hppa-tdep.c revision 1.8
1/* Target-dependent code for the HP PA-RISC architecture.
2
3   Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5   Contributed by the Center for Software Science at the
6   University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8   This file is part of GDB.
9
10   This program is free software; you can redistribute it and/or modify
11   it under the terms of the GNU General Public License as published by
12   the Free Software Foundation; either version 3 of the License, or
13   (at your option) any later version.
14
15   This program is distributed in the hope that it will be useful,
16   but WITHOUT ANY WARRANTY; without even the implied warranty of
17   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18   GNU General Public License for more details.
19
20   You should have received a copy of the GNU General Public License
21   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22
23#include "defs.h"
24#include "bfd.h"
25#include "inferior.h"
26#include "regcache.h"
27#include "completer.h"
28#include "osabi.h"
29#include "arch-utils.h"
30/* For argument passing to the inferior.  */
31#include "symtab.h"
32#include "dis-asm.h"
33#include "trad-frame.h"
34#include "frame-unwind.h"
35#include "frame-base.h"
36
37#include "gdbcore.h"
38#include "gdbcmd.h"
39#include "gdbtypes.h"
40#include "objfiles.h"
41#include "hppa-tdep.h"
42#include <algorithm>
43
44static int hppa_debug = 0;
45
46/* Some local constants.  */
47static const int hppa32_num_regs = 128;
48static const int hppa64_num_regs = 96;
49
50/* We use the objfile->obj_private pointer for two things:
51 * 1.  An unwind table;
52 *
53 * 2.  A pointer to any associated shared library object.
54 *
55 * #defines are used to help refer to these objects.
56 */
57
58/* Info about the unwind table associated with an object file.
59 * This is hung off of the "objfile->obj_private" pointer, and
60 * is allocated in the objfile's psymbol obstack.  This allows
61 * us to have unique unwind info for each executable and shared
62 * library that we are debugging.
63 */
64struct hppa_unwind_info
65  {
66    struct unwind_table_entry *table;	/* Pointer to unwind info */
67    struct unwind_table_entry *cache;	/* Pointer to last entry we found */
68    int last;				/* Index of last entry */
69  };
70
71struct hppa_objfile_private
72  {
73    struct hppa_unwind_info *unwind_info;	/* a pointer */
74    struct so_list *so_info;			/* a pointer  */
75    CORE_ADDR dp;
76
77    int dummy_call_sequence_reg;
78    CORE_ADDR dummy_call_sequence_addr;
79  };
80
81/* hppa-specific object data -- unwind and solib info.
82   TODO/maybe: think about splitting this into two parts; the unwind data is
83   common to all hppa targets, but is only used in this file; we can register
84   that separately and make this static. The solib data is probably hpux-
85   specific, so we can create a separate extern objfile_data that is registered
86   by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c.  */
87static const struct objfile_data *hppa_objfile_priv_data = NULL;
88
89/* Get at various relevent fields of an instruction word.  */
90#define MASK_5 0x1f
91#define MASK_11 0x7ff
92#define MASK_14 0x3fff
93#define MASK_21 0x1fffff
94
95/* Sizes (in bytes) of the native unwind entries.  */
96#define UNWIND_ENTRY_SIZE 16
97#define STUB_UNWIND_ENTRY_SIZE 8
98
99/* Routines to extract various sized constants out of hppa
100   instructions.  */
101
102/* This assumes that no garbage lies outside of the lower bits of
103   value.  */
104
105static int
106hppa_sign_extend (unsigned val, unsigned bits)
107{
108  return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val);
109}
110
111/* For many immediate values the sign bit is the low bit!  */
112
113static int
114hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
115{
116  return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1);
117}
118
119/* Extract the bits at positions between FROM and TO, using HP's numbering
120   (MSB = 0).  */
121
122int
123hppa_get_field (unsigned word, int from, int to)
124{
125  return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
126}
127
128/* Extract the immediate field from a ld{bhw}s instruction.  */
129
130int
131hppa_extract_5_load (unsigned word)
132{
133  return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
134}
135
136/* Extract the immediate field from a break instruction.  */
137
138unsigned
139hppa_extract_5r_store (unsigned word)
140{
141  return (word & MASK_5);
142}
143
144/* Extract the immediate field from a {sr}sm instruction.  */
145
146unsigned
147hppa_extract_5R_store (unsigned word)
148{
149  return (word >> 16 & MASK_5);
150}
151
152/* Extract a 14 bit immediate field.  */
153
154int
155hppa_extract_14 (unsigned word)
156{
157  return hppa_low_hppa_sign_extend (word & MASK_14, 14);
158}
159
160/* Extract a 21 bit constant.  */
161
162int
163hppa_extract_21 (unsigned word)
164{
165  int val;
166
167  word &= MASK_21;
168  word <<= 11;
169  val = hppa_get_field (word, 20, 20);
170  val <<= 11;
171  val |= hppa_get_field (word, 9, 19);
172  val <<= 2;
173  val |= hppa_get_field (word, 5, 6);
174  val <<= 5;
175  val |= hppa_get_field (word, 0, 4);
176  val <<= 2;
177  val |= hppa_get_field (word, 7, 8);
178  return hppa_sign_extend (val, 21) << 11;
179}
180
181/* extract a 17 bit constant from branch instructions, returning the
182   19 bit signed value.  */
183
184int
185hppa_extract_17 (unsigned word)
186{
187  return hppa_sign_extend (hppa_get_field (word, 19, 28) |
188		      hppa_get_field (word, 29, 29) << 10 |
189		      hppa_get_field (word, 11, 15) << 11 |
190		      (word & 0x1) << 16, 17) << 2;
191}
192
193CORE_ADDR
194hppa_symbol_address(const char *sym)
195{
196  struct bound_minimal_symbol minsym;
197
198  minsym = lookup_minimal_symbol (sym, NULL, NULL);
199  if (minsym.minsym)
200    return BMSYMBOL_VALUE_ADDRESS (minsym);
201  else
202    return (CORE_ADDR)-1;
203}
204
205static struct hppa_objfile_private *
206hppa_init_objfile_priv_data (struct objfile *objfile)
207{
208  hppa_objfile_private *priv
209    = OBSTACK_ZALLOC (&objfile->objfile_obstack, hppa_objfile_private);
210
211  set_objfile_data (objfile, hppa_objfile_priv_data, priv);
212
213  return priv;
214}
215
216
217/* Compare the start address for two unwind entries returning 1 if
218   the first address is larger than the second, -1 if the second is
219   larger than the first, and zero if they are equal.  */
220
221static int
222compare_unwind_entries (const void *arg1, const void *arg2)
223{
224  const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1;
225  const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2;
226
227  if (a->region_start > b->region_start)
228    return 1;
229  else if (a->region_start < b->region_start)
230    return -1;
231  else
232    return 0;
233}
234
235static void
236record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
237{
238  if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
239       == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
240    {
241      bfd_vma value = section->vma - section->filepos;
242      CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
243
244      if (value < *low_text_segment_address)
245          *low_text_segment_address = value;
246    }
247}
248
249static void
250internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
251		     asection *section, unsigned int entries,
252		     size_t size, CORE_ADDR text_offset)
253{
254  /* We will read the unwind entries into temporary memory, then
255     fill in the actual unwind table.  */
256
257  if (size > 0)
258    {
259      struct gdbarch *gdbarch = get_objfile_arch (objfile);
260      unsigned long tmp;
261      unsigned i;
262      char *buf = (char *) alloca (size);
263      CORE_ADDR low_text_segment_address;
264
265      /* For ELF targets, then unwinds are supposed to
266	 be segment relative offsets instead of absolute addresses.
267
268	 Note that when loading a shared library (text_offset != 0) the
269	 unwinds are already relative to the text_offset that will be
270	 passed in.  */
271      if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
272	{
273          low_text_segment_address = -1;
274
275	  bfd_map_over_sections (objfile->obfd,
276				 record_text_segment_lowaddr,
277				 &low_text_segment_address);
278
279	  text_offset = low_text_segment_address;
280	}
281      else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
282        {
283	  text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
284	}
285
286      bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
287
288      /* Now internalize the information being careful to handle host/target
289         endian issues.  */
290      for (i = 0; i < entries; i++)
291	{
292	  table[i].region_start = bfd_get_32 (objfile->obfd,
293					      (bfd_byte *) buf);
294	  table[i].region_start += text_offset;
295	  buf += 4;
296	  table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
297	  table[i].region_end += text_offset;
298	  buf += 4;
299	  tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
300	  buf += 4;
301	  table[i].Cannot_unwind = (tmp >> 31) & 0x1;
302	  table[i].Millicode = (tmp >> 30) & 0x1;
303	  table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
304	  table[i].Region_description = (tmp >> 27) & 0x3;
305	  table[i].reserved = (tmp >> 26) & 0x1;
306	  table[i].Entry_SR = (tmp >> 25) & 0x1;
307	  table[i].Entry_FR = (tmp >> 21) & 0xf;
308	  table[i].Entry_GR = (tmp >> 16) & 0x1f;
309	  table[i].Args_stored = (tmp >> 15) & 0x1;
310	  table[i].Variable_Frame = (tmp >> 14) & 0x1;
311	  table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
312	  table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
313	  table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
314	  table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
315	  table[i].sr4export = (tmp >> 9) & 0x1;
316	  table[i].cxx_info = (tmp >> 8) & 0x1;
317	  table[i].cxx_try_catch = (tmp >> 7) & 0x1;
318	  table[i].sched_entry_seq = (tmp >> 6) & 0x1;
319	  table[i].reserved1 = (tmp >> 5) & 0x1;
320	  table[i].Save_SP = (tmp >> 4) & 0x1;
321	  table[i].Save_RP = (tmp >> 3) & 0x1;
322	  table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
323	  table[i].save_r19 = (tmp >> 1) & 0x1;
324	  table[i].Cleanup_defined = tmp & 0x1;
325	  tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
326	  buf += 4;
327	  table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
328	  table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
329	  table[i].Large_frame = (tmp >> 29) & 0x1;
330	  table[i].alloca_frame = (tmp >> 28) & 0x1;
331	  table[i].reserved2 = (tmp >> 27) & 0x1;
332	  table[i].Total_frame_size = tmp & 0x7ffffff;
333
334	  /* Stub unwinds are handled elsewhere.  */
335	  table[i].stub_unwind.stub_type = 0;
336	  table[i].stub_unwind.padding = 0;
337	}
338    }
339}
340
341/* Read in the backtrace information stored in the `$UNWIND_START$' section of
342   the object file.  This info is used mainly by find_unwind_entry() to find
343   out the stack frame size and frame pointer used by procedures.  We put
344   everything on the psymbol obstack in the objfile so that it automatically
345   gets freed when the objfile is destroyed.  */
346
347static void
348read_unwind_info (struct objfile *objfile)
349{
350  asection *unwind_sec, *stub_unwind_sec;
351  size_t unwind_size, stub_unwind_size, total_size;
352  unsigned index, unwind_entries;
353  unsigned stub_entries, total_entries;
354  CORE_ADDR text_offset;
355  struct hppa_unwind_info *ui;
356  struct hppa_objfile_private *obj_private;
357
358  text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
359  ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
360					   sizeof (struct hppa_unwind_info));
361
362  ui->table = NULL;
363  ui->cache = NULL;
364  ui->last = -1;
365
366  /* For reasons unknown the HP PA64 tools generate multiple unwinder
367     sections in a single executable.  So we just iterate over every
368     section in the BFD looking for unwinder sections intead of trying
369     to do a lookup with bfd_get_section_by_name.
370
371     First determine the total size of the unwind tables so that we
372     can allocate memory in a nice big hunk.  */
373  total_entries = 0;
374  for (unwind_sec = objfile->obfd->sections;
375       unwind_sec;
376       unwind_sec = unwind_sec->next)
377    {
378      if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
379	  || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
380	{
381	  unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
382	  unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
383
384	  total_entries += unwind_entries;
385	}
386    }
387
388  /* Now compute the size of the stub unwinds.  Note the ELF tools do not
389     use stub unwinds at the current time.  */
390  stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
391
392  if (stub_unwind_sec)
393    {
394      stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
395      stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
396    }
397  else
398    {
399      stub_unwind_size = 0;
400      stub_entries = 0;
401    }
402
403  /* Compute total number of unwind entries and their total size.  */
404  total_entries += stub_entries;
405  total_size = total_entries * sizeof (struct unwind_table_entry);
406
407  /* Allocate memory for the unwind table.  */
408  ui->table = (struct unwind_table_entry *)
409    obstack_alloc (&objfile->objfile_obstack, total_size);
410  ui->last = total_entries - 1;
411
412  /* Now read in each unwind section and internalize the standard unwind
413     entries.  */
414  index = 0;
415  for (unwind_sec = objfile->obfd->sections;
416       unwind_sec;
417       unwind_sec = unwind_sec->next)
418    {
419      if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
420	  || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
421	{
422	  unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
423	  unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
424
425	  internalize_unwinds (objfile, &ui->table[index], unwind_sec,
426			       unwind_entries, unwind_size, text_offset);
427	  index += unwind_entries;
428	}
429    }
430
431  /* Now read in and internalize the stub unwind entries.  */
432  if (stub_unwind_size > 0)
433    {
434      unsigned int i;
435      char *buf = (char *) alloca (stub_unwind_size);
436
437      /* Read in the stub unwind entries.  */
438      bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
439				0, stub_unwind_size);
440
441      /* Now convert them into regular unwind entries.  */
442      for (i = 0; i < stub_entries; i++, index++)
443	{
444	  /* Clear out the next unwind entry.  */
445	  memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
446
447	  /* Convert offset & size into region_start and region_end.
