hppa-tdep.c revision 1.6
1/* Target-dependent code for the HP PA-RISC architecture.
2
3   Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5   Contributed by the Center for Software Science at the
6   University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8   This file is part of GDB.
9
10   This program is free software; you can redistribute it and/or modify
11   it under the terms of the GNU General Public License as published by
12   the Free Software Foundation; either version 3 of the License, or
13   (at your option) any later version.
14
15   This program is distributed in the hope that it will be useful,
16   but WITHOUT ANY WARRANTY; without even the implied warranty of
17   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18   GNU General Public License for more details.
19
20   You should have received a copy of the GNU General Public License
21   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22
23#include "defs.h"
24#include "bfd.h"
25#include "inferior.h"
26#include "regcache.h"
27#include "completer.h"
28#include "osabi.h"
29#include "arch-utils.h"
30/* For argument passing to the inferior.  */
31#include "symtab.h"
32#include "dis-asm.h"
33#include "trad-frame.h"
34#include "frame-unwind.h"
35#include "frame-base.h"
36
37#include "gdbcore.h"
38#include "gdbcmd.h"
39#include "gdbtypes.h"
40#include "objfiles.h"
41#include "hppa-tdep.h"
42
43static int hppa_debug = 0;
44
45/* Some local constants.  */
46static const int hppa32_num_regs = 128;
47static const int hppa64_num_regs = 96;
48
49/* We use the objfile->obj_private pointer for two things:
50 * 1.  An unwind table;
51 *
52 * 2.  A pointer to any associated shared library object.
53 *
54 * #defines are used to help refer to these objects.
55 */
56
57/* Info about the unwind table associated with an object file.
58 * This is hung off of the "objfile->obj_private" pointer, and
59 * is allocated in the objfile's psymbol obstack.  This allows
60 * us to have unique unwind info for each executable and shared
61 * library that we are debugging.
62 */
63struct hppa_unwind_info
64  {
65    struct unwind_table_entry *table;	/* Pointer to unwind info */
66    struct unwind_table_entry *cache;	/* Pointer to last entry we found */
67    int last;				/* Index of last entry */
68  };
69
70struct hppa_objfile_private
71  {
72    struct hppa_unwind_info *unwind_info;	/* a pointer */
73    struct so_list *so_info;			/* a pointer  */
74    CORE_ADDR dp;
75
76    int dummy_call_sequence_reg;
77    CORE_ADDR dummy_call_sequence_addr;
78  };
79
80/* hppa-specific object data -- unwind and solib info.
81   TODO/maybe: think about splitting this into two parts; the unwind data is
82   common to all hppa targets, but is only used in this file; we can register
83   that separately and make this static. The solib data is probably hpux-
84   specific, so we can create a separate extern objfile_data that is registered
85   by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c.  */
86static const struct objfile_data *hppa_objfile_priv_data = NULL;
87
88/* Get at various relevent fields of an instruction word.  */
89#define MASK_5 0x1f
90#define MASK_11 0x7ff
91#define MASK_14 0x3fff
92#define MASK_21 0x1fffff
93
94/* Sizes (in bytes) of the native unwind entries.  */
95#define UNWIND_ENTRY_SIZE 16
96#define STUB_UNWIND_ENTRY_SIZE 8
97
98/* Routines to extract various sized constants out of hppa
99   instructions.  */
100
101/* This assumes that no garbage lies outside of the lower bits of
102   value.  */
103
104static int
105hppa_sign_extend (unsigned val, unsigned bits)
106{
107  return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val);
108}
109
110/* For many immediate values the sign bit is the low bit!  */
111
112static int
113hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
114{
115  return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1);
116}
117
118/* Extract the bits at positions between FROM and TO, using HP's numbering
119   (MSB = 0).  */
120
121int
122hppa_get_field (unsigned word, int from, int to)
123{
124  return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
125}
126
127/* Extract the immediate field from a ld{bhw}s instruction.  */
128
129int
130hppa_extract_5_load (unsigned word)
131{
132  return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
133}
134
135/* Extract the immediate field from a break instruction.  */
136
137unsigned
138hppa_extract_5r_store (unsigned word)
139{
140  return (word & MASK_5);
141}
142
143/* Extract the immediate field from a {sr}sm instruction.  */
144
145unsigned
146hppa_extract_5R_store (unsigned word)
147{
148  return (word >> 16 & MASK_5);
149}
150
151/* Extract a 14 bit immediate field.  */
152
153int
154hppa_extract_14 (unsigned word)
155{
156  return hppa_low_hppa_sign_extend (word & MASK_14, 14);
157}
158
159/* Extract a 21 bit constant.  */
160
161int
162hppa_extract_21 (unsigned word)
163{
164  int val;
165
166  word &= MASK_21;
167  word <<= 11;
168  val = hppa_get_field (word, 20, 20);
169  val <<= 11;
170  val |= hppa_get_field (word, 9, 19);
171  val <<= 2;
172  val |= hppa_get_field (word, 5, 6);
173  val <<= 5;
174  val |= hppa_get_field (word, 0, 4);
175  val <<= 2;
176  val |= hppa_get_field (word, 7, 8);
177  return hppa_sign_extend (val, 21) << 11;
178}
179
180/* extract a 17 bit constant from branch instructions, returning the
181   19 bit signed value.  */
182
183int
184hppa_extract_17 (unsigned word)
185{
186  return hppa_sign_extend (hppa_get_field (word, 19, 28) |
187		      hppa_get_field (word, 29, 29) << 10 |
188		      hppa_get_field (word, 11, 15) << 11 |
189		      (word & 0x1) << 16, 17) << 2;
190}
191
192CORE_ADDR
193hppa_symbol_address(const char *sym)
194{
195  struct bound_minimal_symbol minsym;
196
197  minsym = lookup_minimal_symbol (sym, NULL, NULL);
198  if (minsym.minsym)
199    return BMSYMBOL_VALUE_ADDRESS (minsym);
200  else
201    return (CORE_ADDR)-1;
202}
203
204static struct hppa_objfile_private *
205hppa_init_objfile_priv_data (struct objfile *objfile)
206{
207  struct hppa_objfile_private *priv;
208
209  priv = (struct hppa_objfile_private *)
210  	 obstack_alloc (&objfile->objfile_obstack,
211	 		sizeof (struct hppa_objfile_private));
212  set_objfile_data (objfile, hppa_objfile_priv_data, priv);
213  memset (priv, 0, sizeof (*priv));
214
215  return priv;
216}
217
218
219/* Compare the start address for two unwind entries returning 1 if
220   the first address is larger than the second, -1 if the second is
221   larger than the first, and zero if they are equal.  */
222
223static int
224compare_unwind_entries (const void *arg1, const void *arg2)
225{
226  const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1;
227  const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2;
228
229  if (a->region_start > b->region_start)
230    return 1;
231  else if (a->region_start < b->region_start)
232    return -1;
233  else
234    return 0;
235}
236
237static void
238record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
239{
240  if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
241       == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
242    {
243      bfd_vma value = section->vma - section->filepos;
244      CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
245
246      if (value < *low_text_segment_address)
247          *low_text_segment_address = value;
248    }
249}
250
251static void
252internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
253		     asection *section, unsigned int entries,
254		     size_t size, CORE_ADDR text_offset)
255{
256  /* We will read the unwind entries into temporary memory, then
257     fill in the actual unwind table.  */
258
259  if (size > 0)
260    {
261      struct gdbarch *gdbarch = get_objfile_arch (objfile);
262      unsigned long tmp;
263      unsigned i;
264      char *buf = (char *) alloca (size);
265      CORE_ADDR low_text_segment_address;
266
267      /* For ELF targets, then unwinds are supposed to
268	 be segment relative offsets instead of absolute addresses.
