iq2000-tdep.c revision 1.1
1/* Target-dependent code for the IQ2000 architecture, for GDB, the GNU
2   Debugger.
3
4   Copyright (C) 2000-2014 Free Software Foundation, Inc.
5
6   Contributed by Red Hat.
7
8   This file is part of GDB.
9
10   This program is free software; you can redistribute it and/or modify
11   it under the terms of the GNU General Public License as published by
12   the Free Software Foundation; either version 3 of the License, or
13   (at your option) any later version.
14
15   This program is distributed in the hope that it will be useful,
16   but WITHOUT ANY WARRANTY; without even the implied warranty of
17   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18   GNU General Public License for more details.
19
20   You should have received a copy of the GNU General Public License
21   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22
23#include "defs.h"
24#include "frame.h"
25#include "frame-base.h"
26#include "frame-unwind.h"
27#include "dwarf2-frame.h"
28#include "gdbtypes.h"
29#include "value.h"
30#include "dis-asm.h"
31#include <string.h>
32#include "arch-utils.h"
33#include "regcache.h"
34#include "osabi.h"
35#include "gdbcore.h"
36
37enum gdb_regnum
38{
39  E_R0_REGNUM,  E_R1_REGNUM,  E_R2_REGNUM,  E_R3_REGNUM,
40  E_R4_REGNUM,  E_R5_REGNUM,  E_R6_REGNUM,  E_R7_REGNUM,
41  E_R8_REGNUM,  E_R9_REGNUM,  E_R10_REGNUM, E_R11_REGNUM,
42  E_R12_REGNUM, E_R13_REGNUM, E_R14_REGNUM, E_R15_REGNUM,
43  E_R16_REGNUM, E_R17_REGNUM, E_R18_REGNUM, E_R19_REGNUM,
44  E_R20_REGNUM, E_R21_REGNUM, E_R22_REGNUM, E_R23_REGNUM,
45  E_R24_REGNUM, E_R25_REGNUM, E_R26_REGNUM, E_R27_REGNUM,
46  E_R28_REGNUM, E_R29_REGNUM, E_R30_REGNUM, E_R31_REGNUM,
47  E_PC_REGNUM,
48  E_LR_REGNUM        = E_R31_REGNUM, /* Link register.  */
49  E_SP_REGNUM        = E_R29_REGNUM, /* Stack pointer.  */
50  E_FP_REGNUM        = E_R27_REGNUM, /* Frame pointer.  */
51  E_FN_RETURN_REGNUM = E_R2_REGNUM,  /* Function return value register.  */
52  E_1ST_ARGREG       = E_R4_REGNUM,  /* 1st  function arg register.  */
53  E_LAST_ARGREG      = E_R11_REGNUM, /* Last function arg register.  */
54  E_NUM_REGS         = E_PC_REGNUM + 1
55};
56
57/* Use an invalid address value as 'not available' marker.  */
58enum { REG_UNAVAIL = (CORE_ADDR) -1 };
59
60struct iq2000_frame_cache
61{
62  /* Base address.  */
63  CORE_ADDR  base;
64  CORE_ADDR  pc;
65  LONGEST    framesize;
66  int        using_fp;
67  CORE_ADDR  saved_sp;
68  CORE_ADDR  saved_regs [E_NUM_REGS];
69};
70
71/* Harvard methods: */
72
73static CORE_ADDR
74insn_ptr_from_addr (CORE_ADDR addr)	/* CORE_ADDR to target pointer.  */
75{
76  return addr & 0x7fffffffL;
77}
78
79static CORE_ADDR
80insn_addr_from_ptr (CORE_ADDR ptr)	/* target_pointer to CORE_ADDR.  */
81{
82  return (ptr & 0x7fffffffL) | 0x80000000L;
83}
84
85/* Function: pointer_to_address
86   Convert a target pointer to an address in host (CORE_ADDR) format.  */
87
88static CORE_ADDR
89iq2000_pointer_to_address (struct gdbarch *gdbarch,
90			   struct type * type, const gdb_byte * buf)
91{
92  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
93  enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
94  CORE_ADDR addr
95    = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