448	     Stuff away the stub type into "reserved" fields.  */
449	  ui->table[index].region_start = bfd_get_32 (objfile->obfd,
450						      (bfd_byte *) buf);
451	  ui->table[index].region_start += text_offset;
452	  buf += 4;
453	  ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
454							  (bfd_byte *) buf);
455	  buf += 2;
456	  ui->table[index].region_end
457	    = ui->table[index].region_start + 4 *
458	    (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
459	  buf += 2;
460	}
461
462    }
463
464  /* Unwind table needs to be kept sorted.  */
465  qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
466	 compare_unwind_entries);
467
468  /* Keep a pointer to the unwind information.  */
469  obj_private = (struct hppa_objfile_private *)
470	        objfile_data (objfile, hppa_objfile_priv_data);
471  if (obj_private == NULL)
472    obj_private = hppa_init_objfile_priv_data (objfile);
473
474  obj_private->unwind_info = ui;
475}
476
477/* Lookup the unwind (stack backtrace) info for the given PC.  We search all
478   of the objfiles seeking the unwind table entry for this PC.  Each objfile
479   contains a sorted list of struct unwind_table_entry.  Since we do a binary
480   search of the unwind tables, we depend upon them to be sorted.  */
481
482struct unwind_table_entry *
483find_unwind_entry (CORE_ADDR pc)
484{
485  int first, middle, last;
486  struct hppa_objfile_private *priv;
487
488  if (hppa_debug)
489    fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
490		        hex_string (pc));
491
492  /* A function at address 0?  Not in HP-UX!  */
493  if (pc == (CORE_ADDR) 0)
494    {
495      if (hppa_debug)
496	fprintf_unfiltered (gdb_stdlog, "NULL }\n");
497      return NULL;
498    }
499
500  for (objfile *objfile : current_program_space->objfiles ())
501    {
502      struct hppa_unwind_info *ui;
503      ui = NULL;
504      priv = ((struct hppa_objfile_private *)
505	      objfile_data (objfile, hppa_objfile_priv_data));
506      if (priv)
507	ui = ((struct hppa_objfile_private *) priv)->unwind_info;
508
509      if (!ui)
510	{
511	  read_unwind_info (objfile);
512	  priv = ((struct hppa_objfile_private *)
513		  objfile_data (objfile, hppa_objfile_priv_data));
514	  if (priv == NULL)
515	    error (_("Internal error reading unwind information."));
516	  ui = ((struct hppa_objfile_private *) priv)->unwind_info;
517	}
518
519      /* First, check the cache.  */
520
521      if (ui->cache
522	  && pc >= ui->cache->region_start
523	  && pc <= ui->cache->region_end)
524	{
525	  if (hppa_debug)
526	    fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
527				hex_string ((uintptr_t) ui->cache));
528	  return ui->cache;
529	}
530
531      /* Not in the cache, do a binary search.  */
532
533      first = 0;
534      last = ui->last;
535
536      while (first <= last)
537	{
538	  middle = (first + last) / 2;
539	  if (pc >= ui->table[middle].region_start
540	      && pc <= ui->table[middle].region_end)
541	    {
542	      ui->cache = &ui->table[middle];
543	      if (hppa_debug)
544		fprintf_unfiltered (gdb_stdlog, "%s }\n",
545				    hex_string ((uintptr_t) ui->cache));
546	      return &ui->table[middle];
547	    }
548
549	  if (pc < ui->table[middle].region_start)
550	    last = middle - 1;
551	  else
552	    first = middle + 1;
553	}
554    }
555
556  if (hppa_debug)
557    fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
558
559  return NULL;
560}
561
562/* Implement the stack_frame_destroyed_p gdbarch method.
563
564   The epilogue is defined here as the area either on the `bv' instruction
565   itself or an instruction which destroys the function's stack frame.
566
567   We do not assume that the epilogue is at the end of a function as we can
568   also have return sequences in the middle of a function.  */
569
570static int
571hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
572{
573  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
574  unsigned long status;
575  unsigned int inst;
576  gdb_byte buf[4];
577
578  status = target_read_memory (pc, buf, 4);
579  if (status != 0)
580    return 0;
581
582  inst = extract_unsigned_integer (buf, 4, byte_order);
583
584  /* The most common way to perform a stack adjustment ldo X(sp),sp
585     We are destroying a stack frame if the offset is negative.  */
586  if ((inst & 0xffffc000) == 0x37de0000
587      && hppa_extract_14 (inst) < 0)
588    return 1;
589
590  /* ldw,mb D(sp),X or ldd,mb D(sp),X */
591  if (((inst & 0x0fc010e0) == 0x0fc010e0
592       || (inst & 0x0fc010e0) == 0x0fc010e0)
593      && hppa_extract_14 (inst) < 0)
594    return 1;
595
596  /* bv %r0(%rp) or bv,n %r0(%rp) */
597  if (inst == 0xe840c000 || inst == 0xe840c002)
598    return 1;
599
600  return 0;
601}
602
603constexpr gdb_byte hppa_break_insn[] = {0x00, 0x01, 0x00, 0x04};
604
605typedef BP_MANIPULATION (hppa_break_insn) hppa_breakpoint;
606
607/* Return the name of a register.  */
608
609static const char *
610hppa32_register_name (struct gdbarch *gdbarch, int i)
611{
612  static const char *names[] = {
613    "flags",  "r1",      "rp",     "r3",
614    "r4",     "r5",      "r6",     "r7",
615    "r8",     "r9",      "r10",    "r11",
616    "r12",    "r13",     "r14",    "r15",
617    "r16",    "r17",     "r18",    "r19",
618    "r20",    "r21",     "r22",    "r23",
619    "r24",    "r25",     "r26",    "dp",
620    "ret0",   "ret1",    "sp",     "r31",
621    "sar",    "pcoqh",   "pcsqh",  "pcoqt",
622    "pcsqt",  "eiem",    "iir",    "isr",
623    "ior",    "ipsw",    "goto",   "sr4",
624    "sr0",    "sr1",     "sr2",    "sr3",
625    "sr5",    "sr6",     "sr7",    "cr0",
626    "cr8",    "cr9",     "ccr",    "cr12",
627    "cr13",   "cr24",    "cr25",   "cr26",
628    "cr27",   "cr28",    "cr29",   "cr30",
629    "fpsr",    "fpe1",   "fpe2",   "fpe3",
630    "fpe4",   "fpe5",    "fpe6",   "fpe7",
631    "fr4",     "fr4R",   "fr5",    "fr5R",
632    "fr6",    "fr6R",    "fr7",    "fr7R",
633    "fr8",     "fr8R",   "fr9",    "fr9R",
634    "fr10",   "fr10R",   "fr11",   "fr11R",
635    "fr12",    "fr12R",  "fr13",   "fr13R",
636    "fr14",   "fr14R",   "fr15",   "fr15R",
637    "fr16",    "fr16R",  "fr17",   "fr17R",
638    "fr18",   "fr18R",   "fr19",   "fr19R",
639    "fr20",    "fr20R",  "fr21",   "fr21R",
640    "fr22",   "fr22R",   "fr23",   "fr23R",
641    "fr24",    "fr24R",  "fr25",   "fr25R",
642    "fr26",   "fr26R",   "fr27",   "fr27R",
643    "fr28",    "fr28R",  "fr29",   "fr29R",
644    "fr30",   "fr30R",   "fr31",   "fr31R"
645  };
646  if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
647    return NULL;
648  else
649    return names[i];
650}
651
652static const char *
653hppa64_register_name (struct gdbarch *gdbarch, int i)
654{
655  static const char *names[] = {
656    "flags",  "r1",      "rp",     "r3",
657    "r4",     "r5",      "r6",     "r7",
658    "r8",     "r9",      "r10",    "r11",
659    "r12",    "r13",     "r14",    "r15",
660    "r16",    "r17",     "r18",    "r19",
661    "r20",    "r21",     "r22",    "r23",
662    "r24",    "r25",     "r26",    "dp",
663    "ret0",   "ret1",    "sp",     "r31",
664    "sar",    "pcoqh",   "pcsqh",  "pcoqt",
665    "pcsqt",  "eiem",    "iir",    "isr",
666    "ior",    "ipsw",    "goto",   "sr4",
667    "sr0",    "sr1",     "sr2",    "sr3",
668    "sr5",    "sr6",     "sr7",    "cr0",
669    "cr8",    "cr9",     "ccr",    "cr12",
670    "cr13",   "cr24",    "cr25",   "cr26",
671    "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
672    "fpsr",    "fpe1",   "fpe2",   "fpe3",
673    "fr4",    "fr5",     "fr6",    "fr7",
674    "fr8",     "fr9",    "fr10",   "fr11",
675    "fr12",   "fr13",    "fr14",   "fr15",
676    "fr16",    "fr17",   "fr18",   "fr19",
677    "fr20",   "fr21",    "fr22",   "fr23",
678    "fr24",    "fr25",   "fr26",   "fr27",
679    "fr28",  "fr29",    "fr30",   "fr31"
680  };
681  if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
682    return NULL;
683  else
684    return names[i];
685}
686
687/* Map dwarf DBX register numbers to GDB register numbers.  */
688static int
689hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
690{
691  /* The general registers and the sar are the same in both sets.  */
692  if (reg >= 0 && reg <= 32)
693    return reg;
694
695  /* fr4-fr31 are mapped from 72 in steps of 2.  */
696  if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
697    return HPPA64_FP4_REGNUM + (reg - 72) / 2;
698
699  return -1;
700}
701
702/* This function pushes a stack frame with arguments as part of the
703   inferior function calling mechanism.
704
705   This is the version of the function for the 32-bit PA machines, in
706   which later arguments appear at lower addresses.  (The stack always
707   grows towards higher addresses.)
708
709   We simply allocate the appropriate amount of stack space and put
710   arguments into their proper slots.  */
711
712static CORE_ADDR
713hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
714			struct regcache *regcache, CORE_ADDR bp_addr,
715			int nargs, struct value **args, CORE_ADDR sp,
716			function_call_return_method return_method,
717			CORE_ADDR struct_addr)
718{
719  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
720
721  /* Stack base address at which any pass-by-reference parameters are
722     stored.  */
723  CORE_ADDR struct_end = 0;
724  /* Stack base address at which the first parameter is stored.  */
725  CORE_ADDR param_end = 0;
726
727  /* Two passes.  First pass computes the location of everything,
728     second pass writes the bytes out.  */
729  int write_pass;
730
731  /* Global pointer (r19) of the function we are trying to call.  */
732  CORE_ADDR gp;
733
734  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
735
736  for (write_pass = 0; write_pass < 2; write_pass++)
737    {
738      CORE_ADDR struct_ptr = 0;
739      /* The first parameter goes into sp-36, each stack slot is 4-bytes.
740         struct_ptr is adjusted for each argument below, so the first
741	 argument will end up at sp-36.  */
742      CORE_ADDR param_ptr = 32;
743      int i;
744      int small_struct = 0;
745
746      for (i = 0; i < nargs; i++)
747	{
748	  struct value *arg = args[i];
749	  struct type *type = check_typedef (value_type (arg));
750	  /* The corresponding parameter that is pushed onto the
751	     stack, and [possibly] passed in a register.  */
752	  gdb_byte param_val[8];
753	  int param_len;
754	  memset (param_val, 0, sizeof param_val);
755	  if (TYPE_LENGTH (type) > 8)
756	    {
757	      /* Large parameter, pass by reference.  Store the value
758		 in "struct" area and then pass its address.  */
759	      param_len = 4;
760	      struct_ptr += align_up (TYPE_LENGTH (type), 8);
761	      if (write_pass)
762		write_memory (struct_end - struct_ptr, value_contents (arg),
763			      TYPE_LENGTH (type));
764	      store_unsigned_integer (param_val, 4, byte_order,
765				      struct_end - struct_ptr);
766	    }
767	  else if (TYPE_CODE (type) == TYPE_CODE_INT
768		   || TYPE_CODE (type) == TYPE_CODE_ENUM)
769	    {
770	      /* Integer value store, right aligned.  "unpack_long"
771		 takes care of any sign-extension problems.  */
772	      param_len = align_up (TYPE_LENGTH (type), 4);
773	      store_unsigned_integer (param_val, param_len, byte_order,
774				      unpack_long (type,
775						   value_contents (arg)));
776	    }
777	  else if (TYPE_CODE (type) == TYPE_CODE_FLT)
778            {
779	      /* Floating point value store, right aligned.  */
780	      param_len = align_up (TYPE_LENGTH (type), 4);
781	      memcpy (param_val, value_contents (arg), param_len);
782            }
783	  else
784	    {
785	      param_len = align_up (TYPE_LENGTH (type), 4);
786
787	      /* Small struct value are stored right-aligned.  */
788	      memcpy (param_val + param_len - TYPE_LENGTH (type),
789		      value_contents (arg), TYPE_LENGTH (type));
790
791	      /* Structures of size 5, 6 and 7 bytes are special in that
792	         the higher-ordered word is stored in the lower-ordered
793		 argument, and even though it is a 8-byte quantity the
794		 registers need not be 8-byte aligned.  */
795	      if (param_len > 4 && param_len < 8)
796		small_struct = 1;
797	    }
798
799	  param_ptr += param_len;
800	  if (param_len == 8 && !small_struct)
801            param_ptr = align_up (param_ptr, 8);
802
803	  /* First 4 non-FP arguments are passed in gr26-gr23.
