mep-tdep.c revision 1.1
1/* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
2
3   Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5   Contributed by Red Hat, Inc.
6
7   This file is part of GDB.
8
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 3 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
22#include "defs.h"
23#include "frame.h"
24#include "frame-unwind.h"
25#include "frame-base.h"
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "gdbcore.h"
30#include <string.h>
31#include "value.h"
32#include "inferior.h"
33#include "dis-asm.h"
34#include "symfile.h"
35#include "objfiles.h"
36#include "language.h"
37#include "arch-utils.h"
38#include "regcache.h"
39#include "remote.h"
40#include "floatformat.h"
41#include "sim-regno.h"
42#include "disasm.h"
43#include "trad-frame.h"
44#include "reggroups.h"
45#include "elf-bfd.h"
46#include "elf/mep.h"
47#include "prologue-value.h"
48#include "cgen/bitset.h"
49#include "infcall.h"
50
51#include "gdb_assert.h"
52
53/* Get the user's customized MeP coprocessor register names from
54   libopcodes.  */
55#include "opcodes/mep-desc.h"
56#include "opcodes/mep-opc.h"
57
58
59/* The gdbarch_tdep structure.  */
60
61/* A quick recap for GDB hackers not familiar with the whole Toshiba
62   Media Processor story:
63
64   The MeP media engine is a configureable processor: users can design
65   their own coprocessors, implement custom instructions, adjust cache
66   sizes, select optional standard facilities like add-and-saturate
67   instructions, and so on.  Then, they can build custom versions of
68   the GNU toolchain to support their customized chips.  The
69   MeP-Integrator program (see utils/mep) takes a GNU toolchain source
70   tree, and a config file pointing to various files provided by the
71   user describing their customizations, and edits the source tree to
72   produce a compiler that can generate their custom instructions, an
73   assembler that can assemble them and recognize their custom
74   register names, and so on.
75
76   Furthermore, the user can actually specify several of these custom
77   configurations, called 'me_modules', and get a toolchain which can
78   produce code for any of them, given a compiler/assembler switch;
79   you say something like 'gcc -mconfig=mm_max' to generate code for
80   the me_module named 'mm_max'.
81
82   GDB, in particular, needs to:
83
84   - use the coprocessor control register names provided by the user
85     in their hardware description, in expressions, 'info register'
86     output, and disassembly,
87
88   - know the number, names, and types of the coprocessor's
89     general-purpose registers, adjust the 'info all-registers' output
90     accordingly, and print error messages if the user refers to one
91     that doesn't exist
92
93   - allow access to the control bus space only when the configuration
94     actually has a control bus, and recognize which regions of the
95     control bus space are actually populated,
96
97   - disassemble using the user's provided mnemonics for their custom
98     instructions, and
99
100   - recognize whether the $hi and $lo registers are present, and
101     allow access to them only when they are actually there.
102
103   There are three sources of information about what sort of me_module
104   we're actually dealing with:
105
106   - A MeP executable file indicates which me_module it was compiled
107     for, and libopcodes has tables describing each module.  So, given
108     an executable file, we can find out about the processor it was
109     compiled for.
110
111   - There are SID command-line options to select a particular
112     me_module, overriding the one specified in the ELF file.  SID
113     provides GDB with a fake read-only register, 'module', which
114     indicates which me_module GDB is communicating with an instance
115     of.
116
117   - There are SID command-line options to enable or disable certain
118     optional processor features, overriding the defaults for the
119     selected me_module.  The MeP $OPT register indicates which
120     options are present on the current processor.  */
121
122
123struct gdbarch_tdep
124{
125  /* A CGEN cpu descriptor for this BFD architecture and machine.
126
127     Note: this is *not* customized for any particular me_module; the
128     MeP libopcodes machinery actually puts off module-specific
129     customization until the last minute.  So this contains
130     information about all supported me_modules.  */
131  CGEN_CPU_DESC cpu_desc;
132
133  /* The me_module index from the ELF file we used to select this
134     architecture, or CONFIG_NONE if there was none.
135
136     Note that we should prefer to use the me_module number available
137     via the 'module' register, whenever we're actually talking to a
138     real target.
139
140     In the absence of live information, we'd like to get the
141     me_module number from the ELF file.  But which ELF file: the
142     executable file, the core file, ... ?  The answer is, "the last
143     ELF file we used to set the current architecture".  Thus, we
144     create a separate instance of the gdbarch structure for each
145     me_module value mep_gdbarch_init sees, and store the me_module
146     value from the ELF file here.  */
147  CONFIG_ATTR me_module;
148};
149
150
151
152/* Getting me_module information from the CGEN tables.  */
153
154
155/* Find an entry in the DESC's hardware table whose name begins with
156   PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
157   intersect with GENERIC_ISA_MASK.  If there is no matching entry,
158   return zero.  */
159static const CGEN_HW_ENTRY *
160find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
161                                 const char *prefix,
162                                 CGEN_BITSET *copro_isa_mask,
163                                 CGEN_BITSET *generic_isa_mask)
164{
165  int prefix_len = strlen (prefix);
166  int i;
167
168  for (i = 0; i < desc->hw_table.num_entries; i++)
169    {
170      const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
171      if (strncmp (prefix, hw->name, prefix_len) == 0)
172        {
173          CGEN_BITSET *hw_isa_mask
174            = ((CGEN_BITSET *)
175               &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
176
177          if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
178              && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
179            return hw;
180        }
181    }
182
183  return 0;
184}
185
186
187/* Find an entry in DESC's hardware table whose type is TYPE.  Return
188   zero if there is none.  */
189static const CGEN_HW_ENTRY *
190find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
191{
192  int i;
193
194  for (i = 0; i < desc->hw_table.num_entries; i++)
195    {
196      const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
197
198      if (hw->type == type)
199        return hw;
200    }
201
202  return 0;
203}
204
205
206/* Return the CGEN hardware table entry for the coprocessor register
207   set for ME_MODULE, whose name prefix is PREFIX.  If ME_MODULE has
208   no such register set, return zero.  If ME_MODULE is the generic
209   me_module CONFIG_NONE, return the table entry for the register set
210   whose hardware type is GENERIC_TYPE.  */
211static const CGEN_HW_ENTRY *
212me_module_register_set (CONFIG_ATTR me_module,
213                        const char *prefix,
214                        CGEN_HW_TYPE generic_type)
215{
216  /* This is kind of tricky, because the hardware table is constructed
217     in a way that isn't very helpful.  Perhaps we can fix that, but
218     here's how it works at the moment:
219
220     The configuration map, `mep_config_map', is indexed by me_module
221     number, and indicates which coprocessor and core ISAs that
222     me_module supports.  The 'core_isa' mask includes all the core
223     ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
224     The entry for the generic me_module, CONFIG_NONE, has an empty
225     'cop_isa', and its 'core_isa' selects only the standard MeP
226     instruction set.
227
228     The CGEN CPU descriptor's hardware table, desc->hw_table, has
229     entries for all the register sets, for all me_modules.  Each
230     entry has a mask indicating which ISAs use that register set.
231     So, if an me_module supports some coprocessor ISA, we can find
232     applicable register sets by scanning the hardware table for
233     register sets whose masks include (at least some of) those ISAs.
234
235     Each hardware table entry also has a name, whose prefix says
236     whether it's a general-purpose ("h-cr") or control ("h-ccr")
237     coprocessor register set.  It might be nicer to have an attribute
238     indicating what sort of register set it was, that we could use
239     instead of pattern-matching on the name.
240
241     When there is no hardware table entry whose mask includes a
242     particular coprocessor ISA and whose name starts with a given
243     prefix, then that means that that coprocessor doesn't have any
244     registers of that type.  In such cases, this function must return
245     a null pointer.
246
247     Coprocessor register sets' masks may or may not include the core
248     ISA for the me_module they belong to.  Those generated by a2cgen
249     do, but the sample me_module included in the unconfigured tree,
250     'ccfx', does not.
251
252     There are generic coprocessor register sets, intended only for
253     use with the generic me_module.  Unfortunately, their masks
254     include *all* ISAs --- even those for coprocessors that don't
255     have such register sets.  This makes detecting the case where a
256     coprocessor lacks a particular register set more complicated.
257
258     So, here's the approach we take:
259
260     - For CONFIG_NONE, we return the generic coprocessor register set.
261
262     - For any other me_module, we search for a register set whose
263       mask contains any of the me_module's coprocessor ISAs,
264       specifically excluding the generic coprocessor register sets.  */
265
266  CGEN_CPU_DESC desc = gdbarch_tdep (target_gdbarch ())->cpu_desc;
267  const CGEN_HW_ENTRY *hw;
268
269  if (me_module == CONFIG_NONE)
270    hw = find_hw_entry_by_type (desc, generic_type);
271  else
272    {
273      CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
274      CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
275      CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
276      CGEN_BITSET *cop_and_core;
277
278      /* The coprocessor ISAs include the ISA for the specific core which
279	 has that coprocessor.  */
280      cop_and_core = cgen_bitset_copy (cop);
281      cgen_bitset_union (cop, core, cop_and_core);
282      hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
283    }
284
285  return hw;
286}
287
288
289/* Given a hardware table entry HW representing a register set, return
290   a pointer to the keyword table with all the register names.  If HW
291   is NULL, return NULL, to propage the "no such register set" info
292   along.  */
293static CGEN_KEYWORD *
294register_set_keyword_table (const CGEN_HW_ENTRY *hw)
295{
296  if (! hw)
297    return NULL;
298
299  /* Check that HW is actually a keyword table.  */
300  gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
301
302  /* The 'asm_data' field of a register set's hardware table entry
303     refers to a keyword table.  */
304  return (CGEN_KEYWORD *) hw->asm_data;
305}
306
307
308/* Given a keyword table KEYWORD and a register number REGNUM, return
309   the name of the register, or "" if KEYWORD contains no register
310   whose number is REGNUM.  */
311static char *
312register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
313{
314  const CGEN_KEYWORD_ENTRY *entry
315    = cgen_keyword_lookup_value (keyword_table, regnum);
316
317  if (entry)
318    {
319      char *name = entry->name;
320
321      /* The CGEN keyword entries for register names include the
322         leading $, which appears in MeP assembly as well as in GDB.