96
97  if (target == TYPE_CODE_FUNC
98      || target == TYPE_CODE_METHOD
99      || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
100    addr = insn_addr_from_ptr (addr);
101
102  return addr;
103}
104
105/* Function: address_to_pointer
106   Convert a host-format address (CORE_ADDR) into a target pointer.  */
107
108static void
109iq2000_address_to_pointer (struct gdbarch *gdbarch,
110			   struct type *type, gdb_byte *buf, CORE_ADDR addr)
111{
112  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
113  enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
114
115  if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
116    addr = insn_ptr_from_addr (addr);
117  store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
118}
119
120/* Real register methods: */
121
122/* Function: register_name
123   Returns the name of the iq2000 register number N.  */
124
125static const char *
126iq2000_register_name (struct gdbarch *gdbarch, int regnum)
127{
128  static const char * names[E_NUM_REGS] =
129    {
130      "r0",  "r1",  "r2",  "r3",  "r4",
131      "r5",  "r6",  "r7",  "r8",  "r9",
132      "r10", "r11", "r12", "r13", "r14",
133      "r15", "r16", "r17", "r18", "r19",
134      "r20", "r21", "r22", "r23", "r24",
135      "r25", "r26", "r27", "r28", "r29",
136      "r30", "r31",
137      "pc"
138    };
139  if (regnum < 0 || regnum >= E_NUM_REGS)
140    return NULL;
141  return names[regnum];
142}
143
144/* Prologue analysis methods:  */
145
146/* ADDIU insn (001001 rs(5) rt(5) imm(16)).  */
147#define INSN_IS_ADDIU(X)	(((X) & 0xfc000000) == 0x24000000)
148#define ADDIU_REG_SRC(X)	(((X) & 0x03e00000) >> 21)
149#define ADDIU_REG_TGT(X)	(((X) & 0x001f0000) >> 16)
150#define ADDIU_IMMEDIATE(X)	((signed short) ((X) & 0x0000ffff))
151
152/* "MOVE" (OR) insn (000000 rs(5) rt(5) rd(5) 00000 100101).  */
153#define INSN_IS_MOVE(X)		(((X) & 0xffe007ff) == 0x00000025)
154#define MOVE_REG_SRC(X)		(((X) & 0x001f0000) >> 16)
155#define MOVE_REG_TGT(X)		(((X) & 0x0000f800) >> 11)
156
157/* STORE WORD insn (101011 rs(5) rt(5) offset(16)).  */
158#define INSN_IS_STORE_WORD(X)	(((X) & 0xfc000000) == 0xac000000)
159#define SW_REG_INDEX(X)		(((X) & 0x03e00000) >> 21)
160#define SW_REG_SRC(X)		(((X) & 0x001f0000) >> 16)
161#define SW_OFFSET(X)		((signed short) ((X) & 0x0000ffff))
162
163/* Function: find_last_line_symbol
164
165   Given an address range, first find a line symbol corresponding to
166   the starting address.  Then find the last line symbol within the
167   range that has a line number less than or equal to the first line.
168
169   For optimized code with code motion, this finds the last address
170   for the lowest-numbered line within the address range.  */
171
172static struct symtab_and_line
173find_last_line_symbol (CORE_ADDR start, CORE_ADDR end, int notcurrent)
174{
175  struct symtab_and_line sal = find_pc_line (start, notcurrent);
176  struct symtab_and_line best_sal = sal;
177
178  if (sal.pc == 0 || sal.line == 0 || sal.end == 0)
179    return sal;
180
181  do
182    {
183      if (sal.line && sal.line <= best_sal.line)
184	best_sal = sal;
185      sal = find_pc_line (sal.end, notcurrent);
186    }
187  while (sal.pc && sal.pc < end);
188
189  return best_sal;