804	     First 4 32-bit FP arguments are passed in fr4L-fr7L.
805	     First 2 64-bit FP arguments are passed in fr5 and fr7.
806
807	     The rest go on the stack, starting at sp-36, towards lower
808	     addresses.  8-byte arguments must be aligned to a 8-byte
809	     stack boundary.  */
810	  if (write_pass)
811	    {
812	      write_memory (param_end - param_ptr, param_val, param_len);
813
814	      /* There are some cases when we don't know the type
815		 expected by the callee (e.g. for variadic functions), so
816		 pass the parameters in both general and fp regs.  */
817	      if (param_ptr <= 48)
818		{
819		  int grreg = 26 - (param_ptr - 36) / 4;
820		  int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
821		  int fpreg = 74 + (param_ptr - 32) / 8 * 4;
822
823		  regcache->cooked_write (grreg, param_val);
824		  regcache->cooked_write (fpLreg, param_val);
825
826		  if (param_len > 4)
827		    {
828		      regcache->cooked_write (grreg + 1, param_val + 4);
829
830		      regcache->cooked_write (fpreg, param_val);
831		      regcache->cooked_write (fpreg + 1, param_val + 4);
832		    }
833		}
834	    }
835	}
836
837      /* Update the various stack pointers.  */
838      if (!write_pass)
839	{
840	  struct_end = sp + align_up (struct_ptr, 64);
841	  /* PARAM_PTR already accounts for all the arguments passed
842	     by the user.  However, the ABI mandates minimum stack
843	     space allocations for outgoing arguments.  The ABI also
844	     mandates minimum stack alignments which we must
845	     preserve.  */
846	  param_end = struct_end + align_up (param_ptr, 64);
847	}
848    }
849
850  /* If a structure has to be returned, set up register 28 to hold its
851     address.  */
852  if (return_method == return_method_struct)
853    regcache_cooked_write_unsigned (regcache, 28, struct_addr);
854
855  gp = tdep->find_global_pointer (gdbarch, function);
856
857  if (gp != 0)
858    regcache_cooked_write_unsigned (regcache, 19, gp);
859
860  /* Set the return address.  */
861  if (!gdbarch_push_dummy_code_p (gdbarch))
862    regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
863
864  /* Update the Stack Pointer.  */
865  regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
866
867  return param_end;
868}
869
870/* The 64-bit PA-RISC calling conventions are documented in "64-Bit
871   Runtime Architecture for PA-RISC 2.0", which is distributed as part
872   as of the HP-UX Software Transition Kit (STK).  This implementation
873   is based on version 3.3, dated October 6, 1997.  */
874
875/* Check whether TYPE is an "Integral or Pointer Scalar Type".  */
876
877static int
878hppa64_integral_or_pointer_p (const struct type *type)
879{
880  switch (TYPE_CODE (type))
881    {
882    case TYPE_CODE_INT:
883    case TYPE_CODE_BOOL:
884    case TYPE_CODE_CHAR:
885    case TYPE_CODE_ENUM:
886    case TYPE_CODE_RANGE:
887      {
888	int len = TYPE_LENGTH (type);
889	return (len == 1 || len == 2 || len == 4 || len == 8);
890      }
891    case TYPE_CODE_PTR:
892    case TYPE_CODE_REF:
893    case TYPE_CODE_RVALUE_REF:
894      return (TYPE_LENGTH (type) == 8);
895    default:
896      break;
897    }
898
899  return 0;
900}
901
902/* Check whether TYPE is a "Floating Scalar Type".  */
903
904static int
905hppa64_floating_p (const struct type *type)
906{
907  switch (TYPE_CODE (type))
908    {
909    case TYPE_CODE_FLT:
910      {
911	int len = TYPE_LENGTH (type);
912	return (len == 4 || len == 8 || len == 16);
913      }
914    default:
915      break;
916    }
917
918  return 0;
919}
920
921/* If CODE points to a function entry address, try to look up the corresponding
922   function descriptor and return its address instead.  If CODE is not a
923   function entry address, then just return it unchanged.  */
924static CORE_ADDR
925hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
926{
927  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
928  struct obj_section *sec, *opd;
929
930  sec = find_pc_section (code);
931
932  if (!sec)
933    return code;
934
935  /* If CODE is in a data section, assume it's already a fptr.  */
936  if (!(sec->the_bfd_section->flags & SEC_CODE))
937    return code;
938
939  ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
940    {
941      if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
942	break;
943    }
944
945  if (opd < sec->objfile->sections_end)
946    {
947      CORE_ADDR addr;
948
949      for (addr = obj_section_addr (opd);
950	   addr < obj_section_endaddr (opd);
951	   addr += 2 * 8)
952	{
953	  ULONGEST opdaddr;
954	  gdb_byte tmp[8];
955
956	  if (target_read_memory (addr, tmp, sizeof (tmp)))
957	      break;
958	  opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
959
960	  if (opdaddr == code)
961	    return addr - 16;
962	}
963    }
964
965  return code;
966}
967
968static CORE_ADDR
969hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
970			struct regcache *regcache, CORE_ADDR bp_addr,
971			int nargs, struct value **args, CORE_ADDR sp,
972			function_call_return_method return_method,
973			CORE_ADDR struct_addr)
974{
975  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
976  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
977  int i, offset = 0;
978  CORE_ADDR gp;
979
980  /* "The outgoing parameter area [...] must be aligned at a 16-byte
981     boundary."  */
982  sp = align_up (sp, 16);
983
984  for (i = 0; i < nargs; i++)
985    {
986      struct value *arg = args[i];
987      struct type *type = value_type (arg);
988      int len = TYPE_LENGTH (type);
989      const bfd_byte *valbuf;
990      bfd_byte fptrbuf[8];
991      int regnum;
992
993      /* "Each parameter begins on a 64-bit (8-byte) boundary."  */
994      offset = align_up (offset, 8);
995
996      if (hppa64_integral_or_pointer_p (type))
997	{
998	  /* "Integral scalar parameters smaller than 64 bits are
999             padded on the left (i.e., the value is in the
1000             least-significant bits of the 64-bit storage unit, and
1001             the high-order bits are undefined)."  Therefore we can
1002             safely sign-extend them.  */
1003	  if (len < 8)
1004	    {
1005	      arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
1006	      len = 8;
1007	    }
1008	}
1009      else if (hppa64_floating_p (type))
1010	{
1011	  if (len > 8)
1012	    {
1013	      /* "Quad-precision (128-bit) floating-point scalar
1014		 parameters are aligned on a 16-byte boundary."  */
1015	      offset = align_up (offset, 16);
1016
1017	      /* "Double-extended- and quad-precision floating-point
1018                 parameters within the first 64 bytes of the parameter
1019                 list are always passed in general registers."  */
1020	    }
1021	  else
1022	    {
1023	      if (len == 4)
1024		{
1025		  /* "Single-precision (32-bit) floating-point scalar
1026		     parameters are padded on the left with 32 bits of
1027		     garbage (i.e., the floating-point value is in the
1028		     least-significant 32 bits of a 64-bit storage
1029		     unit)."  */
1030		  offset += 4;
1031		}
1032
1033	      /* "Single- and double-precision floating-point
1034                 parameters in this area are passed according to the
1035                 available formal parameter information in a function
1036                 prototype.  [...]  If no prototype is in scope,
1037                 floating-point parameters must be passed both in the
1038                 corresponding general registers and in the
1039                 corresponding floating-point registers."  */
1040	      regnum = HPPA64_FP4_REGNUM + offset / 8;
1041
1042	      if (regnum < HPPA64_FP4_REGNUM + 8)
1043		{
1044		  /* "Single-precision floating-point parameters, when
1045		     passed in floating-point registers, are passed in
1046		     the right halves of the floating point registers;
1047		     the left halves are unused."  */
1048		  regcache->cooked_write_part (regnum, offset % 8, len,
1049					       value_contents (arg));
1050		}
1051	    }
1052	}
1053      else
1054	{
1055	  if (len > 8)
1056	    {
1057	      /* "Aggregates larger than 8 bytes are aligned on a
1058		 16-byte boundary, possibly leaving an unused argument
1059		 slot, which is filled with garbage.  If necessary,
1060		 they are padded on the right (with garbage), to a
1061		 multiple of 8 bytes."  */
1062	      offset = align_up (offset, 16);
1063	    }
1064	}
1065
1066      /* If we are passing a function pointer, make sure we pass a function
1067         descriptor instead of the function entry address.  */
1068      if (TYPE_CODE (type) == TYPE_CODE_PTR
1069          && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1070        {
1071	  ULONGEST codeptr, fptr;
1072
1073	  codeptr = unpack_long (type, value_contents (arg));
1074	  fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1075	  store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1076				  fptr);
1077	  valbuf = fptrbuf;
1078	}
1079      else
1080        {
1081          valbuf = value_contents (arg);
1082	}
1083
1084      /* Always store the argument in memory.  */
1085      write_memory (sp + offset, valbuf, len);
1086
1087      regnum = HPPA_ARG0_REGNUM - offset / 8;
1088      while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1089	{
1090	  regcache->cooked_write_part (regnum, offset % 8, std::min (len, 8),
1091				       valbuf);
1092	  offset += std::min (len, 8);
1093	  valbuf += std::min (len, 8);
1094	  len -= std::min (len, 8);
1095	  regnum--;
1096	}
1097
1098      offset += len;
1099    }
1100
1101  /* Set up GR29 (%ret1) to hold the argument pointer (ap).  */
1102  regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1103
1104  /* Allocate the outgoing parameter area.  Make sure the outgoing
1105     parameter area is multiple of 16 bytes in length.  */
1106  sp += std::max (align_up (offset, 16), (ULONGEST) 64);
1107
1108  /* Allocate 32-bytes of scratch space.  The documentation doesn't
1109     mention this, but it seems to be needed.  */
1110  sp += 32;
1111
1112  /* Allocate the frame marker area.  */
1113  sp += 16;
1114
1115  /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1116     its address.  */
1117  if (return_method == return_method_struct)
1118    regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1119
1120  /* Set up GR27 (%dp) to hold the global pointer (gp).  */
1121  gp = tdep->find_global_pointer (gdbarch, function);
1122  if (gp != 0)
1123    regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1124
1125  /* Set up GR2 (%rp) to hold the return pointer (rp).  */
1126  if (!gdbarch_push_dummy_code_p (gdbarch))
1127    regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1128
1129  /* Set up GR30 to hold the stack pointer (sp).  */
1130  regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1131
1132  return sp;
1133}
1134
1135
1136/* Handle 32/64-bit struct return conventions.  */
1137
1138static enum return_value_convention
1139hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
1140		     struct type *type, struct regcache *regcache,
1141		     gdb_byte *readbuf, const gdb_byte *writebuf)
1142{
1143  if (TYPE_LENGTH (type) <= 2 * 4)
1144    {
1145      /* The value always lives in the right hand end of the register
1146	 (or register pair)?  */
1147      int b;
1148      int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1149      int part = TYPE_LENGTH (type) % 4;
1150      /* The left hand register contains only part of the value,
1151	 transfer that first so that the rest can be xfered as entire
1152	 4-byte registers.  */
1153      if (part > 0)
1154	{
1155	  if (readbuf != NULL)
1156	    regcache->cooked_read_part (reg, 4 - part, part, readbuf);
1157	  if (writebuf != NULL)
1158	    regcache->cooked_write_part (reg, 4 - part, part, writebuf);
1159	  reg++;
1160	}
1161      /* Now transfer the remaining register values.  */
1162      for (b = part; b < TYPE_LENGTH (type); b += 4)
1163	{
1164	  if (readbuf != NULL)
1165	    regcache->cooked_read (reg, readbuf + b);
1166	  if (writebuf != NULL)
1167	    regcache->cooked_write (reg, writebuf + b);
1168	  reg++;
1169	}
1170      return RETURN_VALUE_REGISTER_CONVENTION;
1171    }
1172  else
1173    return RETURN_VALUE_STRUCT_CONVENTION;
1174}
1175
1176static enum return_value_convention
1177hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
1178		     struct type *type, struct regcache *regcache,
1179		     gdb_byte *readbuf, const gdb_byte *writebuf)
1180{
1181  int len = TYPE_LENGTH (type);
1182  int regnum, offset;
1183
1184  if (len > 16)
1185    {
1186      /* All return values larget than 128 bits must be aggregate
1187         return values.  */
1188      gdb_assert (!hppa64_integral_or_pointer_p (type));
1189      gdb_assert (!hppa64_floating_p (type));
1190
1191      /* "Aggregate return values larger than 128 bits are returned in
1192	 a buffer allocated by the caller.  The address of the buffer
1193	 must be passed in GR 28."  */
1194      return RETURN_VALUE_STRUCT_CONVENTION;
1195    }
1196
1197  if (hppa64_integral_or_pointer_p (type))
1198    {
1199      /* "Integral return values are returned in GR 28.  Values
1200         smaller than 64 bits are padded on the left (with garbage)."  */
1201      regnum = HPPA_RET0_REGNUM;
1202      offset = 8 - len;
1203    }
1204  else if (hppa64_floating_p (type))
1205    {
1206      if (len > 8)
1207	{
1208	  /* "Double-extended- and quad-precision floating-point
1209	     values are returned in GRs 28 and 29.  The sign,
1210	     exponent, and most-significant bits of the mantissa are
1211	     returned in GR 28; the least-significant bits of the
1212	     mantissa are passed in GR 29.  For double-extended
1213	     precision values, GR 29 is padded on the right with 48
1214	     bits of garbage."  */
1215	  regnum = HPPA_RET0_REGNUM;
1216	  offset = 0;
1217	}
1218      else
1219	{
1220	  /* "Single-precision and double-precision floating-point
1221	     return values are returned in FR 4R (single precision) or
1222	     FR 4 (double-precision)."  */
1223	  regnum = HPPA64_FP4_REGNUM;
1224	  offset = 8 - len;
1225	}
1226    }
1227  else
1228    {
1229      /* "Aggregate return values up to 64 bits in size are returned
1230         in GR 28.  Aggregates smaller than 64 bits are left aligned
1231         in the register; the pad bits on the right are undefined."
