1;
2071
2072  if (in_plt_section (pc))
2073    return 1;
2074
2075  return 0;
2076}
2077
2078/* Define the data structures for the stub unwinder.  */
2079
2080static const struct frame_unwind nios2_stub_frame_unwind =
2081{
2082  NORMAL_FRAME,
2083  default_frame_unwind_stop_reason,
2084  nios2_stub_frame_this_id,
2085  nios2_stub_frame_prev_register,
2086  NULL,
2087  nios2_stub_frame_sniffer
2088};
2089
2090
2091
2092/* Determine where to set a single step breakpoint while considering
2093   branch prediction.  */
2094
2095static CORE_ADDR
2096nios2_get_next_pc (struct regcache *regcache, CORE_ADDR pc)
2097{
2098  struct gdbarch *gdbarch = regcache->arch ();
2099  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2100  unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2101  unsigned int insn;
2102  const struct nios2_opcode *op = nios2_fetch_insn (gdbarch, pc, &insn);
2103  int ra;
2104  int rb;
2105  int imm;
2106  unsigned int uimm;
2107  int wb, id, ret;
2108  enum branch_condition cond;
2109
2110  /* Do something stupid if we can't disassemble the insn at pc.  */
2111  if (op == NULL)
2112    return pc + NIOS2_OPCODE_SIZE;
2113
2114  if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond))
2115    {
2116      int ras = regcache_raw_get_signed (regcache, ra);
2117      int rbs = regcache_raw_get_signed (regcache, rb);
2118      unsigned int rau = regcache_raw_get_unsigned (regcache, ra);
2119      unsigned int rbu = regcache_raw_get_unsigned (regcache, rb);
2120
2121      pc += op->size;
2122      switch (cond)
2123	{
2124	case branch_none:
2125	  pc += imm;
2126	  break;
2127	case branch_eq:
2128	  if (ras == rbs)
2129	    pc += imm;
2130	  break;
2131	case branch_ne:
2132	  if (ras != rbs)
2133	    pc += imm;
2134	  break;
2135	case branch_ge:
2136	  if (ras >= rbs)
2137	    pc += imm;
2138	  break;
2139	case branch_geu:
2140	  if (rau >= rbu)
2141	    pc += imm;
2142	  break;
2143	case branch_lt:
2144	  if (ras < rbs)
2145	    pc += imm;
2146	  break;
2147	case branch_ltu:
2148	  if (rau < rbu)
2149	    pc += imm;
2150	  break;
2151	default:
2152	  break;
2153	}
2154    }
2155
2156  else if (nios2_match_jmpi (insn, op, mach, &uimm))
2157    pc = (pc & 0xf0000000) | uimm;
2158  else if (nios2_match_calli (insn, op, mach, &uimm))
2159    {
2160      CORE_ADDR callto = (pc & 0xf0000000) | uimm;
2161      if (tdep->is_kernel_helper != NULL
2162	  && tdep->is_kernel_helper (callto))
2163	/* Step over call to kernel helper, which we cannot debug
2164	   from user space.  */
2165	pc += op->size;
2166      else
2167	pc = callto;
2168    }
2169
2170  else if (nios2_match_jmpr (insn, op, mach, &ra))
2171    pc = regcache_raw_get_unsigned (regcache, ra);
2172  else if (nios2_match_callr (insn, op, mach, &ra))
2173    {
2174      CORE_ADDR callto = regcache_raw_get_unsigned (regcache, ra);
2175      if (tdep->is_kernel_helper != NULL
2176	  && tdep->is_kernel_helper (callto))
2177	/* Step over call to kernel helper.  */
2178	pc += op->size;
2179      else
2180	pc = callto;
2181    }
2182
2183  else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret)
2184	   && ret)
2185    {
2186      /* If ra is in the reglist, we have to use the value saved in the
2187	 stack frame rather than the current value.  */
2188      if (uimm & (1 << NIOS2_RA_REGNUM))
2189	pc = nios2_unwind_pc (gdbarch, get_current_frame ());
2190      else
2191	pc = regcache_raw_get_unsigned (regcache, NIOS2_RA_REGNUM);
2192    }
2193
2194  else if (nios2_match_trap (insn, op, mach, &uimm) && uimm == 0)
