mep-tdep.c revision 1.3
1/* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
2
3   Copyright (C) 2001-2015 Free Software Foundation, Inc.
4
5   Contributed by Red Hat, Inc.
6
7   This file is part of GDB.
8
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 3 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
22#include "defs.h"
23#include "frame.h"
24#include "frame-unwind.h"
25#include "frame-base.h"
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "gdbcore.h"
30#include "value.h"
31#include "inferior.h"
32#include "dis-asm.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "language.h"
36#include "arch-utils.h"
37#include "regcache.h"
38#include "remote.h"
39#include "floatformat.h"
40#include "sim-regno.h"
41#include "disasm.h"
42#include "trad-frame.h"
43#include "reggroups.h"
44#include "elf-bfd.h"
45#include "elf/mep.h"
46#include "prologue-value.h"
47#include "cgen/bitset.h"
48#include "infcall.h"
49
50/* Get the user's customized MeP coprocessor register names from
51   libopcodes.  */
52#include "opcodes/mep-desc.h"
53#include "opcodes/mep-opc.h"
54
55
56/* The gdbarch_tdep structure.  */
57
58/* A quick recap for GDB hackers not familiar with the whole Toshiba
59   Media Processor story:
60
61   The MeP media engine is a configureable processor: users can design
62   their own coprocessors, implement custom instructions, adjust cache
63   sizes, select optional standard facilities like add-and-saturate
64   instructions, and so on.  Then, they can build custom versions of
65   the GNU toolchain to support their customized chips.  The
66   MeP-Integrator program (see utils/mep) takes a GNU toolchain source
67   tree, and a config file pointing to various files provided by the
68   user describing their customizations, and edits the source tree to
69   produce a compiler that can generate their custom instructions, an
70   assembler that can assemble them and recognize their custom
71   register names, and so on.
72
73   Furthermore, the user can actually specify several of these custom
74   configurations, called 'me_modules', and get a toolchain which can
75   produce code for any of them, given a compiler/assembler switch;
76   you say something like 'gcc -mconfig=mm_max' to generate code for
77   the me_module named 'mm_max'.
78
79   GDB, in particular, needs to:
80
81   - use the coprocessor control register names provided by the user
82     in their hardware description, in expressions, 'info register'
83     output, and disassembly,
84
85   - know the number, names, and types of the coprocessor's
86     general-purpose registers, adjust the 'info all-registers' output
87     accordingly, and print error messages if the user refers to one
88     that doesn't exist
89
90   - allow access to the control bus space only when the configuration
91     actually has a control bus, and recognize which regions of the
92     control bus space are actually populated,
93
94   - disassemble using the user's provided mnemonics for their custom
95     instructions, and
96
97   - recognize whether the $hi and $lo registers are present, and
98     allow access to them only when they are actually there.
99
100   There are three sources of information about what sort of me_module
101   we're actually dealing with:
102
103   - A MeP executable file indicates which me_module it was compiled
104     for, and libopcodes has tables describing each module.  So, given
105     an executable file, we can find out about the processor it was
106     compiled for.
107
108   - There are SID command-line options to select a particular
109     me_module, overriding the one specified in the ELF file.  SID
110     provides GDB with a fake read-only register, 'module', which
111     indicates which me_module GDB is communicating with an instance
112     of.
113
114   - There are SID command-line options to enable or disable certain
115     optional processor features, overriding the defaults for the
116     selected me_module.  The MeP $OPT register indicates which
117     options are present on the current processor.  */
118
119
120struct gdbarch_tdep
121{
122  /* A CGEN cpu descriptor for this BFD architecture and machine.
123
124     Note: this is *not* customized for any particular me_module; the
125     MeP libopcodes machinery actually puts off module-specific
126     customization until the last minute.  So this contains
127     information about all supported me_modules.  */
128  CGEN_CPU_DESC cpu_desc;
129
130  /* The me_module index from the ELF file we used to select this
131     architecture, or CONFIG_NONE if there was none.
132
133     Note that we should prefer to use the me_module number available
134     via the 'module' register, whenever we're actually talking to a
135     real target.
136
137     In the absence of live information, we'd like to get the
138     me_module number from the ELF file.  But which ELF file: the
139     executable file, the core file, ... ?  The answer is, "the last
140     ELF file we used to set the current architecture".  Thus, we
141     create a separate instance of the gdbarch structure for each
142     me_module value mep_gdbarch_init sees, and store the me_module
143     value from the ELF file here.  */
144  CONFIG_ATTR me_module;
145};
146
147
148
149/* Getting me_module information from the CGEN tables.  */
150
151
152/* Find an entry in the DESC's hardware table whose name begins with
153   PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
154   intersect with GENERIC_ISA_MASK.  If there is no matching entry,
155   return zero.  */
156static const CGEN_HW_ENTRY *
157find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
158                                 const char *prefix,
159                                 CGEN_BITSET *copro_isa_mask,
160                                 CGEN_BITSET *generic_isa_mask)
161{
162  int prefix_len = strlen (prefix);
163  int i;
164
165  for (i = 0; i < desc->hw_table.num_entries; i++)
166    {
167      const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
168      if (strncmp (prefix, hw->name, prefix_len) == 0)
169        {
170          CGEN_BITSET *hw_isa_mask
171            = ((CGEN_BITSET *)
172               &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
173
174          if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
175              && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
176            return hw;
177        }
178    }
179
180  return 0;
181}
182
183
184/* Find an entry in DESC's hardware table whose type is TYPE.  Return
185   zero if there is none.  */
186static const CGEN_HW_ENTRY *
187find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
188{
189  int i;
190
191  for (i = 0; i < desc->hw_table.num_entries; i++)
192    {
193      const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
194
195      if (hw->type == type)
196        return hw;
197    }
198
199  return 0;
200}
201
202
203/* Return the CGEN hardware table entry for the coprocessor register
204   set for ME_MODULE, whose name prefix is PREFIX.  If ME_MODULE has
205   no such register set, return zero.  If ME_MODULE is the generic
206   me_module CONFIG_NONE, return the table entry for the register set
207   whose hardware type is GENERIC_TYPE.  */
208static const CGEN_HW_ENTRY *
209me_module_register_set (CONFIG_ATTR me_module,
210                        const char *prefix,
211                        CGEN_HW_TYPE generic_type)
212{
213  /* This is kind of tricky, because the hardware table is constructed
214     in a way that isn't very helpful.  Perhaps we can fix that, but
215     here's how it works at the moment:
216
217     The configuration map, `mep_config_map', is indexed by me_module
218     number, and indicates which coprocessor and core ISAs that
219     me_module supports.  The 'core_isa' mask includes all the core
220     ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
221     The entry for the generic me_module, CONFIG_NONE, has an empty
222     'cop_isa', and its 'core_isa' selects only the standard MeP
223     instruction set.
224
225     The CGEN CPU descriptor's hardware table, desc->hw_table, has
226     entries for all the register sets, for all me_modules.  Each
227     entry has a mask indicating which ISAs use that register set.
228     So, if an me_module supports some coprocessor ISA, we can find
229     applicable register sets by scanning the hardware table for
230     register sets whose masks include (at least some of) those ISAs.
231
232     Each hardware table entry also has a name, whose prefix says
233     whether it's a general-purpose ("h-cr") or control ("h-ccr")
234     coprocessor register set.  It might be nicer to have an attribute
235     indicating what sort of register set it was, that we could use
236     instead of pattern-matching on the name.
237
238     When there is no hardware table entry whose mask includes a
239     particular coprocessor ISA and whose name starts with a given
240     prefix, then that means that that coprocessor doesn't have any
241     registers of that type.  In such cases, this function must return
242     a null pointer.
243
244     Coprocessor register sets' masks may or may not include the core
245     ISA for the me_module they belong to.  Those generated by a2cgen
246     do, but the sample me_module included in the unconfigured tree,
247     'ccfx', does not.
248
249     There are generic coprocessor register sets, intended only for
250     use with the generic me_module.  Unfortunately, their masks
251     include *all* ISAs --- even those for coprocessors that don't
252     have such register sets.  This makes detecting the case where a
253     coprocessor lacks a particular register set more complicated.
254
255     So, here's the approach we take:
256
257     - For CONFIG_NONE, we return the generic coprocessor register set.
258
259     - For any other me_module, we search for a register set whose
260       mask contains any of the me_module's coprocessor ISAs,
261       specifically excluding the generic coprocessor register sets.  */
262
263  CGEN_CPU_DESC desc = gdbarch_tdep (target_gdbarch ())->cpu_desc;
264  const CGEN_HW_ENTRY *hw;
265
266  if (me_module == CONFIG_NONE)
267    hw = find_hw_entry_by_type (desc, generic_type);
268  else
269    {
270      CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
271      CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
272      CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
273      CGEN_BITSET *cop_and_core;
274
275      /* The coprocessor ISAs include the ISA for the specific core which
276	 has that coprocessor.  */
277      cop_and_core = cgen_bitset_copy (cop);
278      cgen_bitset_union (cop, core, cop_and_core);
279      hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
280    }
281
282  return hw;
283}
284
285
286/* Given a hardware table entry HW representing a register set, return
287   a pointer to the keyword table with all the register names.  If HW
288   is NULL, return NULL, to propage the "no such register set" info
289   along.  */
290static CGEN_KEYWORD *
291register_set_keyword_table (const CGEN_HW_ENTRY *hw)
292{
293  if (! hw)
294    return NULL;
295
296  /* Check that HW is actually a keyword table.  */
297  gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
298
299  /* The 'asm_data' field of a register set's hardware table entry
300     refers to a keyword table.  */
301  return (CGEN_KEYWORD *) hw->asm_data;
302}
303
304
305/* Given a keyword table KEYWORD and a register number REGNUM, return
306   the name of the register, or "" if KEYWORD contains no register
307   whose number is REGNUM.  */
308static char *
309register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
310{
311  const CGEN_KEYWORD_ENTRY *entry
312    = cgen_keyword_lookup_value (keyword_table, regnum);
313
314  if (entry)
315    {
316      char *name = entry->name;
317
318      /* The CGEN keyword entries for register names include the
319         leading $, which appears in MeP assembly as well as in GDB.