190}
191
192/* Function: scan_prologue
193   Decode the instructions within the given address range.
194   Decide when we must have reached the end of the function prologue.
195   If a frame_info pointer is provided, fill in its prologue information.
196
197   Returns the address of the first instruction after the prologue.  */
198
199static CORE_ADDR
200iq2000_scan_prologue (struct gdbarch *gdbarch,
201		      CORE_ADDR scan_start,
202		      CORE_ADDR scan_end,
203		      struct frame_info *fi,
204		      struct iq2000_frame_cache *cache)
205{
206  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
207  struct symtab_and_line sal;
208  CORE_ADDR pc;
209  CORE_ADDR loop_end;
210  int found_store_lr = 0;
211  int found_decr_sp = 0;
212  int srcreg;
213  int tgtreg;
214  signed short offset;
215
216  if (scan_end == (CORE_ADDR) 0)
217    {
218      loop_end = scan_start + 100;
219      sal.end = sal.pc = 0;
220    }
221  else
222    {
223      loop_end = scan_end;
224      if (fi)
225	sal = find_last_line_symbol (scan_start, scan_end, 0);
226      else
227	sal.end = 0;	/* Avoid GCC false warning.  */
228    }
229
230  /* Saved registers:
231     We first have to save the saved register's offset, and
232     only later do we compute its actual address.  Since the
233     offset can be zero, we must first initialize all the
234     saved regs to minus one (so we can later distinguish
235     between one that's not saved, and one that's saved at zero).  */
236  for (srcreg = 0; srcreg < E_NUM_REGS; srcreg ++)
237    cache->saved_regs[srcreg] = -1;
238  cache->using_fp = 0;
239  cache->framesize = 0;
240
241  for (pc = scan_start; pc < loop_end; pc += 4)
242    {
243      LONGEST insn = read_memory_unsigned_integer (pc, 4, byte_order);
244      /* Skip any instructions writing to (sp) or decrementing the
245         SP.  */
246      if ((insn & 0xffe00000) == 0xac200000)
247	{
248	  /* sw using SP/%1 as base.  */
249	  /* LEGACY -- from assembly-only port.  */
250	  tgtreg = ((insn >> 16) & 0x1f);
251	  if (tgtreg >= 0 && tgtreg < E_NUM_REGS)
252	    cache->saved_regs[tgtreg] = -((signed short) (insn & 0xffff));
253
254	  if (tgtreg == E_LR_REGNUM)
255	    found_store_lr = 1;
256	  continue;
257	}
258
259      if ((insn & 0xffff8000) == 0x20218000)
260	{
261	  /* addi %1, %1, -N == addi %sp, %sp, -N */
262	  /* LEGACY -- from assembly-only port.  */
263	  found_decr_sp = 1;
264	  cache->framesize = -((signed short) (insn & 0xffff));
265	  continue;
266	}
267
268      if (INSN_IS_ADDIU (insn))
269	{
270	  srcreg = ADDIU_REG_SRC (insn);
271	  tgtreg = ADDIU_REG_TGT (insn);
272	  offset = ADDIU_IMMEDIATE (insn);
273	  if (srcreg == E_SP_REGNUM && tgtreg == E_SP_REGNUM)
274	    cache->framesize = -offset;
275	  continue;
276	}
277
278      if (INSN_IS_STORE_WORD (insn))
279	{
280	  srcreg = SW_REG_SRC (insn);
281	  tgtreg = SW_REG_INDEX (insn);
282	  offset = SW_OFFSET (insn);
283
284	  if (tgtreg == E_SP_REGNUM || tgtreg == E_FP_REGNUM)
285	    {
286	      /* "push" to stack (via SP or FP reg).  */
287	      if (cache->saved_regs[srcreg] == -1) /* Don't save twice.  */
288		cache->saved_regs[srcreg] = offset;
289	      continue;
290	    }
291	}
292
293      if (INSN_IS_MOVE (insn))
294	{
295	  srcreg = MOVE_REG_SRC (insn);
296	  tgtreg = MOVE_REG_TGT (insn);
297
298	  if (srcreg == E_SP_REGNUM && tgtreg == E_FP_REGNUM)
299	    {
300	      /* Copy sp to fp.  */
301	      cache->using_fp = 1;
302	      continue;
303	    }
304	}
305
306      /* Unknown instruction encountered in frame.  Bail out?
307         1) If we have a subsequent line symbol, we can keep going.
