x86-dregs.c revision 1.1
1/* Debug register code for x86 (i386 and x86-64).
2
3   Copyright (C) 2001-2015 Free Software Foundation, Inc.
4
5   This file is part of GDB.
6
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 3 of the License, or
10   (at your option) any later version.
11
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20#include "common-defs.h"
21#include "x86-dregs.h"
22#include "break-common.h"
23
24/* Support for hardware watchpoints and breakpoints using the x86
25   debug registers.
26
27   This provides several functions for inserting and removing
28   hardware-assisted breakpoints and watchpoints, testing if one or
29   more of the watchpoints triggered and at what address, checking
30   whether a given region can be watched, etc.
31
32   The functions below implement debug registers sharing by reference
33   counts, and allow to watch regions up to 16 bytes long.  */
34
35/* Accessor macros for low-level function vector.  */
36
37/* Can we update the inferior's debug registers?  */
38#define x86_dr_low_can_set_addr() (x86_dr_low.set_addr != NULL)
39
40/* Update the inferior's debug register REGNUM from STATE.  */
41#define x86_dr_low_set_addr(new_state, i) \
42  (x86_dr_low.set_addr ((i), (new_state)->dr_mirror[(i)]))
43
44/* Return the inferior's debug register REGNUM.  */
45#define x86_dr_low_get_addr(i) (x86_dr_low.get_addr ((i)))
46
47/* Can we update the inferior's DR7 control register?  */
48#define x86_dr_low_can_set_control() (x86_dr_low.set_control != NULL)
49
50/* Update the inferior's DR7 debug control register from STATE.  */
51#define x86_dr_low_set_control(new_state) \
52  (x86_dr_low.set_control ((new_state)->dr_control_mirror))
53
54/* Return the value of the inferior's DR7 debug control register.  */
55#define x86_dr_low_get_control() (x86_dr_low.get_control ())
56
57/* Return the value of the inferior's DR6 debug status register.  */
58#define x86_dr_low_get_status() (x86_dr_low.get_status ())
59
60/* Return the debug register size, in bytes.  */
61#define x86_get_debug_register_length() \
62  (x86_dr_low.debug_register_length)
63
64/* Support for 8-byte wide hw watchpoints.  */
65#define TARGET_HAS_DR_LEN_8 (x86_get_debug_register_length () == 8)
66
67/* DR7 Debug Control register fields.  */
68
69/* How many bits to skip in DR7 to get to R/W and LEN fields.  */
70#define DR_CONTROL_SHIFT	16
71/* How many bits in DR7 per R/W and LEN field for each watchpoint.  */
72#define DR_CONTROL_SIZE		4
73
74/* Watchpoint/breakpoint read/write fields in DR7.  */
75#define DR_RW_EXECUTE	(0x0)	/* Break on instruction execution.  */
76#define DR_RW_WRITE	(0x1)	/* Break on data writes.  */
77#define DR_RW_READ	(0x3)	/* Break on data reads or writes.  */
78
79/* This is here for completeness.  No platform supports this
80   functionality yet (as of March 2001).  Note that the DE flag in the
81   CR4 register needs to be set to support this.  */
82#ifndef DR_RW_IORW
83#define DR_RW_IORW	(0x2)	/* Break on I/O reads or writes.  */
84#endif
85
86/* Watchpoint/breakpoint length fields in DR7.  The 2-bit left shift
87   is so we could OR this with the read/write field defined above.  */
88#define DR_LEN_1	(0x0 << 2) /* 1-byte region watch or breakpoint.  */
89#define DR_LEN_2	(0x1 << 2) /* 2-byte region watch.  */
90#define DR_LEN_4	(0x3 << 2) /* 4-byte region watch.  */
91#define DR_LEN_8	(0x2 << 2) /* 8-byte region watch (AMD64).  */
92
93/* Local and Global Enable flags in DR7.
94
95   When the Local Enable flag is set, the breakpoint/watchpoint is
96   enabled only for the current task; the processor automatically
97   clears this flag on every task switch.  When the Global Enable flag
98   is set, the breakpoint/watchpoint is enabled for all tasks; the
99   processor never clears this flag.