323         But we don't want to return that; GDB core code adds that
324         itself.  */
325      if (name[0] == '$')
326        name++;
327
328      return name;
329    }
330  else
331    return "";
332}
333
334
335/* Masks for option bits in the OPT special-purpose register.  */
336enum {
337  MEP_OPT_DIV = 1 << 25,        /* 32-bit divide instruction option */
338  MEP_OPT_MUL = 1 << 24,        /* 32-bit multiply instruction option */
339  MEP_OPT_BIT = 1 << 23,        /* bit manipulation instruction option */
340  MEP_OPT_SAT = 1 << 22,        /* saturation instruction option */
341  MEP_OPT_CLP = 1 << 21,        /* clip instruction option */
342  MEP_OPT_MIN = 1 << 20,        /* min/max instruction option */
343  MEP_OPT_AVE = 1 << 19,        /* average instruction option */
344  MEP_OPT_ABS = 1 << 18,        /* absolute difference instruction option */
345  MEP_OPT_LDZ = 1 << 16,        /* leading zero instruction option */
346  MEP_OPT_VL64 = 1 << 6,        /* 64-bit VLIW operation mode option */
347  MEP_OPT_VL32 = 1 << 5,        /* 32-bit VLIW operation mode option */
348  MEP_OPT_COP = 1 << 4,         /* coprocessor option */
349  MEP_OPT_DSP = 1 << 2,         /* DSP option */
350  MEP_OPT_UCI = 1 << 1,         /* UCI option */
351  MEP_OPT_DBG = 1 << 0,         /* DBG function option */
352};
353
354
355/* Given the option_mask value for a particular entry in
356   mep_config_map, produce the value the processor's OPT register
357   would use to represent the same set of options.  */
358static unsigned int
359opt_from_option_mask (unsigned int option_mask)
360{
361  /* A table mapping OPT register bits onto CGEN config map option
362     bits.  */
363  struct {
364    unsigned int opt_bit, option_mask_bit;
365  } bits[] = {
366    { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
367    { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
368    { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
369    { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
370    { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
371    { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
372    { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
373    { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
374    { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
375    { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
376    { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
377    { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
378    { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
379  };
380
381  int i;
382  unsigned int opt = 0;
383
384  for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
385    if (option_mask & bits[i].option_mask_bit)
386      opt |= bits[i].opt_bit;
387
388  return opt;
389}
390
391
392/* Return the value the $OPT register would use to represent the set
393   of options for ME_MODULE.  */
394static unsigned int
395me_module_opt (CONFIG_ATTR me_module)
396{
397  return opt_from_option_mask (mep_config_map[me_module].option_mask);
398}
399
400
401/* Return the width of ME_MODULE's coprocessor data bus, in bits.
402   This is either 32 or 64.  */
403static int
404me_module_cop_data_bus_width (CONFIG_ATTR me_module)
405{
406  if (mep_config_map[me_module].option_mask
407      & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
408    return 64;
409  else
410    return 32;
411}
412
413
414/* Return true if ME_MODULE is big-endian, false otherwise.  */
415static int
416me_module_big_endian (CONFIG_ATTR me_module)
417{
418  return mep_config_map[me_module].big_endian;
419}
420
421
422/* Return the name of ME_MODULE, or NULL if it has no name.  */
423static const char *
424me_module_name (CONFIG_ATTR me_module)
425{
426  /* The default me_module has "" as its name, but it's easier for our
427     callers to test for NULL.  */
428  if (! mep_config_map[me_module].name
429      || mep_config_map[me_module].name[0] == '\0')
430    return NULL;
431  else
432    return mep_config_map[me_module].name;
433}
434
435/* Register set.  */
436
437
438/* The MeP spec defines the following registers:
439   16 general purpose registers (r0-r15)
440   32 control/special registers (csr0-csr31)
441   32 coprocessor general-purpose registers (c0 -- c31)
442   64 coprocessor control registers (ccr0 -- ccr63)
443
444   For the raw registers, we assign numbers here explicitly, instead
445   of letting the enum assign them for us; the numbers are a matter of
446   external protocol, and shouldn't shift around as things are edited.
447
448   We access the control/special registers via pseudoregisters, to
449   enforce read-only portions that some registers have.
450
451   We access the coprocessor general purpose and control registers via
452   pseudoregisters, to make sure they appear in the proper order in
453   the 'info all-registers' command (which uses the register number
454   ordering), and also to allow them to be renamed and resized
455   depending on the me_module in use.
456
457   The MeP allows coprocessor general-purpose registers to be either
458   32 or 64 bits long, depending on the configuration.  Since we don't
459   want the format of the 'g' packet to vary from one core to another,
460   the raw coprocessor GPRs are always 64 bits.  GDB doesn't allow the
461   types of registers to change (see the implementation of
462   register_type), so we have four banks of pseudoregisters for the
463   coprocessor gprs --- 32-bit vs. 64-bit, and integer
464   vs. floating-point --- and we show or hide them depending on the
465   configuration.  */
466enum
467{
468  MEP_FIRST_RAW_REGNUM = 0,
469
470  MEP_FIRST_GPR_REGNUM = 0,
471  MEP_R0_REGNUM = 0,
472  MEP_R1_REGNUM = 1,
473  MEP_R2_REGNUM = 2,
474  MEP_R3_REGNUM = 3,
475  MEP_R4_REGNUM = 4,
476  MEP_R5_REGNUM = 5,
477  MEP_R6_REGNUM = 6,
478  MEP_R7_REGNUM = 7,
479  MEP_R8_REGNUM = 8,
480  MEP_R9_REGNUM = 9,
481  MEP_R10_REGNUM = 10,
482  MEP_R11_REGNUM = 11,
483  MEP_R12_REGNUM = 12,
484  MEP_FP_REGNUM = MEP_R8_REGNUM,
485  MEP_R13_REGNUM = 13,
486  MEP_TP_REGNUM = MEP_R13_REGNUM,	/* (r13) Tiny data pointer */
487  MEP_R14_REGNUM = 14,
488  MEP_GP_REGNUM = MEP_R14_REGNUM,	/* (r14) Global pointer */
489  MEP_R15_REGNUM = 15,
490  MEP_SP_REGNUM = MEP_R15_REGNUM,	/* (r15) Stack pointer */
491  MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
492
493  /* The raw control registers.  These are the values as received via
494     the remote protocol, directly from the target; we only let user
495     code touch the via the pseudoregisters, which enforce read-only
496     bits.  */
497  MEP_FIRST_RAW_CSR_REGNUM = 16,
498  MEP_RAW_PC_REGNUM    = 16,    /* Program counter */
499  MEP_RAW_LP_REGNUM    = 17,    /* Link pointer */
500  MEP_RAW_SAR_REGNUM   = 18,    /* Raw shift amount */
501  MEP_RAW_CSR3_REGNUM  = 19,    /* csr3: reserved */
502  MEP_RAW_RPB_REGNUM   = 20,    /* Raw repeat begin address */
503  MEP_RAW_RPE_REGNUM   = 21,    /* Repeat end address */
504  MEP_RAW_RPC_REGNUM   = 22,    /* Repeat count */
505  MEP_RAW_HI_REGNUM    = 23, /* Upper 32 bits of result of 64 bit mult/div */
506  MEP_RAW_LO_REGNUM    = 24, /* Lower 32 bits of result of 64 bit mult/div */
507  MEP_RAW_CSR9_REGNUM  = 25,    /* csr3: reserved */
508  MEP_RAW_CSR10_REGNUM = 26,    /* csr3: reserved */
509  MEP_RAW_CSR11_REGNUM = 27,    /* csr3: reserved */
510  MEP_RAW_MB0_REGNUM   = 28,    /* Raw modulo begin address 0 */
511  MEP_RAW_ME0_REGNUM   = 29,    /* Raw modulo end address 0 */
512  MEP_RAW_MB1_REGNUM   = 30,    /* Raw modulo begin address 1 */
513  MEP_RAW_ME1_REGNUM   = 31,    /* Raw modulo end address 1 */
514  MEP_RAW_PSW_REGNUM   = 32,    /* Raw program status word */
515  MEP_RAW_ID_REGNUM    = 33,    /* Raw processor ID/revision */
516  MEP_RAW_TMP_REGNUM   = 34,    /* Temporary */
517  MEP_RAW_EPC_REGNUM   = 35,    /* Exception program counter */
518  MEP_RAW_EXC_REGNUM   = 36,    /* Raw exception cause */
519  MEP_RAW_CFG_REGNUM   = 37,    /* Raw processor configuration*/
520  MEP_RAW_CSR22_REGNUM = 38,    /* csr3: reserved */
521  MEP_RAW_NPC_REGNUM   = 39,    /* Nonmaskable interrupt PC */
522  MEP_RAW_DBG_REGNUM   = 40,    /* Raw debug */
523  MEP_RAW_DEPC_REGNUM  = 41,    /* Debug exception PC */
524  MEP_RAW_OPT_REGNUM   = 42,    /* Raw options */
525  MEP_RAW_RCFG_REGNUM  = 43,    /* Raw local ram config */
526  MEP_RAW_CCFG_REGNUM  = 44,    /* Raw cache config */
527  MEP_RAW_CSR29_REGNUM = 45,    /* csr3: reserved */
528  MEP_RAW_CSR30_REGNUM = 46,    /* csr3: reserved */
529  MEP_RAW_CSR31_REGNUM = 47,    /* csr3: reserved */
530  MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
531
532  /* The raw coprocessor general-purpose registers.  These are all 64
533     bits wide.  */
534  MEP_FIRST_RAW_CR_REGNUM = 48,
535  MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
536
537  MEP_FIRST_RAW_CCR_REGNUM = 80,
538  MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
539
540  /* The module number register.  This is the index of the me_module
541     of which the current target is an instance.  (This is not a real
542     MeP-specified register; it's provided by SID.)  */
543  MEP_MODULE_REGNUM,
544
545  MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
546
547  MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
548
549  /* Pseudoregisters.  See mep_pseudo_register_read and
550     mep_pseudo_register_write.  */
551  MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
552
553  /* We have a pseudoregister for every control/special register, to
554     implement registers with read-only bits.  */
555  MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
556  MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
557  MEP_LP_REGNUM,                /* Link pointer */
558  MEP_SAR_REGNUM,               /* shift amount */
559  MEP_CSR3_REGNUM,              /* csr3: reserved */
560  MEP_RPB_REGNUM,               /* repeat begin address */
561  MEP_RPE_REGNUM,               /* Repeat end address */
562  MEP_RPC_REGNUM,               /* Repeat count */
563  MEP_HI_REGNUM,  /* Upper 32 bits of the result of 64 bit mult/div */
564  MEP_LO_REGNUM,  /* Lower 32 bits of the result of 64 bit mult/div */
565  MEP_CSR9_REGNUM,              /* csr3: reserved */
566  MEP_CSR10_REGNUM,             /* csr3: reserved */
567  MEP_CSR11_REGNUM,             /* csr3: reserved */
568  MEP_MB0_REGNUM,               /* modulo begin address 0 */
569  MEP_ME0_REGNUM,               /* modulo end address 0 */
570  MEP_MB1_REGNUM,               /* modulo begin address 1 */
571  MEP_ME1_REGNUM,               /* modulo end address 1 */
572  MEP_PSW_REGNUM,               /* program status word */
573  MEP_ID_REGNUM,                /* processor ID/revision */
574  MEP_TMP_REGNUM,               /* Temporary */
575  MEP_EPC_REGNUM,               /* Exception program counter */
576  MEP_EXC_REGNUM,               /* exception cause */
577  MEP_CFG_REGNUM,               /* processor configuration*/
578  MEP_CSR22_REGNUM,             /* csr3: reserved */
579  MEP_NPC_REGNUM,               /* Nonmaskable interrupt PC */
580  MEP_DBG_REGNUM,               /* debug */
581  MEP_DEPC_REGNUM,              /* Debug exception PC */
582  MEP_OPT_REGNUM,               /* options */
583  MEP_RCFG_REGNUM,              /* local ram config */
584  MEP_CCFG_REGNUM,              /* cache config */
585  MEP_CSR29_REGNUM,             /* csr3: reserved */
586  MEP_CSR30_REGNUM,             /* csr3: reserved */
587  MEP_CSR31_REGNUM,             /* csr3: reserved */
588  MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
589
590  /* The 32-bit integer view of the coprocessor GPR's.  */
591  MEP_FIRST_CR32_REGNUM,
592  MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
593
594  /* The 32-bit floating-point view of the coprocessor GPR's.  */
595  MEP_FIRST_FP_CR32_REGNUM,
596  MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
597
598  /* The 64-bit integer view of the coprocessor GPR's.  */
599  MEP_FIRST_CR64_REGNUM,
600  MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
601
602  /* The 64-bit floating-point view of the coprocessor GPR's.  */
603  MEP_FIRST_FP_CR64_REGNUM,
604  MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
605
606  MEP_FIRST_CCR_REGNUM,
607  MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
608
609  MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
610
611  MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
612
613  MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
614};
615
616
617#define IN_SET(set, n) \
618  (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
619
620#define IS_GPR_REGNUM(n)     (IN_SET (GPR,     (n)))
621#define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
622#define IS_RAW_CR_REGNUM(n)  (IN_SET (RAW_CR,  (n)))
623#define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
624
625#define IS_CSR_REGNUM(n)     (IN_SET (CSR,     (n)))
626#define IS_CR32_REGNUM(n)    (IN_SET (CR32,    (n)))
627#define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
628#define IS_CR64_REGNUM(n)    (IN_SET (CR64,    (n)))
629#define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
630#define IS_CR_REGNUM(n)      (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
631                              || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
632#define IS_CCR_REGNUM(n)     (IN_SET (CCR,     (n)))
633
634#define IS_RAW_REGNUM(n)     (IN_SET (RAW,     (n)))
635#define IS_PSEUDO_REGNUM(n)  (IN_SET (PSEUDO,  (n)))
636
637#define NUM_REGS_IN_SET(set) \
638  (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
639
640#define MEP_GPR_SIZE (4)        /* Size of a MeP general-purpose register.  */
641#define MEP_PSW_SIZE (4)        /* Size of the PSW register.  */
642#define MEP_LP_SIZE (4)         /* Size of the LP register.  */
643
644
645/* Many of the control/special registers contain bits that cannot be
646   written to; some are entirely read-only.  So we present them all as
647   pseudoregisters.