320         But we don't want to return that; GDB core code adds that
321         itself.  */
322      if (name[0] == '$')
323        name++;
324
325      return name;
326    }
327  else
328    return "";
329}
330
331
332/* Masks for option bits in the OPT special-purpose register.  */
333enum {
334  MEP_OPT_DIV = 1 << 25,        /* 32-bit divide instruction option */
335  MEP_OPT_MUL = 1 << 24,        /* 32-bit multiply instruction option */
336  MEP_OPT_BIT = 1 << 23,        /* bit manipulation instruction option */
337  MEP_OPT_SAT = 1 << 22,        /* saturation instruction option */
338  MEP_OPT_CLP = 1 << 21,        /* clip instruction option */
339  MEP_OPT_MIN = 1 << 20,        /* min/max instruction option */
340  MEP_OPT_AVE = 1 << 19,        /* average instruction option */
341  MEP_OPT_ABS = 1 << 18,        /* absolute difference instruction option */
342  MEP_OPT_LDZ = 1 << 16,        /* leading zero instruction option */
343  MEP_OPT_VL64 = 1 << 6,        /* 64-bit VLIW operation mode option */
344  MEP_OPT_VL32 = 1 << 5,        /* 32-bit VLIW operation mode option */
345  MEP_OPT_COP = 1 << 4,         /* coprocessor option */
346  MEP_OPT_DSP = 1 << 2,         /* DSP option */
347  MEP_OPT_UCI = 1 << 1,         /* UCI option */
348  MEP_OPT_DBG = 1 << 0,         /* DBG function option */
349};
350
351
352/* Given the option_mask value for a particular entry in
353   mep_config_map, produce the value the processor's OPT register
354   would use to represent the same set of options.  */
355static unsigned int
356opt_from_option_mask (unsigned int option_mask)
357{
358  /* A table mapping OPT register bits onto CGEN config map option
359     bits.  */
360  struct {
361    unsigned int opt_bit, option_mask_bit;
362  } bits[] = {
363    { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
364    { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
365    { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
366    { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
367    { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
368    { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
369    { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
370    { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
371    { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
372    { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
373    { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
374    { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
375    { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
376  };
377
378  int i;
379  unsigned int opt = 0;
380
381  for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
382    if (option_mask & bits[i].option_mask_bit)
383      opt |= bits[i].opt_bit;
384
385  return opt;
386}
387
388
389/* Return the value the $OPT register would use to represent the set
390   of options for ME_MODULE.  */
391static unsigned int
392me_module_opt (CONFIG_ATTR me_module)
393{
394  return opt_from_option_mask (mep_config_map[me_module].option_mask);
395}
396
397
398/* Return the width of ME_MODULE's coprocessor data bus, in bits.
399   This is either 32 or 64.  */
400static int
401me_module_cop_data_bus_width (CONFIG_ATTR me_module)
402{
403  if (mep_config_map[me_module].option_mask
404      & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
405    return 64;
406  else
407    return 32;
408}
409
410
411/* Return true if ME_MODULE is big-endian, false otherwise.  */
412static int
413me_module_big_endian (CONFIG_ATTR me_module)
414{
415  return mep_config_map[me_module].big_endian;
416}
417
418
419/* Return the name of ME_MODULE, or NULL if it has no name.  */
420static const char *
421me_module_name (CONFIG_ATTR me_module)
422{
423  /* The default me_module has "" as its name, but it's easier for our
424     callers to test for NULL.  */
425  if (! mep_config_map[me_module].name
426      || mep_config_map[me_module].name[0] == '\0')
427    return NULL;
428  else
429    return mep_config_map[me_module].name;
430}
431
432/* Register set.  */
433
434
435/* The MeP spec defines the following registers:
436   16 general purpose registers (r0-r15)
437   32 control/special registers (csr0-csr31)
438   32 coprocessor general-purpose registers (c0 -- c31)
439   64 coprocessor control registers (ccr0 -- ccr63)
440
441   For the raw registers, we assign numbers here explicitly, instead
442   of letting the enum assign them for us; the numbers are a matter of
443   external protocol, and shouldn't shift around as things are edited.
444
445   We access the control/special registers via pseudoregisters, to
446   enforce read-only portions that some registers have.
447
448   We access the coprocessor general purpose and control registers via
449   pseudoregisters, to make sure they appear in the proper order in
450   the 'info all-registers' command (which uses the register number
451   ordering), and also to allow them to be renamed and resized
452   depending on the me_module in use.
453
454   The MeP allows coprocessor general-purpose registers to be either
455   32 or 64 bits long, depending on the configuration.  Since we don't
456   want the format of the 'g' packet to vary from one core to another,
457   the raw coprocessor GPRs are always 64 bits.  GDB doesn't allow the
458   types of registers to change (see the implementation of
459   register_type), so we have four banks of pseudoregisters for the
460   coprocessor gprs --- 32-bit vs. 64-bit, and integer
461   vs. floating-point --- and we show or hide them depending on the
462   configuration.  */
463enum
464{
465  MEP_FIRST_RAW_REGNUM = 0,
466
467  MEP_FIRST_GPR_REGNUM = 0,
468  MEP_R0_REGNUM = 0,
469  MEP_R1_REGNUM = 1,
470  MEP_R2_REGNUM = 2,
471  MEP_R3_REGNUM = 3,
472  MEP_R4_REGNUM = 4,
473  MEP_R5_REGNUM = 5,
474  MEP_R6_REGNUM = 6,
475  MEP_R7_REGNUM = 7,
476  MEP_R8_REGNUM = 8,
477  MEP_R9_REGNUM = 9,
478  MEP_R10_REGNUM = 10,
479  MEP_R11_REGNUM = 11,
480  MEP_R12_REGNUM = 12,
481  MEP_FP_REGNUM = MEP_R8_REGNUM,
482  MEP_R13_REGNUM = 13,
483  MEP_TP_REGNUM = MEP_R13_REGNUM,	/* (r13) Tiny data pointer */
484  MEP_R14_REGNUM = 14,
485  MEP_GP_REGNUM = MEP_R14_REGNUM,	/* (r14) Global pointer */
486  MEP_R15_REGNUM = 15,
487  MEP_SP_REGNUM = MEP_R15_REGNUM,	/* (r15) Stack pointer */
488  MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
489
490  /* The raw control registers.  These are the values as received via
491     the remote protocol, directly from the target; we only let user
492     code touch the via the pseudoregisters, which enforce read-only
493     bits.  */
494  MEP_FIRST_RAW_CSR_REGNUM = 16,
495  MEP_RAW_PC_REGNUM    = 16,    /* Program counter */
496  MEP_RAW_LP_REGNUM    = 17,    /* Link pointer */
497  MEP_RAW_SAR_REGNUM   = 18,    /* Raw shift amount */
498  MEP_RAW_CSR3_REGNUM  = 19,    /* csr3: reserved */
499  MEP_RAW_RPB_REGNUM   = 20,    /* Raw repeat begin address */
500  MEP_RAW_RPE_REGNUM   = 21,    /* Repeat end address */
501  MEP_RAW_RPC_REGNUM   = 22,    /* Repeat count */
502  MEP_RAW_HI_REGNUM    = 23, /* Upper 32 bits of result of 64 bit mult/div */
503  MEP_RAW_LO_REGNUM    = 24, /* Lower 32 bits of result of 64 bit mult/div */
504  MEP_RAW_CSR9_REGNUM  = 25,    /* csr3: reserved */
505  MEP_RAW_CSR10_REGNUM = 26,    /* csr3: reserved */
506  MEP_RAW_CSR11_REGNUM = 27,    /* csr3: reserved */
507  MEP_RAW_MB0_REGNUM   = 28,    /* Raw modulo begin address 0 */
508  MEP_RAW_ME0_REGNUM   = 29,    /* Raw modulo end address 0 */
509  MEP_RAW_MB1_REGNUM   = 30,    /* Raw modulo begin address 1 */
510  MEP_RAW_ME1_REGNUM   = 31,    /* Raw modulo end address 1 */
511  MEP_RAW_PSW_REGNUM   = 32,    /* Raw program status word */
512  MEP_RAW_ID_REGNUM    = 33,    /* Raw processor ID/revision */
513  MEP_RAW_TMP_REGNUM   = 34,    /* Temporary */
514  MEP_RAW_EPC_REGNUM   = 35,    /* Exception program counter */
515  MEP_RAW_EXC_REGNUM   = 36,    /* Raw exception cause */
516  MEP_RAW_CFG_REGNUM   = 37,    /* Raw processor configuration*/
517  MEP_RAW_CSR22_REGNUM = 38,    /* csr3: reserved */
518  MEP_RAW_NPC_REGNUM   = 39,    /* Nonmaskable interrupt PC */
519  MEP_RAW_DBG_REGNUM   = 40,    /* Raw debug */
520  MEP_RAW_DEPC_REGNUM  = 41,    /* Debug exception PC */
521  MEP_RAW_OPT_REGNUM   = 42,    /* Raw options */
522  MEP_RAW_RCFG_REGNUM  = 43,    /* Raw local ram config */
523  MEP_RAW_CCFG_REGNUM  = 44,    /* Raw cache config */
524  MEP_RAW_CSR29_REGNUM = 45,    /* csr3: reserved */
525  MEP_RAW_CSR30_REGNUM = 46,    /* csr3: reserved */
526  MEP_RAW_CSR31_REGNUM = 47,    /* csr3: reserved */
527  MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
528
529  /* The raw coprocessor general-purpose registers.  These are all 64
530     bits wide.  */
531  MEP_FIRST_RAW_CR_REGNUM = 48,
532  MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
533
534  MEP_FIRST_RAW_CCR_REGNUM = 80,
535  MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
536
537  /* The module number register.  This is the index of the me_module
538     of which the current target is an instance.  (This is not a real
539     MeP-specified register; it's provided by SID.)  */
540  MEP_MODULE_REGNUM,
541
542  MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
543
544  MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
545
546  /* Pseudoregisters.  See mep_pseudo_register_read and
547     mep_pseudo_register_write.  */
548  MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
549
550  /* We have a pseudoregister for every control/special register, to
551     implement registers with read-only bits.  */
552  MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
553  MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
554  MEP_LP_REGNUM,                /* Link pointer */
555  MEP_SAR_REGNUM,               /* shift amount */
556  MEP_CSR3_REGNUM,              /* csr3: reserved */
557  MEP_RPB_REGNUM,               /* repeat begin address */
558  MEP_RPE_REGNUM,               /* Repeat end address */
559  MEP_RPC_REGNUM,               /* Repeat count */
560  MEP_HI_REGNUM,  /* Upper 32 bits of the result of 64 bit mult/div */
561  MEP_LO_REGNUM,  /* Lower 32 bits of the result of 64 bit mult/div */
562  MEP_CSR9_REGNUM,              /* csr3: reserved */
563  MEP_CSR10_REGNUM,             /* csr3: reserved */
564  MEP_CSR11_REGNUM,             /* csr3: reserved */
565  MEP_MB0_REGNUM,               /* modulo begin address 0 */
566  MEP_ME0_REGNUM,               /* modulo end address 0 */
567  MEP_MB1_REGNUM,               /* modulo begin address 1 */
568  MEP_ME1_REGNUM,               /* modulo end address 1 */
569  MEP_PSW_REGNUM,               /* program status word */
570  MEP_ID_REGNUM,                /* processor ID/revision */
571  MEP_TMP_REGNUM,               /* Temporary */
572  MEP_EPC_REGNUM,               /* Exception program counter */
573  MEP_EXC_REGNUM,               /* exception cause */
574  MEP_CFG_REGNUM,               /* processor configuration*/
575  MEP_CSR22_REGNUM,             /* csr3: reserved */
576  MEP_NPC_REGNUM,               /* Nonmaskable interrupt PC */
577  MEP_DBG_REGNUM,               /* debug */
578  MEP_DEPC_REGNUM,              /* Debug exception PC */
579  MEP_OPT_REGNUM,               /* options */
580  MEP_RCFG_REGNUM,              /* local ram config */
581  MEP_CCFG_REGNUM,              /* cache config */
582  MEP_CSR29_REGNUM,             /* csr3: reserved */
583  MEP_CSR30_REGNUM,             /* csr3: reserved */
584  MEP_CSR31_REGNUM,             /* csr3: reserved */
585  MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
586
587  /* The 32-bit integer view of the coprocessor GPR's.  */
588  MEP_FIRST_CR32_REGNUM,
589  MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
590
591  /* The 32-bit floating-point view of the coprocessor GPR's.  */
592  MEP_FIRST_FP_CR32_REGNUM,
593  MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
594
595  /* The 64-bit integer view of the coprocessor GPR's.  */
596  MEP_FIRST_CR64_REGNUM,
597  MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
598
599  /* The 64-bit floating-point view of the coprocessor GPR's.  */
600  MEP_FIRST_FP_CR64_REGNUM,
601  MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
602
603  MEP_FIRST_CCR_REGNUM,
604  MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
605
606  MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
607
608  MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
609
610  MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
611};
612
613
614#define IN_SET(set, n) \
615  (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
616
617#define IS_GPR_REGNUM(n)     (IN_SET (GPR,     (n)))
618#define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
619#define IS_RAW_CR_REGNUM(n)  (IN_SET (RAW_CR,  (n)))
620#define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
621
622#define IS_CSR_REGNUM(n)     (IN_SET (CSR,     (n)))
623#define IS_CR32_REGNUM(n)    (IN_SET (CR32,    (n)))
624#define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
625#define IS_CR64_REGNUM(n)    (IN_SET (CR64,    (n)))
626#define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
627#define IS_CR_REGNUM(n)      (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
628                              || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
629#define IS_CCR_REGNUM(n)     (IN_SET (CCR,     (n)))
630
631#define IS_RAW_REGNUM(n)     (IN_SET (RAW,     (n)))
632#define IS_PSEUDO_REGNUM(n)  (IN_SET (PSEUDO,  (n)))
633
634#define NUM_REGS_IN_SET(set) \
635  (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
636
637#define MEP_GPR_SIZE (4)        /* Size of a MeP general-purpose register.  */
638#define MEP_PSW_SIZE (4)        /* Size of the PSW register.  */
639#define MEP_LP_SIZE (4)         /* Size of the LP register.  */
640
641
642/* Many of the control/special registers contain bits that cannot be
643   written to; some are entirely read-only.  So we present them all as
644   pseudoregisters.