308         2) If not, we need to bail out and quit scanning instructions.  */
309
310      if (fi && sal.end && (pc < sal.end)) /* Keep scanning.  */
311	continue;
312      else /* bail */
313	break;
314    }
315
316  return pc;
317}
318
319static void
320iq2000_init_frame_cache (struct iq2000_frame_cache *cache)
321{
322  int i;
323
324  cache->base = 0;
325  cache->framesize = 0;
326  cache->using_fp = 0;
327  cache->saved_sp = 0;
328  for (i = 0; i < E_NUM_REGS; i++)
329    cache->saved_regs[i] = -1;
330}
331
332/* Function: iq2000_skip_prologue
333   If the input address is in a function prologue,
334   returns the address of the end of the prologue;
335   else returns the input address.
336
337   Note: the input address is likely to be the function start,
338   since this function is mainly used for advancing a breakpoint
339   to the first line, or stepping to the first line when we have
340   stepped into a function call.  */
341
342static CORE_ADDR
343iq2000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
344{
345  CORE_ADDR func_addr = 0 , func_end = 0;
346
347  if (find_pc_partial_function (pc, NULL, & func_addr, & func_end))
348    {
349      struct symtab_and_line sal;
350      struct iq2000_frame_cache cache;
351
352      /* Found a function.  */
353      sal = find_pc_line (func_addr, 0);
354      if (sal.end && sal.end < func_end)
355	/* Found a line number, use it as end of prologue.  */
356	return sal.end;
357
358      /* No useable line symbol.  Use prologue parsing method.  */
359      iq2000_init_frame_cache (&cache);
360      return iq2000_scan_prologue (gdbarch, func_addr, func_end, NULL, &cache);
361    }
362
363  /* No function symbol -- just return the PC.  */
364  return (CORE_ADDR) pc;
365}
366
367static struct iq2000_frame_cache *
368iq2000_frame_cache (struct frame_info *this_frame, void **this_cache)
369{
370  struct gdbarch *gdbarch = get_frame_arch (this_frame);
371  struct iq2000_frame_cache *cache;
372  CORE_ADDR current_pc;
373  int i;
374
375  if (*this_cache)
376    return *this_cache;
377
378  cache = FRAME_OBSTACK_ZALLOC (struct iq2000_frame_cache);
379  iq2000_init_frame_cache (cache);
380  *this_cache = cache;
381
382  cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
383  //if (cache->base == 0)
384    //return cache;
385
386  current_pc = get_frame_pc (this_frame);
387  find_pc_partial_function (current_pc, NULL, &cache->pc, NULL);
388  if (cache->pc != 0)
389    iq2000_scan_prologue (gdbarch, cache->pc, current_pc, this_frame, cache);
390  if (!cache->using_fp)
391    cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
392
393  cache->saved_sp = cache->base + cache->framesize;
394
395  for (i = 0; i < E_NUM_REGS; i++)
396    if (cache->saved_regs[i] != -1)
397      cache->saved_regs[i] += cache->base;
398
399  return cache;
400}
401
402static struct value *
403iq2000_frame_prev_register (struct frame_info *this_frame, void **this_cache,
404			    int regnum)
405{
406  struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
407							 this_cache);
408
409  if (regnum == E_SP_REGNUM && cache->saved_sp)
410    return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
411
412  if (regnum == E_PC_REGNUM)
413    regnum = E_LR_REGNUM;
414
415  if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != -1)
416    return frame_unwind_got_memory (this_frame, regnum,
417                                    cache->saved_regs[regnum]);
418
419  return frame_unwind_got_register (this_frame, regnum, regnum);
420}
421
422static void
423iq2000_frame_this_id (struct frame_info *this_frame, void **this_cache,
424		      struct frame_id *this_id)
425{
426  struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
427							 this_cache);
428
429  /* This marks the outermost frame.  */
430  if (cache->base == 0)
431    return;
432
433  *this_id = frame_id_build (cache->saved_sp, cache->pc);
434}
435
436static const struct frame_unwind iq2000_frame_unwind = {
437  NORMAL_FRAME,
438  default_frame_unwind_stop_reason,
439  iq2000_frame_this_id,
440  iq2000_frame_prev_register,
441  NULL,
442  default_frame_sniffer
443};
444
445static CORE_ADDR
446iq2000_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
447{