1232
1233	 "Aggregate return values between 65 and 128 bits are returned
1234	 in GRs 28 and 29.  The first 64 bits are placed in GR 28, and
1235	 the remaining bits are placed, left aligned, in GR 29.  The
1236	 pad bits on the right of GR 29 (if any) are undefined."  */
1237      regnum = HPPA_RET0_REGNUM;
1238      offset = 0;
1239    }
1240
1241  if (readbuf)
1242    {
1243      while (len > 0)
1244	{
1245	  regcache->cooked_read_part (regnum, offset, std::min (len, 8),
1246				      readbuf);
1247	  readbuf += std::min (len, 8);
1248	  len -= std::min (len, 8);
1249	  regnum++;
1250	}
1251    }
1252
1253  if (writebuf)
1254    {
1255      while (len > 0)
1256	{
1257	  regcache->cooked_write_part (regnum, offset, std::min (len, 8),
1258				       writebuf);
1259	  writebuf += std::min (len, 8);
1260	  len -= std::min (len, 8);
1261	  regnum++;
1262	}
1263    }
1264
1265  return RETURN_VALUE_REGISTER_CONVENTION;
1266}
1267
1268
1269static CORE_ADDR
1270hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1271				   struct target_ops *targ)
1272{
1273  if (addr & 2)
1274    {
1275      struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
1276      CORE_ADDR plabel = addr & ~3;
1277      return read_memory_typed_address (plabel, func_ptr_type);
1278    }
1279
1280  return addr;
1281}
1282
1283static CORE_ADDR
1284hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1285{
1286  /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1287     and not _bit_)!  */
1288  return align_up (addr, 64);
1289}
1290
1291/* Force all frames to 16-byte alignment.  Better safe than sorry.  */
1292
1293static CORE_ADDR
1294hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1295{
1296  /* Just always 16-byte align.  */
1297  return align_up (addr, 16);
1298}
1299
1300CORE_ADDR
1301hppa_read_pc (readable_regcache *regcache)
1302{
1303  ULONGEST ipsw;
1304  ULONGEST pc;
1305
1306  regcache->cooked_read (HPPA_IPSW_REGNUM, &ipsw);
1307  regcache->cooked_read (HPPA_PCOQ_HEAD_REGNUM, &pc);
1308
1309  /* If the current instruction is nullified, then we are effectively
1310     still executing the previous instruction.  Pretend we are still
1311     there.  This is needed when single stepping; if the nullified
1312     instruction is on a different line, we don't want GDB to think
1313     we've stepped onto that line.  */
1314  if (ipsw & 0x00200000)
1315    pc -= 4;
1316
1317  return pc & ~0x3;
1318}
1319
1320void
1321hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1322{
1323  regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1324  regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1325}
1326
1327/* For the given instruction (INST), return any adjustment it makes
1328   to the stack pointer or zero for no adjustment.
1329
1330   This only handles instructions commonly found in prologues.  */
1331
1332static int
1333prologue_inst_adjust_sp (unsigned long inst)
1334{
1335  /* This must persist across calls.  */
1336  static int save_high21;
1337
1338  /* The most common way to perform a stack adjustment ldo X(sp),sp */
1339  if ((inst & 0xffffc000) == 0x37de0000)
1340    return hppa_extract_14 (inst);
1341
1342  /* stwm X,D(sp) */
1343  if ((inst & 0xffe00000) == 0x6fc00000)
1344    return hppa_extract_14 (inst);
1345
1346  /* std,ma X,D(sp) */
1347  if ((inst & 0xffe00008) == 0x73c00008)
1348    return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3);
1349
1350  /* addil high21,%r30; ldo low11,(%r1),%r30)
1351     save high bits in save_high21 for later use.  */
1352  if ((inst & 0xffe00000) == 0x2bc00000)
1353    {
1354      save_high21 = hppa_extract_21 (inst);
1355      return 0;
1356    }
1357
1358  if ((inst & 0xffff0000) == 0x343e0000)
1359    return save_high21 + hppa_extract_14 (inst);
1360
1361  /* fstws as used by the HP compilers.  */
1362  if ((inst & 0xffffffe0) == 0x2fd01220)
1363    return hppa_extract_5_load (inst);
1364
1365  /* No adjustment.  */
1366  return 0;
1367}
1368
1369/* Return nonzero if INST is a branch of some kind, else return zero.  */
1370
1371static int
1372is_branch (unsigned long inst)
1373{
1374  switch (inst >> 26)
1375    {
1376    case 0x20:
1377    case 0x21:
1378    case 0x22:
1379    case 0x23:
1380    case 0x27:
1381    case 0x28:
1382    case 0x29:
1383    case 0x2a:
1384    case 0x2b:
1385    case 0x2f:
1386    case 0x30:
1387    case 0x31:
1388    case 0x32:
1389    case 0x33:
1390    case 0x38:
1391    case 0x39:
1392    case 0x3a:
1393    case 0x3b:
1394      return 1;
1395
1396    default:
1397      return 0;
1398    }
1399}
1400
1401/* Return the register number for a GR which is saved by INST or
1402   zero if INST does not save a GR.
1403
1404   Referenced from:
1405
1406     parisc 1.1:
1407     https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
1408
1409     parisc 2.0:
1410     https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf
1411
1412     According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
1413     on page 106 in parisc 2.0, all instructions for storing values from
1414     the general registers are:
1415
1416       Store:          stb, sth, stw, std (according to Chapter 7, they
1417                       are only in both "inst >> 26" and "inst >> 6".
1418       Store Absolute: stwa, stda (according to Chapter 7, they are only
1419                       in "inst >> 6".
1420       Store Bytes:    stby, stdby (according to Chapter 7, they are
1421                       only in "inst >> 6").
1422
1423   For (inst >> 26), according to Chapter 7:
1424
1425     The effective memory reference address is formed by the addition
1426     of an immediate displacement to a base value.
1427
1428    - stb: 0x18, store a byte from a general register.
1429
1430    - sth: 0x19, store a halfword from a general register.
1431
1432    - stw: 0x1a, store a word from a general register.
1433
1434    - stwm: 0x1b, store a word from a general register and perform base
1435      register modification (2.0 will still treate it as stw).
1436
1437    - std: 0x1c, store a doubleword from a general register (2.0 only).
1438
1439    - stw: 0x1f, store a word from a general register (2.0 only).
1440
1441   For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:
1442
1443     The effective memory reference address is formed by the addition
1444     of an index value to a base value specified in the instruction.
1445
1446    - stb: 0x08, store a byte from a general register (1.1 calls stbs).
1447
1448    - sth: 0x09, store a halfword from a general register (1.1 calls
1449      sths).
1450
1451    - stw: 0x0a, store a word from a general register (1.1 calls stws).
1452
1453    - std: 0x0b: store a doubleword from a general register (2.0 only)
1454
1455     Implement fast byte moves (stores) to unaligned word or doubleword
1456     destination.
1457
1458    - stby: 0x0c, for unaligned word (1.1 calls stbys).
1459
1460    - stdby: 0x0d for unaligned doubleword (2.0 only).
1461
1462     Store a word or doubleword using an absolute memory address formed
1463     using short or long displacement or indexed
1464
1465    - stwa: 0x0e, store a word from a general register to an absolute
1466      address (1.0 calls stwas).
1467
1468    - stda: 0x0f, store a doubleword from a general register to an
1469      absolute address (2.0 only).  */
1470
1471static int
1472inst_saves_gr (unsigned long inst)
1473{
1474  switch ((inst >> 26) & 0x0f)
1475    {
1476      case 0x03:
1477	switch ((inst >> 6) & 0x0f)
1478	  {
1479	    case 0x08:
1480	    case 0x09:
1481	    case 0x0a:
1482	    case 0x0b:
1483	    case 0x0c:
1484	    case 0x0d:
1485	    case 0x0e:
1486	    case 0x0f:
1487	      return hppa_extract_5R_store (inst);
1488	    default:
1489	      return 0;
1490	  }
1491      case 0x18:
1492      case 0x19:
1493      case 0x1a:
1494      case 0x1b:
1495      case 0x1c:
1496      /* no 0x1d or 0x1e -- according to parisc 2.0 document */
1497      case 0x1f:
1498	return hppa_extract_5R_store (inst);
1499      default:
1500	return 0;
1501    }
1502}
1503
1504/* Return the register number for a FR which is saved by INST or
1505   zero it INST does not save a FR.
1506
1507   Note we only care about full 64bit register stores (that's the only
1508   kind of stores the prologue will use).
1509
1510   FIXME: What about argument stores with the HP compiler in ANSI mode? */
1511
1512static int
1513inst_saves_fr (unsigned long inst)
1514{
1515  /* Is this an FSTD?  */
1516  if ((inst & 0xfc00dfc0) == 0x2c001200)
1517    return hppa_extract_5r_store (inst);
1518  if ((inst & 0xfc000002) == 0x70000002)
1519    return hppa_extract_5R_store (inst);
1520  /* Is this an FSTW?  */
1521  if ((inst & 0xfc00df80) == 0x24001200)
1522    return hppa_extract_5r_store (inst);
1523  if ((inst & 0xfc000002) == 0x7c000000)
1524    return hppa_extract_5R_store (inst);
1525  return 0;
1526}
1527
1528/* Advance PC across any function entry prologue instructions
1529   to reach some "real" code.
1530
1531   Use information in the unwind table to determine what exactly should
1532   be in the prologue.  */
1533
1534
1535static CORE_ADDR
1536skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1537			int stop_before_branch)
1538{
1539  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1540  gdb_byte buf[4];
1541  CORE_ADDR orig_pc = pc;
1542  unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1543  unsigned long args_stored, status, i, restart_gr, restart_fr;
1544  struct unwind_table_entry *u;
1545  int final_iteration;
1546
1547  restart_gr = 0;
1548  restart_fr = 0;
1549
1550restart:
1551  u = find_unwind_entry (pc);
1552  if (!u)
1553    return pc;
1554
1555  /* If we are not at the beginning of a function, then return now.  */
1556  if ((pc & ~0x3) != u->region_start)
1557    return pc;
1558
1559  /* This is how much of a frame adjustment we need to account for.  */
1560  stack_remaining = u->Total_frame_size << 3;
1561
1562  /* Magic register saves we want to know about.  */
1563  save_rp = u->Save_RP;
1564  save_sp = u->Save_SP;
1565
1566  /* An indication that args may be stored into the stack.  Unfortunately
1567     the HPUX compilers tend to set this in cases where no args were
1568     stored too!.  */
1569  args_stored = 1;
1570
1571  /* Turn the Entry_GR field into a bitmask.  */
1572  save_gr = 0;
1573  for (i = 3; i < u->Entry_GR + 3; i++)
1574    {
1575      /* Frame pointer gets saved into a special location.  */
1576      if (u->Save_SP && i == HPPA_FP_REGNUM)
1577	continue;
1578
1579      save_gr |= (1 << i);
1580    }
1581  save_gr &= ~restart_gr;
1582
1583  /* Turn the Entry_FR field into a bitmask too.  */
1584  save_fr = 0;
1585  for (i = 12; i < u->Entry_FR + 12; i++)
1586    save_fr |= (1 << i);
1587  save_fr &= ~restart_fr;
1588
1589  final_iteration = 0;
1590
1591  /* Loop until we find everything of interest or hit a branch.