645
646   The following table describes the special properties of each CSR.  */
647struct mep_csr_register
648{
649  /* The number of this CSR's raw register.  */
650  int raw;
651
652  /* The number of this CSR's pseudoregister.  */
653  int pseudo;
654
655  /* A mask of the bits that are writeable: if a bit is set here, then
656     it can be modified; if the bit is clear, then it cannot.  */
657  LONGEST writeable_bits;
658};
659
660
661/* mep_csr_registers[i] describes the i'th CSR.
662   We just list the register numbers here explicitly to help catch
663   typos.  */
664#define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
665struct mep_csr_register mep_csr_registers[] = {
666  { CSR(PC),    0xffffffff },   /* manual says r/o, but we can write it */
667  { CSR(LP),    0xffffffff },
668  { CSR(SAR),   0x0000003f },
669  { CSR(CSR3),  0xffffffff },
670  { CSR(RPB),   0xfffffffe },
671  { CSR(RPE),   0xffffffff },
672  { CSR(RPC),   0xffffffff },
673  { CSR(HI),    0xffffffff },
674  { CSR(LO),    0xffffffff },
675  { CSR(CSR9),  0xffffffff },
676  { CSR(CSR10), 0xffffffff },
677  { CSR(CSR11), 0xffffffff },
678  { CSR(MB0),   0x0000ffff },
679  { CSR(ME0),   0x0000ffff },
680  { CSR(MB1),   0x0000ffff },
681  { CSR(ME1),   0x0000ffff },
682  { CSR(PSW),   0x000003ff },
683  { CSR(ID),    0x00000000 },
684  { CSR(TMP),   0xffffffff },
685  { CSR(EPC),   0xffffffff },
686  { CSR(EXC),   0x000030f0 },
687  { CSR(CFG),   0x00c0001b },
688  { CSR(CSR22), 0xffffffff },
689  { CSR(NPC),   0xffffffff },
690  { CSR(DBG),   0x00000580 },
691  { CSR(DEPC),  0xffffffff },
692  { CSR(OPT),   0x00000000 },
693  { CSR(RCFG),  0x00000000 },
694  { CSR(CCFG),  0x00000000 },
695  { CSR(CSR29), 0xffffffff },
696  { CSR(CSR30), 0xffffffff },
697  { CSR(CSR31), 0xffffffff },
698};
699
700
701/* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
702   the number of the corresponding pseudoregister.  Otherwise,
703   mep_raw_to_pseudo[R] == R.  */
704static int mep_raw_to_pseudo[MEP_NUM_REGS];
705
706/* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
707   is the number of the underlying raw register.  Otherwise
708   mep_pseudo_to_raw[R] == R.  */
709static int mep_pseudo_to_raw[MEP_NUM_REGS];
710
711static void
712mep_init_pseudoregister_maps (void)
713{
714  int i;
715
716  /* Verify that mep_csr_registers covers all the CSRs, in order.  */
717  gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
718  gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
719
720  /* Verify that the raw and pseudo ranges have matching sizes.  */
721  gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
722  gdb_assert (NUM_REGS_IN_SET (RAW_CR)  == NUM_REGS_IN_SET (CR32));
723  gdb_assert (NUM_REGS_IN_SET (RAW_CR)  == NUM_REGS_IN_SET (CR64));
724  gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
725
726  for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
727    {
728      struct mep_csr_register *r = &mep_csr_registers[i];
729
730      gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
731      gdb_assert (r->raw    == MEP_FIRST_RAW_CSR_REGNUM + i);
732    }
733
734  /* Set up the initial  raw<->pseudo mappings.  */
735  for (i = 0; i < MEP_NUM_REGS; i++)
736    {
737      mep_raw_to_pseudo[i] = i;
738      mep_pseudo_to_raw[i] = i;
739    }
740
741  /* Add the CSR raw<->pseudo mappings.  */
742  for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
743    {
744      struct mep_csr_register *r = &mep_csr_registers[i];
745
746      mep_raw_to_pseudo[r->raw] = r->pseudo;
747      mep_pseudo_to_raw[r->pseudo] = r->raw;
748    }
749
750  /* Add the CR raw<->pseudo mappings.  */
751  for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
752    {
753      int raw = MEP_FIRST_RAW_CR_REGNUM + i;
754      int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
755      int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
756      int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
757      int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
758
759      /* Truly, the raw->pseudo mapping depends on the current module.
760         But we use the raw->pseudo mapping when we read the debugging
761         info; at that point, we don't know what module we'll actually
762         be running yet.  So, we always supply the 64-bit register
763         numbers; GDB knows how to pick a smaller value out of a
764         larger register properly.  */
765      mep_raw_to_pseudo[raw] = pseudo64;
766      mep_pseudo_to_raw[pseudo32] = raw;
767      mep_pseudo_to_raw[pseudofp32] = raw;
768      mep_pseudo_to_raw[pseudo64] = raw;
769      mep_pseudo_to_raw[pseudofp64] = raw;
770    }
771
772  /* Add the CCR raw<->pseudo mappings.  */
773  for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
774    {
775      int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
776      int pseudo = MEP_FIRST_CCR_REGNUM + i;
777      mep_raw_to_pseudo[raw] = pseudo;
778      mep_pseudo_to_raw[pseudo] = raw;
779    }
780}
781
782
783static int
784mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
785{
786  /* The debug info uses the raw register numbers.  */
787  return mep_raw_to_pseudo[debug_reg];
788}
789
790
791/* Return the size, in bits, of the coprocessor pseudoregister
792   numbered PSEUDO.  */
793static int
794mep_pseudo_cr_size (int pseudo)
795{
796  if (IS_CR32_REGNUM (pseudo)
797      || IS_FP_CR32_REGNUM (pseudo))
798    return 32;
799  else if (IS_CR64_REGNUM (pseudo)
800           || IS_FP_CR64_REGNUM (pseudo))
801    return 64;
802  else
803    gdb_assert_not_reached ("unexpected coprocessor pseudo register");
804}
805
806
807/* If the coprocessor pseudoregister numbered PSEUDO is a
808   floating-point register, return non-zero; if it is an integer
809   register, return zero.  */
810static int
811mep_pseudo_cr_is_float (int pseudo)
812{
813  return (IS_FP_CR32_REGNUM (pseudo)
814          || IS_FP_CR64_REGNUM (pseudo));
815}
816
817
818/* Given a coprocessor GPR pseudoregister number, return its index
819   within that register bank.  */
820static int
821mep_pseudo_cr_index (int pseudo)
822{
823  if (IS_CR32_REGNUM (pseudo))
824    return pseudo - MEP_FIRST_CR32_REGNUM;
825  else if (IS_FP_CR32_REGNUM (pseudo))
826      return pseudo - MEP_FIRST_FP_CR32_REGNUM;
827  else if (IS_CR64_REGNUM (pseudo))
828      return pseudo - MEP_FIRST_CR64_REGNUM;
829  else if (IS_FP_CR64_REGNUM (pseudo))
830      return pseudo - MEP_FIRST_FP_CR64_REGNUM;
831  else
832    gdb_assert_not_reached ("unexpected coprocessor pseudo register");
833}
834
835
836/* Return the me_module index describing the current target.
837
838   If the current target has registers (e.g., simulator, remote
839   target), then this uses the value of the 'module' register, raw
840   register MEP_MODULE_REGNUM.  Otherwise, this retrieves the value
841   from the ELF header's e_flags field of the current executable
842   file.  */
843static CONFIG_ATTR
844current_me_module (void)
845{
846  if (target_has_registers)
847    {
848      ULONGEST regval;
849      regcache_cooked_read_unsigned (get_current_regcache (),
850				     MEP_MODULE_REGNUM, &regval);
851      return regval;
852    }
853  else
854    return gdbarch_tdep (target_gdbarch ())->me_module;
855}
856
857
858/* Return the set of options for the current target, in the form that
859   the OPT register would use.