269
270	 Note that when loading a shared library (text_offset != 0) the
271	 unwinds are already relative to the text_offset that will be
272	 passed in.  */
273      if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
274	{
275          low_text_segment_address = -1;
276
277	  bfd_map_over_sections (objfile->obfd,
278				 record_text_segment_lowaddr,
279				 &low_text_segment_address);
280
281	  text_offset = low_text_segment_address;
282	}
283      else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
284        {
285	  text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
286	}
287
288      bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
289
290      /* Now internalize the information being careful to handle host/target
291         endian issues.  */
292      for (i = 0; i < entries; i++)
293	{
294	  table[i].region_start = bfd_get_32 (objfile->obfd,
295					      (bfd_byte *) buf);
296	  table[i].region_start += text_offset;
297	  buf += 4;
298	  table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
299	  table[i].region_end += text_offset;
300	  buf += 4;
301	  tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
302	  buf += 4;
303	  table[i].Cannot_unwind = (tmp >> 31) & 0x1;
304	  table[i].Millicode = (tmp >> 30) & 0x1;
305	  table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
306	  table[i].Region_description = (tmp >> 27) & 0x3;
307	  table[i].reserved = (tmp >> 26) & 0x1;
308	  table[i].Entry_SR = (tmp >> 25) & 0x1;
309	  table[i].Entry_FR = (tmp >> 21) & 0xf;
310	  table[i].Entry_GR = (tmp >> 16) & 0x1f;
311	  table[i].Args_stored = (tmp >> 15) & 0x1;
312	  table[i].Variable_Frame = (tmp >> 14) & 0x1;
313	  table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
314	  table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
315	  table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
316	  table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
317	  table[i].sr4export = (tmp >> 9) & 0x1;
318	  table[i].cxx_info = (tmp >> 8) & 0x1;
319	  table[i].cxx_try_catch = (tmp >> 7) & 0x1;
320	  table[i].sched_entry_seq = (tmp >> 6) & 0x1;
321	  table[i].reserved1 = (tmp >> 5) & 0x1;
322	  table[i].Save_SP = (tmp >> 4) & 0x1;
323	  table[i].Save_RP = (tmp >> 3) & 0x1;
324	  table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
325	  table[i].save_r19 = (tmp >> 1) & 0x1;
326	  table[i].Cleanup_defined = tmp & 0x1;
327	  tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
328	  buf += 4;
329	  table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
330	  table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
331	  table[i].Large_frame = (tmp >> 29) & 0x1;
332	  table[i].alloca_frame = (tmp >> 28) & 0x1;
333	  table[i].reserved2 = (tmp >> 27) & 0x1;
334	  table[i].Total_frame_size = tmp & 0x7ffffff;
335
336	  /* Stub unwinds are handled elsewhere.  */
337	  table[i].stub_unwind.stub_type = 0;
338	  table[i].stub_unwind.padding = 0;
339	}
340    }
341}
342
343/* Read in the backtrace information stored in the `$UNWIND_START$' section of
344   the object file.  This info is used mainly by find_unwind_entry() to find
345   out the stack frame size and frame pointer used by procedures.  We put
346   everything on the psymbol obstack in the objfile so that it automatically
347   gets freed when the objfile is destroyed.  */
348
349static void
350read_unwind_info (struct objfile *objfile)
351{
352  asection *unwind_sec, *stub_unwind_sec;
353  size_t unwind_size, stub_unwind_size, total_size;
354  unsigned index, unwind_entries;
355  unsigned stub_entries, total_entries;
356  CORE_ADDR text_offset;
357  struct hppa_unwind_info *ui;
358  struct hppa_objfile_private *obj_private;
359
360  text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
361  ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
362					   sizeof (struct hppa_unwind_info));
363
364  ui->table = NULL;
365  ui->cache = NULL;
366  ui->last = -1;
367
368  /* For reasons unknown the HP PA64 tools generate multiple unwinder
369     sections in a single executable.  So we just iterate over every
370     section in the BFD looking for unwinder sections intead of trying
371     to do a lookup with bfd_get_section_by_name.
372
373     First determine the total size of the unwind tables so that we
374     can allocate memory in a nice big hunk.  */
375  total_entries = 0;
376  for (unwind_sec = objfile->obfd->sections;
377       unwind_sec;
378       unwind_sec = unwind_sec->next)
379    {
380      if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
381	  || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
382	{
383	  unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
384	  unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
385
386	  total_entries += unwind_entries;
387	}
388    }
389
390  /* Now compute the size of the stub unwinds.  Note the ELF tools do not
391     use stub unwinds at the current time.  */
392  stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
393
394  if (stub_unwind_sec)
395    {
396      stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
397      stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
398    }
399  else
400    {
401      stub_unwind_size = 0;
402      stub_entries = 0;
403    }
404
405  /* Compute total number of unwind entries and their total size.  */
406  total_entries += stub_entries;
407  total_size = total_entries * sizeof (struct unwind_table_entry);
408
409  /* Allocate memory for the unwind table.  */
410  ui->table = (struct unwind_table_entry *)
411    obstack_alloc (&objfile->objfile_obstack, total_size);
412  ui->last = total_entries - 1;
413
414  /* Now read in each unwind section and internalize the standard unwind
415     entries.  */
416  index = 0;
417  for (unwind_sec = objfile->obfd->sections;
418       unwind_sec;
419       unwind_sec = unwind_sec->next)
420    {
421      if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
422	  || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
423	{
424	  unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
425	  unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
426
427	  internalize_unwinds (objfile, &ui->table[index], unwind_sec,
428			       unwind_entries, unwind_size, text_offset);
429	  index += unwind_entries;
430	}
431    }
432
433  /* Now read in and internalize the stub unwind entries.  */
434  if (stub_unwind_size > 0)
435    {
436      unsigned int i;
437      char *buf = (char *) alloca (stub_unwind_size);
438
439      /* Read in the stub unwind entries.  */
440      bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
441				0, stub_unwind_size);
442
443      /* Now convert them into regular unwind entries.  */
444      for (i = 0; i < stub_entries; i++, index++)
445	{
446	  /* Clear out the next unwind entry.  */
447	  memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
448
449	  /* Convert offset & size into region_start and region_end.
450	     Stuff away the stub type into "reserved" fields.  */
451	  ui->table[index].region_start = bfd_get_32 (objfile->obfd,
452						      (bfd_byte *) buf);
453	  ui->table[index].region_start += text_offset;
454	  buf += 4;
455	  ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
456							  (bfd_byte *) buf);
457	  buf += 2;
458	  ui->table[index].region_end
459	    = ui->table[index].region_start + 4 *
460	    (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
461	  buf += 2;
462	}
463
464    }
465
466  /* Unwind table needs to be kept sorted.  */
467  qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
468	 compare_unwind_entries);
469
470  /* Keep a pointer to the unwind information.  */
471  obj_private = (struct hppa_objfile_private *)
472	        objfile_data (objfile, hppa_objfile_priv_data);
473  if (obj_private == NULL)
474    obj_private = hppa_init_objfile_priv_data (objfile);
475
476  obj_private->unwind_info = ui;
477}
478
479/* Lookup the unwind (stack backtrace) info for the given PC.  We search all
480   of the objfiles seeking the unwind table entry for this PC.  Each objfile
481   contains a sorted list of struct unwind_table_entry.  Since we do a binary
482   search of the unwind tables, we depend upon them to be sorted.  */
483
484struct unwind_table_entry *
485find_unwind_entry (CORE_ADDR pc)
486{
487  int first, middle, last;
488  struct objfile *objfile;
489  struct hppa_objfile_private *priv;
490
491  if (hppa_debug)
492    fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
493		        hex_string (pc));
494
495  /* A function at address 0?  Not in HP-UX!  */
496  if (pc == (CORE_ADDR) 0)
497    {
498      if (hppa_debug)
499	fprintf_unfiltered (gdb_stdlog, "NULL }\n");
500      return NULL;
501    }
502
503  ALL_OBJFILES (objfile)
504  {
505    struct hppa_unwind_info *ui;
506    ui = NULL;
507    priv = ((struct hppa_objfile_private *)
508	    objfile_data (objfile, hppa_objfile_priv_data));
509    if (priv)
510      ui = ((struct hppa_objfile_private *) priv)->unwind_info;
511
512    if (!ui)
513      {
514	read_unwind_info (objfile);
515        priv = ((struct hppa_objfile_private *)
516		objfile_data (objfile, hppa_objfile_priv_data));
517	if (priv == NULL)
518	  error (_("Internal error reading unwind information."));
519        ui = ((struct hppa_objfile_private *) priv)->unwind_info;
520      }
521
522    /* First, check the cache.  */
523
524    if (ui->cache
525	&& pc >= ui->cache->region_start
526	&& pc <= ui->cache->region_end)
527      {
528	if (hppa_debug)
529	  fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
530            hex_string ((uintptr_t) ui->cache));
531        return ui->cache;
532      }
533
534    /* Not in the cache, do a binary search.  */
535
536    first = 0;
537    last = ui->last;
538
539    while (first <= last)
540      {
541	middle = (first + last) / 2;
542	if (pc >= ui->table[middle].region_start
543	    && pc <= ui->table[middle].region_end)
544	  {
545	    ui->cache = &ui->table[middle];
546	    if (hppa_debug)
547	      fprintf_unfiltered (gdb_stdlog, "%s }\n",
548                hex_string ((uintptr_t) ui->cache));
549	    return &ui->table[middle];
550	  }
551
552	if (pc < ui->table[middle].region_start)
553	  last = middle - 1;
554	else
555	  first = middle + 1;
556      }
557  }				/* ALL_OBJFILES() */
558
559  if (hppa_debug)
560    fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
561
562  return NULL;
563}
564
565/* Implement the stack_frame_destroyed_p gdbarch method.