648
649   The following table describes the special properties of each CSR.  */
650struct mep_csr_register
651{
652  /* The number of this CSR's raw register.  */
653  int raw;
654
655  /* The number of this CSR's pseudoregister.  */
656  int pseudo;
657
658  /* A mask of the bits that are writeable: if a bit is set here, then
659     it can be modified; if the bit is clear, then it cannot.  */
660  LONGEST writeable_bits;
661};
662
663
664/* mep_csr_registers[i] describes the i'th CSR.
665   We just list the register numbers here explicitly to help catch
666   typos.  */
667#define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
668struct mep_csr_register mep_csr_registers[] = {
669  { CSR(PC),    0xffffffff },   /* manual says r/o, but we can write it */
670  { CSR(LP),    0xffffffff },
671  { CSR(SAR),   0x0000003f },
672  { CSR(CSR3),  0xffffffff },
673  { CSR(RPB),   0xfffffffe },
674  { CSR(RPE),   0xffffffff },
675  { CSR(RPC),   0xffffffff },
676  { CSR(HI),    0xffffffff },
677  { CSR(LO),    0xffffffff },
678  { CSR(CSR9),  0xffffffff },
679  { CSR(CSR10), 0xffffffff },
680  { CSR(CSR11), 0xffffffff },
681  { CSR(MB0),   0x0000ffff },
682  { CSR(ME0),   0x0000ffff },
683  { CSR(MB1),   0x0000ffff },
684  { CSR(ME1),   0x0000ffff },
685  { CSR(PSW),   0x000003ff },
686  { CSR(ID),    0x00000000 },
687  { CSR(TMP),   0xffffffff },
688  { CSR(EPC),   0xffffffff },
689  { CSR(EXC),   0x000030f0 },
690  { CSR(CFG),   0x00c0001b },
691  { CSR(CSR22), 0xffffffff },
692  { CSR(NPC),   0xffffffff },
693  { CSR(DBG),   0x00000580 },
694  { CSR(DEPC),  0xffffffff },
695  { CSR(OPT),   0x00000000 },
696  { CSR(RCFG),  0x00000000 },
697  { CSR(CCFG),  0x00000000 },
698  { CSR(CSR29), 0xffffffff },
699  { CSR(CSR30), 0xffffffff },
700  { CSR(CSR31), 0xffffffff },
701};
702
703
704/* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
705   the number of the corresponding pseudoregister.  Otherwise,
706   mep_raw_to_pseudo[R] == R.  */
707static int mep_raw_to_pseudo[MEP_NUM_REGS];
708
709/* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
710   is the number of the underlying raw register.  Otherwise
711   mep_pseudo_to_raw[R] == R.  */
712static int mep_pseudo_to_raw[MEP_NUM_REGS];
713
714static void
715mep_init_pseudoregister_maps (void)
716{
717  int i;
718
719  /* Verify that mep_csr_registers covers all the CSRs, in order.  */
720  gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
721  gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
722
723  /* Verify that the raw and pseudo ranges have matching sizes.  */
724  gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
725  gdb_assert (NUM_REGS_IN_SET (RAW_CR)  == NUM_REGS_IN_SET (CR32));
726  gdb_assert (NUM_REGS_IN_SET (RAW_CR)  == NUM_REGS_IN_SET (CR64));
727  gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
728
729  for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
730    {
731      struct mep_csr_register *r = &mep_csr_registers[i];
732
733      gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
734      gdb_assert (r->raw    == MEP_FIRST_RAW_CSR_REGNUM + i);
735    }
736
737  /* Set up the initial  raw<->pseudo mappings.  */
738  for (i = 0; i < MEP_NUM_REGS; i++)
739    {
740      mep_raw_to_pseudo[i] = i;
741      mep_pseudo_to_raw[i] = i;
742    }
743
744  /* Add the CSR raw<->pseudo mappings.  */
745  for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
746    {
747      struct mep_csr_register *r = &mep_csr_registers[i];
748
749      mep_raw_to_pseudo[r->raw] = r->pseudo;
750      mep_pseudo_to_raw[r->pseudo] = r->raw;
751    }
752
753  /* Add the CR raw<->pseudo mappings.  */
754  for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
755    {
756      int raw = MEP_FIRST_RAW_CR_REGNUM + i;
757      int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
758      int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
759      int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
760      int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
761
762      /* Truly, the raw->pseudo mapping depends on the current module.
763         But we use the raw->pseudo mapping when we read the debugging
764         info; at that point, we don't know what module we'll actually
765         be running yet.  So, we always supply the 64-bit register
766         numbers; GDB knows how to pick a smaller value out of a
767         larger register properly.  */
768      mep_raw_to_pseudo[raw] = pseudo64;
769      mep_pseudo_to_raw[pseudo32] = raw;
770      mep_pseudo_to_raw[pseudofp32] = raw;
771      mep_pseudo_to_raw[pseudo64] = raw;
772      mep_pseudo_to_raw[pseudofp64] = raw;
773    }
774
775  /* Add the CCR raw<->pseudo mappings.  */
776  for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
777    {
778      int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
779      int pseudo = MEP_FIRST_CCR_REGNUM + i;
780      mep_raw_to_pseudo[raw] = pseudo;
781      mep_pseudo_to_raw[pseudo] = raw;
782    }
783}
784
785
786static int
787mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
788{
789  /* The debug info uses the raw register numbers.  */
790  return mep_raw_to_pseudo[debug_reg];
791}
792
793
794/* Return the size, in bits, of the coprocessor pseudoregister
795   numbered PSEUDO.  */
796static int
797mep_pseudo_cr_size (int pseudo)
798{
799  if (IS_CR32_REGNUM (pseudo)
800      || IS_FP_CR32_REGNUM (pseudo))
801    return 32;
802  else if (IS_CR64_REGNUM (pseudo)
803           || IS_FP_CR64_REGNUM (pseudo))
804    return 64;
805  else
806    gdb_assert_not_reached ("unexpected coprocessor pseudo register");
807}
808
809
810/* If the coprocessor pseudoregister numbered PSEUDO is a
811   floating-point register, return non-zero; if it is an integer
812   register, return zero.  */
813static int
814mep_pseudo_cr_is_float (int pseudo)
815{
816  return (IS_FP_CR32_REGNUM (pseudo)
817          || IS_FP_CR64_REGNUM (pseudo));
818}
819
820
821/* Given a coprocessor GPR pseudoregister number, return its index
822   within that register bank.  */
823static int
824mep_pseudo_cr_index (int pseudo)
825{
826  if (IS_CR32_REGNUM (pseudo))
827    return pseudo - MEP_FIRST_CR32_REGNUM;
828  else if (IS_FP_CR32_REGNUM (pseudo))
829      return pseudo - MEP_FIRST_FP_CR32_REGNUM;
830  else if (IS_CR64_REGNUM (pseudo))
831      return pseudo - MEP_FIRST_CR64_REGNUM;
832  else if (IS_FP_CR64_REGNUM (pseudo))
833      return pseudo - MEP_FIRST_FP_CR64_REGNUM;
834  else
835    gdb_assert_not_reached ("unexpected coprocessor pseudo register");
836}
837
838
839/* Return the me_module index describing the current target.
840
841   If the current target has registers (e.g., simulator, remote
842   target), then this uses the value of the 'module' register, raw
843   register MEP_MODULE_REGNUM.  Otherwise, this retrieves the value
844   from the ELF header's e_flags field of the current executable
845   file.  */
846static CONFIG_ATTR
847current_me_module (void)
848{
849  if (target_has_registers)
850    {
851      ULONGEST regval;
852      regcache_cooked_read_unsigned (get_current_regcache (),
853				     MEP_MODULE_REGNUM, &regval);
854      return regval;
855    }
856  else
857    return gdbarch_tdep (target_gdbarch ())->me_module;
858}
859
860
861/* Return the set of options for the current target, in the form that
862   the OPT register would use.