860
861   If the current target has registers (e.g., simulator, remote
862   target), then this is the actual value of the OPT register.  If the
863   current target does not have registers (e.g., an executable file),
864   then use the 'module_opt' field we computed when we build the
865   gdbarch object for this module.  */
866static unsigned int
867current_options (void)
868{
869  if (target_has_registers)
870    {
871      ULONGEST regval;
872      regcache_cooked_read_unsigned (get_current_regcache (),
873				     MEP_OPT_REGNUM, &regval);
874      return regval;
875    }
876  else
877    return me_module_opt (current_me_module ());
878}
879
880
881/* Return the width of the current me_module's coprocessor data bus,
882   in bits.  This is either 32 or 64.  */
883static int
884current_cop_data_bus_width (void)
885{
886  return me_module_cop_data_bus_width (current_me_module ());
887}
888
889
890/* Return the keyword table of coprocessor general-purpose register
891   names appropriate for the me_module we're dealing with.  */
892static CGEN_KEYWORD *
893current_cr_names (void)
894{
895  const CGEN_HW_ENTRY *hw
896    = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
897
898  return register_set_keyword_table (hw);
899}
900
901
902/* Return non-zero if the coprocessor general-purpose registers are
903   floating-point values, zero otherwise.  */
904static int
905current_cr_is_float (void)
906{
907  const CGEN_HW_ENTRY *hw
908    = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
909
910  return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
911}
912
913
914/* Return the keyword table of coprocessor control register names
915   appropriate for the me_module we're dealing with.  */
916static CGEN_KEYWORD *
917current_ccr_names (void)
918{
919  const CGEN_HW_ENTRY *hw
920    = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
921
922  return register_set_keyword_table (hw);
923}
924
925
926static const char *
927mep_register_name (struct gdbarch *gdbarch, int regnr)
928{
929  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
930
931  /* General-purpose registers.  */
932  static const char *gpr_names[] = {
933    "r0",   "r1",   "r2",   "r3",   /* 0 */
934    "r4",   "r5",   "r6",   "r7",   /* 4 */
935    "fp",   "r9",   "r10",  "r11",  /* 8 */
936    "r12",  "tp",   "gp",   "sp"    /* 12 */
937  };
938
939  /* Special-purpose registers.  */
940  static const char *csr_names[] = {
941    "pc",   "lp",   "sar",  "",     /* 0  csr3: reserved */
942    "rpb",  "rpe",  "rpc",  "hi",   /* 4 */
943    "lo",   "",     "",     "",     /* 8  csr9-csr11: reserved */
944    "mb0",  "me0",  "mb1",  "me1",  /* 12 */
945
946    "psw",  "id",   "tmp",  "epc",  /* 16 */
947    "exc",  "cfg",  "",     "npc",  /* 20  csr22: reserved */
948    "dbg",  "depc", "opt",  "rcfg", /* 24 */
949    "ccfg", "",     "",     ""      /* 28  csr29-csr31: reserved */
950  };
951
952  if (IS_GPR_REGNUM (regnr))
953    return gpr_names[regnr - MEP_R0_REGNUM];
954  else if (IS_CSR_REGNUM (regnr))
955    {
956      /* The 'hi' and 'lo' registers are only present on processors
957         that have the 'MUL' or 'DIV' instructions enabled.  */
958      if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
959          && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
960        return "";
961
962      return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
963    }
964  else if (IS_CR_REGNUM (regnr))
965    {
966      CGEN_KEYWORD *names;
967      int cr_size;
968      int cr_is_float;
969
970      /* Does this module have a coprocessor at all?  */
971      if (! (current_options () & MEP_OPT_COP))
972        return "";
973
974      names = current_cr_names ();
975      if (! names)
976        /* This module's coprocessor has no general-purpose registers.  */
977        return "";
978
979      cr_size = current_cop_data_bus_width ();
980      if (cr_size != mep_pseudo_cr_size (regnr))
981        /* This module's coprocessor's GPR's are of a different size.  */
982        return "";
983
984      cr_is_float = current_cr_is_float ();
985      /* The extra ! operators ensure we get boolean equality, not
986         numeric equality.  */
987      if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
988        /* This module's coprocessor's GPR's are of a different type.  */
989        return "";
990
991      return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
992    }
993  else if (IS_CCR_REGNUM (regnr))
994    {
995      /* Does this module have a coprocessor at all?  */
996      if (! (current_options () & MEP_OPT_COP))
997        return "";
998
999      {
1000        CGEN_KEYWORD *names = current_ccr_names ();
1001
1002        if (! names)
1003          /* This me_module's coprocessor has no control registers.  */
1004          return "";
1005
1006        return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1007      }
1008    }
1009
1010  /* It might be nice to give the 'module' register a name, but that
1011     would affect the output of 'info all-registers', which would
1012     disturb the test suites.  So we leave it invisible.  */
1013  else
1014    return NULL;
1015}
1016
1017
1018/* Custom register groups for the MeP.  */
1019static struct reggroup *mep_csr_reggroup; /* control/special */
1020static struct reggroup *mep_cr_reggroup;  /* coprocessor general-purpose */
1021static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1022
1023
1024static int
1025mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1026                         struct reggroup *group)
1027{
1028  /* Filter reserved or unused register numbers.  */
1029  {
1030    const char *name = mep_register_name (gdbarch, regnum);
1031
1032    if (! name || name[0] == '\0')
1033      return 0;
1034  }
1035
1036  /* We could separate the GPRs and the CSRs.  Toshiba has approved of
1037     the existing behavior, so we'd want to run that by them.  */
1038  if (group == general_reggroup)
1039    return (IS_GPR_REGNUM (regnum)
1040            || IS_CSR_REGNUM (regnum));
1041
1042  /* Everything is in the 'all' reggroup, except for the raw CSR's.  */
1043  else if (group == all_reggroup)
1044    return (IS_GPR_REGNUM (regnum)
1045            || IS_CSR_REGNUM (regnum)
1046            || IS_CR_REGNUM (regnum)
1047            || IS_CCR_REGNUM (regnum));
1048
1049  /* All registers should be saved and restored, except for the raw
1050     CSR's.
1051
1052     This is probably right if the coprocessor is something like a
1053     floating-point unit, but would be wrong if the coprocessor is
1054     something that does I/O, where register accesses actually cause
1055     externally-visible actions.  But I get the impression that the
1056     coprocessor isn't supposed to do things like that --- you'd use a
1057     hardware engine, perhaps.  */
1058  else if (group == save_reggroup || group == restore_reggroup)
1059    return (IS_GPR_REGNUM (regnum)
1060            || IS_CSR_REGNUM (regnum)
1061            || IS_CR_REGNUM (regnum)
1062            || IS_CCR_REGNUM (regnum));
1063
1064  else if (group == mep_csr_reggroup)
1065    return IS_CSR_REGNUM (regnum);
1066  else if (group == mep_cr_reggroup)
1067    return IS_CR_REGNUM (regnum);
1068  else if (group == mep_ccr_reggroup)
1069    return IS_CCR_REGNUM (regnum);
1070  else
1071    return 0;
1072}
1073
1074
1075static struct type *
1076mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1077{
1078  /* Coprocessor general-purpose registers may be either 32 or 64 bits
1079     long.  So for them, the raw registers are always 64 bits long (to
1080     keep the 'g' packet format fixed), and the pseudoregisters vary
1081     in length.  */
1082  if (IS_RAW_CR_REGNUM (reg_nr))
1083    return builtin_type (gdbarch)->builtin_uint64;
1084
1085  /* Since GDB doesn't allow registers to change type, we have two
1086     banks of pseudoregisters for the coprocessor general-purpose
1087     registers: one that gives a 32-bit view, and one that gives a
1088     64-bit view.  We hide or show one or the other depending on the
1089     current module.  */
1090  if (IS_CR_REGNUM (reg_nr))
1091    {
1092      int size = mep_pseudo_cr_size (reg_nr);
1093      if (size == 32)
1094        {
1095          if (mep_pseudo_cr_is_float (reg_nr))
1096            return builtin_type (gdbarch)->builtin_float;
1097          else
1098            return builtin_type (gdbarch)->builtin_uint32;
1099        }
1100      else if (size == 64)
1101        {
1102          if (mep_pseudo_cr_is_float (reg_nr))
1103            return builtin_type (gdbarch)->builtin_double;
1104          else
1105            return builtin_type (gdbarch)->builtin_uint64;
1106        }
1107      else
1108        gdb_assert_not_reached ("unexpected cr size");
1109    }
1110
1111  /* All other registers are 32 bits long.  */
1112  else
1113    return builtin_type (gdbarch)->builtin_uint32;
1114}
1115
1116
1117static CORE_ADDR
1118mep_read_pc (struct regcache *regcache)
1119{
1120  ULONGEST pc;
1121  regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
1122  return pc;
1123}
1124
1125static enum register_status
1126mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1127                      struct regcache *regcache,
1128                      int cookednum,
1129                      void *buf)
1130{
1131  enum register_status status;
1132  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1133  /* Read the raw register into a 64-bit buffer, and then return the
1134     appropriate end of that buffer.  */
1135  int rawnum = mep_pseudo_to_raw[cookednum];
1136  gdb_byte buf64[8];
1137
1138  gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1139  gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1140  status = regcache_raw_read (regcache, rawnum, buf64);
1141  if (status == REG_VALID)
1142    {
1143      /* Slow, but legible.  */
1144      store_unsigned_integer (buf, 4, byte_order,
1145			      extract_unsigned_integer (buf64, 8, byte_order));
1146    }
1147  return status;
1148}
1149
1150
1151static enum register_status
1152mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1153                      struct regcache *regcache,
1154                      int cookednum,
1155                      void *buf)
1156{
1157  return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1158}
1159
1160
1161static enum register_status
1162mep_pseudo_register_read (struct gdbarch *gdbarch,
1163                          struct regcache *regcache,
1164                          int cookednum,
1165                          gdb_byte *buf)
1166{
1167  if (IS_CSR_REGNUM (cookednum)
1168      || IS_CCR_REGNUM (cookednum))
1169    return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1170  else if (IS_CR32_REGNUM (cookednum)
1171           || IS_FP_CR32_REGNUM (cookednum))
1172    return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1173  else if (IS_CR64_REGNUM (cookednum)
1174           || IS_FP_CR64_REGNUM (cookednum))
1175    return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1176  else
1177    gdb_assert_not_reached ("unexpected pseudo register");
1178}
1179
1180
1181static void
1182mep_pseudo_csr_write (struct gdbarch *gdbarch,
1183                      struct regcache *regcache,
1184                      int cookednum,
1185                      const void *buf)
1186{
1187  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1188  int size = register_size (gdbarch, cookednum);
1189  struct mep_csr_register *r
1190    = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1191
1192  if (r->writeable_bits == 0)
1193    /* A completely read-only register; avoid the read-modify-
1194       write cycle, and juts ignore the entire write.  */
1195    ;
1196  else
1197    {
1198      /* A partially writeable register; do a read-modify-write cycle.  */
1199      ULONGEST old_bits;
1200      ULONGEST new_bits;
1201      ULONGEST mixed_bits;
1202
1203      regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1204      new_bits = extract_unsigned_integer (buf, size, byte_order);
1205      mixed_bits = ((r->writeable_bits & new_bits)
1206                    | (~r->writeable_bits & old_bits));
1207      regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1208    }
1209}
1210
1211
1212static void
1213mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1214                       struct regcache *regcache,
1215                       int cookednum,
1216                       const void *buf)
1217{
1218  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1219  /* Expand the 32-bit value into a 64-bit value, and write that to
1220     the pseudoregister.  */
1221  int rawnum = mep_pseudo_to_raw[cookednum];
1222  gdb_byte buf64[8];
1223
1224  gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1225  gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1226  /* Slow, but legible.  */
1227  store_unsigned_integer (buf64, 8, byte_order,
1228			  extract_unsigned_integer (buf, 4, byte_order));
1229  regcache_raw_write (regcache, rawnum, buf64);
1230}
1231
1232
1233static void
1234mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1235                     struct regcache *regcache,
1236                     int cookednum,
1237                     const void *buf)
1238{
1239  regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1240}
1241
1242
1243static void
1244mep_pseudo_register_write (struct gdbarch *gdbarch,
1245                           struct regcache *regcache,
1246                           int cookednum,
1247                           const gdb_byte *buf)
1248{
1249  if (IS_CSR_REGNUM (cookednum))
1250    mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1251  else if (IS_CR32_REGNUM (cookednum)
1252           || IS_FP_CR32_REGNUM (cookednum))
1253    mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1254  else if (IS_CR64_REGNUM (cookednum)
1255           || IS_FP_CR64_REGNUM (cookednum))
1256    mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1257  else if (IS_CCR_REGNUM (cookednum))
1258    regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1259  else
1260    gdb_assert_not_reached ("unexpected pseudo register");
1261}
1262
1263
1264
1265/* Disassembly.  */
1266
1267/* The mep disassembler needs to know about the section in order to
1268   work correctly.  */
1269static int
1270mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1271{
1272  struct obj_section * s = find_pc_section (pc);
1273
1274  if (s)
1275    {
1276      /* The libopcodes disassembly code uses the section to find the
1277         BFD, the BFD to find the ELF header, the ELF header to find
1278         the me_module index, and the me_module index to select the
1279         right instructions to print.  */
1280      info->section = s->the_bfd_section;
1281      info->arch = bfd_arch_mep;
1282
1283      return print_insn_mep (pc, info);
1284    }
1285
1286  return 0;
1287}
1288
1289
1290/* Prologue analysis.  */
1291
1292
1293/* The MeP has two classes of instructions: "core" instructions, which
1294   are pretty normal RISC chip stuff, and "coprocessor" instructions,
1295   which are mostly concerned with moving data in and out of
1296   coprocessor registers, and branching on coprocessor condition
1297   codes.  There's space in the instruction set for custom coprocessor
1298   instructions, too.