566
567   The epilogue is defined here as the area either on the `bv' instruction
568   itself or an instruction which destroys the function's stack frame.
569
570   We do not assume that the epilogue is at the end of a function as we can
571   also have return sequences in the middle of a function.  */
572
573static int
574hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
575{
576  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
577  unsigned long status;
578  unsigned int inst;
579  gdb_byte buf[4];
580
581  status = target_read_memory (pc, buf, 4);
582  if (status != 0)
583    return 0;
584
585  inst = extract_unsigned_integer (buf, 4, byte_order);
586
587  /* The most common way to perform a stack adjustment ldo X(sp),sp
588     We are destroying a stack frame if the offset is negative.  */
589  if ((inst & 0xffffc000) == 0x37de0000
590      && hppa_extract_14 (inst) < 0)
591    return 1;
592
593  /* ldw,mb D(sp),X or ldd,mb D(sp),X */
594  if (((inst & 0x0fc010e0) == 0x0fc010e0
595       || (inst & 0x0fc010e0) == 0x0fc010e0)
596      && hppa_extract_14 (inst) < 0)
597    return 1;
598
599  /* bv %r0(%rp) or bv,n %r0(%rp) */
600  if (inst == 0xe840c000 || inst == 0xe840c002)
601    return 1;
602
603  return 0;
604}
605
606static const unsigned char *
607hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
608{
609  static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
610  (*len) = sizeof (breakpoint);
611  return breakpoint;
612}
613
614/* Return the name of a register.  */
615
616static const char *
617hppa32_register_name (struct gdbarch *gdbarch, int i)
618{
619  static char *names[] = {
620    "flags",  "r1",      "rp",     "r3",
621    "r4",     "r5",      "r6",     "r7",
622    "r8",     "r9",      "r10",    "r11",
623    "r12",    "r13",     "r14",    "r15",
624    "r16",    "r17",     "r18",    "r19",
625    "r20",    "r21",     "r22",    "r23",
626    "r24",    "r25",     "r26",    "dp",
627    "ret0",   "ret1",    "sp",     "r31",
628    "sar",    "pcoqh",   "pcsqh",  "pcoqt",
629    "pcsqt",  "eiem",    "iir",    "isr",
630    "ior",    "ipsw",    "goto",   "sr4",
631    "sr0",    "sr1",     "sr2",    "sr3",
632    "sr5",    "sr6",     "sr7",    "cr0",
633    "cr8",    "cr9",     "ccr",    "cr12",
634    "cr13",   "cr24",    "cr25",   "cr26",
635    "cr27",   "cr28",    "cr29",   "cr30",
636    "fpsr",    "fpe1",   "fpe2",   "fpe3",
637    "fpe4",   "fpe5",    "fpe6",   "fpe7",
638    "fr4",     "fr4R",   "fr5",    "fr5R",
639    "fr6",    "fr6R",    "fr7",    "fr7R",
640    "fr8",     "fr8R",   "fr9",    "fr9R",
641    "fr10",   "fr10R",   "fr11",   "fr11R",
642    "fr12",    "fr12R",  "fr13",   "fr13R",
643    "fr14",   "fr14R",   "fr15",   "fr15R",
644    "fr16",    "fr16R",  "fr17",   "fr17R",
645    "fr18",   "fr18R",   "fr19",   "fr19R",
646    "fr20",    "fr20R",  "fr21",   "fr21R",
647    "fr22",   "fr22R",   "fr23",   "fr23R",
648    "fr24",    "fr24R",  "fr25",   "fr25R",
649    "fr26",   "fr26R",   "fr27",   "fr27R",
650    "fr28",    "fr28R",  "fr29",   "fr29R",
651    "fr30",   "fr30R",   "fr31",   "fr31R"
652  };
653  if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
654    return NULL;
655  else
656    return names[i];
657}
658
659static const char *
660hppa64_register_name (struct gdbarch *gdbarch, int i)
661{
662  static char *names[] = {
663    "flags",  "r1",      "rp",     "r3",
664    "r4",     "r5",      "r6",     "r7",
665    "r8",     "r9",      "r10",    "r11",
666    "r12",    "r13",     "r14",    "r15",
667    "r16",    "r17",     "r18",    "r19",
668    "r20",    "r21",     "r22",    "r23",
669    "r24",    "r25",     "r26",    "dp",
670    "ret0",   "ret1",    "sp",     "r31",
671    "sar",    "pcoqh",   "pcsqh",  "pcoqt",
672    "pcsqt",  "eiem",    "iir",    "isr",
673    "ior",    "ipsw",    "goto",   "sr4",
674    "sr0",    "sr1",     "sr2",    "sr3",
675    "sr5",    "sr6",     "sr7",    "cr0",
676    "cr8",    "cr9",     "ccr",    "cr12",
677    "cr13",   "cr24",    "cr25",   "cr26",
678    "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
679    "fpsr",    "fpe1",   "fpe2",   "fpe3",
680    "fr4",    "fr5",     "fr6",    "fr7",
681    "fr8",     "fr9",    "fr10",   "fr11",
682    "fr12",   "fr13",    "fr14",   "fr15",
683    "fr16",    "fr17",   "fr18",   "fr19",
684    "fr20",   "fr21",    "fr22",   "fr23",
685    "fr24",    "fr25",   "fr26",   "fr27",
686    "fr28",  "fr29",    "fr30",   "fr31"
687  };
688  if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
689    return NULL;
690  else
691    return names[i];
692}
693
694/* Map dwarf DBX register numbers to GDB register numbers.  */
695static int
696hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
697{
698  /* The general registers and the sar are the same in both sets.  */
699  if (reg >= 0 && reg <= 32)
700    return reg;
701
702  /* fr4-fr31 are mapped from 72 in steps of 2.  */
703  if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
704    return HPPA64_FP4_REGNUM + (reg - 72) / 2;
705
706  return -1;
707}
708
709/* This function pushes a stack frame with arguments as part of the
710   inferior function calling mechanism.
711
712   This is the version of the function for the 32-bit PA machines, in
713   which later arguments appear at lower addresses.  (The stack always
714   grows towards higher addresses.)
715
716   We simply allocate the appropriate amount of stack space and put
717   arguments into their proper slots.  */
718
719static CORE_ADDR
720hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
721			struct regcache *regcache, CORE_ADDR bp_addr,
722			int nargs, struct value **args, CORE_ADDR sp,
723			int struct_return, CORE_ADDR struct_addr)
724{
725  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
726
727  /* Stack base address at which any pass-by-reference parameters are
728     stored.  */
729  CORE_ADDR struct_end = 0;
730  /* Stack base address at which the first parameter is stored.  */
731  CORE_ADDR param_end = 0;
732
733  /* Two passes.  First pass computes the location of everything,
734     second pass writes the bytes out.  */
735  int write_pass;
736
737  /* Global pointer (r19) of the function we are trying to call.  */
738  CORE_ADDR gp;
739
740  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
741
742  for (write_pass = 0; write_pass < 2; write_pass++)
743    {
744      CORE_ADDR struct_ptr = 0;
745      /* The first parameter goes into sp-36, each stack slot is 4-bytes.
746         struct_ptr is adjusted for each argument below, so the first
747	 argument will end up at sp-36.  */
748      CORE_ADDR param_ptr = 32;
749      int i;
750      int small_struct = 0;
751
752      for (i = 0; i < nargs; i++)
753	{
754	  struct value *arg = args[i];
755	  struct type *type = check_typedef (value_type (arg));
756	  /* The corresponding parameter that is pushed onto the
757	     stack, and [possibly] passed in a register.  */
758	  gdb_byte param_val[8];
759	  int param_len;
760	  memset (param_val, 0, sizeof param_val);
761	  if (TYPE_LENGTH (type) > 8)
762	    {
763	      /* Large parameter, pass by reference.  Store the value
764		 in "struct" area and then pass its address.  */
765	      param_len = 4;
766	      struct_ptr += align_up (TYPE_LENGTH (type), 8);
767	      if (write_pass)
768		write_memory (struct_end - struct_ptr, value_contents (arg),
769			      TYPE_LENGTH (type));
770	      store_unsigned_integer (param_val, 4, byte_order,
771				      struct_end - struct_ptr);
772	    }
773	  else if (TYPE_CODE (type) == TYPE_CODE_INT
774		   || TYPE_CODE (type) == TYPE_CODE_ENUM)
775	    {
776	      /* Integer value store, right aligned.  "unpack_long"
777		 takes care of any sign-extension problems.  */
778	      param_len = align_up (TYPE_LENGTH (type), 4);
779	      store_unsigned_integer (param_val, param_len, byte_order,
780				      unpack_long (type,
781						   value_contents (arg)));
782	    }
783	  else if (TYPE_CODE (type) == TYPE_CODE_FLT)
784            {
785	      /* Floating point value store, right aligned.  */
786	      param_len = align_up (TYPE_LENGTH (type), 4);
787	      memcpy (param_val, value_contents (arg), param_len);
788            }
789	  else
790	    {
791	      param_len = align_up (TYPE_LENGTH (type), 4);
792
793	      /* Small struct value are stored right-aligned.  */
794	      memcpy (param_val + param_len - TYPE_LENGTH (type),
795		      value_contents (arg), TYPE_LENGTH (type));
796
797	      /* Structures of size 5, 6 and 7 bytes are special in that
798	         the higher-ordered word is stored in the lower-ordered
799		 argument, and even though it is a 8-byte quantity the
800		 registers need not be 8-byte aligned.  */
801	      if (param_len > 4 && param_len < 8)
802		small_struct = 1;
803	    }
804
805	  param_ptr += param_len;
806	  if (param_len == 8 && !small_struct)
807            param_ptr = align_up (param_ptr, 8);
808
809	  /* First 4 non-FP arguments are passed in gr26-gr23.