448  return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
449}
450
451static CORE_ADDR
452iq2000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
453{
454  return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
455}
456
457static struct frame_id
458iq2000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
459{
460  CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
461  return frame_id_build (sp, get_frame_pc (this_frame));
462}
463
464static CORE_ADDR
465iq2000_frame_base_address (struct frame_info *this_frame, void **this_cache)
466{
467  struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
468							 this_cache);
469
470  return cache->base;
471}
472
473static const struct frame_base iq2000_frame_base = {
474  &iq2000_frame_unwind,
475  iq2000_frame_base_address,
476  iq2000_frame_base_address,
477  iq2000_frame_base_address
478};
479
480static const unsigned char *
481iq2000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
482			   int *lenptr)
483{
484  static const unsigned char big_breakpoint[] = { 0x00, 0x00, 0x00, 0x0d };
485  static const unsigned char little_breakpoint[] = { 0x0d, 0x00, 0x00, 0x00 };
486
487  if ((*pcptr & 3) != 0)
488    error (_("breakpoint_from_pc: invalid breakpoint address 0x%lx"),
489	   (long) *pcptr);
490
491  *lenptr = 4;
492  return (gdbarch_byte_order (gdbarch)
493	  == BFD_ENDIAN_BIG) ? big_breakpoint : little_breakpoint;
494}
495
496/* Target function return value methods: */
497
498/* Function: store_return_value
499   Copy the function return value from VALBUF into the
500   proper location for a function return.  */
501
502static void
503iq2000_store_return_value (struct type *type, struct regcache *regcache,
504			   const void *valbuf)
505{
506  int len = TYPE_LENGTH (type);
507  int regno = E_FN_RETURN_REGNUM;
508
509  while (len > 0)
510    {
511      gdb_byte buf[4];
512      int size = len % 4 ?: 4;
513
514      memset (buf, 0, 4);
515      memcpy (buf + 4 - size, valbuf, size);
516      regcache_raw_write (regcache, regno++, buf);
517      len -= size;
518      valbuf = ((char *) valbuf) + size;
519    }
520}
521
522/* Function: use_struct_convention
523   Returns non-zero if the given struct type will be returned using
524   a special convention, rather than the normal function return method.  */
525
526static int
527iq2000_use_struct_convention (struct type *type)
528{
529  return ((TYPE_CODE (type) == TYPE_CODE_STRUCT)
530	  || (TYPE_CODE (type) == TYPE_CODE_UNION))
531	 && TYPE_LENGTH (type) > 8;
532}
533
534/* Function: extract_return_value
535   Copy the function's return value into VALBUF.
536   This function is called only in the context of "target function calls",
537   ie. when the debugger forces a function to be called in the child, and
538   when the debugger forces a function to return prematurely via the
539   "return" command.  */
540
541static void
542iq2000_extract_return_value (struct type *type, struct regcache *regcache,
543			     void *valbuf)
544{
545  struct gdbarch *gdbarch = get_regcache_arch (regcache);
546  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
547
548  /* If the function's return value is 8 bytes or less, it is
549     returned in a register, and if larger than 8 bytes, it is
550     returned in a stack location which is pointed to by the same
551     register.  */
552  int len = TYPE_LENGTH (type);
553
554  if (len <= (2 * 4))
555    {
556      int regno = E_FN_RETURN_REGNUM;
557
558      /* Return values of <= 8 bytes are returned in
559	 FN_RETURN_REGNUM.  */
560      while (len > 0)
561	{
562	  ULONGEST tmp;
563	  int size = len % 4 ?: 4;
564
565	  /* By using store_unsigned_integer we avoid having to
566	     do anything special for small big-endian values.  */
567	  regcache_cooked_read_unsigned (regcache, regno++, &tmp);
568	  store_unsigned_integer (valbuf, size, byte_order, tmp);
569	  len -= size;
570	  valbuf = ((char *) valbuf) + size;
571	}
572    }
573  else
574    {
575      /* Return values > 8 bytes are returned in memory,
576	 pointed to by FN_RETURN_REGNUM.  */
577      ULONGEST return_buffer;
578      regcache_cooked_read_unsigned (regcache, E_FN_RETURN_REGNUM,
579				     &return_buffer);
580      read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