1299
1300   Instructions can be 16 or 32 bits long; the top two bits of the
1301   first byte indicate the length.  The coprocessor instructions are
1302   mixed in with the core instructions, and there's no easy way to
1303   distinguish them; you have to completely decode them to tell one
1304   from the other.
1305
1306   The MeP also supports a "VLIW" operation mode, where instructions
1307   always occur in fixed-width bundles.  The bundles are either 32
1308   bits or 64 bits long, depending on a fixed configuration flag.  You
1309   decode the first part of the bundle as normal; if it's a core
1310   instruction, and there's any space left in the bundle, the
1311   remainder of the bundle is a coprocessor instruction, which will
1312   execute in parallel with the core instruction.  If the first part
1313   of the bundle is a coprocessor instruction, it occupies the entire
1314   bundle.
1315
1316   So, here are all the cases:
1317
1318   - 32-bit VLIW mode:
1319     Every bundle is four bytes long, and naturally aligned, and can hold
1320     one or two instructions:
1321     - 16-bit core instruction; 16-bit coprocessor instruction
1322       These execute in parallel.
1323     - 32-bit core instruction
1324     - 32-bit coprocessor instruction
1325
1326   - 64-bit VLIW mode:
1327     Every bundle is eight bytes long, and naturally aligned, and can hold
1328     one or two instructions:
1329     - 16-bit core instruction; 48-bit (!) coprocessor instruction
1330       These execute in parallel.
1331     - 32-bit core instruction; 32-bit coprocessor instruction
1332       These execute in parallel.
1333     - 64-bit coprocessor instruction
1334
1335   Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1336   instruction, so I don't really know what's up there; perhaps these
1337   are always the user-defined coprocessor instructions.  */
1338
1339
1340/* Return non-zero if PC is in a VLIW code section, zero
1341   otherwise.  */
1342static int
1343mep_pc_in_vliw_section (CORE_ADDR pc)
1344{
1345  struct obj_section *s = find_pc_section (pc);
1346  if (s)
1347    return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1348  return 0;
1349}
1350
1351
1352/* Set *INSN to the next core instruction at PC, and return the
1353   address of the next instruction.
1354
1355   The MeP instruction encoding is endian-dependent.  16- and 32-bit
1356   instructions are encoded as one or two two-byte parts, and each
1357   part is byte-swapped independently.  Thus:
1358
1359      void
1360      foo (void)
1361      {
1362        asm ("movu $1, 0x123456");
1363        asm ("sb $1,0x5678($2)");
1364        asm ("clip $1, 19");
1365      }
1366
1367   compiles to this big-endian code:
1368
1369       0:	d1 56 12 34 	movu $1,0x123456
1370       4:	c1 28 56 78 	sb $1,22136($2)
1371       8:	f1 01 10 98 	clip $1,0x13
1372       c:	70 02       	ret
1373
1374   and this little-endian code:
1375
1376       0:	56 d1 34 12 	movu $1,0x123456
1377       4:	28 c1 78 56 	sb $1,22136($2)
1378       8:	01 f1 98 10 	clip $1,0x13
1379       c:	02 70       	ret
1380
1381   Instructions are returned in *INSN in an endian-independent form: a
1382   given instruction always appears in *INSN the same way, regardless
1383   of whether the instruction stream is big-endian or little-endian.
1384
1385   *INSN's most significant 16 bits are the first (i.e., at lower
1386   addresses) 16 bit part of the instruction.  Its least significant
1387   16 bits are the second (i.e., higher-addressed) 16 bit part of the
1388   instruction, or zero for a 16-bit instruction.  Both 16-bit parts
1389   are fetched using the current endianness.
1390
1391   So, the *INSN values for the instruction sequence above would be
1392   the following, in either endianness:
1393
1394       0xd1561234       movu $1,0x123456
1395       0xc1285678 	sb $1,22136($2)
1396       0xf1011098 	clip $1,0x13
1397       0x70020000      	ret
1398
1399   (In a sense, it would be more natural to return 16-bit instructions
1400   in the least significant 16 bits of *INSN, but that would be
1401   ambiguous.  In order to tell whether you're looking at a 16- or a
1402   32-bit instruction, you have to consult the major opcode field ---
1403   the most significant four bits of the instruction's first 16-bit
1404   part.  But if we put 16-bit instructions at the least significant
1405   end of *INSN, then you don't know where to find the major opcode
1406   field until you know if it's a 16- or a 32-bit instruction ---
1407   which is where we started.)
1408
1409   If PC points to a core / coprocessor bundle in a VLIW section, set
1410   *INSN to the core instruction, and return the address of the next
1411   bundle.  This has the effect of skipping the bundled coprocessor
1412   instruction.  That's okay, since coprocessor instructions aren't
1413   significant to prologue analysis --- for the time being,
1414   anyway.  */
1415
1416static CORE_ADDR
1417mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, unsigned long *insn)
1418{
1419  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1420  int pc_in_vliw_section;
1421  int vliw_mode;
1422  int insn_len;
1423  gdb_byte buf[2];
1424
1425  *insn = 0;
1426
1427  /* Are we in a VLIW section?  */
1428  pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1429  if (pc_in_vliw_section)
1430    {
1431      /* Yes, find out which bundle size.  */
1432      vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1433
1434      /* If PC is in a VLIW section, but the current core doesn't say
1435         that it supports either VLIW mode, then we don't have enough
1436         information to parse the instruction stream it contains.
1437         Since the "undifferentiated" standard core doesn't have
1438         either VLIW mode bit set, this could happen.
1439
1440         But it shouldn't be an error to (say) set a breakpoint in a
1441         VLIW section, if you know you'll never reach it.  (Perhaps
1442         you have a script that sets a bunch of standard breakpoints.)
1443
1444         So we'll just return zero here, and hope for the best.  */
1445      if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1446        return 0;
1447
1448      /* If both VL32 and VL64 are set, that's bogus, too.  */
1449      if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1450        return 0;
1451    }
1452  else
1453    vliw_mode = 0;
1454
1455  read_memory (pc, buf, sizeof (buf));
1456  *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;
1457
1458  /* The major opcode --- the top four bits of the first 16-bit
1459     part --- indicates whether this instruction is 16 or 32 bits
1460     long.  All 32-bit instructions have a major opcode whose top
1461     two bits are 11; all the rest are 16-bit instructions.  */
1462  if ((*insn & 0xc0000000) == 0xc0000000)
1463    {
1464      /* Fetch the second 16-bit part of the instruction.  */
1465      read_memory (pc + 2, buf, sizeof (buf));
1466      *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
1467    }
1468
1469  /* If we're in VLIW code, then the VLIW width determines the address
1470     of the next instruction.  */
1471  if (vliw_mode)
1472    {
1473      /* In 32-bit VLIW code, all bundles are 32 bits long.  We ignore the
1474         coprocessor half of a core / copro bundle.  */
1475      if (vliw_mode == MEP_OPT_VL32)
1476        insn_len = 4;
1477
1478      /* In 64-bit VLIW code, all bundles are 64 bits long.  We ignore the
1479         coprocessor half of a core / copro bundle.  */
1480      else if (vliw_mode == MEP_OPT_VL64)
1481        insn_len = 8;
1482
1483      /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode.  */
1484      else
1485        gdb_assert_not_reached ("unexpected vliw mode");
1486    }
1487
1488  /* Otherwise, the top two bits of the major opcode are (again) what
1489     we need to check.  */
1490  else if ((*insn & 0xc0000000) == 0xc0000000)
1491    insn_len = 4;
1492  else
1493    insn_len = 2;
1494
1495  return pc + insn_len;
1496}
1497
1498
1499/* Sign-extend the LEN-bit value N.  */
1500#define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1501
1502/* Return the LEN-bit field at POS from I.  */
1503#define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1504
1505/* Like FIELD, but sign-extend the field's value.  */
1506#define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1507
1508
1509/* Macros for decoding instructions.