810	     First 4 32-bit FP arguments are passed in fr4L-fr7L.
811	     First 2 64-bit FP arguments are passed in fr5 and fr7.
812
813	     The rest go on the stack, starting at sp-36, towards lower
814	     addresses.  8-byte arguments must be aligned to a 8-byte
815	     stack boundary.  */
816	  if (write_pass)
817	    {
818	      write_memory (param_end - param_ptr, param_val, param_len);
819
820	      /* There are some cases when we don't know the type
821		 expected by the callee (e.g. for variadic functions), so
822		 pass the parameters in both general and fp regs.  */
823	      if (param_ptr <= 48)
824		{
825		  int grreg = 26 - (param_ptr - 36) / 4;
826		  int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
827		  int fpreg = 74 + (param_ptr - 32) / 8 * 4;
828
829		  regcache_cooked_write (regcache, grreg, param_val);
830		  regcache_cooked_write (regcache, fpLreg, param_val);
831
832		  if (param_len > 4)
833		    {
834		      regcache_cooked_write (regcache, grreg + 1,
835					     param_val + 4);
836
837		      regcache_cooked_write (regcache, fpreg, param_val);
838		      regcache_cooked_write (regcache, fpreg + 1,
839					     param_val + 4);
840		    }
841		}
842	    }
843	}
844
845      /* Update the various stack pointers.  */
846      if (!write_pass)
847	{
848	  struct_end = sp + align_up (struct_ptr, 64);
849	  /* PARAM_PTR already accounts for all the arguments passed
850	     by the user.  However, the ABI mandates minimum stack
851	     space allocations for outgoing arguments.  The ABI also
852	     mandates minimum stack alignments which we must
853	     preserve.  */
854	  param_end = struct_end + align_up (param_ptr, 64);
855	}
856    }
857
858  /* If a structure has to be returned, set up register 28 to hold its
859     address.  */
860  if (struct_return)
861    regcache_cooked_write_unsigned (regcache, 28, struct_addr);
862
863  gp = tdep->find_global_pointer (gdbarch, function);
864
865  if (gp != 0)
866    regcache_cooked_write_unsigned (regcache, 19, gp);
867
868  /* Set the return address.  */
869  if (!gdbarch_push_dummy_code_p (gdbarch))
870    regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
871
872  /* Update the Stack Pointer.  */
873  regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
874
875  return param_end;
876}
877
878/* The 64-bit PA-RISC calling conventions are documented in "64-Bit
879   Runtime Architecture for PA-RISC 2.0", which is distributed as part
880   as of the HP-UX Software Transition Kit (STK).  This implementation
881   is based on version 3.3, dated October 6, 1997.  */
882
883/* Check whether TYPE is an "Integral or Pointer Scalar Type".  */
884
885static int
886hppa64_integral_or_pointer_p (const struct type *type)
887{
888  switch (TYPE_CODE (type))
889    {
890    case TYPE_CODE_INT:
891    case TYPE_CODE_BOOL:
892    case TYPE_CODE_CHAR:
893    case TYPE_CODE_ENUM:
894    case TYPE_CODE_RANGE:
895      {
896	int len = TYPE_LENGTH (type);
897	return (len == 1 || len == 2 || len == 4 || len == 8);
898      }
899    case TYPE_CODE_PTR:
900    case TYPE_CODE_REF:
901      return (TYPE_LENGTH (type) == 8);
902    default:
903      break;
904    }
905
906  return 0;
907}
908
909/* Check whether TYPE is a "Floating Scalar Type".  */
910
911static int
912hppa64_floating_p (const struct type *type)
913{
914  switch (TYPE_CODE (type))
915    {
916    case TYPE_CODE_FLT:
917      {
918	int len = TYPE_LENGTH (type);
919	return (len == 4 || len == 8 || len == 16);
920      }
921    default:
922      break;
923    }
924
925  return 0;
926}
927
928/* If CODE points to a function entry address, try to look up the corresponding
929   function descriptor and return its address instead.  If CODE is not a
930   function entry address, then just return it unchanged.  */
931static CORE_ADDR
932hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
933{
934  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
935  struct obj_section *sec, *opd;
936
937  sec = find_pc_section (code);
938
939  if (!sec)
940    return code;
941
942  /* If CODE is in a data section, assume it's already a fptr.  */
943  if (!(sec->the_bfd_section->flags & SEC_CODE))
944    return code;
945
946  ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
947    {
948      if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
949	break;
950    }
951
952  if (opd < sec->objfile->sections_end)
953    {
954      CORE_ADDR addr;
955
956      for (addr = obj_section_addr (opd);
957	   addr < obj_section_endaddr (opd);
958	   addr += 2 * 8)
959	{
960	  ULONGEST opdaddr;
961	  gdb_byte tmp[8];
962
963	  if (target_read_memory (addr, tmp, sizeof (tmp)))
964	      break;
965	  opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
966
967	  if (opdaddr == code)
968	    return addr - 16;
969	}
970    }
971
972  return code;
973}
974
975static CORE_ADDR
976hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
977			struct regcache *regcache, CORE_ADDR bp_addr,
978			int nargs, struct value **args, CORE_ADDR sp,
979			int struct_return, CORE_ADDR struct_addr)
980{
981  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
982  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
983  int i, offset = 0;
984  CORE_ADDR gp;
985
986  /* "The outgoing parameter area [...] must be aligned at a 16-byte
987     boundary."  */
988  sp = align_up (sp, 16);
989
990  for (i = 0; i < nargs; i++)
991    {
992      struct value *arg = args[i];
993      struct type *type = value_type (arg);
994      int len = TYPE_LENGTH (type);
995      const bfd_byte *valbuf;
996      bfd_byte fptrbuf[8];
997      int regnum;
998
999      /* "Each parameter begins on a 64-bit (8-byte) boundary."  */
1000      offset = align_up (offset, 8);
1001
1002      if (hppa64_integral_or_pointer_p (type))
1003	{
1004	  /* "Integral scalar parameters smaller than 64 bits are
1005             padded on the left (i.e., the value is in the
1006             least-significant bits of the 64-bit storage unit, and
1007             the high-order bits are undefined)."  Therefore we can
1008             safely sign-extend them.  */
1009	  if (len < 8)
1010	    {
1011	      arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
1012	      len = 8;
1013	    }
1014	}
1015      else if (hppa64_floating_p (type))
1016	{
1017	  if (len > 8)
1018	    {
1019	      /* "Quad-precision (128-bit) floating-point scalar
1020		 parameters are aligned on a 16-byte boundary."  */
1021	      offset = align_up (offset, 16);
1022
1023	      /* "Double-extended- and quad-precision floating-point
1024                 parameters within the first 64 bytes of the parameter
1025                 list are always passed in general registers."  */
1026	    }
1027	  else
1028	    {
1029	      if (len == 4)
1030		{
1031		  /* "Single-precision (32-bit) floating-point scalar
1032		     parameters are padded on the left with 32 bits of
1033		     garbage (i.e., the floating-point value is in the
1034		     least-significant 32 bits of a 64-bit storage
1035		     unit)."  */
1036		  offset += 4;
1037		}
1038
1039	      /* "Single- and double-precision floating-point
1040                 parameters in this area are passed according to the
1041                 available formal parameter information in a function
1042                 prototype.  [...]  If no prototype is in scope,
1043                 floating-point parameters must be passed both in the
1044                 corresponding general registers and in the
1045                 corresponding floating-point registers."  */
1046	      regnum = HPPA64_FP4_REGNUM + offset / 8;
1047
1048	      if (regnum < HPPA64_FP4_REGNUM + 8)
1049		{
1050		  /* "Single-precision floating-point parameters, when
1051		     passed in floating-point registers, are passed in
1052		     the right halves of the floating point registers;
1053		     the left halves are unused."  */
1054		  regcache_cooked_write_part (regcache, regnum, offset % 8,
1055					      len, value_contents (arg));
1056		}
1057	    }
1058	}
1059      else
1060	{
1061	  if (len > 8)
1062	    {
1063	      /* "Aggregates larger than 8 bytes are aligned on a
1064		 16-byte boundary, possibly leaving an unused argument
1065		 slot, which is filled with garbage.  If necessary,
1066		 they are padded on the right (with garbage), to a
1067		 multiple of 8 bytes."  */
1068	      offset = align_up (offset, 16);
1069	    }
1070	}
1071
1072      /* If we are passing a function pointer, make sure we pass a function
1073         descriptor instead of the function entry address.  */