100
101   Currently, all watchpoint are locally enabled.  If you need to
102   enable them globally, read the comment which pertains to this in
103   x86_insert_aligned_watchpoint below.  */
104#define DR_LOCAL_ENABLE_SHIFT	0 /* Extra shift to the local enable bit.  */
105#define DR_GLOBAL_ENABLE_SHIFT	1 /* Extra shift to the global enable bit.  */
106#define DR_ENABLE_SIZE		2 /* Two enable bits per debug register.  */
107
108/* Local and global exact breakpoint enable flags (a.k.a. slowdown
109   flags).  These are only required on i386, to allow detection of the
110   exact instruction which caused a watchpoint to break; i486 and
111   later processors do that automatically.  We set these flags for
112   backwards compatibility.  */
113#define DR_LOCAL_SLOWDOWN	(0x100)
114#define DR_GLOBAL_SLOWDOWN	(0x200)
115
116/* Fields reserved by Intel.  This includes the GD (General Detect
117   Enable) flag, which causes a debug exception to be generated when a
118   MOV instruction accesses one of the debug registers.
119
120   FIXME: My Intel manual says we should use 0xF800, not 0xFC00.  */
121#define DR_CONTROL_RESERVED	(0xFC00)
122
123/* Auxiliary helper macros.  */
124
125/* A value that masks all fields in DR7 that are reserved by Intel.  */
126#define X86_DR_CONTROL_MASK	(~DR_CONTROL_RESERVED)
127
128/* The I'th debug register is vacant if its Local and Global Enable
129   bits are reset in the Debug Control register.  */
130#define X86_DR_VACANT(state, i) \
131  (((state)->dr_control_mirror & (3 << (DR_ENABLE_SIZE * (i)))) == 0)
132
133/* Locally enable the break/watchpoint in the I'th debug register.  */
134#define X86_DR_LOCAL_ENABLE(state, i) \
135  do { \
136    (state)->dr_control_mirror |= \
137      (1 << (DR_LOCAL_ENABLE_SHIFT + DR_ENABLE_SIZE * (i))); \
138  } while (0)
139
140/* Globally enable the break/watchpoint in the I'th debug register.  */
141#define X86_DR_GLOBAL_ENABLE(state, i) \
142  do { \
143    (state)->dr_control_mirror |= \
144      (1 << (DR_GLOBAL_ENABLE_SHIFT + DR_ENABLE_SIZE * (i))); \
145  } while (0)
146
147/* Disable the break/watchpoint in the I'th debug register.  */
148#define X86_DR_DISABLE(state, i) \
149  do { \
150    (state)->dr_control_mirror &= \
151      ~(3 << (DR_ENABLE_SIZE * (i))); \
152  } while (0)
153
154/* Set in DR7 the RW and LEN fields for the I'th debug register.  */
155#define X86_DR_SET_RW_LEN(state, i, rwlen) \
156  do { \
157    (state)->dr_control_mirror &= \
158      ~(0x0f << (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (i))); \
159    (state)->dr_control_mirror |= \
160      ((rwlen) << (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (i))); \
161  } while (0)
162
163/* Get from DR7 the RW and LEN fields for the I'th debug register.  */
164#define X86_DR_GET_RW_LEN(dr7, i) \
165  (((dr7) \
166    >> (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (i))) & 0x0f)
167
168/* Did the watchpoint whose address is in the I'th register break?  */
169#define X86_DR_WATCH_HIT(dr6, i) ((dr6) & (1 << (i)))
170
171/* Types of operations supported by x86_handle_nonaligned_watchpoint.  */
172typedef enum { WP_INSERT, WP_REMOVE, WP_COUNT } x86_wp_op_t;
173
174/* Print the values of the mirrored debug registers.  */
175
176static void
177x86_show_dr (struct x86_debug_reg_state *state,
178	     const char *func, CORE_ADDR addr,
179	     int len, enum target_hw_bp_type type)
180{
181  int i;
182
183  debug_printf ("%s", func);
184  if (addr || len)
185    debug_printf (" (addr=%s, len=%d, type=%s)",
186		  phex (addr, 8), len,
187		  type == hw_write ? "data-write"
188		  : (type == hw_read ? "data-read"
189		     : (type == hw_access ? "data-read/write"
190			: (type == hw_execute ? "instruction-execute"
191			   /* FIXME: if/when I/O read/write
192			      watchpoints are supported, add them