1510
1511   Remember that 16-bit instructions are placed in bits 16..31 of i,
1512   not at the least significant end; this means that the major opcode
1513   field is always in the same place, regardless of the width of the
1514   instruction.  As a reminder of this, we show the lower 16 bits of a
1515   16-bit instruction as xxxx_xxxx_xxxx_xxxx.  */
1516
1517/* SB Rn,(Rm)		      0000_nnnn_mmmm_1000 */
1518/* SH Rn,(Rm)		      0000_nnnn_mmmm_1001 */
1519/* SW Rn,(Rm)		      0000_nnnn_mmmm_1010 */
1520
1521/* SW Rn,disp16(Rm)	      1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1522#define IS_SW(i)	      (((i) & 0xf00f0000) == 0xc00a0000)
1523/* SB Rn,disp16(Rm)	      1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1524#define IS_SB(i)	      (((i) & 0xf00f0000) == 0xc0080000)
1525/* SH Rn,disp16(Rm)	      1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1526#define IS_SH(i)	      (((i) & 0xf00f0000) == 0xc0090000)
1527#define SWBH_32_BASE(i)       (FIELD (i, 20, 4))
1528#define SWBH_32_SOURCE(i)     (FIELD (i, 24, 4))
1529#define SWBH_32_OFFSET(i)     (SFIELD (i, 0, 16))
1530
1531/* SW Rn,disp7.align4(SP)     0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1532#define IS_SW_IMMD(i)	      (((i) & 0xf0830000) == 0x40020000)
1533#define SW_IMMD_SOURCE(i)     (FIELD (i, 24, 4))
1534#define SW_IMMD_OFFSET(i)     (FIELD (i, 18, 5) << 2)
1535
1536/* SW Rn,(Rm)                 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1537#define IS_SW_REG(i)	      (((i) & 0xf00f0000) == 0x000a0000)
1538#define SW_REG_SOURCE(i)      (FIELD (i, 24, 4))
1539#define SW_REG_BASE(i)        (FIELD (i, 20, 4))
1540
1541/* ADD3 Rl,Rn,Rm              1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1542#define IS_ADD3_16_REG(i)     (((i) & 0xf0000000) == 0x90000000)
1543#define ADD3_16_REG_SRC1(i)   (FIELD (i, 20, 4))               /* n */
1544#define ADD3_16_REG_SRC2(i)   (FIELD (i, 24, 4))               /* m */
1545
1546/* ADD3 Rn,Rm,imm16           1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1547#define IS_ADD3_32(i)	      (((i) & 0xf00f0000) == 0xc0000000)
1548#define ADD3_32_TARGET(i)     (FIELD (i, 24, 4))
1549#define ADD3_32_SOURCE(i)     (FIELD (i, 20, 4))
1550#define ADD3_32_OFFSET(i)     (SFIELD (i, 0, 16))
1551
1552/* ADD3 Rn,SP,imm7.align4     0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1553#define IS_ADD3_16(i)  	      (((i) & 0xf0830000) == 0x40000000)
1554#define ADD3_16_TARGET(i)     (FIELD (i, 24, 4))
1555#define ADD3_16_OFFSET(i)     (FIELD (i, 18, 5) << 2)
1556
1557/* ADD Rn,imm6		      0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1558#define IS_ADD(i) 	      (((i) & 0xf0030000) == 0x60000000)
1559#define ADD_TARGET(i)	      (FIELD (i, 24, 4))
1560#define ADD_OFFSET(i)         (SFIELD (i, 18, 6))
1561
1562/* LDC Rn,imm5		      0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1563                              imm5 = I||i[7:4] */
1564#define IS_LDC(i)	      (((i) & 0xf00e0000) == 0x700a0000)
1565#define LDC_IMM(i)            ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1566#define LDC_TARGET(i)         (FIELD (i, 24, 4))
1567
1568/* LW Rn,disp16(Rm)           1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd  */
1569#define IS_LW(i)              (((i) & 0xf00f0000) == 0xc00e0000)
1570#define LW_TARGET(i)          (FIELD (i, 24, 4))
1571#define LW_BASE(i)            (FIELD (i, 20, 4))
1572#define LW_OFFSET(i)          (SFIELD (i, 0, 16))
1573
1574/* MOV Rn,Rm		      0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1575#define IS_MOV(i)	      (((i) & 0xf00f0000) == 0x00000000)
1576#define MOV_TARGET(i)	      (FIELD (i, 24, 4))
1577#define MOV_SOURCE(i)	      (FIELD (i, 20, 4))
1578
1579/* BRA disp12.align2	      1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1580#define IS_BRA(i)	      (((i) & 0xf0010000) == 0xb0000000)
1581#define BRA_DISP(i)           (SFIELD (i, 17, 11) << 1)
1582
1583
1584/* This structure holds the results of a prologue analysis.  */
1585struct mep_prologue
1586{
1587  /* The architecture for which we generated this prologue info.  */
1588  struct gdbarch *gdbarch;
1589
1590  /* The offset from the frame base to the stack pointer --- always
1591     zero or negative.
1592
1593     Calling this a "size" is a bit misleading, but given that the
1594     stack grows downwards, using offsets for everything keeps one
1595     from going completely sign-crazy: you never change anything's
1596     sign for an ADD instruction; always change the second operand's
1597     sign for a SUB instruction; and everything takes care of
1598     itself.  */
1599  int frame_size;
1600
1601  /* Non-zero if this function has initialized the frame pointer from
1602     the stack pointer, zero otherwise.  */
1603  int has_frame_ptr;
1604
1605  /* If has_frame_ptr is non-zero, this is the offset from the frame
1606     base to where the frame pointer points.  This is always zero or
1607     negative.  */
1608  int frame_ptr_offset;
1609
1610  /* The address of the first instruction at which the frame has been
1611     set up and the arguments are where the debug info says they are
1612     --- as best as we can tell.  */
1613  CORE_ADDR prologue_end;
1614
1615  /* reg_offset[R] is the offset from the CFA at which register R is
1616     saved, or 1 if register R has not been saved.  (Real values are
1617     always zero or negative.)  */
1618  int reg_offset[MEP_NUM_REGS];
1619};
1620
1621/* Return non-zero if VALUE is an incoming argument register.  */
1622
1623static int
1624is_arg_reg (pv_t value)
1625{
1626  return (value.kind == pvk_register
1627          && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1628          && value.k == 0);
1629}
1630
1631/* Return non-zero if a store of REG's current value VALUE to ADDR is
1632   probably spilling an argument register to its stack slot in STACK.
1633   Such instructions should be included in the prologue, if possible.
1634
1635   The store is a spill if:
1636   - the value being stored is REG's original value;
1637   - the value has not already been stored somewhere in STACK; and
1638   - ADDR is a stack slot's address (e.g., relative to the original
1639     value of the SP).  */
1640static int
1641is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
1642	      struct pv_area *stack)
1643{
1644  return (is_arg_reg (value)
1645          && pv_is_register (addr, MEP_SP_REGNUM)
1646          && ! pv_area_find_reg (stack, gdbarch, value.reg, 0));
1647}
1648
1649
1650/* Function for finding saved registers in a 'struct pv_area'; we pass
1651   this to pv_area_scan.
1652
1653   If VALUE is a saved register, ADDR says it was saved at a constant
1654   offset from the frame base, and SIZE indicates that the whole
1655   register was saved, record its offset in RESULT_UNTYPED.  */
1656static void
1657check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1658{
1659  struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1660
1661  if (value.kind == pvk_register
1662      && value.k == 0
1663      && pv_is_register (addr, MEP_SP_REGNUM)
1664      && size == register_size (result->gdbarch, value.reg))
1665    result->reg_offset[value.reg] = addr.k;
1666}
1667
1668
1669/* Analyze a prologue starting at START_PC, going no further than
1670   LIMIT_PC.  Fill in RESULT as appropriate.  */
1671static void
1672mep_analyze_prologue (struct gdbarch *gdbarch,
1673		      CORE_ADDR start_pc, CORE_ADDR limit_pc,
1674                      struct mep_prologue *result)
1675{
1676  CORE_ADDR pc;
1677  unsigned long insn;
1678  int rn;
1679  int found_lp = 0;
1680  pv_t reg[MEP_NUM_REGS];
1681  struct pv_area *stack;
1682  struct cleanup *back_to;
1683  CORE_ADDR after_last_frame_setup_insn = start_pc;
1684
1685  memset (result, 0, sizeof (*result));
1686  result->gdbarch = gdbarch;
1687
1688  for (rn = 0; rn < MEP_NUM_REGS; rn++)
1689    {
1690      reg[rn] = pv_register (rn, 0);
1691      result->reg_offset[rn] = 1;
1692    }
1693
1694  stack = make_pv_area (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1695  back_to = make_cleanup_free_pv_area (stack);
1696
1697  pc = start_pc;
1698  while (pc < limit_pc)
1699    {
1700      CORE_ADDR next_pc;
1701      pv_t pre_insn_fp, pre_insn_sp;
1702
1703      next_pc = mep_get_insn (gdbarch, pc, &insn);
1704
1705      /* A zero return from mep_get_insn means that either we weren't
1706         able to read the instruction from memory, or that we don't
1707         have enough information to be able to reliably decode it.  So
1708         we'll store here and hope for the best.  */
1709      if (! next_pc)
1710        break;
1711
1712      /* Note the current values of the SP and FP, so we can tell if
1713         this instruction changed them, below.  */
1714      pre_insn_fp = reg[MEP_FP_REGNUM];
1715      pre_insn_sp = reg[MEP_SP_REGNUM];
1716
1717      if (IS_ADD (insn))
1718        {
1719          int rn = ADD_TARGET (insn);
1720          CORE_ADDR imm6 = ADD_OFFSET (insn);
1721
1722          reg[rn] = pv_add_constant (reg[rn], imm6);
1723        }
1724      else if (IS_ADD3_16 (insn))
1725	{
1726          int rn = ADD3_16_TARGET (insn);
1727          int imm7 = ADD3_16_OFFSET (insn);
1728
1729          reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1730        }
1731      else if (IS_ADD3_32 (insn))
1732	{
1733          int rn = ADD3_32_TARGET (insn);
1734          int rm = ADD3_32_SOURCE (insn);
1735          int imm16 = ADD3_32_OFFSET (insn);
1736
1737          reg[rn] = pv_add_constant (reg[rm], imm16);
1738	}
1739      else if (IS_SW_REG (insn))
1740        {
1741          int rn = SW_REG_SOURCE (insn);
1742          int rm = SW_REG_BASE (insn);
1743
1744          /* If simulating this store would require us to forget
1745             everything we know about the stack frame in the name of
1746             accuracy, it would be better to just quit now.  */
1747          if (pv_area_store_would_trash (stack, reg[rm]))
1748            break;
1749
1750          if (is_arg_spill (gdbarch, reg[rn], reg[rm], stack))
1751            after_last_frame_setup_insn = next_pc;
1752
1753          pv_area_store (stack, reg[rm], 4, reg[rn]);
1754        }
1755      else if (IS_SW_IMMD (insn))
1756        {
1757          int rn = SW_IMMD_SOURCE (insn);
1758          int offset = SW_IMMD_OFFSET (insn);
1759          pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1760
1761          /* If simulating this store would require us to forget
1762             everything we know about the stack frame in the name of
1763             accuracy, it would be better to just quit now.  */
1764          if (pv_area_store_would_trash (stack, addr))
1765            break;
1766
1767          if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1768            after_last_frame_setup_insn = next_pc;
1769
1770          pv_area_store (stack, addr, 4, reg[rn]);
1771        }
1772      else if (IS_MOV (insn))
1773	{
1774          int rn = MOV_TARGET (insn);
1775          int rm = MOV_SOURCE (insn);
1776
1777          reg[rn] = reg[rm];
1778
1779	  if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1780	    after_last_frame_setup_insn = next_pc;
1781	}
1782      else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1783	{
1784          int rn = SWBH_32_SOURCE (insn);
1785          int rm = SWBH_32_BASE (insn);
1786          int disp = SWBH_32_OFFSET (insn);
1787          int size = (IS_SB (insn) ? 1
1788                      : IS_SH (insn) ? 2
1789                      : (gdb_assert (IS_SW (insn)), 4));
1790          pv_t addr = pv_add_constant (reg[rm], disp);
1791
1792          if (pv_area_store_would_trash (stack, addr))
1793            break;
1794
1795          if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1796            after_last_frame_setup_insn = next_pc;
1797
1798          pv_area_store (stack, addr, size, reg[rn]);
1799	}
1800      else if (IS_LDC (insn))
1801	{
1802          int rn = LDC_TARGET (insn);
1803          int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1804
1805          reg[rn] = reg[cr];
1806	}
1807      else if (IS_LW (insn))
1808        {
1809          int rn = LW_TARGET (insn);
1810          int rm = LW_BASE (insn);
1811          int offset = LW_OFFSET (insn);
1812          pv_t addr = pv_add_constant (reg[rm], offset);
1813
1814          reg[rn] = pv_area_fetch (stack, addr, 4);
1815        }
1816      else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1817	{
1818	  /* When a loop appears as the first statement of a function
1819	     body, gcc 4.x will use a BRA instruction to branch to the
1820	     loop condition checking code.  This BRA instruction is
1821	     marked as part of the prologue.  We therefore set next_pc
1822	     to this branch target and also stop the prologue scan.