581    }
582}
583
584static enum return_value_convention
585iq2000_return_value (struct gdbarch *gdbarch, struct value *function,
586		     struct type *type, struct regcache *regcache,
587		     gdb_byte *readbuf, const gdb_byte *writebuf)
588{
589  if (iq2000_use_struct_convention (type))
590    return RETURN_VALUE_STRUCT_CONVENTION;
591  if (writebuf)
592    iq2000_store_return_value (type, regcache, writebuf);
593  else if (readbuf)
594    iq2000_extract_return_value (type, regcache, readbuf);
595  return RETURN_VALUE_REGISTER_CONVENTION;
596}
597
598/* Function: register_virtual_type
599   Returns the default type for register N.  */
600
601static struct type *
602iq2000_register_type (struct gdbarch *gdbarch, int regnum)
603{
604  return builtin_type (gdbarch)->builtin_int32;
605}
606
607static CORE_ADDR
608iq2000_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
609{
610  /* This is the same frame alignment used by gcc.  */
611  return ((sp + 7) & ~7);
612}
613
614/* Convenience function to check 8-byte types for being a scalar type
615   or a struct with only one long long or double member.  */
616static int
617iq2000_pass_8bytetype_by_address (struct type *type)
618{
619  struct type *ftype;
620
621  /* Skip typedefs.  */
622  while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
623    type = TYPE_TARGET_TYPE (type);
624  /* Non-struct and non-union types are always passed by value.  */
625  if (TYPE_CODE (type) != TYPE_CODE_STRUCT
626      && TYPE_CODE (type) != TYPE_CODE_UNION)
627    return 0;
628  /* Structs with more than 1 field are always passed by address.  */
629  if (TYPE_NFIELDS (type) != 1)
630    return 1;
631  /* Get field type.  */
632  ftype = (TYPE_FIELDS (type))[0].type;
633  /* The field type must have size 8, otherwise pass by address.  */
634  if (TYPE_LENGTH (ftype) != 8)
635    return 1;
636  /* Skip typedefs of field type.  */
637  while (TYPE_CODE (ftype) == TYPE_CODE_TYPEDEF)
638    ftype = TYPE_TARGET_TYPE (ftype);
639  /* If field is int or float, pass by value.  */
640  if (TYPE_CODE (ftype) == TYPE_CODE_FLT
641      || TYPE_CODE (ftype) == TYPE_CODE_INT)
642    return 0;
643  /* Everything else, pass by address.  */
644  return 1;
645}
646
647static CORE_ADDR
648iq2000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
649		        struct regcache *regcache, CORE_ADDR bp_addr,
650		        int nargs, struct value **args, CORE_ADDR sp,
651		        int struct_return, CORE_ADDR struct_addr)
652{
653  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
654  const bfd_byte *val;
655  bfd_byte buf[4];
656  struct type *type;
657  int i, argreg, typelen, slacklen;
658  int stackspace = 0;
659  /* Used to copy struct arguments into the stack.  */
660  CORE_ADDR struct_ptr;
661
662  /* First determine how much stack space we will need.  */
663  for (i = 0, argreg = E_1ST_ARGREG + (struct_return != 0); i < nargs; i++)
664    {
665      type = value_type (args[i]);
666      typelen = TYPE_LENGTH (type);
667      if (typelen <= 4)
668        {
669          /* Scalars of up to 4 bytes,
670             structs of up to 4 bytes, and
671             pointers.  */
672          if (argreg <= E_LAST_ARGREG)
673            argreg++;
674          else
675            stackspace += 4;
676        }
677      else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
678        {
679          /* long long,
680             double, and possibly
681             structs with a single field of long long or double.  */
682          if (argreg <= E_LAST_ARGREG - 1)
683            {
684              /* 8-byte arg goes into a register pair
685                 (must start with an even-numbered reg).  */
686              if (((argreg - E_1ST_ARGREG) % 2) != 0)
687                argreg ++;
688              argreg += 2;
689            }
690          else
691            {
692              argreg = E_LAST_ARGREG + 1;       /* no more argregs.  */
693              /* 8-byte arg goes on stack, must be 8-byte aligned.  */
694              stackspace = ((stackspace + 7) & ~7);
695              stackspace += 8;
696            }
697        }
698      else
699	{
700	  /* Structs are passed as pointer to a copy of the struct.