863
864   If the current target has registers (e.g., simulator, remote
865   target), then this is the actual value of the OPT register.  If the
866   current target does not have registers (e.g., an executable file),
867   then use the 'module_opt' field we computed when we build the
868   gdbarch object for this module.  */
869static unsigned int
870current_options (void)
871{
872  if (target_has_registers)
873    {
874      ULONGEST regval;
875      regcache_cooked_read_unsigned (get_current_regcache (),
876				     MEP_OPT_REGNUM, &regval);
877      return regval;
878    }
879  else
880    return me_module_opt (current_me_module ());
881}
882
883
884/* Return the width of the current me_module's coprocessor data bus,
885   in bits.  This is either 32 or 64.  */
886static int
887current_cop_data_bus_width (void)
888{
889  return me_module_cop_data_bus_width (current_me_module ());
890}
891
892
893/* Return the keyword table of coprocessor general-purpose register
894   names appropriate for the me_module we're dealing with.  */
895static CGEN_KEYWORD *
896current_cr_names (void)
897{
898  const CGEN_HW_ENTRY *hw
899    = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
900
901  return register_set_keyword_table (hw);
902}
903
904
905/* Return non-zero if the coprocessor general-purpose registers are
906   floating-point values, zero otherwise.  */
907static int
908current_cr_is_float (void)
909{
910  const CGEN_HW_ENTRY *hw
911    = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
912
913  return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
914}
915
916
917/* Return the keyword table of coprocessor control register names
918   appropriate for the me_module we're dealing with.  */
919static CGEN_KEYWORD *
920current_ccr_names (void)
921{
922  const CGEN_HW_ENTRY *hw
923    = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
924
925  return register_set_keyword_table (hw);
926}
927
928
929static const char *
930mep_register_name (struct gdbarch *gdbarch, int regnr)
931{
932  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
933
934  /* General-purpose registers.  */
935  static const char *gpr_names[] = {
936    "r0",   "r1",   "r2",   "r3",   /* 0 */
937    "r4",   "r5",   "r6",   "r7",   /* 4 */
938    "fp",   "r9",   "r10",  "r11",  /* 8 */
939    "r12",  "tp",   "gp",   "sp"    /* 12 */
940  };
941
942  /* Special-purpose registers.  */
943  static const char *csr_names[] = {
944    "pc",   "lp",   "sar",  "",     /* 0  csr3: reserved */
945    "rpb",  "rpe",  "rpc",  "hi",   /* 4 */
946    "lo",   "",     "",     "",     /* 8  csr9-csr11: reserved */
947    "mb0",  "me0",  "mb1",  "me1",  /* 12 */
948
949    "psw",  "id",   "tmp",  "epc",  /* 16 */
950    "exc",  "cfg",  "",     "npc",  /* 20  csr22: reserved */
951    "dbg",  "depc", "opt",  "rcfg", /* 24 */
952    "ccfg", "",     "",     ""      /* 28  csr29-csr31: reserved */
953  };
954
955  if (IS_GPR_REGNUM (regnr))
956    return gpr_names[regnr - MEP_R0_REGNUM];
957  else if (IS_CSR_REGNUM (regnr))
958    {
959      /* The 'hi' and 'lo' registers are only present on processors
960         that have the 'MUL' or 'DIV' instructions enabled.  */
961      if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
962          && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
963        return "";
964
965      return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
966    }
967  else if (IS_CR_REGNUM (regnr))
968    {
969      CGEN_KEYWORD *names;
970      int cr_size;
971      int cr_is_float;
972
973      /* Does this module have a coprocessor at all?  */
974      if (! (current_options () & MEP_OPT_COP))
975        return "";
976
977      names = current_cr_names ();
978      if (! names)
979        /* This module's coprocessor has no general-purpose registers.  */
980        return "";
981
982      cr_size = current_cop_data_bus_width ();
983      if (cr_size != mep_pseudo_cr_size (regnr))
984        /* This module's coprocessor's GPR's are of a different size.  */
985        return "";
986
987      cr_is_float = current_cr_is_float ();
988      /* The extra ! operators ensure we get boolean equality, not
989         numeric equality.  */
990      if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
991        /* This module's coprocessor's GPR's are of a different type.  */
992        return "";
993
994      return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
995    }
996  else if (IS_CCR_REGNUM (regnr))
997    {
998      /* Does this module have a coprocessor at all?  */
999      if (! (current_options () & MEP_OPT_COP))
1000        return "";
1001
1002      {
1003        CGEN_KEYWORD *names = current_ccr_names ();
1004
1005        if (! names)
1006          /* This me_module's coprocessor has no control registers.  */
1007          return "";
1008
1009        return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1010      }
1011    }
1012
1013  /* It might be nice to give the 'module' register a name, but that
1014     would affect the output of 'info all-registers', which would
1015     disturb the test suites.  So we leave it invisible.  */
1016  else
1017    return NULL;
1018}
1019
1020
1021/* Custom register groups for the MeP.  */
1022static struct reggroup *mep_csr_reggroup; /* control/special */
1023static struct reggroup *mep_cr_reggroup;  /* coprocessor general-purpose */
1024static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1025
1026
1027static int
1028mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1029                         struct reggroup *group)
1030{
1031  /* Filter reserved or unused register numbers.  */
1032  {
1033    const char *name = mep_register_name (gdbarch, regnum);
1034
1035    if (! name || name[0] == '\0')
1036      return 0;
1037  }
1038
1039  /* We could separate the GPRs and the CSRs.  Toshiba has approved of
1040     the existing behavior, so we'd want to run that by them.  */
1041  if (group == general_reggroup)
1042    return (IS_GPR_REGNUM (regnum)
1043            || IS_CSR_REGNUM (regnum));
1044
1045  /* Everything is in the 'all' reggroup, except for the raw CSR's.  */
1046  else if (group == all_reggroup)
1047    return (IS_GPR_REGNUM (regnum)
1048            || IS_CSR_REGNUM (regnum)
1049            || IS_CR_REGNUM (regnum)
1050            || IS_CCR_REGNUM (regnum));
1051
1052  /* All registers should be saved and restored, except for the raw
1053     CSR's.
1054
1055     This is probably right if the coprocessor is something like a
1056     floating-point unit, but would be wrong if the coprocessor is
1057     something that does I/O, where register accesses actually cause
1058     externally-visible actions.  But I get the impression that the
1059     coprocessor isn't supposed to do things like that --- you'd use a
1060     hardware engine, perhaps.  */
1061  else if (group == save_reggroup || group == restore_reggroup)
1062    return (IS_GPR_REGNUM (regnum)
1063            || IS_CSR_REGNUM (regnum)
1064            || IS_CR_REGNUM (regnum)
1065            || IS_CCR_REGNUM (regnum));
1066
1067  else if (group == mep_csr_reggroup)
1068    return IS_CSR_REGNUM (regnum);
1069  else if (group == mep_cr_reggroup)
1070    return IS_CR_REGNUM (regnum);
1071  else if (group == mep_ccr_reggroup)
1072    return IS_CCR_REGNUM (regnum);
1073  else
1074    return 0;
1075}
1076
1077
1078static struct type *
1079mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1080{
1081  /* Coprocessor general-purpose registers may be either 32 or 64 bits
1082     long.  So for them, the raw registers are always 64 bits long (to
1083     keep the 'g' packet format fixed), and the pseudoregisters vary
1084     in length.  */
1085  if (IS_RAW_CR_REGNUM (reg_nr))
1086    return builtin_type (gdbarch)->builtin_uint64;
1087
1088  /* Since GDB doesn't allow registers to change type, we have two
1089     banks of pseudoregisters for the coprocessor general-purpose
1090     registers: one that gives a 32-bit view, and one that gives a
1091     64-bit view.  We hide or show one or the other depending on the
1092     current module.  */
1093  if (IS_CR_REGNUM (reg_nr))
1094    {
1095      int size = mep_pseudo_cr_size (reg_nr);
1096      if (size == 32)
1097        {
1098          if (mep_pseudo_cr_is_float (reg_nr))
1099            return builtin_type (gdbarch)->builtin_float;
1100          else
1101            return builtin_type (gdbarch)->builtin_uint32;
1102        }
1103      else if (size == 64)
1104        {
1105          if (mep_pseudo_cr_is_float (reg_nr))
1106            return builtin_type (gdbarch)->builtin_double;
1107          else
1108            return builtin_type (gdbarch)->builtin_uint64;
1109        }
1110      else
1111        gdb_assert_not_reached ("unexpected cr size");
1112    }
1113
1114  /* All other registers are 32 bits long.  */
1115  else
1116    return builtin_type (gdbarch)->builtin_uint32;
1117}
1118
1119
1120static CORE_ADDR
1121mep_read_pc (struct regcache *regcache)
1122{
1123  ULONGEST pc;
1124  regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
1125  return pc;
1126}
1127
1128static enum register_status
1129mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1130                      struct regcache *regcache,
1131                      int cookednum,
1132                      void *buf)
1133{
1134  enum register_status status;
1135  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1136  /* Read the raw register into a 64-bit buffer, and then return the
1137     appropriate end of that buffer.  */
1138  int rawnum = mep_pseudo_to_raw[cookednum];
1139  gdb_byte buf64[8];
1140
1141  gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1142  gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1143  status = regcache_raw_read (regcache, rawnum, buf64);
1144  if (status == REG_VALID)
1145    {
1146      /* Slow, but legible.  */
1147      store_unsigned_integer (buf, 4, byte_order,
1148			      extract_unsigned_integer (buf64, 8, byte_order));
1149    }
1150  return status;
1151}
1152
1153
1154static enum register_status
1155mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1156                      struct regcache *regcache,
1157                      int cookednum,
1158                      void *buf)
1159{
1160  return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1161}
1162
1163
1164static enum register_status
1165mep_pseudo_register_read (struct gdbarch *gdbarch,
1166                          struct regcache *regcache,
1167                          int cookednum,
1168                          gdb_byte *buf)
1169{
1170  if (IS_CSR_REGNUM (cookednum)
1171      || IS_CCR_REGNUM (cookednum))
1172    return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1173  else if (IS_CR32_REGNUM (cookednum)
1174           || IS_FP_CR32_REGNUM (cookednum))
1175    return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1176  else if (IS_CR64_REGNUM (cookednum)
1177           || IS_FP_CR64_REGNUM (cookednum))
1178    return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1179  else
1180    gdb_assert_not_reached ("unexpected pseudo register");
1181}
1182
1183
1184static void
1185mep_pseudo_csr_write (struct gdbarch *gdbarch,
1186                      struct regcache *regcache,
1187                      int cookednum,
1188                      const void *buf)
1189{
1190  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1191  int size = register_size (gdbarch, cookednum);
1192  struct mep_csr_register *r
1193    = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1194
1195  if (r->writeable_bits == 0)
1196    /* A completely read-only register; avoid the read-modify-
1197       write cycle, and juts ignore the entire write.  */
1198    ;
1199  else
1200    {
1201      /* A partially writeable register; do a read-modify-write cycle.  */
1202      ULONGEST old_bits;
1203      ULONGEST new_bits;
1204      ULONGEST mixed_bits;
1205
1206      regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1207      new_bits = extract_unsigned_integer (buf, size, byte_order);
1208      mixed_bits = ((r->writeable_bits & new_bits)
1209                    | (~r->writeable_bits & old_bits));
1210      regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1211    }
1212}
1213
1214
1215static void
1216mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1217                       struct regcache *regcache,
1218                       int cookednum,
1219                       const void *buf)
1220{
1221  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1222  /* Expand the 32-bit value into a 64-bit value, and write that to
1223     the pseudoregister.  */
1224  int rawnum = mep_pseudo_to_raw[cookednum];
1225  gdb_byte buf64[8];
1226
1227  gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1228  gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1229  /* Slow, but legible.  */
1230  store_unsigned_integer (buf64, 8, byte_order,
1231			  extract_unsigned_integer (buf, 4, byte_order));
1232  regcache_raw_write (regcache, rawnum, buf64);
1233}
1234
1235
1236static void
1237mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1238                     struct regcache *regcache,
1239                     int cookednum,
1240                     const void *buf)
1241{
1242  regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1243}
1244
1245
1246static void
1247mep_pseudo_register_write (struct gdbarch *gdbarch,
1248                           struct regcache *regcache,
1249                           int cookednum,
1250                           const gdb_byte *buf)
1251{
1252  if (IS_CSR_REGNUM (cookednum))
1253    mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1254  else if (IS_CR32_REGNUM (cookednum)
1255           || IS_FP_CR32_REGNUM (cookednum))
1256    mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1257  else if (IS_CR64_REGNUM (cookednum)
1258           || IS_FP_CR64_REGNUM (cookednum))
1259    mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1260  else if (IS_CCR_REGNUM (cookednum))
1261    regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1262  else
1263    gdb_assert_not_reached ("unexpected pseudo register");
1264}
1265
1266
1267
1268/* Disassembly.  */
1269
1270/* The mep disassembler needs to know about the section in order to
1271   work correctly.  */
1272static int
1273mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1274{
1275  struct obj_section * s = find_pc_section (pc);
1276
1277  if (s)
1278    {
1279      /* The libopcodes disassembly code uses the section to find the
1280         BFD, the BFD to find the ELF header, the ELF header to find
1281         the me_module index, and the me_module index to select the
1282         right instructions to print.  */
1283      info->section = s->the_bfd_section;
1284      info->arch = bfd_arch_mep;
1285
1286      return print_insn_mep (pc, info);
1287    }
1288
1289  return 0;
1290}
1291
1292
1293/* Prologue analysis.  */
1294
1295
1296/* The MeP has two classes of instructions: "core" instructions, which
1297   are pretty normal RISC chip stuff, and "coprocessor" instructions,
1298   which are mostly concerned with moving data in and out of
1299   coprocessor registers, and branching on coprocessor condition
1300   codes.  There's space in the instruction set for custom coprocessor
1301   instructions, too.