193			      here.  */
194			   : "??unknown??"))));
195  debug_printf (":\n");
196  debug_printf ("\tCONTROL (DR7): %s          STATUS (DR6): %s\n",
197		phex (state->dr_control_mirror, 8),
198		phex (state->dr_status_mirror, 8));
199  ALL_DEBUG_ADDRESS_REGISTERS (i)
200    {
201      debug_printf ("\
202\tDR%d: addr=0x%s, ref.count=%d  DR%d: addr=0x%s, ref.count=%d\n",
203		    i, phex (state->dr_mirror[i],
204			     x86_get_debug_register_length ()),
205		    state->dr_ref_count[i],
206		    i + 1, phex (state->dr_mirror[i + 1],
207				 x86_get_debug_register_length ()),
208		    state->dr_ref_count[i + 1]);
209      i++;
210    }
211}
212
213/* Return the value of a 4-bit field for DR7 suitable for watching a
214   region of LEN bytes for accesses of type TYPE.  LEN is assumed to
215   have the value of 1, 2, or 4.  */
216
217static unsigned
218x86_length_and_rw_bits (int len, enum target_hw_bp_type type)
219{
220  unsigned rw;
221
222  switch (type)
223    {
224      case hw_execute:
225	rw = DR_RW_EXECUTE;
226	break;
227      case hw_write:
228	rw = DR_RW_WRITE;
229	break;
230      case hw_read:
231	internal_error (__FILE__, __LINE__,
232			_("The i386 doesn't support "
233			  "data-read watchpoints.\n"));
234      case hw_access:
235	rw = DR_RW_READ;
236	break;
237#if 0
238	/* Not yet supported.  */
239      case hw_io_access:
240	rw = DR_RW_IORW;
241	break;
242#endif
243      default:
244	internal_error (__FILE__, __LINE__, _("\
245Invalid hardware breakpoint type %d in x86_length_and_rw_bits.\n"),
246			(int) type);
247    }
248
249  switch (len)
250    {
251      case 1:
252	return (DR_LEN_1 | rw);
253      case 2:
254	return (DR_LEN_2 | rw);
255      case 4:
256	return (DR_LEN_4 | rw);
257      case 8:
258        if (TARGET_HAS_DR_LEN_8)
259 	  return (DR_LEN_8 | rw);
260	/* ELSE FALL THROUGH */
261      default:
262	internal_error (__FILE__, __LINE__, _("\
263Invalid hardware breakpoint length %d in x86_length_and_rw_bits.\n"), len);
264    }
265}
266
267/* Insert a watchpoint at address ADDR, which is assumed to be aligned
268   according to the length of the region to watch.  LEN_RW_BITS is the
269   value of the bits from DR7 which describes the length and access
270   type of the region to be watched by this watchpoint.  Return 0 on
271   success, -1 on failure.  */
272
273static int
274x86_insert_aligned_watchpoint (struct x86_debug_reg_state *state,
275			       CORE_ADDR addr, unsigned len_rw_bits)
276{
277  int i;
278
279  if (!x86_dr_low_can_set_addr () || !x86_dr_low_can_set_control ())
280    return -1;
281
282  /* First, look for an occupied debug register with the same address
283     and the same RW and LEN definitions.  If we find one, we can
284     reuse it for this watchpoint as well (and save a register).  */
285  ALL_DEBUG_ADDRESS_REGISTERS (i)
286    {
287      if (!X86_DR_VACANT (state, i)
288	  && state->dr_mirror[i] == addr
289	  && X86_DR_GET_RW_LEN (state->dr_control_mirror, i) == len_rw_bits)
290	{
291	  state->dr_ref_count[i]++;
292	  return 0;
293	}
294    }
295
296  /* Next, look for a vacant debug register.  */
297  ALL_DEBUG_ADDRESS_REGISTERS (i)
298    {
299      if (X86_DR_VACANT (state, i))
300	break;
301    }
302
303  /* No more debug registers!  */
304  if (i >= DR_NADDR)
305    return -1;
306
307  /* Now set up the register I to watch our region.  */
308
309  /* Record the info in our local mirrored array.  */
310  state->dr_mirror[i] = addr;
311  state->dr_ref_count[i] = 1;
312  X86_DR_SET_RW_LEN (state, i, len_rw_bits);
313  /* Note: we only enable the watchpoint locally, i.e. in the current
314     task.  Currently, no x86 target allows or supports global
315     watchpoints; however, if any target would want that in the
316     future, GDB should probably provide a command to control whether