1074      if (TYPE_CODE (type) == TYPE_CODE_PTR
1075          && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1076        {
1077	  ULONGEST codeptr, fptr;
1078
1079	  codeptr = unpack_long (type, value_contents (arg));
1080	  fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1081	  store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1082				  fptr);
1083	  valbuf = fptrbuf;
1084	}
1085      else
1086        {
1087          valbuf = value_contents (arg);
1088	}
1089
1090      /* Always store the argument in memory.  */
1091      write_memory (sp + offset, valbuf, len);
1092
1093      regnum = HPPA_ARG0_REGNUM - offset / 8;
1094      while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1095	{
1096	  regcache_cooked_write_part (regcache, regnum,
1097				      offset % 8, min (len, 8), valbuf);
1098	  offset += min (len, 8);
1099	  valbuf += min (len, 8);
1100	  len -= min (len, 8);
1101	  regnum--;
1102	}
1103
1104      offset += len;
1105    }
1106
1107  /* Set up GR29 (%ret1) to hold the argument pointer (ap).  */
1108  regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1109
1110  /* Allocate the outgoing parameter area.  Make sure the outgoing
1111     parameter area is multiple of 16 bytes in length.  */
1112  sp += max (align_up (offset, 16), 64);
1113
1114  /* Allocate 32-bytes of scratch space.  The documentation doesn't
1115     mention this, but it seems to be needed.  */
1116  sp += 32;
1117
1118  /* Allocate the frame marker area.  */
1119  sp += 16;
1120
1121  /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1122     its address.  */
1123  if (struct_return)
1124    regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1125
1126  /* Set up GR27 (%dp) to hold the global pointer (gp).  */
1127  gp = tdep->find_global_pointer (gdbarch, function);
1128  if (gp != 0)
1129    regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1130
1131  /* Set up GR2 (%rp) to hold the return pointer (rp).  */
1132  if (!gdbarch_push_dummy_code_p (gdbarch))
1133    regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1134
1135  /* Set up GR30 to hold the stack pointer (sp).  */
1136  regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1137
1138  return sp;
1139}
1140
1141
1142/* Handle 32/64-bit struct return conventions.  */
1143
1144static enum return_value_convention
1145hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
1146		     struct type *type, struct regcache *regcache,
1147		     gdb_byte *readbuf, const gdb_byte *writebuf)
1148{
1149  if (TYPE_LENGTH (type) <= 2 * 4)
1150    {
1151      /* The value always lives in the right hand end of the register
1152	 (or register pair)?  */
1153      int b;
1154      int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1155      int part = TYPE_LENGTH (type) % 4;
1156      /* The left hand register contains only part of the value,
1157	 transfer that first so that the rest can be xfered as entire
1158	 4-byte registers.  */
1159      if (part > 0)
1160	{
1161	  if (readbuf != NULL)
1162	    regcache_cooked_read_part (regcache, reg, 4 - part,
1163				       part, readbuf);
1164	  if (writebuf != NULL)
1165	    regcache_cooked_write_part (regcache, reg, 4 - part,
1166					part, writebuf);
1167	  reg++;
1168	}
1169      /* Now transfer the remaining register values.  */
1170      for (b = part; b < TYPE_LENGTH (type); b += 4)
1171	{
1172	  if (readbuf != NULL)
1173	    regcache_cooked_read (regcache, reg, readbuf + b);
1174	  if (writebuf != NULL)
1175	    regcache_cooked_write (regcache, reg, writebuf + b);
1176	  reg++;
1177	}
1178      return RETURN_VALUE_REGISTER_CONVENTION;
1179    }
1180  else
1181    return RETURN_VALUE_STRUCT_CONVENTION;
1182}
1183
1184static enum return_value_convention
1185hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
1186		     struct type *type, struct regcache *regcache,
1187		     gdb_byte *readbuf, const gdb_byte *writebuf)
1188{
1189  int len = TYPE_LENGTH (type);
1190  int regnum, offset;
1191
1192  if (len > 16)
1193    {
1194      /* All return values larget than 128 bits must be aggregate
1195         return values.  */
1196      gdb_assert (!hppa64_integral_or_pointer_p (type));
1197      gdb_assert (!hppa64_floating_p (type));
1198
1199      /* "Aggregate return values larger than 128 bits are returned in
1200	 a buffer allocated by the caller.  The address of the buffer
1201	 must be passed in GR 28."  */
1202      return RETURN_VALUE_STRUCT_CONVENTION;
1203    }
1204
1205  if (hppa64_integral_or_pointer_p (type))
1206    {
1207      /* "Integral return values are returned in GR 28.  Values
1208         smaller than 64 bits are padded on the left (with garbage)."  */
1209      regnum = HPPA_RET0_REGNUM;
1210      offset = 8 - len;
1211    }
1212  else if (hppa64_floating_p (type))
1213    {
1214      if (len > 8)
1215	{
1216	  /* "Double-extended- and quad-precision floating-point
1217	     values are returned in GRs 28 and 29.  The sign,
1218	     exponent, and most-significant bits of the mantissa are
1219	     returned in GR 28; the least-significant bits of the
1220	     mantissa are passed in GR 29.  For double-extended
1221	     precision values, GR 29 is padded on the right with 48
1222	     bits of garbage."  */
1223	  regnum = HPPA_RET0_REGNUM;
1224	  offset = 0;
1225	}
1226      else
1227	{
1228	  /* "Single-precision and double-precision floating-point
1229	     return values are returned in FR 4R (single precision) or
1230	     FR 4 (double-precision)."  */
1231	  regnum = HPPA64_FP4_REGNUM;
1232	  offset = 8 - len;
1233	}
1234    }
1235  else
1236    {
1237      /* "Aggregate return values up to 64 bits in size are returned
1238         in GR 28.  Aggregates smaller than 64 bits are left aligned
1239         in the register; the pad bits on the right are undefined."
1240
1241	 "Aggregate return values between 65 and 128 bits are returned
1242	 in GRs 28 and 29.  The first 64 bits are placed in GR 28, and
1243	 the remaining bits are placed, left aligned, in GR 29.  The
1244	 pad bits on the right of GR 29 (if any) are undefined."  */
1245      regnum = HPPA_RET0_REGNUM;
1246      offset = 0;
1247    }
1248
1249  if (readbuf)
1250    {
1251      while (len > 0)
1252	{
1253	  regcache_cooked_read_part (regcache, regnum, offset,
1254				     min (len, 8), readbuf);
1255	  readbuf += min (len, 8);
1256	  len -= min (len, 8);
1257	  regnum++;
1258	}
1259    }
1260
1261  if (writebuf)
1262    {
1263      while (len > 0)
1264	{
1265	  regcache_cooked_write_part (regcache, regnum, offset,
1266				      min (len, 8), writebuf);
1267	  writebuf += min (len, 8);
1268	  len -= min (len, 8);
1269	  regnum++;
1270	}
1271    }
1272
1273  return RETURN_VALUE_REGISTER_CONVENTION;
1274}
1275
1276
1277static CORE_ADDR
1278hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1279				   struct target_ops *targ)
1280{
1281  if (addr & 2)
1282    {
1283      struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
1284      CORE_ADDR plabel = addr & ~3;
1285      return read_memory_typed_address (plabel, func_ptr_type);
1286    }
1287
1288  return addr;
1289}
1290
1291static CORE_ADDR
1292hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1293{
1294  /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1295     and not _bit_)!  */
1296  return align_up (addr, 64);
1297}
1298
1299/* Force all frames to 16-byte alignment.  Better safe than sorry.  */
1300
1301static CORE_ADDR
1302hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1303{
1304  /* Just always 16-byte align.  */
1305  return align_up (addr, 16);
1306}
1307
1308CORE_ADDR
1309hppa_read_pc (struct regcache *regcache)
1310{
1311  ULONGEST ipsw;
1312  ULONGEST pc;
1313
1314  regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1315  regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1316
1317  /* If the current instruction is nullified, then we are effectively
1318     still executing the previous instruction.  Pretend we are still
1319     there.  This is needed when single stepping; if the nullified
1320     instruction is on a different line, we don't want GDB to think
1321     we've stepped onto that line.  */
1322  if (ipsw & 0x00200000)
1323    pc -= 4;
1324
1325  return pc & ~0x3;
1326}
1327
1328void
1329hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1330{
1331  regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1332  regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1333}
1334
1335/* For the given instruction (INST), return any adjustment it makes
1336   to the stack pointer or zero for no adjustment.