1302
1303   Instructions can be 16 or 32 bits long; the top two bits of the
1304   first byte indicate the length.  The coprocessor instructions are
1305   mixed in with the core instructions, and there's no easy way to
1306   distinguish them; you have to completely decode them to tell one
1307   from the other.
1308
1309   The MeP also supports a "VLIW" operation mode, where instructions
1310   always occur in fixed-width bundles.  The bundles are either 32
1311   bits or 64 bits long, depending on a fixed configuration flag.  You
1312   decode the first part of the bundle as normal; if it's a core
1313   instruction, and there's any space left in the bundle, the
1314   remainder of the bundle is a coprocessor instruction, which will
1315   execute in parallel with the core instruction.  If the first part
1316   of the bundle is a coprocessor instruction, it occupies the entire
1317   bundle.
1318
1319   So, here are all the cases:
1320
1321   - 32-bit VLIW mode:
1322     Every bundle is four bytes long, and naturally aligned, and can hold
1323     one or two instructions:
1324     - 16-bit core instruction; 16-bit coprocessor instruction
1325       These execute in parallel.
1326     - 32-bit core instruction
1327     - 32-bit coprocessor instruction
1328
1329   - 64-bit VLIW mode:
1330     Every bundle is eight bytes long, and naturally aligned, and can hold
1331     one or two instructions:
1332     - 16-bit core instruction; 48-bit (!) coprocessor instruction
1333       These execute in parallel.
1334     - 32-bit core instruction; 32-bit coprocessor instruction
1335       These execute in parallel.
1336     - 64-bit coprocessor instruction
1337
1338   Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1339   instruction, so I don't really know what's up there; perhaps these
1340   are always the user-defined coprocessor instructions.  */
1341
1342
1343/* Return non-zero if PC is in a VLIW code section, zero
1344   otherwise.  */
1345static int
1346mep_pc_in_vliw_section (CORE_ADDR pc)
1347{
1348  struct obj_section *s = find_pc_section (pc);
1349  if (s)
1350    return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1351  return 0;
1352}
1353
1354
1355/* Set *INSN to the next core instruction at PC, and return the
1356   address of the next instruction.
1357
1358   The MeP instruction encoding is endian-dependent.  16- and 32-bit
1359   instructions are encoded as one or two two-byte parts, and each
1360   part is byte-swapped independently.  Thus:
1361
1362      void
1363      foo (void)
1364      {
1365        asm ("movu $1, 0x123456");
1366        asm ("sb $1,0x5678($2)");
1367        asm ("clip $1, 19");
1368      }
1369
1370   compiles to this big-endian code:
1371
1372       0:	d1 56 12 34 	movu $1,0x123456
1373       4:	c1 28 56 78 	sb $1,22136($2)
1374       8:	f1 01 10 98 	clip $1,0x13
1375       c:	70 02       	ret
1376
1377   and this little-endian code:
1378
1379       0:	56 d1 34 12 	movu $1,0x123456
1380       4:	28 c1 78 56 	sb $1,22136($2)
1381       8:	01 f1 98 10 	clip $1,0x13
1382       c:	02 70       	ret
1383
1384   Instructions are returned in *INSN in an endian-independent form: a
1385   given instruction always appears in *INSN the same way, regardless
1386   of whether the instruction stream is big-endian or little-endian.
1387
1388   *INSN's most significant 16 bits are the first (i.e., at lower
1389   addresses) 16 bit part of the instruction.  Its least significant
1390   16 bits are the second (i.e., higher-addressed) 16 bit part of the
1391   instruction, or zero for a 16-bit instruction.  Both 16-bit parts
1392   are fetched using the current endianness.
1393
1394   So, the *INSN values for the instruction sequence above would be
1395   the following, in either endianness:
1396
1397       0xd1561234       movu $1,0x123456
1398       0xc1285678 	sb $1,22136($2)
1399       0xf1011098 	clip $1,0x13
1400       0x70020000      	ret
1401
1402   (In a sense, it would be more natural to return 16-bit instructions
1403   in the least significant 16 bits of *INSN, but that would be
1404   ambiguous.  In order to tell whether you're looking at a 16- or a
1405   32-bit instruction, you have to consult the major opcode field ---
1406   the most significant four bits of the instruction's first 16-bit
1407   part.  But if we put 16-bit instructions at the least significant
1408   end of *INSN, then you don't know where to find the major opcode
1409   field until you know if it's a 16- or a 32-bit instruction ---
1410   which is where we started.)
1411
1412   If PC points to a core / coprocessor bundle in a VLIW section, set
1413   *INSN to the core instruction, and return the address of the next
1414   bundle.  This has the effect of skipping the bundled coprocessor
1415   instruction.  That's okay, since coprocessor instructions aren't
1416   significant to prologue analysis --- for the time being,
1417   anyway.  */
1418
1419static CORE_ADDR
1420mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, unsigned long *insn)
1421{
1422  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1423  int pc_in_vliw_section;
1424  int vliw_mode;
1425  int insn_len;
1426  gdb_byte buf[2];
1427
1428  *insn = 0;
1429
1430  /* Are we in a VLIW section?  */
1431  pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1432  if (pc_in_vliw_section)
1433    {
1434      /* Yes, find out which bundle size.  */
1435      vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1436
1437      /* If PC is in a VLIW section, but the current core doesn't say
1438         that it supports either VLIW mode, then we don't have enough
1439         information to parse the instruction stream it contains.
1440         Since the "undifferentiated" standard core doesn't have
1441         either VLIW mode bit set, this could happen.
1442
1443         But it shouldn't be an error to (say) set a breakpoint in a
1444         VLIW section, if you know you'll never reach it.  (Perhaps
1445         you have a script that sets a bunch of standard breakpoints.)
1446
1447         So we'll just return zero here, and hope for the best.  */
1448      if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1449        return 0;
1450
1451      /* If both VL32 and VL64 are set, that's bogus, too.  */
1452      if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1453        return 0;
1454    }
1455  else
1456    vliw_mode = 0;
1457
1458  read_memory (pc, buf, sizeof (buf));
1459  *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;
1460
1461  /* The major opcode --- the top four bits of the first 16-bit
1462     part --- indicates whether this instruction is 16 or 32 bits
1463     long.  All 32-bit instructions have a major opcode whose top
1464     two bits are 11; all the rest are 16-bit instructions.  */
1465  if ((*insn & 0xc0000000) == 0xc0000000)
1466    {
1467      /* Fetch the second 16-bit part of the instruction.  */
1468      read_memory (pc + 2, buf, sizeof (buf));
1469      *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
1470    }
1471
1472  /* If we're in VLIW code, then the VLIW width determines the address
1473     of the next instruction.  */
1474  if (vliw_mode)
1475    {
1476      /* In 32-bit VLIW code, all bundles are 32 bits long.  We ignore the
1477         coprocessor half of a core / copro bundle.  */
1478      if (vliw_mode == MEP_OPT_VL32)
1479        insn_len = 4;
1480
1481      /* In 64-bit VLIW code, all bundles are 64 bits long.  We ignore the
1482         coprocessor half of a core / copro bundle.  */
1483      else if (vliw_mode == MEP_OPT_VL64)
1484        insn_len = 8;
1485
1486      /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode.  */
1487      else
1488        gdb_assert_not_reached ("unexpected vliw mode");
1489    }
1490
1491  /* Otherwise, the top two bits of the major opcode are (again) what
1492     we need to check.  */
1493  else if ((*insn & 0xc0000000) == 0xc0000000)
1494    insn_len = 4;
1495  else
1496    insn_len = 2;
1497
1498  return pc + insn_len;
1499}
1500
1501
1502/* Sign-extend the LEN-bit value N.  */
1503#define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1504
1505/* Return the LEN-bit field at POS from I.  */
1506#define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1507
1508/* Like FIELD, but sign-extend the field's value.  */
1509#define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1510
1511
1512/* Macros for decoding instructions.