1823	     The instructions at and beyond the branch target should
1824	     no longer be associated with the prologue.
1825
1826	     Note that we only consider forward branches here.  We
1827	     presume that a forward branch is being used to skip over
1828	     a loop body.
1829
1830	     A backwards branch is covered by the default case below.
1831	     If we were to encounter a backwards branch, that would
1832	     most likely mean that we've scanned through a loop body.
1833	     We definitely want to stop the prologue scan when this
1834	     happens and that is precisely what is done by the default
1835	     case below.  */
1836	  next_pc = pc + BRA_DISP (insn);
1837	  after_last_frame_setup_insn = next_pc;
1838	  break;
1839	}
1840      else
1841        /* We've hit some instruction we don't know how to simulate.
1842           Strictly speaking, we should set every value we're
1843           tracking to "unknown".  But we'll be optimistic, assume
1844           that we have enough information already, and stop
1845           analysis here.  */
1846        break;
1847
1848      /* If this instruction changed the FP or decreased the SP (i.e.,
1849         allocated more stack space), then this may be a good place to
1850         declare the prologue finished.  However, there are some
1851         exceptions:
1852
1853         - If the instruction just changed the FP back to its original
1854           value, then that's probably a restore instruction.  The
1855           prologue should definitely end before that.
1856
1857         - If the instruction increased the value of the SP (that is,
1858           shrunk the frame), then it's probably part of a frame
1859           teardown sequence, and the prologue should end before that.  */
1860
1861      if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1862        {
1863          if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1864            after_last_frame_setup_insn = next_pc;
1865        }
1866      else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1867        {
1868          /* The comparison of constants looks odd, there, because .k
1869             is unsigned.  All it really means is that the new value
1870             is lower than it was before the instruction.  */
1871          if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1872              && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1873              && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1874                  < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1875            after_last_frame_setup_insn = next_pc;
1876        }
1877
1878      pc = next_pc;
1879    }
1880
1881  /* Is the frame size (offset, really) a known constant?  */
1882  if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1883    result->frame_size = reg[MEP_SP_REGNUM].k;
1884
1885  /* Was the frame pointer initialized?  */
1886  if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1887    {
1888      result->has_frame_ptr = 1;
1889      result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1890    }
1891
1892  /* Record where all the registers were saved.  */
1893  pv_area_scan (stack, check_for_saved, (void *) result);
1894
1895  result->prologue_end = after_last_frame_setup_insn;
1896
1897  do_cleanups (back_to);
1898}
1899
1900
1901static CORE_ADDR
1902mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1903{
1904  const char *name;
1905  CORE_ADDR func_addr, func_end;
1906  struct mep_prologue p;
1907
1908  /* Try to find the extent of the function that contains PC.  */
1909  if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1910    return pc;
1911
1912  mep_analyze_prologue (gdbarch, pc, func_end, &p);
1913  return p.prologue_end;
1914}
1915
1916
1917
1918/* Breakpoints.  */
1919
1920static const unsigned char *
1921mep_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1922{
1923  static unsigned char breakpoint[] = { 0x70, 0x32 };
1924  *lenptr = sizeof (breakpoint);
1925  return breakpoint;
1926}
1927
1928
1929
1930/* Frames and frame unwinding.  */
1931
1932
1933static struct mep_prologue *
1934mep_analyze_frame_prologue (struct frame_info *this_frame,
1935                            void **this_prologue_cache)
1936{
1937  if (! *this_prologue_cache)
1938    {
1939      CORE_ADDR func_start, stop_addr;
1940
1941      *this_prologue_cache
1942        = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1943
1944      func_start = get_frame_func (this_frame);
1945      stop_addr = get_frame_pc (this_frame);
1946
1947      /* If we couldn't find any function containing the PC, then
1948         just initialize the prologue cache, but don't do anything.  */
1949      if (! func_start)
1950        stop_addr = func_start;
1951
1952      mep_analyze_prologue (get_frame_arch (this_frame),
1953			    func_start, stop_addr, *this_prologue_cache);
1954    }
1955
1956  return *this_prologue_cache;
1957}
1958
1959
1960/* Given the next frame and a prologue cache, return this frame's
1961   base.  */
1962static CORE_ADDR
1963mep_frame_base (struct frame_info *this_frame,
1964                void **this_prologue_cache)
1965{
1966  struct mep_prologue *p
1967    = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1968
1969  /* In functions that use alloca, the distance between the stack
1970     pointer and the frame base varies dynamically, so we can't use
1971     the SP plus static information like prologue analysis to find the
1972     frame base.  However, such functions must have a frame pointer,
1973     to be able to restore the SP on exit.  So whenever we do have a
1974     frame pointer, use that to find the base.  */
1975  if (p->has_frame_ptr)
1976    {
1977      CORE_ADDR fp
1978        = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
1979      return fp - p->frame_ptr_offset;
1980    }
1981  else
1982    {
1983      CORE_ADDR sp
1984        = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
1985      return sp - p->frame_size;
1986    }
1987}
1988
1989
1990static void
1991mep_frame_this_id (struct frame_info *this_frame,
1992                   void **this_prologue_cache,
1993                   struct frame_id *this_id)
1994{
1995  *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
1996                             get_frame_func (this_frame));
1997}
1998
1999
2000static struct value *
2001mep_frame_prev_register (struct frame_info *this_frame,
2002                         void **this_prologue_cache, int regnum)
2003{
2004  struct mep_prologue *p
2005    = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
2006
2007  /* There are a number of complications in unwinding registers on the
2008     MeP, having to do with core functions calling VLIW functions and
2009     vice versa.
2010
2011     The least significant bit of the link register, LP.LTOM, is the
2012     VLIW mode toggle bit: it's set if a core function called a VLIW
2013     function, or vice versa, and clear when the caller and callee
2014     were both in the same mode.
2015
2016     So, if we're asked to unwind the PC, then we really want to
2017     unwind the LP and clear the least significant bit.  (Real return
2018     addresses are always even.)  And if we want to unwind the program
2019     status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2020
2021     Tweaking the register values we return in this way means that the
2022     bits in BUFFERP[] are not the same as the bits you'd find at
2023     ADDRP in the inferior, so we make sure lvalp is not_lval when we
2024     do this.  */
2025  if (regnum == MEP_PC_REGNUM)
2026    {
2027      struct value *value;
2028      CORE_ADDR lp;
2029      value = mep_frame_prev_register (this_frame, this_prologue_cache,
2030				       MEP_LP_REGNUM);
2031      lp = value_as_long (value);
2032      release_value (value);
2033      value_free (value);
2034
2035      return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
2036    }
2037  else
2038    {
2039      CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
2040      struct value *value;
2041
2042      /* Our caller's SP is our frame base.  */
2043      if (regnum == MEP_SP_REGNUM)
2044	return frame_unwind_got_constant (this_frame, regnum, frame_base);
2045
2046      /* If prologue analysis says we saved this register somewhere,
2047         return a description of the stack slot holding it.  */
2048      if (p->reg_offset[regnum] != 1)
2049	value = frame_unwind_got_memory (this_frame, regnum,
2050					 frame_base + p->reg_offset[regnum]);
2051
2052      /* Otherwise, presume we haven't changed the value of this
2053         register, and get it from the next frame.  */
2054      else
2055	value = frame_unwind_got_register (this_frame, regnum, regnum);
2056
2057      /* If we need to toggle the operating mode, do so.  */
2058      if (regnum == MEP_PSW_REGNUM)
2059        {
2060	  CORE_ADDR psw, lp;
2061
2062	  psw = value_as_long (value);
2063	  release_value (value);
2064	  value_free (value);
2065
2066          /* Get the LP's value, too.  */
2067	  value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
2068	  lp = value_as_long (value);
2069	  release_value (value);
2070	  value_free (value);
2071
2072          /* If LP.LTOM is set, then toggle PSW.OM.  */
2073	  if (lp & 0x1)
2074	    psw ^= 0x1000;
2075
2076	  return frame_unwind_got_constant (this_frame, regnum, psw);
2077        }
2078
2079      return value;
2080    }
2081}
2082
2083
2084static const struct frame_unwind mep_frame_unwind = {
2085  NORMAL_FRAME,
2086  default_frame_unwind_stop_reason,
2087  mep_frame_this_id,
2088  mep_frame_prev_register,
2089  NULL,
2090  default_frame_sniffer
2091};
2092
2093
2094/* Our general unwinding function can handle unwinding the PC.  */
2095static CORE_ADDR
2096mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2097{
2098  return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2099}
2100
2101
2102/* Our general unwinding function can handle unwinding the SP.  */
2103static CORE_ADDR
2104mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2105{
2106  return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2107}
2108
2109
2110
2111/* Return values.  */
2112
2113
2114static int
2115mep_use_struct_convention (struct type *type)
2116{
2117  return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2118}
2119
2120
2121static void
2122mep_extract_return_value (struct gdbarch *arch,
2123                          struct type *type,
2124                          struct regcache *regcache,
2125                          gdb_byte *valbuf)
2126{
2127  int byte_order = gdbarch_byte_order (arch);
2128
2129  /* Values that don't occupy a full register appear at the less
2130     significant end of the value.  This is the offset to where the
2131     value starts.  */
2132  int offset;
2133
2134  /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2135     pointed to by R0.  */
2136  gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2137
2138  if (byte_order == BFD_ENDIAN_BIG)
2139    offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2140  else
2141    offset = 0;
2142
2143  /* Return values that do fit in a single register are returned in R0.  */
2144  regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2145                             offset, TYPE_LENGTH (type),
2146                             valbuf);
2147}
2148
2149
2150static void
2151mep_store_return_value (struct gdbarch *arch,
2152                        struct type *type,
2153                        struct regcache *regcache,
2154                        const gdb_byte *valbuf)
2155{
2156  int byte_order = gdbarch_byte_order (arch);
2157
2158  /* Values that fit in a single register go in R0.  */
2159  if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2160    {
2161      /* Values that don't occupy a full register appear at the least
2162         significant end of the value.  This is the offset to where the
2163         value starts.  */
2164      int offset;
2165
2166      if (byte_order == BFD_ENDIAN_BIG)
2167        offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2168      else
2169        offset = 0;
2170
2171      regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2172                                  offset, TYPE_LENGTH (type),
2173                                  valbuf);
2174    }
2175
2176  /* Return values larger than a single register are returned in
2177     memory, pointed to by R0.  Unfortunately, we can't count on R0
2178     pointing to the return buffer, so we raise an error here.  */
2179  else
2180    error (_("\
2181GDB cannot set return values larger than four bytes; the Media Processor's\n\
2182calling conventions do not provide enough information to do this.\n\
2183Try using the 'return' command with no argument."));
2184}
2185
2186static enum return_value_convention
2187mep_return_value (struct gdbarch *gdbarch, struct value *function,
2188		  struct type *type, struct regcache *regcache,
2189		  gdb_byte *readbuf, const gdb_byte *writebuf)
2190{
2191  if (mep_use_struct_convention (type))
2192    {
2193      if (readbuf)
2194	{
2195	  ULONGEST addr;
2196	  /* Although the address of the struct buffer gets passed in R1, it's
2197	     returned in R0.  Fetch R0's value and then read the memory
2198	     at that address.  */
2199	  regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2200	  read_memory (addr, readbuf, TYPE_LENGTH (type));
2201	}
2202      if (writebuf)
2203	{
2204	  /* Return values larger than a single register are returned in
2205	     memory, pointed to by R0.  Unfortunately, we can't count on R0
2206	     pointing to the return buffer, so we raise an error here.  */
2207	  error (_("\
2208GDB cannot set return values larger than four bytes; the Media Processor's\n\
2209calling conventions do not provide enough information to do this.\n\
2210Try using the 'return' command with no argument."));
2211	}
2212      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2213    }
2214
2215  if (readbuf)
2216    mep_extract_return_value (gdbarch, type, regcache, readbuf);
2217  if (writebuf)
2218    mep_store_return_value (gdbarch, type, regcache, writebuf);
2219
2220  return RETURN_VALUE_REGISTER_CONVENTION;
2221}
2222
2223
2224/* Inferior calls.  */
2225
2226
2227static CORE_ADDR
2228mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2229{
2230  /* Require word alignment.  */
2231  return sp & -4;
2232}
2233
2234
2235/* From "lang_spec2.txt":
2236
2237   4.2 Calling conventions
2238
2239   4.2.1 Core register conventions
2240
2241   - Parameters should be evaluated from left to right, and they
2242     should be held in $1,$2,$3,$4 in order.  The fifth parameter or
2243     after should be held in the stack.  If the size is larger than 4
2244     bytes in the first four parameters, the pointer should be held in
2245     the registers instead.  If the size is larger than 4 bytes in the
2246     fifth parameter or after, the pointer should be held in the stack.