1592
1593     For unoptimized GCC code and for any HP CC code this will never ever
1594     examine any user instructions.
1595
1596     For optimzied GCC code we're faced with problems.  GCC will schedule
1597     its prologue and make prologue instructions available for delay slot
1598     filling.  The end result is user code gets mixed in with the prologue
1599     and a prologue instruction may be in the delay slot of the first branch
1600     or call.
1601
1602     Some unexpected things are expected with debugging optimized code, so
1603     we allow this routine to walk past user instructions in optimized
1604     GCC code.  */
1605  while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1606	 || args_stored)
1607    {
1608      unsigned int reg_num;
1609      unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1610      unsigned long old_save_rp, old_save_sp, next_inst;
1611
1612      /* Save copies of all the triggers so we can compare them later
1613         (only for HPC).  */
1614      old_save_gr = save_gr;
1615      old_save_fr = save_fr;
1616      old_save_rp = save_rp;
1617      old_save_sp = save_sp;
1618      old_stack_remaining = stack_remaining;
1619
1620      status = target_read_memory (pc, buf, 4);
1621      inst = extract_unsigned_integer (buf, 4, byte_order);
1622
1623      /* Yow! */
1624      if (status != 0)
1625	return pc;
1626
1627      /* Note the interesting effects of this instruction.  */
1628      stack_remaining -= prologue_inst_adjust_sp (inst);
1629
1630      /* There are limited ways to store the return pointer into the
1631	 stack.  */
1632      if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1633	save_rp = 0;
1634
1635      /* These are the only ways we save SP into the stack.  At this time
1636         the HP compilers never bother to save SP into the stack.  */
1637      if ((inst & 0xffffc000) == 0x6fc10000
1638	  || (inst & 0xffffc00c) == 0x73c10008)
1639	save_sp = 0;
1640
1641      /* Are we loading some register with an offset from the argument
1642         pointer?  */
1643      if ((inst & 0xffe00000) == 0x37a00000
1644	  || (inst & 0xffffffe0) == 0x081d0240)
1645	{
1646	  pc += 4;
1647	  continue;
1648	}
1649
1650      /* Account for general and floating-point register saves.  */
1651      reg_num = inst_saves_gr (inst);
1652      save_gr &= ~(1 << reg_num);
1653
1654      /* Ugh.  Also account for argument stores into the stack.
1655         Unfortunately args_stored only tells us that some arguments
1656         where stored into the stack.  Not how many or what kind!
1657
1658         This is a kludge as on the HP compiler sets this bit and it
1659         never does prologue scheduling.  So once we see one, skip past
1660         all of them.   We have similar code for the fp arg stores below.
1661
1662         FIXME.  Can still die if we have a mix of GR and FR argument
1663         stores!  */
1664      if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1665	  && reg_num <= 26)
1666	{
1667	  while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1668		 && reg_num <= 26)
1669	    {
1670	      pc += 4;
1671	      status = target_read_memory (pc, buf, 4);
1672	      inst = extract_unsigned_integer (buf, 4, byte_order);
1673	      if (status != 0)
1674		return pc;
1675	      reg_num = inst_saves_gr (inst);
1676	    }
1677	  args_stored = 0;
1678	  continue;
1679	}
1680
1681      reg_num = inst_saves_fr (inst);
1682      save_fr &= ~(1 << reg_num);
1683
1684      status = target_read_memory (pc + 4, buf, 4);
1685      next_inst = extract_unsigned_integer (buf, 4, byte_order);
1686
1687      /* Yow! */
1688      if (status != 0)
1689	return pc;
1690
1691      /* We've got to be read to handle the ldo before the fp register
1692         save.  */
1693      if ((inst & 0xfc000000) == 0x34000000
1694	  && inst_saves_fr (next_inst) >= 4
1695	  && inst_saves_fr (next_inst)
1696	       <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1697	{
1698	  /* So we drop into the code below in a reasonable state.  */
1699	  reg_num = inst_saves_fr (next_inst);
1700	  pc -= 4;
1701	}
1702
1703      /* Ugh.  Also account for argument stores into the stack.
1704         This is a kludge as on the HP compiler sets this bit and it
1705         never does prologue scheduling.  So once we see one, skip past
1706         all of them.  */
1707      if (reg_num >= 4
1708	  && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1709	{
1710	  while (reg_num >= 4
1711		 && reg_num
1712		      <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1713	    {
1714	      pc += 8;
1715	      status = target_read_memory (pc, buf, 4);
1716	      inst = extract_unsigned_integer (buf, 4, byte_order);
1717	      if (status != 0)
1718		return pc;
1719	      if ((inst & 0xfc000000) != 0x34000000)
1720		break;
1721	      status = target_read_memory (pc + 4, buf, 4);
1722	      next_inst = extract_unsigned_integer (buf, 4, byte_order);
1723	      if (status != 0)
1724		return pc;
1725	      reg_num = inst_saves_fr (next_inst);
1726	    }
1727	  args_stored = 0;
1728	  continue;
1729	}
1730
1731      /* Quit if we hit any kind of branch.  This can happen if a prologue
1732         instruction is in the delay slot of the first call/branch.  */
1733      if (is_branch (inst) && stop_before_branch)
1734	break;
1735
1736      /* What a crock.  The HP compilers set args_stored even if no
1737         arguments were stored into the stack (boo hiss).  This could
1738         cause this code to then skip a bunch of user insns (up to the
1739         first branch).
1740
1741         To combat this we try to identify when args_stored was bogusly
1742         set and clear it.   We only do this when args_stored is nonzero,
1743         all other resources are accounted for, and nothing changed on
1744         this pass.  */
1745      if (args_stored
1746       && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1747	  && old_save_gr == save_gr && old_save_fr == save_fr
1748	  && old_save_rp == save_rp && old_save_sp == save_sp
1749	  && old_stack_remaining == stack_remaining)
1750	break;
1751
1752      /* Bump the PC.  */
1753      pc += 4;
1754
1755      /* !stop_before_branch, so also look at the insn in the delay slot
1756         of the branch.  */
1757      if (final_iteration)
1758	break;
1759      if (is_branch (inst))
1760	final_iteration = 1;
1761    }
1762
1763  /* We've got a tenative location for the end of the prologue.  However
1764     because of limitations in the unwind descriptor mechanism we may
1765     have went too far into user code looking for the save of a register
1766     that does not exist.  So, if there registers we expected to be saved
1767     but never were, mask them out and restart.
1768
1769     This should only happen in optimized code, and should be very rare.  */
1770  if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1771    {
1772      pc = orig_pc;
1773      restart_gr = save_gr;
1774      restart_fr = save_fr;
1775      goto restart;
1776    }
1777
1778  return pc;
1779}
1780
1781
1782/* Return the address of the PC after the last prologue instruction if
1783   we can determine it from the debug symbols.  Else return zero.  */
1784
1785static CORE_ADDR
1786after_prologue (CORE_ADDR pc)
1787{
1788  struct symtab_and_line sal;
1789  CORE_ADDR func_addr, func_end;
1790
1791  /* If we can not find the symbol in the partial symbol table, then
1792     there is no hope we can determine the function's start address
1793     with this code.  */
1794  if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1795    return 0;
1796
1797  /* Get the line associated with FUNC_ADDR.  */
1798  sal = find_pc_line (func_addr, 0);
1799
1800  /* There are only two cases to consider.  First, the end of the source line
1801     is within the function bounds.  In that case we return the end of the
1802     source line.  Second is the end of the source line extends beyond the
1803     bounds of the current function.  We need to use the slow code to
1804     examine instructions in that case.
1805
1806     Anything else is simply a bug elsewhere.  Fixing it here is absolutely
1807     the wrong thing to do.  In fact, it should be entirely possible for this
1808     function to always return zero since the slow instruction scanning code
1809     is supposed to *always* work.  If it does not, then it is a bug.  */
1810  if (sal.end < func_end)
1811    return sal.end;
1812  else
1813    return 0;
1814}
1815
1816/* To skip prologues, I use this predicate.  Returns either PC itself
1817   if the code at PC does not look like a function prologue; otherwise
1818   returns an address that (if we're lucky) follows the prologue.
1819
1820   hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1821   It doesn't necessarily skips all the insns in the prologue.  In fact
1822   we might not want to skip all the insns because a prologue insn may
1823   appear in the delay slot of the first branch, and we don't want to
1824   skip over the branch in that case.  */
1825
1826static CORE_ADDR
1827hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1828{
1829  CORE_ADDR post_prologue_pc;
1830
1831  /* See if we can determine the end of the prologue via the symbol table.
1832     If so, then return either PC, or the PC after the prologue, whichever
1833     is greater.  */
1834
1835  post_prologue_pc = after_prologue (pc);
1836
1837  /* If after_prologue returned a useful address, then use it.  Else
1838     fall back on the instruction skipping code.
1839
1840     Some folks have claimed this causes problems because the breakpoint
1841     may be the first instruction of the prologue.  If that happens, then
1842     the instruction skipping code has a bug that needs to be fixed.  */
1843  if (post_prologue_pc != 0)
1844    return std::max (pc, post_prologue_pc);
1845  else
1846    return (skip_prologue_hard_way (gdbarch, pc, 1));
1847}
1848
1849/* Return an unwind entry that falls within the frame's code block.  */
1850
1851static struct unwind_table_entry *
1852hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1853{
1854  CORE_ADDR pc = get_frame_address_in_block (this_frame);
1855
1856  /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1857     result of get_frame_address_in_block implies a problem.
1858     The bits should have been removed earlier, before the return
1859     value of gdbarch_unwind_pc.  That might be happening already;
1860     if it isn't, it should be fixed.  Then this call can be
1861     removed.  */
1862  pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1863  return find_unwind_entry (pc);
1864}
1865
1866struct hppa_frame_cache
1867{
1868  CORE_ADDR base;
1869  struct trad_frame_saved_reg *saved_regs;
1870};
1871
1872static struct hppa_frame_cache *
1873hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1874{
1875  struct gdbarch *gdbarch = get_frame_arch (this_frame);
1876  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1877  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1878  struct hppa_frame_cache *cache;
1879  long saved_gr_mask;
1880  long saved_fr_mask;
1881  long frame_size;
1882  struct unwind_table_entry *u;
1883  CORE_ADDR prologue_end;
1884  int fp_in_r1 = 0;
1885  int i;
1886
1887  if (hppa_debug)
1888    fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1889      frame_relative_level(this_frame));
1890
1891  if ((*this_cache) != NULL)
1892    {
1893      if (hppa_debug)
1894        fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1895          paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
1896      return (struct hppa_frame_cache *) (*this_cache);
1897    }
1898  cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1899  (*this_cache) = cache;
1900  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1901
1902  /* Yow! */
1903  u = hppa_find_unwind_entry_in_block (this_frame);
1904  if (!u)
1905    {
1906      if (hppa_debug)
1907        fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1908      return (struct hppa_frame_cache *) (*this_cache);
1909    }
1910
1911  /* Turn the Entry_GR field into a bitmask.  */
1912  saved_gr_mask = 0;
1913  for (i = 3; i < u->Entry_GR + 3; i++)
1914    {
1915      /* Frame pointer gets saved into a special location.  */
1916      if (u->Save_SP && i == HPPA_FP_REGNUM)
1917	continue;
1918
1919      saved_gr_mask |= (1 << i);
1920    }
1921
1922  /* Turn the Entry_FR field into a bitmask too.  */
1923  saved_fr_mask = 0;
1924  for (i = 12; i < u->Entry_FR + 12; i++)
1925    saved_fr_mask |= (1 << i);
1926
1927  /* Loop until we find everything of interest or hit a branch.
1928
1929     For unoptimized GCC code and for any HP CC code this will never ever
1930     examine any user instructions.
1931
1932     For optimized GCC code we're faced with problems.  GCC will schedule
1933     its prologue and make prologue instructions available for delay slot
1934     filling.  The end result is user code gets mixed in with the prologue
1935     and a prologue instruction may be in the delay slot of the first branch
1936     or call.