1337
1338   This only handles instructions commonly found in prologues.  */
1339
1340static int
1341prologue_inst_adjust_sp (unsigned long inst)
1342{
1343  /* This must persist across calls.  */
1344  static int save_high21;
1345
1346  /* The most common way to perform a stack adjustment ldo X(sp),sp */
1347  if ((inst & 0xffffc000) == 0x37de0000)
1348    return hppa_extract_14 (inst);
1349
1350  /* stwm X,D(sp) */
1351  if ((inst & 0xffe00000) == 0x6fc00000)
1352    return hppa_extract_14 (inst);
1353
1354  /* std,ma X,D(sp) */
1355  if ((inst & 0xffe00008) == 0x73c00008)
1356    return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3);
1357
1358  /* addil high21,%r30; ldo low11,(%r1),%r30)
1359     save high bits in save_high21 for later use.  */
1360  if ((inst & 0xffe00000) == 0x2bc00000)
1361    {
1362      save_high21 = hppa_extract_21 (inst);
1363      return 0;
1364    }
1365
1366  if ((inst & 0xffff0000) == 0x343e0000)
1367    return save_high21 + hppa_extract_14 (inst);
1368
1369  /* fstws as used by the HP compilers.  */
1370  if ((inst & 0xffffffe0) == 0x2fd01220)
1371    return hppa_extract_5_load (inst);
1372
1373  /* No adjustment.  */
1374  return 0;
1375}
1376
1377/* Return nonzero if INST is a branch of some kind, else return zero.  */
1378
1379static int
1380is_branch (unsigned long inst)
1381{
1382  switch (inst >> 26)
1383    {
1384    case 0x20:
1385    case 0x21:
1386    case 0x22:
1387    case 0x23:
1388    case 0x27:
1389    case 0x28:
1390    case 0x29:
1391    case 0x2a:
1392    case 0x2b:
1393    case 0x2f:
1394    case 0x30:
1395    case 0x31:
1396    case 0x32:
1397    case 0x33:
1398    case 0x38:
1399    case 0x39:
1400    case 0x3a:
1401    case 0x3b:
1402      return 1;
1403
1404    default:
1405      return 0;
1406    }
1407}
1408
1409/* Return the register number for a GR which is saved by INST or
1410   zero if INST does not save a GR.
1411
1412   Referenced from:
1413
1414     parisc 1.1:
1415     https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
1416
1417     parisc 2.0:
1418     https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf
1419
1420     According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
1421     on page 106 in parisc 2.0, all instructions for storing values from
1422     the general registers are:
1423
1424       Store:          stb, sth, stw, std (according to Chapter 7, they
1425                       are only in both "inst >> 26" and "inst >> 6".
1426       Store Absolute: stwa, stda (according to Chapter 7, they are only
1427                       in "inst >> 6".
1428       Store Bytes:    stby, stdby (according to Chapter 7, they are
1429                       only in "inst >> 6").
1430
1431   For (inst >> 26), according to Chapter 7:
1432
1433     The effective memory reference address is formed by the addition
1434     of an immediate displacement to a base value.
1435
1436    - stb: 0x18, store a byte from a general register.
1437
1438    - sth: 0x19, store a halfword from a general register.
1439
1440    - stw: 0x1a, store a word from a general register.
1441
1442    - stwm: 0x1b, store a word from a general register and perform base
1443      register modification (2.0 will still treate it as stw).
1444
1445    - std: 0x1c, store a doubleword from a general register (2.0 only).
1446
1447    - stw: 0x1f, store a word from a general register (2.0 only).
1448
1449   For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:
1450
1451     The effective memory reference address is formed by the addition
1452     of an index value to a base value specified in the instruction.
1453
1454    - stb: 0x08, store a byte from a general register (1.1 calls stbs).
1455
1456    - sth: 0x09, store a halfword from a general register (1.1 calls
1457      sths).
1458
1459    - stw: 0x0a, store a word from a general register (1.1 calls stws).
1460
1461    - std: 0x0b: store a doubleword from a general register (2.0 only)
1462
1463     Implement fast byte moves (stores) to unaligned word or doubleword
1464     destination.
1465
1466    - stby: 0x0c, for unaligned word (1.1 calls stbys).
1467
1468    - stdby: 0x0d for unaligned doubleword (2.0 only).
1469
1470     Store a word or doubleword using an absolute memory address formed
1471     using short or long displacement or indexed
1472
1473    - stwa: 0x0e, store a word from a general register to an absolute
1474      address (1.0 calls stwas).
1475
1476    - stda: 0x0f, store a doubleword from a general register to an
1477      absolute address (2.0 only).  */
1478
1479static int
1480inst_saves_gr (unsigned long inst)
1481{
1482  switch ((inst >> 26) & 0x0f)
1483    {
1484      case 0x03:
1485	switch ((inst >> 6) & 0x0f)
1486	  {
1487	    case 0x08:
1488	    case 0x09:
1489	    case 0x0a:
1490	    case 0x0b:
1491	    case 0x0c:
1492	    case 0x0d:
1493	    case 0x0e:
1494	    case 0x0f:
1495	      return hppa_extract_5R_store (inst);
1496	    default:
1497	      return 0;
1498	  }
1499      case 0x18:
1500      case 0x19:
1501      case 0x1a:
1502      case 0x1b:
1503      case 0x1c:
1504      /* no 0x1d or 0x1e -- according to parisc 2.0 document */
1505      case 0x1f:
1506	return hppa_extract_5R_store (inst);
1507      default:
1508	return 0;
1509    }
1510}
1511
1512/* Return the register number for a FR which is saved by INST or
1513   zero it INST does not save a FR.
1514
1515   Note we only care about full 64bit register stores (that's the only
1516   kind of stores the prologue will use).
1517
1518   FIXME: What about argument stores with the HP compiler in ANSI mode? */
1519
1520static int
1521inst_saves_fr (unsigned long inst)
1522{
1523  /* Is this an FSTD?  */
1524  if ((inst & 0xfc00dfc0) == 0x2c001200)
1525    return hppa_extract_5r_store (inst);
1526  if ((inst & 0xfc000002) == 0x70000002)
1527    return hppa_extract_5R_store (inst);
1528  /* Is this an FSTW?  */
1529  if ((inst & 0xfc00df80) == 0x24001200)
1530    return hppa_extract_5r_store (inst);
1531  if ((inst & 0xfc000002) == 0x7c000000)
1532    return hppa_extract_5R_store (inst);
1533  return 0;
1534}
1535
1536/* Advance PC across any function entry prologue instructions
1537   to reach some "real" code.
1538
1539   Use information in the unwind table to determine what exactly should
1540   be in the prologue.  */
1541
1542
1543static CORE_ADDR
1544skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1545			int stop_before_branch)
1546{
1547  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1548  gdb_byte buf[4];
1549  CORE_ADDR orig_pc = pc;
1550  unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1551  unsigned long args_stored, status, i, restart_gr, restart_fr;
1552  struct unwind_table_entry *u;
1553  int final_iteration;
1554
1555  restart_gr = 0;
1556  restart_fr = 0;
1557
1558restart:
1559  u = find_unwind_entry (pc);
1560  if (!u)
1561    return pc;
1562
1563  /* If we are not at the beginning of a function, then return now.  */
1564  if ((pc & ~0x3) != u->region_start)
1565    return pc;
1566
1567  /* This is how much of a frame adjustment we need to account for.  */
1568  stack_remaining = u->Total_frame_size << 3;
1569
1570  /* Magic register saves we want to know about.  */
1571  save_rp = u->Save_RP;
1572  save_sp = u->Save_SP;
1573
1574  /* An indication that args may be stored into the stack.  Unfortunately
1575     the HPUX compilers tend to set this in cases where no args were
1576     stored too!.  */
1577  args_stored = 1;
1578
1579  /* Turn the Entry_GR field into a bitmask.  */
1580  save_gr = 0;
1581  for (i = 3; i < u->Entry_GR + 3; i++)
1582    {
1583      /* Frame pointer gets saved into a special location.  */
1584      if (u->Save_SP && i == HPPA_FP_REGNUM)
1585	continue;
1586
1587      save_gr |= (1 << i);
1588    }
1589  save_gr &= ~restart_gr;
1590
1591  /* Turn the Entry_FR field into a bitmask too.  */
1592  save_fr = 0;
1593  for (i = 12; i < u->Entry_FR + 12; i++)
1594    save_fr |= (1 << i);
1595  save_fr &= ~restart_fr;
1596
1597  final_iteration = 0;
1598
1599  /* Loop until we find everything of interest or hit a branch.