1513
1514   Remember that 16-bit instructions are placed in bits 16..31 of i,
1515   not at the least significant end; this means that the major opcode
1516   field is always in the same place, regardless of the width of the
1517   instruction.  As a reminder of this, we show the lower 16 bits of a
1518   16-bit instruction as xxxx_xxxx_xxxx_xxxx.  */
1519
1520/* SB Rn,(Rm)		      0000_nnnn_mmmm_1000 */
1521/* SH Rn,(Rm)		      0000_nnnn_mmmm_1001 */
1522/* SW Rn,(Rm)		      0000_nnnn_mmmm_1010 */
1523
1524/* SW Rn,disp16(Rm)	      1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1525#define IS_SW(i)	      (((i) & 0xf00f0000) == 0xc00a0000)
1526/* SB Rn,disp16(Rm)	      1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1527#define IS_SB(i)	      (((i) & 0xf00f0000) == 0xc0080000)
1528/* SH Rn,disp16(Rm)	      1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1529#define IS_SH(i)	      (((i) & 0xf00f0000) == 0xc0090000)
1530#define SWBH_32_BASE(i)       (FIELD (i, 20, 4))
1531#define SWBH_32_SOURCE(i)     (FIELD (i, 24, 4))
1532#define SWBH_32_OFFSET(i)     (SFIELD (i, 0, 16))
1533
1534/* SW Rn,disp7.align4(SP)     0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1535#define IS_SW_IMMD(i)	      (((i) & 0xf0830000) == 0x40020000)
1536#define SW_IMMD_SOURCE(i)     (FIELD (i, 24, 4))
1537#define SW_IMMD_OFFSET(i)     (FIELD (i, 18, 5) << 2)
1538
1539/* SW Rn,(Rm)                 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1540#define IS_SW_REG(i)	      (((i) & 0xf00f0000) == 0x000a0000)
1541#define SW_REG_SOURCE(i)      (FIELD (i, 24, 4))
1542#define SW_REG_BASE(i)        (FIELD (i, 20, 4))
1543
1544/* ADD3 Rl,Rn,Rm              1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1545#define IS_ADD3_16_REG(i)     (((i) & 0xf0000000) == 0x90000000)
1546#define ADD3_16_REG_SRC1(i)   (FIELD (i, 20, 4))               /* n */
1547#define ADD3_16_REG_SRC2(i)   (FIELD (i, 24, 4))               /* m */
1548
1549/* ADD3 Rn,Rm,imm16           1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1550#define IS_ADD3_32(i)	      (((i) & 0xf00f0000) == 0xc0000000)
1551#define ADD3_32_TARGET(i)     (FIELD (i, 24, 4))
1552#define ADD3_32_SOURCE(i)     (FIELD (i, 20, 4))
1553#define ADD3_32_OFFSET(i)     (SFIELD (i, 0, 16))
1554
1555/* ADD3 Rn,SP,imm7.align4     0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1556#define IS_ADD3_16(i)  	      (((i) & 0xf0830000) == 0x40000000)
1557#define ADD3_16_TARGET(i)     (FIELD (i, 24, 4))
1558#define ADD3_16_OFFSET(i)     (FIELD (i, 18, 5) << 2)
1559
1560/* ADD Rn,imm6		      0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1561#define IS_ADD(i) 	      (((i) & 0xf0030000) == 0x60000000)
1562#define ADD_TARGET(i)	      (FIELD (i, 24, 4))
1563#define ADD_OFFSET(i)         (SFIELD (i, 18, 6))
1564
1565/* LDC Rn,imm5		      0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1566                              imm5 = I||i[7:4] */
1567#define IS_LDC(i)	      (((i) & 0xf00e0000) == 0x700a0000)
1568#define LDC_IMM(i)            ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1569#define LDC_TARGET(i)         (FIELD (i, 24, 4))
1570
1571/* LW Rn,disp16(Rm)           1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd  */
1572#define IS_LW(i)              (((i) & 0xf00f0000) == 0xc00e0000)
1573#define LW_TARGET(i)          (FIELD (i, 24, 4))
1574#define LW_BASE(i)            (FIELD (i, 20, 4))
1575#define LW_OFFSET(i)          (SFIELD (i, 0, 16))
1576
1577/* MOV Rn,Rm		      0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1578#define IS_MOV(i)	      (((i) & 0xf00f0000) == 0x00000000)
1579#define MOV_TARGET(i)	      (FIELD (i, 24, 4))
1580#define MOV_SOURCE(i)	      (FIELD (i, 20, 4))
1581
1582/* BRA disp12.align2	      1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1583#define IS_BRA(i)	      (((i) & 0xf0010000) == 0xb0000000)
1584#define BRA_DISP(i)           (SFIELD (i, 17, 11) << 1)
1585
1586
1587/* This structure holds the results of a prologue analysis.  */
1588struct mep_prologue
1589{
1590  /* The architecture for which we generated this prologue info.  */
1591  struct gdbarch *gdbarch;
1592
1593  /* The offset from the frame base to the stack pointer --- always
1594     zero or negative.
1595
1596     Calling this a "size" is a bit misleading, but given that the
1597     stack grows downwards, using offsets for everything keeps one
1598     from going completely sign-crazy: you never change anything's
1599     sign for an ADD instruction; always change the second operand's
1600     sign for a SUB instruction; and everything takes care of
1601     itself.  */
1602  int frame_size;
1603
1604  /* Non-zero if this function has initialized the frame pointer from
1605     the stack pointer, zero otherwise.  */
1606  int has_frame_ptr;
1607
1608  /* If has_frame_ptr is non-zero, this is the offset from the frame
1609     base to where the frame pointer points.  This is always zero or
1610     negative.  */
1611  int frame_ptr_offset;
1612
1613  /* The address of the first instruction at which the frame has been
1614     set up and the arguments are where the debug info says they are
1615     --- as best as we can tell.  */
1616  CORE_ADDR prologue_end;
1617
1618  /* reg_offset[R] is the offset from the CFA at which register R is
1619     saved, or 1 if register R has not been saved.  (Real values are
1620     always zero or negative.)  */
1621  int reg_offset[MEP_NUM_REGS];
1622};
1623
1624/* Return non-zero if VALUE is an incoming argument register.  */
1625
1626static int
1627is_arg_reg (pv_t value)
1628{
1629  return (value.kind == pvk_register
1630          && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1631          && value.k == 0);
1632}
1633
1634/* Return non-zero if a store of REG's current value VALUE to ADDR is
1635   probably spilling an argument register to its stack slot in STACK.
1636   Such instructions should be included in the prologue, if possible.
1637
1638   The store is a spill if:
1639   - the value being stored is REG's original value;
1640   - the value has not already been stored somewhere in STACK; and
1641   - ADDR is a stack slot's address (e.g., relative to the original
1642     value of the SP).  */
1643static int
1644is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
1645	      struct pv_area *stack)
1646{
1647  return (is_arg_reg (value)
1648          && pv_is_register (addr, MEP_SP_REGNUM)
1649          && ! pv_area_find_reg (stack, gdbarch, value.reg, 0));
1650}
1651
1652
1653/* Function for finding saved registers in a 'struct pv_area'; we pass
1654   this to pv_area_scan.
1655
1656   If VALUE is a saved register, ADDR says it was saved at a constant
1657   offset from the frame base, and SIZE indicates that the whole
1658   register was saved, record its offset in RESULT_UNTYPED.  */
1659static void
1660check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1661{
1662  struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1663
1664  if (value.kind == pvk_register
1665      && value.k == 0
1666      && pv_is_register (addr, MEP_SP_REGNUM)
1667      && size == register_size (result->gdbarch, value.reg))
1668    result->reg_offset[value.reg] = addr.k;
1669}
1670
1671
1672/* Analyze a prologue starting at START_PC, going no further than
1673   LIMIT_PC.  Fill in RESULT as appropriate.  */
1674static void
1675mep_analyze_prologue (struct gdbarch *gdbarch,
1676		      CORE_ADDR start_pc, CORE_ADDR limit_pc,
1677                      struct mep_prologue *result)
1678{
1679  CORE_ADDR pc;
1680  unsigned long insn;
1681  int rn;
1682  int found_lp = 0;
1683  pv_t reg[MEP_NUM_REGS];
1684  struct pv_area *stack;
1685  struct cleanup *back_to;
1686  CORE_ADDR after_last_frame_setup_insn = start_pc;
1687
1688  memset (result, 0, sizeof (*result));
1689  result->gdbarch = gdbarch;
1690
1691  for (rn = 0; rn < MEP_NUM_REGS; rn++)
1692    {
1693      reg[rn] = pv_register (rn, 0);
1694      result->reg_offset[rn] = 1;
1695    }
1696
1697  stack = make_pv_area (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1698  back_to = make_cleanup_free_pv_area (stack);
1699
1700  pc = start_pc;
1701  while (pc < limit_pc)
1702    {
1703      CORE_ADDR next_pc;
1704      pv_t pre_insn_fp, pre_insn_sp;
1705
1706      next_pc = mep_get_insn (gdbarch, pc, &insn);
1707
1708      /* A zero return from mep_get_insn means that either we weren't
1709         able to read the instruction from memory, or that we don't
1710         have enough information to be able to reliably decode it.  So
1711         we'll store here and hope for the best.  */
1712      if (! next_pc)
1713        break;
1714
1715      /* Note the current values of the SP and FP, so we can tell if
1716         this instruction changed them, below.  */
1717      pre_insn_fp = reg[MEP_FP_REGNUM];
1718      pre_insn_sp = reg[MEP_SP_REGNUM];
1719
1720      if (IS_ADD (insn))
1721        {
1722          int rn = ADD_TARGET (insn);
1723          CORE_ADDR imm6 = ADD_OFFSET (insn);
1724
1725          reg[rn] = pv_add_constant (reg[rn], imm6);
1726        }
1727      else if (IS_ADD3_16 (insn))
1728	{
1729          int rn = ADD3_16_TARGET (insn);
1730          int imm7 = ADD3_16_OFFSET (insn);
1731
1732          reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1733        }
1734      else if (IS_ADD3_32 (insn))
1735	{
1736          int rn = ADD3_32_TARGET (insn);
1737          int rm = ADD3_32_SOURCE (insn);
1738          int imm16 = ADD3_32_OFFSET (insn);
1739
1740          reg[rn] = pv_add_constant (reg[rm], imm16);
1741	}
1742      else if (IS_SW_REG (insn))
1743        {
1744          int rn = SW_REG_SOURCE (insn);
1745          int rm = SW_REG_BASE (insn);
1746
1747          /* If simulating this store would require us to forget
1748             everything we know about the stack frame in the name of
1749             accuracy, it would be better to just quit now.  */
1750          if (pv_area_store_would_trash (stack, reg[rm]))
1751            break;
1752
1753          if (is_arg_spill (gdbarch, reg[rn], reg[rm], stack))
1754            after_last_frame_setup_insn = next_pc;
1755
1756          pv_area_store (stack, reg[rm], 4, reg[rn]);
1757        }
1758      else if (IS_SW_IMMD (insn))
1759        {
1760          int rn = SW_IMMD_SOURCE (insn);
1761          int offset = SW_IMMD_OFFSET (insn);
1762          pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1763
1764          /* If simulating this store would require us to forget
1765             everything we know about the stack frame in the name of
1766             accuracy, it would be better to just quit now.  */
1767          if (pv_area_store_would_trash (stack, addr))
1768            break;
1769
1770          if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1771            after_last_frame_setup_insn = next_pc;
1772
1773          pv_area_store (stack, addr, 4, reg[rn]);
1774        }
1775      else if (IS_MOV (insn))
1776	{
1777          int rn = MOV_TARGET (insn);
1778          int rm = MOV_SOURCE (insn);
1779
1780          reg[rn] = reg[rm];
1781
1782	  if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1783	    after_last_frame_setup_insn = next_pc;
1784	}
1785      else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1786	{
1787          int rn = SWBH_32_SOURCE (insn);
1788          int rm = SWBH_32_BASE (insn);
1789          int disp = SWBH_32_OFFSET (insn);
1790          int size = (IS_SB (insn) ? 1
1791                      : IS_SH (insn) ? 2
1792                      : (gdb_assert (IS_SW (insn)), 4));
1793          pv_t addr = pv_add_constant (reg[rm], disp);
1794
1795          if (pv_area_store_would_trash (stack, addr))
1796            break;
1797
1798          if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1799            after_last_frame_setup_insn = next_pc;
1800
1801          pv_area_store (stack, addr, size, reg[rn]);
1802	}
1803      else if (IS_LDC (insn))
1804	{
1805          int rn = LDC_TARGET (insn);
1806          int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1807
1808          reg[rn] = reg[cr];
1809	}
1810      else if (IS_LW (insn))
1811        {
1812          int rn = LW_TARGET (insn);
1813          int rm = LW_BASE (insn);
1814          int offset = LW_OFFSET (insn);
1815          pv_t addr = pv_add_constant (reg[rm], offset);
1816
1817          reg[rn] = pv_area_fetch (stack, addr, 4);
1818        }
1819      else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1820	{
1821	  /* When a loop appears as the first statement of a function
1822	     body, gcc 4.x will use a BRA instruction to branch to the
1823	     loop condition checking code.  This BRA instruction is
1824	     marked as part of the prologue.  We therefore set next_pc
1825	     to this branch target and also stop the prologue scan.