317     to enable watchpoints globally or locally, and the code below
318     should use global or local enable and slow-down flags as
319     appropriate.  */
320  X86_DR_LOCAL_ENABLE (state, i);
321  state->dr_control_mirror |= DR_LOCAL_SLOWDOWN;
322  state->dr_control_mirror &= X86_DR_CONTROL_MASK;
323
324  return 0;
325}
326
327/* Remove a watchpoint at address ADDR, which is assumed to be aligned
328   according to the length of the region to watch.  LEN_RW_BITS is the
329   value of the bits from DR7 which describes the length and access
330   type of the region watched by this watchpoint.  Return 0 on
331   success, -1 on failure.  */
332
333static int
334x86_remove_aligned_watchpoint (struct x86_debug_reg_state *state,
335			       CORE_ADDR addr, unsigned len_rw_bits)
336{
337  int i, retval = -1;
338  int all_vacant = 1;
339
340  ALL_DEBUG_ADDRESS_REGISTERS (i)
341    {
342      if (!X86_DR_VACANT (state, i)
343	  && state->dr_mirror[i] == addr
344	  && X86_DR_GET_RW_LEN (state->dr_control_mirror, i) == len_rw_bits)
345	{
346	  if (--state->dr_ref_count[i] == 0) /* No longer in use?  */
347	    {
348	      /* Reset our mirror.  */
349	      state->dr_mirror[i] = 0;
350	      X86_DR_DISABLE (state, i);
351	      /* Even though not strictly necessary, clear out all
352		 bits in DR_CONTROL related to this debug register.
353		 Debug output is clearer when we don't have stale bits
354		 in place.  This also allows the assertion below.  */
355	      X86_DR_SET_RW_LEN (state, i, 0);
356	    }
357	  retval = 0;
358	}
359
360      if (!X86_DR_VACANT (state, i))
361	all_vacant = 0;
362    }
363
364  if (all_vacant)
365    {
366      /* Even though not strictly necessary, clear out all of
367	 DR_CONTROL, so that when we have no debug registers in use,
368	 we end up with DR_CONTROL == 0.  The Linux support relies on
369	 this for an optimization.  Plus, it makes for clearer debug
370	 output.  */
371      state->dr_control_mirror &= ~DR_LOCAL_SLOWDOWN;
372
373      gdb_assert (state->dr_control_mirror == 0);
374    }
375  return retval;
376}
377
378/* Insert or remove a (possibly non-aligned) watchpoint, or count the
379   number of debug registers required to watch a region at address
380   ADDR whose length is LEN for accesses of type TYPE.  Return 0 on
381   successful insertion or removal, a positive number when queried
382   about the number of registers, or -1 on failure.  If WHAT is not a
383   valid value, bombs through internal_error.  */
384
385static int
386x86_handle_nonaligned_watchpoint (struct x86_debug_reg_state *state,
387				  x86_wp_op_t what, CORE_ADDR addr, int len,
388				  enum target_hw_bp_type type)
389{
390  int retval = 0;
391  int max_wp_len = TARGET_HAS_DR_LEN_8 ? 8 : 4;
392
393  static const int size_try_array[8][8] =
394  {
395    {1, 1, 1, 1, 1, 1, 1, 1},	/* Trying size one.  */
396    {2, 1, 2, 1, 2, 1, 2, 1},	/* Trying size two.  */
397    {2, 1, 2, 1, 2, 1, 2, 1},	/* Trying size three.  */
398    {4, 1, 2, 1, 4, 1, 2, 1},	/* Trying size four.  */
399    {4, 1, 2, 1, 4, 1, 2, 1},	/* Trying size five.  */
400    {4, 1, 2, 1, 4, 1, 2, 1},	/* Trying size six.  */
401    {4, 1, 2, 1, 4, 1, 2, 1},	/* Trying size seven.  */
402    {8, 1, 2, 1, 4, 1, 2, 1},	/* Trying size eight.  */
403  };
404
405  while (len > 0)
406    {
407      int align = addr % max_wp_len;
408      /* Four (eight on AMD64) is the maximum length a debug register
409	 can watch.  */
410      int try = (len > max_wp_len ? (max_wp_len - 1) : len - 1);
411      int size = size_try_array[try][align];
412
413      if (what == WP_COUNT)
414	{
415	  /* size_try_array[] is defined such that each iteration
416	     through the loop is guaranteed to produce an address and a
417	     size that can be watched with a single debug register.