1600
1601     For unoptimized GCC code and for any HP CC code this will never ever
1602     examine any user instructions.
1603
1604     For optimzied GCC code we're faced with problems.  GCC will schedule
1605     its prologue and make prologue instructions available for delay slot
1606     filling.  The end result is user code gets mixed in with the prologue
1607     and a prologue instruction may be in the delay slot of the first branch
1608     or call.
1609
1610     Some unexpected things are expected with debugging optimized code, so
1611     we allow this routine to walk past user instructions in optimized
1612     GCC code.  */
1613  while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1614	 || args_stored)
1615    {
1616      unsigned int reg_num;
1617      unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1618      unsigned long old_save_rp, old_save_sp, next_inst;
1619
1620      /* Save copies of all the triggers so we can compare them later
1621         (only for HPC).  */
1622      old_save_gr = save_gr;
1623      old_save_fr = save_fr;
1624      old_save_rp = save_rp;
1625      old_save_sp = save_sp;
1626      old_stack_remaining = stack_remaining;
1627
1628      status = target_read_memory (pc, buf, 4);
1629      inst = extract_unsigned_integer (buf, 4, byte_order);
1630
1631      /* Yow! */
1632      if (status != 0)
1633	return pc;
1634
1635      /* Note the interesting effects of this instruction.  */
1636      stack_remaining -= prologue_inst_adjust_sp (inst);
1637
1638      /* There are limited ways to store the return pointer into the
1639	 stack.  */
1640      if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1641	save_rp = 0;
1642
1643      /* These are the only ways we save SP into the stack.  At this time
1644         the HP compilers never bother to save SP into the stack.  */
1645      if ((inst & 0xffffc000) == 0x6fc10000
1646	  || (inst & 0xffffc00c) == 0x73c10008)
1647	save_sp = 0;
1648
1649      /* Are we loading some register with an offset from the argument
1650         pointer?  */
1651      if ((inst & 0xffe00000) == 0x37a00000
1652	  || (inst & 0xffffffe0) == 0x081d0240)
1653	{
1654	  pc += 4;
1655	  continue;
1656	}
1657
1658      /* Account for general and floating-point register saves.  */
1659      reg_num = inst_saves_gr (inst);
1660      save_gr &= ~(1 << reg_num);
1661
1662      /* Ugh.  Also account for argument stores into the stack.
1663         Unfortunately args_stored only tells us that some arguments
1664         where stored into the stack.  Not how many or what kind!
1665
1666         This is a kludge as on the HP compiler sets this bit and it
1667         never does prologue scheduling.  So once we see one, skip past
1668         all of them.   We have similar code for the fp arg stores below.
1669
1670         FIXME.  Can still die if we have a mix of GR and FR argument
1671         stores!  */
1672      if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1673	  && reg_num <= 26)
1674	{
1675	  while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1676		 && reg_num <= 26)
1677	    {
1678	      pc += 4;
1679	      status = target_read_memory (pc, buf, 4);
1680	      inst = extract_unsigned_integer (buf, 4, byte_order);
1681	      if (status != 0)
1682		return pc;
1683	      reg_num = inst_saves_gr (inst);
1684	    }
1685	  args_stored = 0;
1686	  continue;
1687	}
1688
1689      reg_num = inst_saves_fr (inst);
1690      save_fr &= ~(1 << reg_num);
1691
1692      status = target_read_memory (pc + 4, buf, 4);
1693      next_inst = extract_unsigned_integer (buf, 4, byte_order);
1694
1695      /* Yow! */
1696      if (status != 0)
1697	return pc;
1698
1699      /* We've got to be read to handle the ldo before the fp register
1700         save.  */
1701      if ((inst & 0xfc000000) == 0x34000000
1702	  && inst_saves_fr (next_inst) >= 4
1703	  && inst_saves_fr (next_inst)
1704	       <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1705	{
1706	  /* So we drop into the code below in a reasonable state.  */
1707	  reg_num = inst_saves_fr (next_inst);
1708	  pc -= 4;
1709	}
1710
1711      /* Ugh.  Also account for argument stores into the stack.
1712         This is a kludge as on the HP compiler sets this bit and it
1713         never does prologue scheduling.  So once we see one, skip past
1714         all of them.  */
1715      if (reg_num >= 4
1716	  && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1717	{
1718	  while (reg_num >= 4
1719		 && reg_num
1720		      <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1721	    {
1722	      pc += 8;
1723	      status = target_read_memory (pc, buf, 4);
1724	      inst = extract_unsigned_integer (buf, 4, byte_order);
1725	      if (status != 0)
1726		return pc;
1727	      if ((inst & 0xfc000000) != 0x34000000)
1728		break;
1729	      status = target_read_memory (pc + 4, buf, 4);
1730	      next_inst = extract_unsigned_integer (buf, 4, byte_order);
1731	      if (status != 0)
1732		return pc;
1733	      reg_num = inst_saves_fr (next_inst);
1734	    }
1735	  args_stored = 0;
1736	  continue;
1737	}
1738
1739      /* Quit if we hit any kind of branch.  This can happen if a prologue
1740         instruction is in the delay slot of the first call/branch.  */
1741      if (is_branch (inst) && stop_before_branch)
1742	break;
1743
1744      /* What a crock.  The HP compilers set args_stored even if no
1745         arguments were stored into the stack (boo hiss).  This could
1746         cause this code to then skip a bunch of user insns (up to the
1747         first branch).
1748
1749         To combat this we try to identify when args_stored was bogusly
1750         set and clear it.   We only do this when args_stored is nonzero,
1751         all other resources are accounted for, and nothing changed on
1752         this pass.  */
1753      if (args_stored
1754       && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1755	  && old_save_gr == save_gr && old_save_fr == save_fr
1756	  && old_save_rp == save_rp && old_save_sp == save_sp
1757	  && old_stack_remaining == stack_remaining)
1758	break;
1759
1760      /* Bump the PC.  */
1761      pc += 4;
1762
1763      /* !stop_before_branch, so also look at the insn in the delay slot
1764         of the branch.  */
1765      if (final_iteration)
1766	break;
1767      if (is_branch (inst))
1768	final_iteration = 1;
1769    }
1770
1771  /* We've got a tenative location for the end of the prologue.  However
1772     because of limitations in the unwind descriptor mechanism we may
1773     have went too far into user code looking for the save of a register
1774     that does not exist.  So, if there registers we expected to be saved
1775     but never were, mask them out and restart.
1776
1777     This should only happen in optimized code, and should be very rare.  */
1778  if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1779    {
1780      pc = orig_pc;
1781      restart_gr = save_gr;
1782      restart_fr = save_fr;
1783      goto restart;
1784    }
1785
1786  return pc;
1787}
1788
1789
1790/* Return the address of the PC after the last prologue instruction if
1791   we can determine it from the debug symbols.  Else return zero.  */
1792
1793static CORE_ADDR
1794after_prologue (CORE_ADDR pc)
1795{
1796  struct symtab_and_line sal;
1797  CORE_ADDR func_addr, func_end;
1798
1799  /* If we can not find the symbol in the partial symbol table, then
1800     there is no hope we can determine the function's start address
1801     with this code.  */
1802  if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1803    return 0;
1804
1805  /* Get the line associated with FUNC_ADDR.  */
1806  sal = find_pc_line (func_addr, 0);
1807
1808  /* There are only two cases to consider.  First, the end of the source line
1809     is within the function bounds.  In that case we return the end of the
1810     source line.  Second is the end of the source line extends beyond the
1811     bounds of the current function.  We need to use the slow code to
1812     examine instructions in that case.
1813
1814     Anything else is simply a bug elsewhere.  Fixing it here is absolutely
1815     the wrong thing to do.  In fact, it should be entirely possible for this
1816     function to always return zero since the slow instruction scanning code
1817     is supposed to *always* work.  If it does not, then it is a bug.  */
1818  if (sal.end < func_end)
1819    return sal.end;
1820  else
1821    return 0;
1822}
1823
1824/* To skip prologues, I use this predicate.  Returns either PC itself
1825   if the code at PC does not look like a function prologue; otherwise
1826   returns an address that (if we're lucky) follows the prologue.