2247
2248   - Return value of a function should be held in register $0.  If the
2249     size of return value is larger than 4 bytes, $1 should hold the
2250     pointer pointing memory that would hold the return value.  In this
2251     case, the first parameter should be held in $2, the second one in
2252     $3, and the third one in $4, and the forth parameter or after
2253     should be held in the stack.
2254
2255   [This doesn't say so, but arguments shorter than four bytes are
2256   passed in the least significant end of a four-byte word when
2257   they're passed on the stack.]  */
2258
2259
2260/* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2261   large to fit in a register, save it on the stack, and place its
2262   address in COPY[i].  SP is the initial stack pointer; return the
2263   new stack pointer.  */
2264static CORE_ADDR
2265push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2266                      CORE_ADDR copy[])
2267{
2268  int i;
2269
2270  for (i = 0; i < argc; i++)
2271    {
2272      unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2273
2274      if (arg_len > MEP_GPR_SIZE)
2275        {
2276          /* Reserve space for the copy, and then round the SP down, to
2277             make sure it's all aligned properly.  */
2278          sp = (sp - arg_len) & -4;
2279          write_memory (sp, value_contents (argv[i]), arg_len);
2280          copy[i] = sp;
2281        }
2282    }
2283
2284  return sp;
2285}
2286
2287
2288static CORE_ADDR
2289mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2290                     struct regcache *regcache, CORE_ADDR bp_addr,
2291                     int argc, struct value **argv, CORE_ADDR sp,
2292                     int struct_return,
2293                     CORE_ADDR struct_addr)
2294{
2295  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2296  CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2297  CORE_ADDR func_addr = find_function_addr (function, NULL);
2298  int i;
2299
2300  /* The number of the next register available to hold an argument.  */
2301  int arg_reg;
2302
2303  /* The address of the next stack slot available to hold an argument.  */
2304  CORE_ADDR arg_stack;
2305
2306  /* The address of the end of the stack area for arguments.  This is
2307     just for error checking.  */
2308  CORE_ADDR arg_stack_end;
2309
2310  sp = push_large_arguments (sp, argc, argv, copy);
2311
2312  /* Reserve space for the stack arguments, if any.  */
2313  arg_stack_end = sp;
2314  if (argc + (struct_addr ? 1 : 0) > 4)
2315    sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2316
2317  arg_reg = MEP_R1_REGNUM;
2318  arg_stack = sp;
2319
2320  /* If we're returning a structure by value, push the pointer to the
2321     buffer as the first argument.  */
2322  if (struct_return)
2323    {
2324      regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2325      arg_reg++;
2326    }
2327
2328  for (i = 0; i < argc; i++)
2329    {
2330      ULONGEST value;
2331
2332      /* Arguments that fit in a GPR get expanded to fill the GPR.  */
2333      if (TYPE_LENGTH (value_type (argv[i])) <= MEP_GPR_SIZE)
2334        value = extract_unsigned_integer (value_contents (argv[i]),
2335                                          TYPE_LENGTH (value_type (argv[i])),
2336					  byte_order);
2337
2338      /* Arguments too large to fit in a GPR get copied to the stack,
2339         and we pass a pointer to the copy.  */
2340      else
2341        value = copy[i];
2342
2343      /* We use $1 -- $4 for passing arguments, then use the stack.  */
2344      if (arg_reg <= MEP_R4_REGNUM)
2345        {
2346          regcache_cooked_write_unsigned (regcache, arg_reg, value);
2347          arg_reg++;
2348        }
2349      else
2350        {
2351          gdb_byte buf[MEP_GPR_SIZE];
2352          store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
2353          write_memory (arg_stack, buf, MEP_GPR_SIZE);
2354          arg_stack += MEP_GPR_SIZE;
2355        }
2356    }
2357
2358  gdb_assert (arg_stack <= arg_stack_end);
2359
2360  /* Set the return address.  */
2361  regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2362
2363  /* Update the stack pointer.  */
2364  regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2365
2366  return sp;
2367}
2368
2369
2370static struct frame_id
2371mep_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2372{
2373  CORE_ADDR sp = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
2374  return frame_id_build (sp, get_frame_pc (this_frame));
2375}
2376
2377
2378
2379/* Initialization.  */
2380
2381
2382static struct gdbarch *
2383mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2384{
2385  struct gdbarch *gdbarch;
2386  struct gdbarch_tdep *tdep;
2387
2388  /* Which me_module are we building a gdbarch object for?  */
2389  CONFIG_ATTR me_module;
2390
2391  /* If we have a BFD in hand, figure out which me_module it was built
2392     for.  Otherwise, use the no-particular-me_module code.  */
2393  if (info.abfd)
2394    {
2395      /* The way to get the me_module code depends on the object file
2396         format.  At the moment, we only know how to handle ELF.  */
2397      if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2398        me_module = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2399      else
2400        me_module = CONFIG_NONE;
2401    }
2402  else
2403    me_module = CONFIG_NONE;
2404
2405  /* If we're setting the architecture from a file, check the
2406     endianness of the file against that of the me_module.  */
2407  if (info.abfd)
2408    {
2409      /* The negations on either side make the comparison treat all
2410         non-zero (true) values as equal.  */
2411      if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2412        {
2413          const char *module_name = me_module_name (me_module);
2414          const char *module_endianness
2415            = me_module_big_endian (me_module) ? "big" : "little";
2416          const char *file_name = bfd_get_filename (info.abfd);
2417          const char *file_endianness
2418            = bfd_big_endian (info.abfd) ? "big" : "little";
2419
2420          fputc_unfiltered ('\n', gdb_stderr);
2421          if (module_name)
2422            warning (_("the MeP module '%s' is %s-endian, but the executable\n"
2423		       "%s is %s-endian."),
2424                     module_name, module_endianness,
2425                     file_name, file_endianness);
2426          else
2427            warning (_("the selected MeP module is %s-endian, but the "
2428		       "executable\n"
2429		       "%s is %s-endian."),
2430                     module_endianness, file_name, file_endianness);
2431        }
2432    }
2433
2434  /* Find a candidate among the list of architectures we've created
2435     already.  info->bfd_arch_info needs to match, but we also want
2436     the right me_module: the ELF header's e_flags field needs to
2437     match as well.  */
2438  for (arches = gdbarch_list_lookup_by_info (arches, &info);
2439       arches != NULL;
2440       arches = gdbarch_list_lookup_by_info (arches->next, &info))
2441    if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2442      return arches->gdbarch;
2443
2444  tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
2445  gdbarch = gdbarch_alloc (&info, tdep);
2446
2447  /* Get a CGEN CPU descriptor for this architecture.  */
2448  {
2449    const char *mach_name = info.bfd_arch_info->printable_name;
2450    enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2451                               ? CGEN_ENDIAN_BIG
2452                               : CGEN_ENDIAN_LITTLE);
2453
2454    tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2455                                        CGEN_CPU_OPEN_ENDIAN, endian,
2456                                        CGEN_CPU_OPEN_END);
2457  }
2458
2459  tdep->me_module = me_module;
2460
2461  /* Register set.  */
2462  set_gdbarch_read_pc (gdbarch, mep_read_pc);
2463  set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2464  set_gdbarch_pc_regnum (gdbarch, MEP_PC_REGNUM);
2465  set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2466  set_gdbarch_register_name (gdbarch, mep_register_name);
2467  set_gdbarch_register_type (gdbarch, mep_register_type);
2468  set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2469  set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2470  set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2471  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2472  set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2473
2474  set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2475  reggroup_add (gdbarch, all_reggroup);
2476  reggroup_add (gdbarch, general_reggroup);
2477  reggroup_add (gdbarch, save_reggroup);
2478  reggroup_add (gdbarch, restore_reggroup);
2479  reggroup_add (gdbarch, mep_csr_reggroup);
2480  reggroup_add (gdbarch, mep_cr_reggroup);
2481  reggroup_add (gdbarch, mep_ccr_reggroup);
2482
2483  /* Disassembly.  */
2484  set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2485
2486  /* Breakpoints.  */
2487  set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
2488  set_gdbarch_decr_pc_after_break (gdbarch, 0);
2489  set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2490
2491  /* Frames and frame unwinding.  */
2492  frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
2493  set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2494  set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2495  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2496  set_gdbarch_frame_args_skip (gdbarch, 0);
2497
2498  /* Return values.  */
2499  set_gdbarch_return_value (gdbarch, mep_return_value);
2500
2501  /* Inferior function calls.  */
2502  set_gdbarch_frame_align (gdbarch, mep_frame_align);
2503  set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2504  set_gdbarch_dummy_id (gdbarch, mep_dummy_id);
2505
2506  return gdbarch;
2507}
2508
2509/* Provide a prototype to silence -Wmissing-prototypes.  */
2510extern initialize_file_ftype _initialize_mep_tdep;
2511
2512void
2513_initialize_mep_tdep (void)
2514{
2515  mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2516  mep_cr_reggroup  = reggroup_new ("cr", USER_REGGROUP);
2517  mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2518
2519  register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2520
2521  mep_init_pseudoregister_maps ();
2522}
2523