1937
1938     Some unexpected things are expected with debugging optimized code, so
1939     we allow this routine to walk past user instructions in optimized
1940     GCC code.  */
1941  {
1942    int final_iteration = 0;
1943    CORE_ADDR pc, start_pc, end_pc;
1944    int looking_for_sp = u->Save_SP;
1945    int looking_for_rp = u->Save_RP;
1946    int fp_loc = -1;
1947
1948    /* We have to use skip_prologue_hard_way instead of just
1949       skip_prologue_using_sal, in case we stepped into a function without
1950       symbol information.  hppa_skip_prologue also bounds the returned
1951       pc by the passed in pc, so it will not return a pc in the next
1952       function.
1953
1954       We used to call hppa_skip_prologue to find the end of the prologue,
1955       but if some non-prologue instructions get scheduled into the prologue,
1956       and the program is compiled with debug information, the "easy" way
1957       in hppa_skip_prologue will return a prologue end that is too early
1958       for us to notice any potential frame adjustments.  */
1959
1960    /* We used to use get_frame_func to locate the beginning of the
1961       function to pass to skip_prologue.  However, when objects are
1962       compiled without debug symbols, get_frame_func can return the wrong
1963       function (or 0).  We can do better than that by using unwind records.
1964       This only works if the Region_description of the unwind record
1965       indicates that it includes the entry point of the function.
1966       HP compilers sometimes generate unwind records for regions that
1967       do not include the entry or exit point of a function.  GNU tools
1968       do not do this.  */
1969
1970    if ((u->Region_description & 0x2) == 0)
1971      start_pc = u->region_start;
1972    else
1973      start_pc = get_frame_func (this_frame);
1974
1975    prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1976    end_pc = get_frame_pc (this_frame);
1977
1978    if (prologue_end != 0 && end_pc > prologue_end)
1979      end_pc = prologue_end;
1980
1981    frame_size = 0;
1982
1983    for (pc = start_pc;
1984	 ((saved_gr_mask || saved_fr_mask
1985	   || looking_for_sp || looking_for_rp
1986	   || frame_size < (u->Total_frame_size << 3))
1987	  && pc < end_pc);
1988	 pc += 4)
1989      {
1990	int reg;
1991	gdb_byte buf4[4];
1992	long inst;
1993
1994	if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
1995	  {
1996	    error (_("Cannot read instruction at %s."),
1997		   paddress (gdbarch, pc));
1998	    return (struct hppa_frame_cache *) (*this_cache);
1999	  }
2000
2001	inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
2002
2003	/* Note the interesting effects of this instruction.  */
2004	frame_size += prologue_inst_adjust_sp (inst);
2005
2006	/* There are limited ways to store the return pointer into the
2007	   stack.  */
2008	if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2009	  {
2010	    looking_for_rp = 0;
2011	    cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2012	  }
2013	else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
2014	  {
2015	    looking_for_rp = 0;
2016	    cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
2017	  }
2018	else if (inst == 0x0fc212c1
2019	         || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2020	  {
2021	    looking_for_rp = 0;
2022	    cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2023	  }
2024
2025	/* Check to see if we saved SP into the stack.  This also
2026	   happens to indicate the location of the saved frame
2027	   pointer.  */
2028	if ((inst & 0xffffc000) == 0x6fc10000  /* stw,ma r1,N(sr0,sp) */
2029	    || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2030	  {
2031	    looking_for_sp = 0;
2032	    cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
2033	  }
2034	else if (inst == 0x08030241) /* copy %r3, %r1 */
2035	  {
2036	    fp_in_r1 = 1;
2037	  }
2038
2039	/* Account for general and floating-point register saves.  */
2040	reg = inst_saves_gr (inst);
2041	if (reg >= 3 && reg <= 18
2042	    && (!u->Save_SP || reg != HPPA_FP_REGNUM))
2043	  {
2044	    saved_gr_mask &= ~(1 << reg);
2045	    if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
2046	      /* stwm with a positive displacement is a _post_
2047		 _modify_.  */
2048	      cache->saved_regs[reg].addr = 0;
2049	    else if ((inst & 0xfc00000c) == 0x70000008)
2050	      /* A std has explicit post_modify forms.  */
2051	      cache->saved_regs[reg].addr = 0;
2052	    else
2053	      {
2054		CORE_ADDR offset;
2055
2056		if ((inst >> 26) == 0x1c)
2057		  offset = (inst & 0x1 ? -(1 << 13) : 0)
2058		    | (((inst >> 4) & 0x3ff) << 3);
2059		else if ((inst >> 26) == 0x03)
2060		  offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
2061		else
2062		  offset = hppa_extract_14 (inst);
2063
2064		/* Handle code with and without frame pointers.  */
2065		if (u->Save_SP)
2066		  cache->saved_regs[reg].addr = offset;
2067		else
2068		  cache->saved_regs[reg].addr
2069		    = (u->Total_frame_size << 3) + offset;
2070	      }
2071	  }
2072
2073	/* GCC handles callee saved FP regs a little differently.
2074
2075	   It emits an instruction to put the value of the start of
2076	   the FP store area into %r1.  It then uses fstds,ma with a
2077	   basereg of %r1 for the stores.
2078
2079	   HP CC emits them at the current stack pointer modifying the
2080	   stack pointer as it stores each register.  */
2081
2082	/* ldo X(%r3),%r1 or ldo X(%r30),%r1.  */
2083	if ((inst & 0xffffc000) == 0x34610000
2084	    || (inst & 0xffffc000) == 0x37c10000)
2085	  fp_loc = hppa_extract_14 (inst);
2086
2087	reg = inst_saves_fr (inst);
2088	if (reg >= 12 && reg <= 21)
2089	  {
2090	    /* Note +4 braindamage below is necessary because the FP
2091	       status registers are internally 8 registers rather than
2092	       the expected 4 registers.  */
2093	    saved_fr_mask &= ~(1 << reg);
2094	    if (fp_loc == -1)
2095	      {
2096		/* 1st HP CC FP register store.  After this
2097		   instruction we've set enough state that the GCC and
2098		   HPCC code are both handled in the same manner.  */
2099		cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2100		fp_loc = 8;
2101	      }
2102	    else
2103	      {
2104		cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2105		fp_loc += 8;
2106	      }
2107	  }
2108
2109	/* Quit if we hit any kind of branch the previous iteration.  */
2110	if (final_iteration)
2111	  break;
2112	/* We want to look precisely one instruction beyond the branch
2113	   if we have not found everything yet.  */
2114	if (is_branch (inst))
2115	  final_iteration = 1;
2116      }
2117  }
2118
2119  {
2120    /* The frame base always represents the value of %sp at entry to
2121       the current function (and is thus equivalent to the "saved"
2122       stack pointer.  */
2123    CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2124                                                     HPPA_SP_REGNUM);
2125    CORE_ADDR fp;
2126
2127    if (hppa_debug)
2128      fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2129		          "prologue_end=%s) ",
2130		          paddress (gdbarch, this_sp),
2131			  paddress (gdbarch, get_frame_pc (this_frame)),
2132			  paddress (gdbarch, prologue_end));
2133
2134     /* Check to see if a frame pointer is available, and use it for
2135        frame unwinding if it is.
2136
2137        There are some situations where we need to rely on the frame
2138        pointer to do stack unwinding.  For example, if a function calls
2139        alloca (), the stack pointer can get adjusted inside the body of
2140        the function.  In this case, the ABI requires that the compiler
2141        maintain a frame pointer for the function.
2142
2143        The unwind record has a flag (alloca_frame) that indicates that
2144        a function has a variable frame; unfortunately, gcc/binutils
2145        does not set this flag.  Instead, whenever a frame pointer is used
2146        and saved on the stack, the Save_SP flag is set.  We use this to
2147        decide whether to use the frame pointer for unwinding.
2148
2149        TODO: For the HP compiler, maybe we should use the alloca_frame flag
2150	instead of Save_SP.  */
2151
2152     fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2153
2154     if (u->alloca_frame)
2155       fp -= u->Total_frame_size << 3;
2156
2157     if (get_frame_pc (this_frame) >= prologue_end
2158         && (u->Save_SP || u->alloca_frame) && fp != 0)
2159      {
2160 	cache->base = fp;
2161
2162 	if (hppa_debug)
2163	  fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2164			      paddress (gdbarch, cache->base));
2165      }
2166     else if (u->Save_SP
2167	      && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2168      {
2169            /* Both we're expecting the SP to be saved and the SP has been
2170	       saved.  The entry SP value is saved at this frame's SP
2171	       address.  */
2172            cache->base = read_memory_integer (this_sp, word_size, byte_order);
2173
2174	    if (hppa_debug)
2175	      fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2176			          paddress (gdbarch, cache->base));
2177      }
2178    else
2179      {
2180        /* The prologue has been slowly allocating stack space.  Adjust
2181	   the SP back.  */
2182        cache->base = this_sp - frame_size;
2183	if (hppa_debug)
2184	  fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2185			      paddress (gdbarch, cache->base));
2186
2187      }
2188    trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2189  }
2190
2191  /* The PC is found in the "return register", "Millicode" uses "r31"
2192     as the return register while normal code uses "rp".  */
2193  if (u->Millicode)
2194    {
2195      if (trad_frame_addr_p (cache->saved_regs, 31))
2196        {
2197          cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2198	  if (hppa_debug)
2199	    fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2200        }
2201      else
2202	{
2203	  ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2204	  trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2205	  if (hppa_debug)
2206	    fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2207        }
2208    }
2209  else
2210    {
2211      if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2212        {
2213          cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2214	    cache->saved_regs[HPPA_RP_REGNUM];
2215	  if (hppa_debug)
2216	    fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2217        }
2218      else
2219	{
2220	  ULONGEST rp = get_frame_register_unsigned (this_frame,
2221                                                     HPPA_RP_REGNUM);
2222	  trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2223	  if (hppa_debug)
2224	    fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2225	}
2226    }
2227
2228  /* If Save_SP is set, then we expect the frame pointer to be saved in the
2229     frame.  However, there is a one-insn window where we haven't saved it
2230     yet, but we've already clobbered it.  Detect this case and fix it up.