701	     So we need room on the stack for a copy of the struct
702	     plus for the argument pointer.  */
703          if (argreg <= E_LAST_ARGREG)
704            argreg++;
705          else
706            stackspace += 4;
707	  /* Care for 8-byte alignment of structs saved on stack.  */
708	  stackspace += ((typelen + 7) & ~7);
709	}
710    }
711
712  /* Now copy params, in ascending order, into their assigned location
713     (either in a register or on the stack).  */
714
715  sp -= (sp % 8);       /* align */
716  struct_ptr = sp;
717  sp -= stackspace;
718  sp -= (sp % 8);       /* align again */
719  stackspace = 0;
720
721  argreg = E_1ST_ARGREG;
722  if (struct_return)
723    {
724      /* A function that returns a struct will consume one argreg to do so.
725       */
726      regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
727    }
728
729  for (i = 0; i < nargs; i++)
730    {
731      type = value_type (args[i]);
732      typelen = TYPE_LENGTH (type);
733      val = value_contents (args[i]);
734      if (typelen <= 4)
735        {
736          /* Char, short, int, float, pointer, and structs <= four bytes.  */
737	  slacklen = (4 - (typelen % 4)) % 4;
738	  memset (buf, 0, sizeof (buf));
739	  memcpy (buf + slacklen, val, typelen);
740          if (argreg <= E_LAST_ARGREG)
741            {
742              /* Passed in a register.  */
743	      regcache_raw_write (regcache, argreg++, buf);
744            }
745          else
746            {
747              /* Passed on the stack.  */
748              write_memory (sp + stackspace, buf, 4);
749              stackspace += 4;
750            }
751        }
752      else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
753        {
754          /* (long long), (double), or struct consisting of
755             a single (long long) or (double).  */
756          if (argreg <= E_LAST_ARGREG - 1)
757            {
758              /* 8-byte arg goes into a register pair
759                 (must start with an even-numbered reg).  */
760              if (((argreg - E_1ST_ARGREG) % 2) != 0)
761                argreg++;
762	      regcache_raw_write (regcache, argreg++, val);
763	      regcache_raw_write (regcache, argreg++, val + 4);
764            }
765          else
766            {
767              /* 8-byte arg goes on stack, must be 8-byte aligned.  */
768              argreg = E_LAST_ARGREG + 1;       /* no more argregs.  */
769              stackspace = ((stackspace + 7) & ~7);
770              write_memory (sp + stackspace, val, typelen);
771              stackspace += 8;
772            }
773        }
774      else
775        {
776	  /* Store struct beginning at the upper end of the previously
777	     computed stack space.  Then store the address of the struct
778	     using the usual rules for a 4 byte value.  */
779	  struct_ptr -= ((typelen + 7) & ~7);
780	  write_memory (struct_ptr, val, typelen);
781	  if (argreg <= E_LAST_ARGREG)
782	    regcache_cooked_write_unsigned (regcache, argreg++, struct_ptr);
783	  else
784	    {
785	      store_unsigned_integer (buf, 4, byte_order, struct_ptr);
786	      write_memory (sp + stackspace, buf, 4);
787	      stackspace += 4;
788	    }
789        }
790    }
791
792  /* Store return address.  */
793  regcache_cooked_write_unsigned (regcache, E_LR_REGNUM, bp_addr);
794
795  /* Update stack pointer.  */
796  regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
797
798  /* And that should do it.  Return the new stack pointer.  */
799  return sp;