418	     Thus, for counting the registers required to watch a
419	     region, we simply need to increment the count on each
420	     iteration.  */
421	  retval++;
422	}
423      else
424	{
425	  unsigned len_rw = x86_length_and_rw_bits (size, type);
426
427	  if (what == WP_INSERT)
428	    retval = x86_insert_aligned_watchpoint (state, addr, len_rw);
429	  else if (what == WP_REMOVE)
430	    retval = x86_remove_aligned_watchpoint (state, addr, len_rw);
431	  else
432	    internal_error (__FILE__, __LINE__, _("\
433Invalid value %d of operation in x86_handle_nonaligned_watchpoint.\n"),
434			    (int) what);
435	  if (retval)
436	    break;
437	}
438
439      addr += size;
440      len -= size;
441    }
442
443  return retval;
444}
445
446/* Update the inferior debug registers state, in STATE, with the
447   new debug registers state, in NEW_STATE.  */
448
449static void
450x86_update_inferior_debug_regs (struct x86_debug_reg_state *state,
451				struct x86_debug_reg_state *new_state)
452{
453  int i;
454
455  ALL_DEBUG_ADDRESS_REGISTERS (i)
456    {
457      if (X86_DR_VACANT (new_state, i) != X86_DR_VACANT (state, i))
458	x86_dr_low_set_addr (new_state, i);
459      else
460	gdb_assert (new_state->dr_mirror[i] == state->dr_mirror[i]);
461    }
462
463  if (new_state->dr_control_mirror != state->dr_control_mirror)
464    x86_dr_low_set_control (new_state);
465
466  *state = *new_state;
467}
468
469/* Insert a watchpoint to watch a memory region which starts at
470   address ADDR and whose length is LEN bytes.  Watch memory accesses
471   of the type TYPE.  Return 0 on success, -1 on failure.  */
472
473int
474x86_dr_insert_watchpoint (struct x86_debug_reg_state *state,
475			  enum target_hw_bp_type type,
476			  CORE_ADDR addr, int len)
477{
478  int retval;
479  /* Work on a local copy of the debug registers, and on success,
480     commit the change back to the inferior.  */
481  struct x86_debug_reg_state local_state = *state;
482
483  if (type == hw_read)
484    return 1; /* unsupported */
485
486  if (((len != 1 && len != 2 && len != 4)
487       && !(TARGET_HAS_DR_LEN_8 && len == 8))
488      || addr % len != 0)
489    {
490      retval = x86_handle_nonaligned_watchpoint (&local_state,
491						 WP_INSERT,
492						 addr, len, type);
493    }
494  else
495    {
496      unsigned len_rw = x86_length_and_rw_bits (len, type);
497
498      retval = x86_insert_aligned_watchpoint (&local_state,
499					      addr, len_rw);
500    }
501
502  if (retval == 0)
503    x86_update_inferior_debug_regs (state, &local_state);
504
505  if (show_debug_regs)
506    x86_show_dr (state, "insert_watchpoint", addr, len, type);
507
508  return retval;
509}
510
511/* Remove a watchpoint that watched the memory region which starts at
512   address ADDR, whose length is LEN bytes, and for accesses of the
513   type TYPE.  Return 0 on success, -1 on failure.  */
514
515int
516x86_dr_remove_watchpoint (struct x86_debug_reg_state *state,
517			  enum target_hw_bp_type type,
518			  CORE_ADDR addr, int len)
519{
520  int retval;
521  /* Work on a local copy of the debug registers, and on success,
522     commit the change back to the inferior.  */
523  struct x86_debug_reg_state local_state = *state;
524
525  if (((len != 1 && len != 2 && len != 4)
526       && !(TARGET_HAS_DR_LEN_8 && len == 8))
527      || addr % len != 0)
528    {
529      retval = x86_handle_nonaligned_watchpoint (&local_state,
530						 WP_REMOVE,
531						 addr, len, type);
532    }
533  else
534    {
535      unsigned len_rw = x86_length_and_rw_bits (len, type);
536
537      retval = x86_remove_aligned_watchpoint (&local_state,
538					      addr, len_rw);
539    }
540
541  if (retval == 0)
542    x86_update_inferior_debug_regs (state, &local_state);
543
544  if (show_debug_regs)
545    x86_show_dr (state, "remove_watchpoint", addr, len, type);
546
547  return retval;
548}
549
550/* Return non-zero if we can watch a memory region that starts at
551   address ADDR and whose length is LEN bytes.  */
552
553int
554x86_dr_region_ok_for_watchpoint (struct x86_debug_reg_state *state,
555				 CORE_ADDR addr, int len)
556{
557  int nregs;
558
559  /* Compute how many aligned watchpoints we would need to cover this
560     region.  */
561  nregs = x86_handle_nonaligned_watchpoint (state, WP_COUNT,
562					     addr, len, hw_write);
563  return nregs <= DR_NADDR ? 1 : 0;
564}
565
566/* If the inferior has some break/watchpoint that triggered, set the
567   address associated with that break/watchpoint and return non-zero.