2231
2232     The prologue sequence for frame-pointer functions is:
2233	0: stw %rp, -20(%sp)
2234	4: copy %r3, %r1
2235	8: copy %sp, %r3
2236	c: stw,ma %r1, XX(%sp)
2237
2238     So if we are at offset c, the r3 value that we want is not yet saved
2239     on the stack, but it's been overwritten.  The prologue analyzer will
2240     set fp_in_r1 when it sees the copy insn so we know to get the value
2241     from r1 instead.  */
2242  if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2243      && fp_in_r1)
2244    {
2245      ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2246      trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2247    }
2248
2249  {
2250    /* Convert all the offsets into addresses.  */
2251    int reg;
2252    for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2253      {
2254	if (trad_frame_addr_p (cache->saved_regs, reg))
2255	  cache->saved_regs[reg].addr += cache->base;
2256      }
2257  }
2258
2259  {
2260    struct gdbarch_tdep *tdep;
2261
2262    tdep = gdbarch_tdep (gdbarch);
2263
2264    if (tdep->unwind_adjust_stub)
2265      tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2266  }
2267
2268  if (hppa_debug)
2269    fprintf_unfiltered (gdb_stdlog, "base=%s }",
2270      paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
2271  return (struct hppa_frame_cache *) (*this_cache);
2272}
2273
2274static void
2275hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2276		    struct frame_id *this_id)
2277{
2278  struct hppa_frame_cache *info;
2279  struct unwind_table_entry *u;
2280
2281  info = hppa_frame_cache (this_frame, this_cache);
2282  u = hppa_find_unwind_entry_in_block (this_frame);
2283
2284  (*this_id) = frame_id_build (info->base, u->region_start);
2285}
2286
2287static struct value *
2288hppa_frame_prev_register (struct frame_info *this_frame,
2289			  void **this_cache, int regnum)
2290{
2291  struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2292
2293  return hppa_frame_prev_register_helper (this_frame,
2294					  info->saved_regs, regnum);
2295}
2296
2297static int
2298hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2299                           struct frame_info *this_frame, void **this_cache)
2300{
2301  if (hppa_find_unwind_entry_in_block (this_frame))
2302    return 1;
2303
2304  return 0;
2305}
2306
2307static const struct frame_unwind hppa_frame_unwind =
2308{
2309  NORMAL_FRAME,
2310  default_frame_unwind_stop_reason,
2311  hppa_frame_this_id,
2312  hppa_frame_prev_register,
2313  NULL,
2314  hppa_frame_unwind_sniffer
2315};
2316
2317/* This is a generic fallback frame unwinder that kicks in if we fail all
2318   the other ones.  Normally we would expect the stub and regular unwinder
2319   to work, but in some cases we might hit a function that just doesn't
2320   have any unwind information available.  In this case we try to do
2321   unwinding solely based on code reading.  This is obviously going to be
2322   slow, so only use this as a last resort.  Currently this will only
2323   identify the stack and pc for the frame.  */
2324
2325static struct hppa_frame_cache *
2326hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2327{
2328  struct gdbarch *gdbarch = get_frame_arch (this_frame);
2329  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2330  struct hppa_frame_cache *cache;
2331  unsigned int frame_size = 0;
2332  int found_rp = 0;
2333  CORE_ADDR start_pc;
2334
2335  if (hppa_debug)
2336    fprintf_unfiltered (gdb_stdlog,
2337			"{ hppa_fallback_frame_cache (frame=%d) -> ",
2338			frame_relative_level (this_frame));
2339
2340  cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2341  (*this_cache) = cache;
2342  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2343
2344  start_pc = get_frame_func (this_frame);
2345  if (start_pc)
2346    {
2347      CORE_ADDR cur_pc = get_frame_pc (this_frame);
2348      CORE_ADDR pc;
2349
2350      for (pc = start_pc; pc < cur_pc; pc += 4)
2351	{
2352	  unsigned int insn;
2353
2354	  insn = read_memory_unsigned_integer (pc, 4, byte_order);
2355	  frame_size += prologue_inst_adjust_sp (insn);
2356
2357	  /* There are limited ways to store the return pointer into the
2358	     stack.  */
2359	  if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2360	    {
2361	      cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2362	      found_rp = 1;
2363	    }
2364	  else if (insn == 0x0fc212c1
2365	           || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2366	    {
2367	      cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2368	      found_rp = 1;
2369	    }
2370	}
2371    }
2372
2373  if (hppa_debug)
2374    fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2375			frame_size, found_rp);
2376
2377  cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2378  cache->base -= frame_size;
2379  trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2380
2381  if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2382    {
2383      cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2384      cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2385	cache->saved_regs[HPPA_RP_REGNUM];
2386    }
2387  else
2388    {
2389      ULONGEST rp;
2390      rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2391      trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2392    }
2393
2394  return cache;
2395}
2396
2397static void
2398hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2399			     struct frame_id *this_id)
2400{
2401  struct hppa_frame_cache *info =
2402    hppa_fallback_frame_cache (this_frame, this_cache);
2403
2404  (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2405}
2406
2407static struct value *
2408hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2409			           void **this_cache, int regnum)
2410{
2411  struct hppa_frame_cache *info
2412    = hppa_fallback_frame_cache (this_frame, this_cache);
2413
2414  return hppa_frame_prev_register_helper (this_frame,
2415					  info->saved_regs, regnum);
2416}
2417
2418static const struct frame_unwind hppa_fallback_frame_unwind =
2419{
2420  NORMAL_FRAME,
2421  default_frame_unwind_stop_reason,
2422  hppa_fallback_frame_this_id,
2423  hppa_fallback_frame_prev_register,
2424  NULL,
2425  default_frame_sniffer
2426};
2427
2428/* Stub frames, used for all kinds of call stubs.  */
2429struct hppa_stub_unwind_cache
2430{
2431  CORE_ADDR base;
2432  struct trad_frame_saved_reg *saved_regs;
2433};
2434
2435static struct hppa_stub_unwind_cache *
2436hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2437			      void **this_cache)
2438{
2439  struct hppa_stub_unwind_cache *info;
2440
2441  if (*this_cache)
2442    return (struct hppa_stub_unwind_cache *) *this_cache;
2443
2444  info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2445  *this_cache = info;
2446  info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2447
2448  info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2449
2450  /* By default we assume that stubs do not change the rp.  */
2451  info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2452
2453  return info;
2454}
2455
2456static void
2457hppa_stub_frame_this_id (struct frame_info *this_frame,
2458			 void **this_prologue_cache,
2459			 struct frame_id *this_id)
2460{
2461  struct hppa_stub_unwind_cache *info
2462    = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2463
2464  if (info)
2465    *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2466}
2467
2468static struct value *
2469hppa_stub_frame_prev_register (struct frame_info *this_frame,
2470			       void **this_prologue_cache, int regnum)
2471{
2472  struct hppa_stub_unwind_cache *info
2473    = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2474
2475  if (info == NULL)
2476    error (_("Requesting registers from null frame."));
2477
2478  return hppa_frame_prev_register_helper (this_frame,
2479					  info->saved_regs, regnum);
2480}
2481
2482static int
2483hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2484                          struct frame_info *this_frame,
2485                          void **this_cache)
2486{
2487  CORE_ADDR pc = get_frame_address_in_block (this_frame);
2488  struct gdbarch *gdbarch = get_frame_arch (this_frame);
2489  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2490
2491  if (pc == 0
2492      || (tdep->in_solib_call_trampoline != NULL
2493	  && tdep->in_solib_call_trampoline (gdbarch, pc))
2494      || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2495    return 1;
2496  return 0;
2497}
2498
2499static const struct frame_unwind hppa_stub_frame_unwind = {
2500  NORMAL_FRAME,
2501  default_frame_unwind_stop_reason,
2502  hppa_stub_frame_this_id,
2503  hppa_stub_frame_prev_register,
2504  NULL,
2505  hppa_stub_unwind_sniffer
2506};
2507
2508static struct frame_id
2509hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2510{
2511  return frame_id_build (get_frame_register_unsigned (this_frame,
2512                                                      HPPA_SP_REGNUM),
2513			 get_frame_pc (this_frame));
2514}
2515
2516CORE_ADDR
2517hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2518{
2519  ULONGEST ipsw;
2520  CORE_ADDR pc;
2521
2522  ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2523  pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2524
2525  /* If the current instruction is nullified, then we are effectively
2526     still executing the previous instruction.  Pretend we are still
2527     there.  This is needed when single stepping; if the nullified
2528     instruction is on a different line, we don't want GDB to think
2529     we've stepped onto that line.  */
2530  if (ipsw & 0x00200000)
2531    pc -= 4;
2532
2533  return pc & ~0x3;
2534}
2535
2536/* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2537   Return NULL if no such symbol was found.  */
2538
2539struct bound_minimal_symbol
2540hppa_lookup_stub_minimal_symbol (const char *name,
2541                                 enum unwind_stub_types stub_type)
2542{
2543  struct bound_minimal_symbol result = { NULL, NULL };
2544
2545  for (objfile *objfile : current_program_space->objfiles ())
2546    {
2547      for (minimal_symbol *msym : objfile->msymbols ())
2548	{
2549	  if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
2550	    {
2551	      struct unwind_table_entry *u;
2552
2553	      u = find_unwind_entry (MSYMBOL_VALUE (msym));
2554	      if (u != NULL && u->stub_unwind.stub_type == stub_type)
2555		{
2556		  result.objfile = objfile;
2557		  result.minsym = msym;
2558		  return result;
2559		}
2560	    }
2561	}
2562    }
2563
2564  return result;
2565}
2566
2567static void
2568unwind_command (const char *exp, int from_tty)
2569{
2570  CORE_ADDR address;
2571  struct unwind_table_entry *u;
2572
2573  /* If we have an expression, evaluate it and use it as the address.  */
2574
2575  if (exp != 0 && *exp != 0)
2576    address = parse_and_eval_address (exp);
2577  else
2578    return;
2579
2580  u = find_unwind_entry (address);
2581
2582  if (!u)
2583    {
2584      printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2585      return;
2586    }
2587
2588  printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
2589
2590  printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
2591  gdb_flush (gdb_stdout);
2592
2593  printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
2594  gdb_flush (gdb_stdout);
2595
2596#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2597
2598  printf_unfiltered ("\n\tflags =");
2599  pif (Cannot_unwind);
2600  pif (Millicode);
2601  pif (Millicode_save_sr0);
2602  pif (Entry_SR);
2603  pif (Args_stored);
2604  pif (Variable_Frame);
2605  pif (Separate_Package_Body);
2606  pif (Frame_Extension_Millicode);
2607  pif (Stack_Overflow_Check);
2608  pif (Two_Instruction_SP_Increment);
2609  pif (sr4export);
2610  pif (cxx_info);
2611  pif (cxx_try_catch);
2612  pif (sched_entry_seq);
2613  pif (Save_SP);
2614  pif (Save_RP);
2615  pif (Save_MRP_in_frame);
2616  pif (save_r19);
2617  pif (Cleanup_defined);
2618  pif (MPE_XL_interrupt_marker);
2619  pif (HP_UX_interrupt_marker);
2620  pif (Large_frame);
2621  pif (alloca_frame);
2622
2623  putchar_unfiltered ('\n');
2624
2625#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2626
2627  pin (Region_description);
2628  pin (Entry_FR);
2629  pin (Entry_GR);
2630  pin (Total_frame_size);
2631
2632  if (u->stub_unwind.stub_type)
2633    {
2634      printf_unfiltered ("\tstub type = ");
2635      switch (u->stub_unwind.stub_type)
2636        {
2637	  case LONG_BRANCH:
2638	    printf_unfiltered ("long branch\n");
2639	    break;
2640	  case PARAMETER_RELOCATION:
2641	    printf_unfiltered ("parameter relocation\n");
2642	    break;
2643	  case EXPORT:
2644	    printf_unfiltered ("export\n");
2645	    break;
2646	  case IMPORT:
2647	    printf_unfiltered ("import\n");
2648	    break;
2649	  case IMPORT_SHLIB:
2650	    printf_unfiltered ("import shlib\n");
2651	    break;
2652	  default:
2653	    printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2654	}
2655    }
2656}
2657
2658/* Return the GDB type object for the "standard" data type of data in
2659   register REGNUM.  */
2660
2661static struct type *
2662hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2663{
2664   if (regnum < HPPA_FP4_REGNUM)
2665     return builtin_type (gdbarch)->builtin_uint32;
2666   else
2667     return builtin_type (gdbarch)->builtin_float;
2668}
2669
2670static struct type *
2671hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2672{
2673   if (regnum < HPPA64_FP4_REGNUM)
2674     return builtin_type (gdbarch)->builtin_uint64;
2675   else
2676     return builtin_type (gdbarch)->builtin_double;
2677}
2678
2679/* Return non-zero if REGNUM is not a register available to the user
2680   through ptrace/ttrace.  */
2681
2682static int
2683hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2684{
2685  return (regnum == 0
2686          || regnum == HPPA_PCSQ_HEAD_REGNUM
2687          || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2688          || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2689}
2690
2691static int
2692hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2693{
2694  /* cr26 and cr27 are readable (but not writable) from userspace.  */
2695  if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2696    return 0;
2697  else
2698    return hppa32_cannot_store_register (gdbarch, regnum);
2699}
2700
2701static int
2702hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2703{
2704  return (regnum == 0
2705          || regnum == HPPA_PCSQ_HEAD_REGNUM
2706          || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2707          || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2708}
2709
2710static int
2711hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2712{
2713  /* cr26 and cr27 are readable (but not writable) from userspace.  */
2714  if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2715    return 0;
2716  else
2717    return hppa64_cannot_store_register (gdbarch, regnum);
2718}
2719
2720static CORE_ADDR
2721hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2722{
2723  /* The low two bits of the PC on the PA contain the privilege level.
2724     Some genius implementing a (non-GCC) compiler apparently decided
2725     this means that "addresses" in a text section therefore include a
2726     privilege level, and thus symbol tables should contain these bits.