2195    {
2196      if (tdep->syscall_next_pc != NULL)
2197	return tdep->syscall_next_pc (get_current_frame (), op);
2198    }
2199
2200  else
2201    pc += op->size;
2202
2203  return pc;
2204}
2205
2206/* Implement the software_single_step gdbarch method.  */
2207
2208static std::vector<CORE_ADDR>
2209nios2_software_single_step (struct regcache *regcache)
2210{
2211  CORE_ADDR next_pc = nios2_get_next_pc (regcache, regcache_read_pc (regcache));
2212
2213  return {next_pc};
2214}
2215
2216/* Implement the get_longjump_target gdbarch method.  */
2217
2218static int
2219nios2_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2220{
2221  struct gdbarch *gdbarch = get_frame_arch (frame);
2222  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2223  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2224  CORE_ADDR jb_addr = get_frame_register_unsigned (frame, NIOS2_R4_REGNUM);
2225  gdb_byte buf[4];
2226
2227  if (target_read_memory (jb_addr + (tdep->jb_pc * 4), buf, 4))
2228    return 0;
2229
2230  *pc = extract_unsigned_integer (buf, 4, byte_order);
2231  return 1;
2232}
2233
2234/* Implement the type_align gdbarch function.  */
2235
2236static ULONGEST
2237nios2_type_align (struct gdbarch *gdbarch, struct type *type)
2238{
2239  switch (type->code ())
2240    {
2241    case TYPE_CODE_PTR:
2242    case TYPE_CODE_FUNC:
2243    case TYPE_CODE_FLAGS:
2244    case TYPE_CODE_INT:
2245    case TYPE_CODE_RANGE:
2246    case TYPE_CODE_FLT:
2247    case TYPE_CODE_ENUM:
2248    case TYPE_CODE_REF:
2249    case TYPE_CODE_RVALUE_REF:
2250    case TYPE_CODE_CHAR:
2251    case TYPE_CODE_BOOL:
2252    case TYPE_CODE_DECFLOAT:
2253    case TYPE_CODE_METHODPTR:
2254    case TYPE_CODE_MEMBERPTR:
2255      type = check_typedef (type);
2256      return std::min<ULONGEST> (4, TYPE_LENGTH (type));
2257    default:
2258      return 0;
2259    }
2260}
2261
2262/* Implement the gcc_target_options gdbarch method.  */
2263static std::string
2264nios2_gcc_target_options (struct gdbarch *gdbarch)
2265{
2266  /* GCC doesn't know "-m32".  */
2267  return {};
2268}
2269
2270/* Initialize the Nios II gdbarch.  */
2271
2272static struct gdbarch *
2273nios2_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2274{
2275  struct gdbarch *gdbarch;
2276  struct gdbarch_tdep *tdep;
2277  int i;
2278  struct tdesc_arch_data *tdesc_data = NULL;
2279  const struct target_desc *tdesc = info.target_desc;
2280
2281  if (!tdesc_has_registers (tdesc))
2282    /* Pick a default target description.  */
2283    tdesc = tdesc_nios2;
2284
2285  /* Check any target description for validity.  */
2286  if (tdesc_has_registers (tdesc))
2287    {
2288      const struct tdesc_feature *feature;
2289      int valid_p;
2290
2291      feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nios2.cpu");
2292      if (feature == NULL)
2293	return NULL;
2294
2295      tdesc_data = tdesc_data_alloc ();
2296
2297      valid_p = 1;
2298
2299      for (i = 0; i < NIOS2_NUM_REGS; i++)
2300	valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2301					    nios2_reg_names[i]);
2302
2303      if (!valid_p)
2304	{
2305	  tdesc_data_cleanup (tdesc_data);
2306	  return NULL;
2307	}
2308    }
2309
2310  /* Find a candidate among the list of pre-declared architectures.  */
2311  arches = gdbarch_list_lookup_by_info (arches, &info);
2312  if (arches != NULL)
2313    return arches->gdbarch;
2314
2315  /* None found, create a new architecture from the information
2316     provided.  */
2317  tdep = XCNEW (struct gdbarch_tdep);