1826	     The instructions at and beyond the branch target should
1827	     no longer be associated with the prologue.
1828
1829	     Note that we only consider forward branches here.  We
1830	     presume that a forward branch is being used to skip over
1831	     a loop body.
1832
1833	     A backwards branch is covered by the default case below.
1834	     If we were to encounter a backwards branch, that would
1835	     most likely mean that we've scanned through a loop body.
1836	     We definitely want to stop the prologue scan when this
1837	     happens and that is precisely what is done by the default
1838	     case below.  */
1839	  next_pc = pc + BRA_DISP (insn);
1840	  after_last_frame_setup_insn = next_pc;
1841	  break;
1842	}
1843      else
1844        /* We've hit some instruction we don't know how to simulate.
1845           Strictly speaking, we should set every value we're
1846           tracking to "unknown".  But we'll be optimistic, assume
1847           that we have enough information already, and stop
1848           analysis here.  */
1849        break;
1850
1851      /* If this instruction changed the FP or decreased the SP (i.e.,
1852         allocated more stack space), then this may be a good place to
1853         declare the prologue finished.  However, there are some
1854         exceptions:
1855
1856         - If the instruction just changed the FP back to its original
1857           value, then that's probably a restore instruction.  The
1858           prologue should definitely end before that.
1859
1860         - If the instruction increased the value of the SP (that is,
1861           shrunk the frame), then it's probably part of a frame
1862           teardown sequence, and the prologue should end before that.  */
1863
1864      if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1865        {
1866          if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1867            after_last_frame_setup_insn = next_pc;
1868        }
1869      else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1870        {
1871          /* The comparison of constants looks odd, there, because .k
1872             is unsigned.  All it really means is that the new value
1873             is lower than it was before the instruction.  */
1874          if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1875              && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1876              && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1877                  < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1878            after_last_frame_setup_insn = next_pc;
1879        }
1880
1881      pc = next_pc;
1882    }
1883
1884  /* Is the frame size (offset, really) a known constant?  */
1885  if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1886    result->frame_size = reg[MEP_SP_REGNUM].k;
1887
1888  /* Was the frame pointer initialized?  */
1889  if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1890    {
1891      result->has_frame_ptr = 1;
1892      result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1893    }
1894
1895  /* Record where all the registers were saved.  */
1896  pv_area_scan (stack, check_for_saved, (void *) result);
1897
1898  result->prologue_end = after_last_frame_setup_insn;
1899
1900  do_cleanups (back_to);
1901}
1902
1903
1904static CORE_ADDR
1905mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1906{
1907  const char *name;
1908  CORE_ADDR func_addr, func_end;
1909  struct mep_prologue p;
1910
1911  /* Try to find the extent of the function that contains PC.  */
1912  if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1913    return pc;
1914
1915  mep_analyze_prologue (gdbarch, pc, func_end, &p);
1916  return p.prologue_end;
1917}
1918
1919
1920
1921/* Breakpoints.  */
1922
1923static const unsigned char *
1924mep_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1925{
1926  static unsigned char breakpoint[] = { 0x70, 0x32 };
1927  *lenptr = sizeof (breakpoint);
1928  return breakpoint;
1929}
1930
1931
1932
1933/* Frames and frame unwinding.  */
1934
1935
1936static struct mep_prologue *
1937mep_analyze_frame_prologue (struct frame_info *this_frame,
1938                            void **this_prologue_cache)
1939{
1940  if (! *this_prologue_cache)
1941    {
1942      CORE_ADDR func_start, stop_addr;
1943
1944      *this_prologue_cache
1945        = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1946
1947      func_start = get_frame_func (this_frame);
1948      stop_addr = get_frame_pc (this_frame);
1949
1950      /* If we couldn't find any function containing the PC, then
1951         just initialize the prologue cache, but don't do anything.  */
1952      if (! func_start)
1953        stop_addr = func_start;
1954
1955      mep_analyze_prologue (get_frame_arch (this_frame),
1956			    func_start, stop_addr, *this_prologue_cache);
1957    }
1958
1959  return *this_prologue_cache;
1960}
1961
1962
1963/* Given the next frame and a prologue cache, return this frame's
1964   base.  */
1965static CORE_ADDR
1966mep_frame_base (struct frame_info *this_frame,
1967                void **this_prologue_cache)
1968{
1969  struct mep_prologue *p
1970    = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1971
1972  /* In functions that use alloca, the distance between the stack
1973     pointer and the frame base varies dynamically, so we can't use
1974     the SP plus static information like prologue analysis to find the
1975     frame base.  However, such functions must have a frame pointer,
1976     to be able to restore the SP on exit.  So whenever we do have a
1977     frame pointer, use that to find the base.  */
1978  if (p->has_frame_ptr)
1979    {
1980      CORE_ADDR fp
1981        = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
1982      return fp - p->frame_ptr_offset;
1983    }
1984  else
1985    {
1986      CORE_ADDR sp
1987        = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
1988      return sp - p->frame_size;
1989    }
1990}
1991
1992
1993static void
1994mep_frame_this_id (struct frame_info *this_frame,
1995                   void **this_prologue_cache,
1996                   struct frame_id *this_id)
1997{
1998  *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
1999                             get_frame_func (this_frame));
2000}
2001
2002
2003static struct value *
2004mep_frame_prev_register (struct frame_info *this_frame,
2005                         void **this_prologue_cache, int regnum)
2006{
2007  struct mep_prologue *p
2008    = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
2009
2010  /* There are a number of complications in unwinding registers on the
2011     MeP, having to do with core functions calling VLIW functions and
2012     vice versa.
2013
2014     The least significant bit of the link register, LP.LTOM, is the
2015     VLIW mode toggle bit: it's set if a core function called a VLIW
2016     function, or vice versa, and clear when the caller and callee
2017     were both in the same mode.
2018
2019     So, if we're asked to unwind the PC, then we really want to
2020     unwind the LP and clear the least significant bit.  (Real return
2021     addresses are always even.)  And if we want to unwind the program
2022     status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2023
2024     Tweaking the register values we return in this way means that the
2025     bits in BUFFERP[] are not the same as the bits you'd find at
2026     ADDRP in the inferior, so we make sure lvalp is not_lval when we
2027     do this.  */
2028  if (regnum == MEP_PC_REGNUM)
2029    {
2030      struct value *value;
2031      CORE_ADDR lp;
2032      value = mep_frame_prev_register (this_frame, this_prologue_cache,
2033				       MEP_LP_REGNUM);
2034      lp = value_as_long (value);
2035      release_value (value);
2036      value_free (value);
2037
2038      return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
2039    }
2040  else
2041    {
2042      CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
2043      struct value *value;
2044
2045      /* Our caller's SP is our frame base.  */
2046      if (regnum == MEP_SP_REGNUM)
2047	return frame_unwind_got_constant (this_frame, regnum, frame_base);
2048
2049      /* If prologue analysis says we saved this register somewhere,
2050         return a description of the stack slot holding it.  */
2051      if (p->reg_offset[regnum] != 1)
2052	value = frame_unwind_got_memory (this_frame, regnum,
2053					 frame_base + p->reg_offset[regnum]);
2054
2055      /* Otherwise, presume we haven't changed the value of this
2056         register, and get it from the next frame.  */
2057      else
2058	value = frame_unwind_got_register (this_frame, regnum, regnum);
2059
2060      /* If we need to toggle the operating mode, do so.  */
2061      if (regnum == MEP_PSW_REGNUM)
2062        {
2063	  CORE_ADDR psw, lp;
2064
2065	  psw = value_as_long (value);
2066	  release_value (value);
2067	  value_free (value);
2068
2069          /* Get the LP's value, too.  */
2070	  value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
2071	  lp = value_as_long (value);
2072	  release_value (value);
2073	  value_free (value);
2074
2075          /* If LP.LTOM is set, then toggle PSW.OM.  */
2076	  if (lp & 0x1)
2077	    psw ^= 0x1000;
2078
2079	  return frame_unwind_got_constant (this_frame, regnum, psw);
2080        }
2081
2082      return value;
2083    }
2084}
2085
2086
2087static const struct frame_unwind mep_frame_unwind = {
2088  NORMAL_FRAME,
2089  default_frame_unwind_stop_reason,
2090  mep_frame_this_id,
2091  mep_frame_prev_register,
2092  NULL,
2093  default_frame_sniffer
2094};
2095
2096
2097/* Our general unwinding function can handle unwinding the PC.  */
2098static CORE_ADDR
2099mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2100{
2101  return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2102}
2103
2104
2105/* Our general unwinding function can handle unwinding the SP.  */
2106static CORE_ADDR
2107mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2108{
2109  return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2110}
2111
2112
2113
2114/* Return values.  */
2115
2116
2117static int
2118mep_use_struct_convention (struct type *type)
2119{
2120  return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2121}
2122
2123
2124static void
2125mep_extract_return_value (struct gdbarch *arch,
2126                          struct type *type,
2127                          struct regcache *regcache,
2128                          gdb_byte *valbuf)
2129{
2130  int byte_order = gdbarch_byte_order (arch);
2131
2132  /* Values that don't occupy a full register appear at the less
2133     significant end of the value.  This is the offset to where the
2134     value starts.  */
2135  int offset;
2136
2137  /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2138     pointed to by R0.  */
2139  gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2140
2141  if (byte_order == BFD_ENDIAN_BIG)
2142    offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2143  else
2144    offset = 0;
2145
2146  /* Return values that do fit in a single register are returned in R0.  */
2147  regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2148                             offset, TYPE_LENGTH (type),
2149                             valbuf);
2150}
2151
2152
2153static void
2154mep_store_return_value (struct gdbarch *arch,
2155                        struct type *type,
2156                        struct regcache *regcache,
2157                        const gdb_byte *valbuf)
2158{
2159  int byte_order = gdbarch_byte_order (arch);
2160
2161  /* Values that fit in a single register go in R0.  */
2162  if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2163    {
2164      /* Values that don't occupy a full register appear at the least
2165         significant end of the value.  This is the offset to where the
2166         value starts.  */
2167      int offset;
2168
2169      if (byte_order == BFD_ENDIAN_BIG)
2170        offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2171      else
2172        offset = 0;
2173
2174      regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2175                                  offset, TYPE_LENGTH (type),
2176                                  valbuf);
2177    }
2178
2179  /* Return values larger than a single register are returned in
2180     memory, pointed to by R0.  Unfortunately, we can't count on R0
2181     pointing to the return buffer, so we raise an error here.  */
2182  else
2183    error (_("\
2184GDB cannot set return values larger than four bytes; the Media Processor's\n\
2185calling conventions do not provide enough information to do this.\n\
2186Try using the 'return' command with no argument."));
2187}
2188
2189static enum return_value_convention
2190mep_return_value (struct gdbarch *gdbarch, struct value *function,
2191		  struct type *type, struct regcache *regcache,
2192		  gdb_byte *readbuf, const gdb_byte *writebuf)
2193{
2194  if (mep_use_struct_convention (type))
2195    {
2196      if (readbuf)
2197	{
2198	  ULONGEST addr;
2199	  /* Although the address of the struct buffer gets passed in R1, it's
2200	     returned in R0.  Fetch R0's value and then read the memory
2201	     at that address.  */
2202	  regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2203	  read_memory (addr, readbuf, TYPE_LENGTH (type));
2204	}
2205      if (writebuf)
2206	{
2207	  /* Return values larger than a single register are returned in
2208	     memory, pointed to by R0.  Unfortunately, we can't count on R0
2209	     pointing to the return buffer, so we raise an error here.  */
2210	  error (_("\
2211GDB cannot set return values larger than four bytes; the Media Processor's\n\
2212calling conventions do not provide enough information to do this.\n\
2213Try using the 'return' command with no argument."));
2214	}
2215      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2216    }
2217
2218  if (readbuf)
2219    mep_extract_return_value (gdbarch, type, regcache, readbuf);
2220  if (writebuf)
2221    mep_store_return_value (gdbarch, type, regcache, writebuf);
2222
2223  return RETURN_VALUE_REGISTER_CONVENTION;
2224}
2225
2226
2227/* Inferior calls.  */
2228
2229
2230static CORE_ADDR
2231mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2232{
2233  /* Require word alignment.  */
2234  return sp & -4;
2235}
2236
2237
2238/* From "lang_spec2.txt":
2239
2240   4.2 Calling conventions
2241
2242   4.2.1 Core register conventions
2243
2244   - Parameters should be evaluated from left to right, and they
2245     should be held in $1,$2,$3,$4 in order.  The fifth parameter or
2246     after should be held in the stack.  If the size is larger than 4
2247     bytes in the first four parameters, the pointer should be held in
2248     the registers instead.  If the size is larger than 4 bytes in the
2249     fifth parameter or after, the pointer should be held in the stack.