2727     This seems like a bonehead thing to do--anyway, it seems to work
2728     for our purposes to just ignore those bits.  */
2729
2730  return (addr &= ~0x3);
2731}
2732
2733/* Get the ARGIth function argument for the current function.  */
2734
2735static CORE_ADDR
2736hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2737			     struct type *type)
2738{
2739  return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2740}
2741
2742static enum register_status
2743hppa_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2744			   int regnum, gdb_byte *buf)
2745{
2746  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2747  ULONGEST tmp;
2748  enum register_status status;
2749
2750  status = regcache->raw_read (regnum, &tmp);
2751  if (status == REG_VALID)
2752    {
2753      if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2754	tmp &= ~0x3;
2755      store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2756    }
2757  return status;
2758}
2759
2760static CORE_ADDR
2761hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2762{
2763  return 0;
2764}
2765
2766struct value *
2767hppa_frame_prev_register_helper (struct frame_info *this_frame,
2768			         struct trad_frame_saved_reg saved_regs[],
2769				 int regnum)
2770{
2771  struct gdbarch *arch = get_frame_arch (this_frame);
2772  enum bfd_endian byte_order = gdbarch_byte_order (arch);
2773
2774  if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2775    {
2776      int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2777      CORE_ADDR pc;
2778      struct value *pcoq_val =
2779        trad_frame_get_prev_register (this_frame, saved_regs,
2780                                      HPPA_PCOQ_HEAD_REGNUM);
2781
2782      pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2783				     size, byte_order);
2784      return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2785    }
2786
2787  return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2788}
2789
2790
2791/* An instruction to match.  */
2792struct insn_pattern
2793{
2794  unsigned int data;            /* See if it matches this....  */
2795  unsigned int mask;            /* ... with this mask.  */
2796};
2797
2798/* See bfd/elf32-hppa.c */
2799static struct insn_pattern hppa_long_branch_stub[] = {
2800  /* ldil LR'xxx,%r1 */
2801  { 0x20200000, 0xffe00000 },
2802  /* be,n RR'xxx(%sr4,%r1) */
2803  { 0xe0202002, 0xffe02002 },
2804  { 0, 0 }
2805};
2806
2807static struct insn_pattern hppa_long_branch_pic_stub[] = {
2808  /* b,l .+8, %r1 */
2809  { 0xe8200000, 0xffe00000 },
2810  /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2811  { 0x28200000, 0xffe00000 },
2812  /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2813  { 0xe0202002, 0xffe02002 },
2814  { 0, 0 }
2815};
2816
2817static struct insn_pattern hppa_import_stub[] = {
2818  /* addil LR'xxx, %dp */
2819  { 0x2b600000, 0xffe00000 },
2820  /* ldw RR'xxx(%r1), %r21 */
2821  { 0x48350000, 0xffffb000 },
2822  /* bv %r0(%r21) */
2823  { 0xeaa0c000, 0xffffffff },
2824  /* ldw RR'xxx+4(%r1), %r19 */
2825  { 0x48330000, 0xffffb000 },
2826  { 0, 0 }
2827};
2828
2829static struct insn_pattern hppa_import_pic_stub[] = {
2830  /* addil LR'xxx,%r19 */
2831  { 0x2a600000, 0xffe00000 },
2832  /* ldw RR'xxx(%r1),%r21 */
2833  { 0x48350000, 0xffffb000 },
2834  /* bv %r0(%r21) */
2835  { 0xeaa0c000, 0xffffffff },
2836  /* ldw RR'xxx+4(%r1),%r19 */
2837  { 0x48330000, 0xffffb000 },
2838  { 0, 0 },
2839};
2840
2841static struct insn_pattern hppa_plt_stub[] = {
2842  /* b,l 1b, %r20 - 1b is 3 insns before here */
2843  { 0xea9f1fdd, 0xffffffff },
2844  /* depi 0,31,2,%r20 */
2845  { 0xd6801c1e, 0xffffffff },
2846  { 0, 0 }
2847};
2848
2849/* Maximum number of instructions on the patterns above.  */
2850#define HPPA_MAX_INSN_PATTERN_LEN	4
2851
2852/* Return non-zero if the instructions at PC match the series
2853   described in PATTERN, or zero otherwise.  PATTERN is an array of
2854   'struct insn_pattern' objects, terminated by an entry whose mask is
2855   zero.
2856
2857   When the match is successful, fill INSN[i] with what PATTERN[i]
2858   matched.  */
2859
2860static int
2861hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2862		  struct insn_pattern *pattern, unsigned int *insn)
2863{
2864  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2865  CORE_ADDR npc = pc;
2866  int i;
2867
2868  for (i = 0; pattern[i].mask; i++)
2869    {
2870      gdb_byte buf[HPPA_INSN_SIZE];
2871
2872      target_read_memory (npc, buf, HPPA_INSN_SIZE);
2873      insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
2874      if ((insn[i] & pattern[i].mask) == pattern[i].data)
2875        npc += 4;
2876      else
2877        return 0;
2878    }
2879
2880  return 1;
2881}
2882
2883/* This relaxed version of the insstruction matcher allows us to match
2884   from somewhere inside the pattern, by looking backwards in the
2885   instruction scheme.  */
2886
2887static int
2888hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2889			  struct insn_pattern *pattern, unsigned int *insn)
2890{
2891  int offset, len = 0;
2892
2893  while (pattern[len].mask)
2894    len++;
2895
2896  for (offset = 0; offset < len; offset++)
2897    if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2898			  pattern, insn))
2899      return 1;
2900
2901  return 0;
2902}
2903
2904static int
2905hppa_in_dyncall (CORE_ADDR pc)
2906{
2907  struct unwind_table_entry *u;
2908
2909  u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2910  if (!u)
2911    return 0;
2912
2913  return (pc >= u->region_start && pc <= u->region_end);
2914}
2915
2916int
2917hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
2918{
2919  unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2920  struct unwind_table_entry *u;
2921
2922  if (in_plt_section (pc) || hppa_in_dyncall (pc))
2923    return 1;
2924
2925  /* The GNU toolchain produces linker stubs without unwind
2926     information.  Since the pattern matching for linker stubs can be
2927     quite slow, so bail out if we do have an unwind entry.  */
2928
2929  u = find_unwind_entry (pc);
2930  if (u != NULL)
2931    return 0;
2932
2933  return
2934    (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2935     || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2936     || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2937     || hppa_match_insns_relaxed (gdbarch, pc,
2938				  hppa_long_branch_pic_stub, insn));
2939}
2940
2941/* This code skips several kind of "trampolines" used on PA-RISC
2942   systems: $$dyncall, import stubs and PLT stubs.  */
2943
2944CORE_ADDR
2945hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2946{
2947  struct gdbarch *gdbarch = get_frame_arch (frame);
2948  struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2949
2950  unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2951  int dp_rel;
2952
2953  /* $$dyncall handles both PLABELs and direct addresses.  */
2954  if (hppa_in_dyncall (pc))
2955    {
2956      pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2957
2958      /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it.  */
2959      if (pc & 0x2)
2960	pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
2961
2962      return pc;
2963    }
2964
2965  dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2966  if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
2967    {
2968      /* Extract the target address from the addil/ldw sequence.  */
2969      pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2970
2971      if (dp_rel)
2972        pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2973      else
2974        pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2975
2976      /* fallthrough */
2977    }
2978
2979  if (in_plt_section (pc))
2980    {
2981      pc = read_memory_typed_address (pc, func_ptr_type);
2982
2983      /* If the PLT slot has not yet been resolved, the target will be
2984         the PLT stub.  */
2985      if (in_plt_section (pc))
2986	{
2987	  /* Sanity check: are we pointing to the PLT stub?  */
2988  	  if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
2989	    {
2990	      warning (_("Cannot resolve PLT stub at %s."),
2991		       paddress (gdbarch, pc));
2992	      return 0;
2993	    }
2994
2995	  /* This should point to the fixup routine.  */
2996	  pc = read_memory_typed_address (pc + 8, func_ptr_type);
2997	}
2998    }
2999
3000  return pc;
3001}
3002
3003
3004/* Here is a table of C type sizes on hppa with various compiles
3005   and options.  I measured this on PA 9000/800 with HP-UX 11.11
3006   and these compilers:
3007
3008     /usr/ccs/bin/cc    HP92453-01 A.11.01.21
3009     /opt/ansic/bin/cc  HP92453-01 B.11.11.28706.GP
3010     /opt/aCC/bin/aCC   B3910B A.03.45
3011     gcc                gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3012
3013     cc            : 1 2 4 4 8 : 4 8 -- : 4 4
3014     ansic +DA1.1  : 1 2 4 4 8 : 4 8 16 : 4 4
3015     ansic +DA2.0  : 1 2 4 4 8 : 4 8 16 : 4 4
3016     ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3017     acc   +DA1.1  : 1 2 4 4 8 : 4 8 16 : 4 4
3018     acc   +DA2.0  : 1 2 4 4 8 : 4 8 16 : 4 4
3019     acc   +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3020     gcc           : 1 2 4 4 8 : 4 8 16 : 4 4
3021
3022   Each line is:
3023
3024     compiler and options
3025     char, short, int, long, long long
3026     float, double, long double
3027     char *, void (*)()
3028
3029   So all these compilers use either ILP32 or LP64 model.
3030   TODO: gcc has more options so it needs more investigation.
3031
3032   For floating point types, see:
3033
3034     http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3035     HP-UX floating-point guide, hpux 11.00
3036
3037   -- chastain 2003-12-18  */
3038
3039static struct gdbarch *
3040hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3041{
3042  struct gdbarch_tdep *tdep;
3043  struct gdbarch *gdbarch;
3044
3045  /* find a candidate among the list of pre-declared architectures.  */
3046  arches = gdbarch_list_lookup_by_info (arches, &info);
3047  if (arches != NULL)
3048    return (arches->gdbarch);
3049
3050  /* If none found, then allocate and initialize one.  */
3051  tdep = XCNEW (struct gdbarch_tdep);
3052  gdbarch = gdbarch_alloc (&info, tdep);
3053
3054  /* Determine from the bfd_arch_info structure if we are dealing with
3055     a 32 or 64 bits architecture.  If the bfd_arch_info is not available,
3056     then default to a 32bit machine.  */
3057  if (info.bfd_arch_info != NULL)
3058    tdep->bytes_per_address =
3059      info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3060  else
3061    tdep->bytes_per_address = 4;
3062
3063  tdep->find_global_pointer = hppa_find_global_pointer;
3064
3065  /* Some parts of the gdbarch vector depend on whether we are running
3066     on a 32 bits or 64 bits target.  */
3067  switch (tdep->bytes_per_address)
3068    {
3069      case 4:
3070        set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3071        set_gdbarch_register_name (gdbarch, hppa32_register_name);
3072        set_gdbarch_register_type (gdbarch, hppa32_register_type);
3073	set_gdbarch_cannot_store_register (gdbarch,
3074					   hppa32_cannot_store_register);
3075	set_gdbarch_cannot_fetch_register (gdbarch,
3076					   hppa32_cannot_fetch_register);
3077        break;
3078      case 8:
3079        set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3080        set_gdbarch_register_name (gdbarch, hppa64_register_name);
3081        set_gdbarch_register_type (gdbarch, hppa64_register_type);
3082        set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3083	set_gdbarch_cannot_store_register (gdbarch,
3084					   hppa64_cannot_store_register);
3085	set_gdbarch_cannot_fetch_register (gdbarch,
3086					   hppa64_cannot_fetch_register);
3087        break;
3088      default:
3089        internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3090                        tdep->bytes_per_address);
3091    }
3092
3093  set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3094  set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3095
3096  /* The following gdbarch vector elements are the same in both ILP32
3097     and LP64, but might show differences some day.  */
3098  set_gdbarch_long_long_bit (gdbarch, 64);
3099  set_gdbarch_long_double_bit (gdbarch, 128);
3100  set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3101
3102  /* The following gdbarch vector elements do not depend on the address
3103     size, or in any other gdbarch element previously set.  */
3104  set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3105  set_gdbarch_stack_frame_destroyed_p (gdbarch,
3106				       hppa_stack_frame_destroyed_p);
3107  set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3108  set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3109  set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3110  set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
3111  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3112  set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3113  set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3114
3115  /* Helper for function argument information.  */
3116  set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3117
3118  /* When a hardware watchpoint triggers, we'll move the inferior past
3119     it by removing all eventpoints; stepping past the instruction
3120     that caused the trigger; reinserting eventpoints; and checking
3121     whether any watched location changed.  */
3122  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3123
3124  /* Inferior function call methods.  */
3125  switch (tdep->bytes_per_address)
3126    {
3127    case 4:
3128      set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3129      set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3130      set_gdbarch_convert_from_func_ptr_addr
3131        (gdbarch, hppa32_convert_from_func_ptr_addr);
3132      break;
3133    case 8:
3134      set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3135      set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3136      break;
3137    default:
3138      internal_error (__FILE__, __LINE__, _("bad switch"));
3139    }
3140
3141  /* Struct return methods.  */
3142  switch (tdep->bytes_per_address)
3143    {
3144    case 4:
3145      set_gdbarch_return_value (gdbarch, hppa32_return_value);
3146      break;
3147    case 8:
3148      set_gdbarch_return_value (gdbarch, hppa64_return_value);
3149      break;
3150    default:
3151      internal_error (__FILE__, __LINE__, _("bad switch"));
3152    }
3153
3154  set_gdbarch_breakpoint_kind_from_pc (gdbarch, hppa_breakpoint::kind_from_pc);
3155  set_gdbarch_sw_breakpoint_from_kind (gdbarch, hppa_breakpoint::bp_from_kind);
3156  set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3157
3158  /* Frame unwind methods.  */
3159  set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3160  set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3161
3162  /* Hook in ABI-specific overrides, if they have been registered.  */
3163  gdbarch_init_osabi (info, gdbarch);
3164
3165  /* Hook in the default unwinders.  */
3166  frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3167  frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3168  frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3169
3170  return gdbarch;
3171}
3172
3173static void
3174hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3175{
3176  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3177
3178  fprintf_unfiltered (file, "bytes_per_address = %d\n",
3179                      tdep->bytes_per_address);
3180  fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3181}
3182
3183void
3184_initialize_hppa_tdep (void)
3185{
3186  gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3187
3188  hppa_objfile_priv_data = register_objfile_data ();
3189
3190  add_cmd ("unwind", class_maintenance, unwind_command,
3191	   _("Print unwind table entry at given address."),
3192	   &maintenanceprintlist);
3193
3194  /* Debug this files internals.  */
3195  add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3196Set whether hppa target specific debugging information should be displayed."),
3197			   _("\
3198Show whether hppa target specific debugging information is displayed."), _("\
3199This flag controls whether hppa target specific debugging information is\n\
3200displayed.  This information is particularly useful for debugging frame\n\
3201unwinding problems."),
3202			   NULL,
3203			   NULL, /* FIXME: i18n: hppa debug flag is %s.  */
3204			   &setdebuglist, &showdebuglist);
3205}
3206