800}
801
802/* Function: gdbarch_init
803   Initializer function for the iq2000 gdbarch vector.
804   Called by gdbarch.  Sets up the gdbarch vector(s) for this target.  */
805
806static struct gdbarch *
807iq2000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
808{
809  struct gdbarch *gdbarch;
810
811  /* Look up list for candidates - only one.  */
812  arches = gdbarch_list_lookup_by_info (arches, &info);
813  if (arches != NULL)
814    return arches->gdbarch;
815
816  gdbarch = gdbarch_alloc (&info, NULL);
817
818  set_gdbarch_num_regs             (gdbarch, E_NUM_REGS);
819  set_gdbarch_num_pseudo_regs      (gdbarch, 0);
820  set_gdbarch_sp_regnum            (gdbarch, E_SP_REGNUM);
821  set_gdbarch_pc_regnum            (gdbarch, E_PC_REGNUM);
822  set_gdbarch_register_name        (gdbarch, iq2000_register_name);
823  set_gdbarch_address_to_pointer   (gdbarch, iq2000_address_to_pointer);
824  set_gdbarch_pointer_to_address   (gdbarch, iq2000_pointer_to_address);
825  set_gdbarch_ptr_bit              (gdbarch, 4 * TARGET_CHAR_BIT);
826  set_gdbarch_short_bit            (gdbarch, 2 * TARGET_CHAR_BIT);
827  set_gdbarch_int_bit              (gdbarch, 4 * TARGET_CHAR_BIT);
828  set_gdbarch_long_bit             (gdbarch, 4 * TARGET_CHAR_BIT);
829  set_gdbarch_long_long_bit        (gdbarch, 8 * TARGET_CHAR_BIT);
830  set_gdbarch_float_bit            (gdbarch, 4 * TARGET_CHAR_BIT);
831  set_gdbarch_double_bit           (gdbarch, 8 * TARGET_CHAR_BIT);
832  set_gdbarch_long_double_bit      (gdbarch, 8 * TARGET_CHAR_BIT);
833  set_gdbarch_float_format         (gdbarch, floatformats_ieee_single);
834  set_gdbarch_double_format        (gdbarch, floatformats_ieee_double);
835  set_gdbarch_long_double_format   (gdbarch, floatformats_ieee_double);
836  set_gdbarch_return_value	   (gdbarch, iq2000_return_value);
837  set_gdbarch_breakpoint_from_pc   (gdbarch, iq2000_breakpoint_from_pc);
838  set_gdbarch_frame_args_skip      (gdbarch, 0);
839  set_gdbarch_skip_prologue        (gdbarch, iq2000_skip_prologue);
840  set_gdbarch_inner_than           (gdbarch, core_addr_lessthan);
841  set_gdbarch_print_insn           (gdbarch, print_insn_iq2000);
842  set_gdbarch_register_type (gdbarch, iq2000_register_type);
843  set_gdbarch_frame_align (gdbarch, iq2000_frame_align);
844  set_gdbarch_unwind_sp (gdbarch, iq2000_unwind_sp);
845  set_gdbarch_unwind_pc (gdbarch, iq2000_unwind_pc);
846  set_gdbarch_dummy_id (gdbarch, iq2000_dummy_id);
847  frame_base_set_default (gdbarch, &iq2000_frame_base);
848  set_gdbarch_push_dummy_call (gdbarch, iq2000_push_dummy_call);
849
850  gdbarch_init_osabi (info, gdbarch);
851
852  dwarf2_append_unwinders (gdbarch);
853  frame_unwind_append_unwinder (gdbarch, &iq2000_frame_unwind);
854
855  return gdbarch;
856}
857
858/* Function: _initialize_iq2000_tdep
859   Initializer function for the iq2000 module.
860   Called by gdb at start-up.  */
861
862/* Provide a prototype to silence -Wmissing-prototypes.  */
863extern initialize_file_ftype _initialize_iq2000_tdep;
864
865void
866_initialize_iq2000_tdep (void)
867{
868  register_gdbarch_init (bfd_arch_iq2000, iq2000_gdbarch_init);
869}
870