2250
2251   - Return value of a function should be held in register $0.  If the
2252     size of return value is larger than 4 bytes, $1 should hold the
2253     pointer pointing memory that would hold the return value.  In this
2254     case, the first parameter should be held in $2, the second one in
2255     $3, and the third one in $4, and the forth parameter or after
2256     should be held in the stack.
2257
2258   [This doesn't say so, but arguments shorter than four bytes are
2259   passed in the least significant end of a four-byte word when
2260   they're passed on the stack.]  */
2261
2262
2263/* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2264   large to fit in a register, save it on the stack, and place its
2265   address in COPY[i].  SP is the initial stack pointer; return the
2266   new stack pointer.  */
2267static CORE_ADDR
2268push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2269                      CORE_ADDR copy[])
2270{
2271  int i;
2272
2273  for (i = 0; i < argc; i++)
2274    {
2275      unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2276
2277      if (arg_len > MEP_GPR_SIZE)
2278        {
2279          /* Reserve space for the copy, and then round the SP down, to
2280             make sure it's all aligned properly.  */
2281          sp = (sp - arg_len) & -4;
2282          write_memory (sp, value_contents (argv[i]), arg_len);
2283          copy[i] = sp;
2284        }
2285    }
2286
2287  return sp;
2288}
2289
2290
2291static CORE_ADDR
2292mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2293                     struct regcache *regcache, CORE_ADDR bp_addr,
2294                     int argc, struct value **argv, CORE_ADDR sp,
2295                     int struct_return,
2296                     CORE_ADDR struct_addr)
2297{
2298  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2299  CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2300  CORE_ADDR func_addr = find_function_addr (function, NULL);
2301  int i;
2302
2303  /* The number of the next register available to hold an argument.  */
2304  int arg_reg;
2305
2306  /* The address of the next stack slot available to hold an argument.  */
2307  CORE_ADDR arg_stack;
2308
2309  /* The address of the end of the stack area for arguments.  This is
2310     just for error checking.  */
2311  CORE_ADDR arg_stack_end;
2312
2313  sp = push_large_arguments (sp, argc, argv, copy);
2314
2315  /* Reserve space for the stack arguments, if any.  */
2316  arg_stack_end = sp;
2317  if (argc + (struct_addr ? 1 : 0) > 4)
2318    sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2319
2320  arg_reg = MEP_R1_REGNUM;
2321  arg_stack = sp;
2322
2323  /* If we're returning a structure by value, push the pointer to the
2324     buffer as the first argument.  */
2325  if (struct_return)
2326    {
2327      regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2328      arg_reg++;
2329    }
2330
2331  for (i = 0; i < argc; i++)
2332    {
2333      ULONGEST value;
2334
2335      /* Arguments that fit in a GPR get expanded to fill the GPR.  */
2336      if (TYPE_LENGTH (value_type (argv[i])) <= MEP_GPR_SIZE)
2337        value = extract_unsigned_integer (value_contents (argv[i]),
2338                                          TYPE_LENGTH (value_type (argv[i])),
2339					  byte_order);
2340
2341      /* Arguments too large to fit in a GPR get copied to the stack,
2342         and we pass a pointer to the copy.  */
2343      else
2344        value = copy[i];
2345
2346      /* We use $1 -- $4 for passing arguments, then use the stack.  */
2347      if (arg_reg <= MEP_R4_REGNUM)
2348        {
2349          regcache_cooked_write_unsigned (regcache, arg_reg, value);
2350          arg_reg++;
2351        }
2352      else
2353        {
2354          gdb_byte buf[MEP_GPR_SIZE];
2355          store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
2356          write_memory (arg_stack, buf, MEP_GPR_SIZE);
2357          arg_stack += MEP_GPR_SIZE;
2358        }
2359    }
2360
2361  gdb_assert (arg_stack <= arg_stack_end);
2362
2363  /* Set the return address.  */
2364  regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2365
2366  /* Update the stack pointer.  */
2367  regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2368
2369  return sp;
2370}
2371
2372
2373static struct frame_id
2374mep_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2375{
2376  CORE_ADDR sp = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
2377  return frame_id_build (sp, get_frame_pc (this_frame));
2378}
2379
2380
2381
2382/* Initialization.  */
2383
2384
2385static struct gdbarch *
2386mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2387{
2388  struct gdbarch *gdbarch;
2389  struct gdbarch_tdep *tdep;
2390
2391  /* Which me_module are we building a gdbarch object for?  */
2392  CONFIG_ATTR me_module;
2393
2394  /* If we have a BFD in hand, figure out which me_module it was built
2395     for.  Otherwise, use the no-particular-me_module code.  */
2396  if (info.abfd)
2397    {
2398      /* The way to get the me_module code depends on the object file
2399         format.  At the moment, we only know how to handle ELF.  */
2400      if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2401        me_module = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2402      else
2403        me_module = CONFIG_NONE;
2404    }
2405  else
2406    me_module = CONFIG_NONE;
2407
2408  /* If we're setting the architecture from a file, check the
2409     endianness of the file against that of the me_module.  */
2410  if (info.abfd)
2411    {
2412      /* The negations on either side make the comparison treat all
2413         non-zero (true) values as equal.  */
2414      if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2415        {
2416          const char *module_name = me_module_name (me_module);
2417          const char *module_endianness
2418            = me_module_big_endian (me_module) ? "big" : "little";
2419          const char *file_name = bfd_get_filename (info.abfd);
2420          const char *file_endianness
2421            = bfd_big_endian (info.abfd) ? "big" : "little";
2422
2423          fputc_unfiltered ('\n', gdb_stderr);
2424          if (module_name)
2425            warning (_("the MeP module '%s' is %s-endian, but the executable\n"
2426		       "%s is %s-endian."),
2427                     module_name, module_endianness,
2428                     file_name, file_endianness);
2429          else
2430            warning (_("the selected MeP module is %s-endian, but the "
2431		       "executable\n"
2432		       "%s is %s-endian."),
2433                     module_endianness, file_name, file_endianness);
2434        }
2435    }
2436
2437  /* Find a candidate among the list of architectures we've created
2438     already.  info->bfd_arch_info needs to match, but we also want
2439     the right me_module: the ELF header's e_flags field needs to
2440     match as well.  */
2441  for (arches = gdbarch_list_lookup_by_info (arches, &info);
2442       arches != NULL;
2443       arches = gdbarch_list_lookup_by_info (arches->next, &info))
2444    if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2445      return arches->gdbarch;
2446
2447  tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
2448  gdbarch = gdbarch_alloc (&info, tdep);
2449
2450  /* Get a CGEN CPU descriptor for this architecture.  */
2451  {
2452    const char *mach_name = info.bfd_arch_info->printable_name;
2453    enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2454                               ? CGEN_ENDIAN_BIG
2455                               : CGEN_ENDIAN_LITTLE);
2456
2457    tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2458                                        CGEN_CPU_OPEN_ENDIAN, endian,
2459                                        CGEN_CPU_OPEN_END);
2460  }
2461
2462  tdep->me_module = me_module;
2463
2464  /* Register set.  */
2465  set_gdbarch_read_pc (gdbarch, mep_read_pc);
2466  set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2467  set_gdbarch_pc_regnum (gdbarch, MEP_PC_REGNUM);
2468  set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2469  set_gdbarch_register_name (gdbarch, mep_register_name);
2470  set_gdbarch_register_type (gdbarch, mep_register_type);
2471  set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2472  set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2473  set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2474  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2475  set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2476
2477  set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2478  reggroup_add (gdbarch, all_reggroup);
2479  reggroup_add (gdbarch, general_reggroup);
2480  reggroup_add (gdbarch, save_reggroup);
2481  reggroup_add (gdbarch, restore_reggroup);
2482  reggroup_add (gdbarch, mep_csr_reggroup);
2483  reggroup_add (gdbarch, mep_cr_reggroup);
2484  reggroup_add (gdbarch, mep_ccr_reggroup);
2485
2486  /* Disassembly.  */
2487  set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2488
2489  /* Breakpoints.  */
2490  set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
2491  set_gdbarch_decr_pc_after_break (gdbarch, 0);
2492  set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2493
2494  /* Frames and frame unwinding.  */
2495  frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
2496  set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2497  set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2498  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2499  set_gdbarch_frame_args_skip (gdbarch, 0);
2500
2501  /* Return values.  */
2502  set_gdbarch_return_value (gdbarch, mep_return_value);
2503
2504  /* Inferior function calls.  */
2505  set_gdbarch_frame_align (gdbarch, mep_frame_align);
2506  set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2507  set_gdbarch_dummy_id (gdbarch, mep_dummy_id);
2508
2509  return gdbarch;
2510}
2511
2512/* Provide a prototype to silence -Wmissing-prototypes.  */
2513extern initialize_file_ftype _initialize_mep_tdep;
2514
2515void
2516_initialize_mep_tdep (void)
2517{
2518  mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2519  mep_cr_reggroup  = reggroup_new ("cr", USER_REGGROUP);
2520  mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2521
2522  register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2523
2524  mep_init_pseudoregister_maps ();
2525}
2526