568   Otherwise, return zero.  */
569
570int
571x86_dr_stopped_data_address (struct x86_debug_reg_state *state,
572			     CORE_ADDR *addr_p)
573{
574  CORE_ADDR addr = 0;
575  int i;
576  int rc = 0;
577  /* The current thread's DR_STATUS.  We always need to read this to
578     check whether some watchpoint caused the trap.  */
579  unsigned status;
580  /* We need DR_CONTROL as well, but only iff DR_STATUS indicates a
581     data breakpoint trap.  Only fetch it when necessary, to avoid an
582     unnecessary extra syscall when no watchpoint triggered.  */
583  int control_p = 0;
584  unsigned control = 0;
585
586  /* In non-stop/async, threads can be running while we change the
587     global dr_mirror (and friends).  Say, we set a watchpoint, and
588     let threads resume.  Now, say you delete the watchpoint, or
589     add/remove watchpoints such that dr_mirror changes while threads
590     are running.  On targets that support non-stop,
591     inserting/deleting watchpoints updates the global dr_mirror only.
592     It does not update the real thread's debug registers; that's only
593     done prior to resume.  Instead, if threads are running when the
594     mirror changes, a temporary and transparent stop on all threads
595     is forced so they can get their copy of the debug registers
596     updated on re-resume.  Now, say, a thread hit a watchpoint before
597     having been updated with the new dr_mirror contents, and we
598     haven't yet handled the corresponding SIGTRAP.  If we trusted
599     dr_mirror below, we'd mistake the real trapped address (from the
600     last time we had updated debug registers in the thread) with
601     whatever was currently in dr_mirror.  So to fix this, dr_mirror
602     always represents intention, what we _want_ threads to have in
603     debug registers.  To get at the address and cause of the trap, we
604     need to read the state the thread still has in its debug
605     registers.
606
607     In sum, always get the current debug register values the current
608     thread has, instead of trusting the global mirror.  If the thread
609     was running when we last changed watchpoints, the mirror no
610     longer represents what was set in this thread's debug
611     registers.  */
612  status = x86_dr_low_get_status ();
613
614  ALL_DEBUG_ADDRESS_REGISTERS (i)
615    {
616      if (!X86_DR_WATCH_HIT (status, i))
617	continue;
618
619      if (!control_p)
620	{
621	  control = x86_dr_low_get_control ();
622	  control_p = 1;
623	}
624
625      /* This second condition makes sure DRi is set up for a data
626	 watchpoint, not a hardware breakpoint.  The reason is that
627	 GDB doesn't call the target_stopped_data_address method
628	 except for data watchpoints.  In other words, I'm being
629	 paranoiac.  */
630      if (X86_DR_GET_RW_LEN (control, i) != 0)
631	{
632	  addr = x86_dr_low_get_addr (i);
633	  rc = 1;
634	  if (show_debug_regs)
635	    x86_show_dr (state, "watchpoint_hit", addr, -1, hw_write);
636	}
637    }
638
639  if (show_debug_regs && addr == 0)
640    x86_show_dr (state, "stopped_data_addr", 0, 0, hw_write);
641
642  if (rc)
643    *addr_p = addr;
644  return rc;
645}
646
647/* Return non-zero if the inferior has some watchpoint that triggered.
648   Otherwise return zero.  */
649
650int
651x86_dr_stopped_by_watchpoint (struct x86_debug_reg_state *state)
652{
653  CORE_ADDR addr = 0;
654  return x86_dr_stopped_data_address (state, &addr);
655}
656