2318  gdbarch = gdbarch_alloc (&info, tdep);
2319
2320  /* longjmp support not enabled by default.  */
2321  tdep->jb_pc = -1;
2322
2323  /* Data type sizes.  */
2324  set_gdbarch_ptr_bit (gdbarch, 32);
2325  set_gdbarch_addr_bit (gdbarch, 32);
2326  set_gdbarch_short_bit (gdbarch, 16);
2327  set_gdbarch_int_bit (gdbarch, 32);
2328  set_gdbarch_long_bit (gdbarch, 32);
2329  set_gdbarch_long_long_bit (gdbarch, 64);
2330  set_gdbarch_float_bit (gdbarch, 32);
2331  set_gdbarch_double_bit (gdbarch, 64);
2332
2333  set_gdbarch_type_align (gdbarch, nios2_type_align);
2334
2335  set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2336  set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2337
2338  /* The register set.  */
2339  set_gdbarch_num_regs (gdbarch, NIOS2_NUM_REGS);
2340  set_gdbarch_sp_regnum (gdbarch, NIOS2_SP_REGNUM);
2341  set_gdbarch_pc_regnum (gdbarch, NIOS2_PC_REGNUM);	/* Pseudo register PC */
2342
2343  set_gdbarch_register_name (gdbarch, nios2_register_name);
2344  set_gdbarch_register_type (gdbarch, nios2_register_type);
2345
2346  /* Provide register mappings for stabs and dwarf2.  */
2347  set_gdbarch_stab_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
2348  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
2349
2350  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2351
2352  /* Call dummy code.  */
2353  set_gdbarch_frame_align (gdbarch, nios2_frame_align);
2354
2355  set_gdbarch_return_value (gdbarch, nios2_return_value);
2356
2357  set_gdbarch_skip_prologue (gdbarch, nios2_skip_prologue);
2358  set_gdbarch_stack_frame_destroyed_p (gdbarch, nios2_stack_frame_destroyed_p);
2359  set_gdbarch_breakpoint_kind_from_pc (gdbarch, nios2_breakpoint_kind_from_pc);
2360  set_gdbarch_sw_breakpoint_from_kind (gdbarch, nios2_sw_breakpoint_from_kind);
2361
2362  set_gdbarch_unwind_pc (gdbarch, nios2_unwind_pc);
2363
2364  /* The dwarf2 unwinder will normally produce the best results if
2365     the debug information is available, so register it first.  */
2366  dwarf2_append_unwinders (gdbarch);
2367  frame_unwind_append_unwinder (gdbarch, &nios2_stub_frame_unwind);
2368  frame_unwind_append_unwinder (gdbarch, &nios2_frame_unwind);
2369
2370  /* Single stepping.  */
2371  set_gdbarch_software_single_step (gdbarch, nios2_software_single_step);
2372
2373  /* Target options for compile.  */
2374  set_gdbarch_gcc_target_options (gdbarch, nios2_gcc_target_options);
2375
2376  /* Hook in ABI-specific overrides, if they have been registered.  */
2377  gdbarch_init_osabi (info, gdbarch);
2378
2379  if (tdep->jb_pc >= 0)
2380    set_gdbarch_get_longjmp_target (gdbarch, nios2_get_longjmp_target);
2381
2382  frame_base_set_default (gdbarch, &nios2_frame_base);
2383
2384  /* Enable inferior call support.  */
2385  set_gdbarch_push_dummy_call (gdbarch, nios2_push_dummy_call);
2386
2387  if (tdesc_data)
2388    tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2389
2390  return gdbarch;
2391}
2392
2393void _initialize_nios2_tdep ();
2394void
2395_initialize_nios2_tdep ()
2396{
2397  gdbarch_register (bfd_arch_nios2, nios2_gdbarch_init, NULL);
2398  initialize_tdesc_nios2 ();
2399
2400  /* Allow debugging this file's internals.  */
2401  add_setshow_boolean_cmd ("nios2", class_maintenance, &nios2_debug,
2402			   _("Set Nios II debugging."),
2403			   _("Show Nios II debugging."),
2404			   _("When on, Nios II specific debugging is enabled."),
2405			   NULL,
2406			   NULL,
2407			   &setdebuglist, &showdebuglist);
2408}
2409