1827
1828   hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1829   It doesn't necessarily skips all the insns in the prologue.  In fact
1830   we might not want to skip all the insns because a prologue insn may
1831   appear in the delay slot of the first branch, and we don't want to
1832   skip over the branch in that case.  */
1833
1834static CORE_ADDR
1835hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1836{
1837  CORE_ADDR post_prologue_pc;
1838
1839  /* See if we can determine the end of the prologue via the symbol table.
1840     If so, then return either PC, or the PC after the prologue, whichever
1841     is greater.  */
1842
1843  post_prologue_pc = after_prologue (pc);
1844
1845  /* If after_prologue returned a useful address, then use it.  Else
1846     fall back on the instruction skipping code.
1847
1848     Some folks have claimed this causes problems because the breakpoint
1849     may be the first instruction of the prologue.  If that happens, then
1850     the instruction skipping code has a bug that needs to be fixed.  */
1851  if (post_prologue_pc != 0)
1852    return max (pc, post_prologue_pc);
1853  else
1854    return (skip_prologue_hard_way (gdbarch, pc, 1));
1855}
1856
1857/* Return an unwind entry that falls within the frame's code block.  */
1858
1859static struct unwind_table_entry *
1860hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1861{
1862  CORE_ADDR pc = get_frame_address_in_block (this_frame);
1863
1864  /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1865     result of get_frame_address_in_block implies a problem.
1866     The bits should have been removed earlier, before the return
1867     value of gdbarch_unwind_pc.  That might be happening already;
1868     if it isn't, it should be fixed.  Then this call can be
1869     removed.  */
1870  pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1871  return find_unwind_entry (pc);
1872}
1873
1874struct hppa_frame_cache
1875{
1876  CORE_ADDR base;
1877  struct trad_frame_saved_reg *saved_regs;
1878};
1879
1880static struct hppa_frame_cache *
1881hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1882{
1883  struct gdbarch *gdbarch = get_frame_arch (this_frame);
1884  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1885  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1886  struct hppa_frame_cache *cache;
1887  long saved_gr_mask;
1888  long saved_fr_mask;
1889  long frame_size;
1890  struct unwind_table_entry *u;
1891  CORE_ADDR prologue_end;
1892  int fp_in_r1 = 0;
1893  int i;
1894
1895  if (hppa_debug)
1896    fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1897      frame_relative_level(this_frame));
1898
1899  if ((*this_cache) != NULL)
1900    {
1901      if (hppa_debug)
1902        fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1903          paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
1904      return (struct hppa_frame_cache *) (*this_cache);
1905    }
1906  cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1907  (*this_cache) = cache;
1908  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1909
1910  /* Yow! */
1911  u = hppa_find_unwind_entry_in_block (this_frame);
1912  if (!u)
1913    {
1914      if (hppa_debug)
1915        fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1916      return (struct hppa_frame_cache *) (*this_cache);
1917    }
1918
1919  /* Turn the Entry_GR field into a bitmask.  */
1920  saved_gr_mask = 0;
1921  for (i = 3; i < u->Entry_GR + 3; i++)
1922    {
1923      /* Frame pointer gets saved into a special location.  */
1924      if (u->Save_SP && i == HPPA_FP_REGNUM)
1925	continue;
1926
1927      saved_gr_mask |= (1 << i);
1928    }
1929
1930  /* Turn the Entry_FR field into a bitmask too.  */
1931  saved_fr_mask = 0;
1932  for (i = 12; i < u->Entry_FR + 12; i++)
1933    saved_fr_mask |= (1 << i);
1934
1935  /* Loop until we find everything of interest or hit a branch.
1936
1937     For unoptimized GCC code and for any HP CC code this will never ever
1938     examine any user instructions.
1939
1940     For optimized GCC code we're faced with problems.  GCC will schedule
1941     its prologue and make prologue instructions available for delay slot
1942     filling.  The end result is user code gets mixed in with the prologue
1943     and a prologue instruction may be in the delay slot of the first branch
1944     or call.
1945
1946     Some unexpected things are expected with debugging optimized code, so
1947     we allow this routine to walk past user instructions in optimized
1948     GCC code.  */
1949  {
1950    int final_iteration = 0;
1951    CORE_ADDR pc, start_pc, end_pc;
1952    int looking_for_sp = u->Save_SP;
1953    int looking_for_rp = u->Save_RP;
1954    int fp_loc = -1;
1955
1956    /* We have to use skip_prologue_hard_way instead of just
1957       skip_prologue_using_sal, in case we stepped into a function without
1958       symbol information.  hppa_skip_prologue also bounds the returned
1959       pc by the passed in pc, so it will not return a pc in the next
1960       function.
1961
1962       We used to call hppa_skip_prologue to find the end of the prologue,
1963       but if some non-prologue instructions get scheduled into the prologue,
1964       and the program is compiled with debug information, the "easy" way
1965       in hppa_skip_prologue will return a prologue end that is too early
1966       for us to notice any potential frame adjustments.  */
1967
1968    /* We used to use get_frame_func to locate the beginning of the
1969       function to pass to skip_prologue.  However, when objects are
1970       compiled without debug symbols, get_frame_func can return the wrong
1971       function (or 0).  We can do better than that by using unwind records.
1972       This only works if the Region_description of the unwind record
1973       indicates that it includes the entry point of the function.
1974       HP compilers sometimes generate unwind records for regions that
1975       do not include the entry or exit point of a function.  GNU tools
1976       do not do this.  */
1977
1978    if ((u->Region_description & 0x2) == 0)
1979      start_pc = u->region_start;
1980    else
1981      start_pc = get_frame_func (this_frame);
1982
1983    prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1984    end_pc = get_frame_pc (this_frame);
1985
1986    if (prologue_end != 0 && end_pc > prologue_end)
1987      end_pc = prologue_end;
1988
1989    frame_size = 0;
1990
1991    for (pc = start_pc;
1992	 ((saved_gr_mask || saved_fr_mask
1993	   || looking_for_sp || looking_for_rp
1994	   || frame_size < (u->Total_frame_size << 3))
1995	  && pc < end_pc);
1996	 pc += 4)
1997      {
1998	int reg;
1999	gdb_byte buf4[4];
2000	long inst;
2001
2002	if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
2003	  {
2004	    error (_("Cannot read instruction at %s."),
2005		   paddress (gdbarch, pc));
2006	    return (struct hppa_frame_cache *) (*this_cache);
2007	  }
2008
2009	inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
2010
2011	/* Note the interesting effects of this instruction.  */
2012	frame_size += prologue_inst_adjust_sp (inst);
2013
2014	/* There are limited ways to store the return pointer into the
2015	   stack.  */
2016	if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2017	  {
2018	    looking_for_rp = 0;
2019	    cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2020	  }
2021	else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
2022	  {
2023	    looking_for_rp = 0;
2024	    cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
2025	  }
2026	else if (inst == 0x0fc212c1
2027	         || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2028	  {
2029	    looking_for_rp = 0;
2030	    cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2031	  }
2032
2033	/* Check to see if we saved SP into the stack.  This also
2034	   happens to indicate the location of the saved frame
2035	   pointer.  */
2036	if ((inst & 0xffffc000) == 0x6fc10000  /* stw,ma r1,N(sr0,sp) */
2037	    || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2038	  {
2039	    looking_for_sp = 0;
2040	    cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
2041	  }
2042	else if (inst == 0x08030241) /* copy %r3, %r1 */
2043	  {
2044	    fp_in_r1 = 1;
2045	  }
2046
2047	/* Account for general and floating-point register saves.  */
2048	reg = inst_saves_gr (inst);
2049	if (reg >= 3 && reg <= 18
2050	    && (!u->Save_SP || reg != HPPA_FP_REGNUM))
2051	  {
2052	    saved_gr_mask &= ~(1 << reg);
2053	    if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
2054	      /* stwm with a positive displacement is a _post_
2055		 _modify_.  */
2056	      cache->saved_regs[reg].addr = 0;
2057	    else if ((inst & 0xfc00000c) == 0x70000008)
2058	      /* A std has explicit post_modify forms.  */
2059	      cache->saved_regs[reg].addr = 0;
2060	    else
2061	      {
2062		CORE_ADDR offset;
2063
2064		if ((inst >> 26) == 0x1c)
2065		  offset = (inst & 0x1 ? -(1 << 13) : 0)
2066		    | (((inst >> 4) & 0x3ff) << 3);
2067		else if ((inst >> 26) == 0x03)
2068		  offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
2069		else
2070		  offset = hppa_extract_14 (inst);
2071
2072		/* Handle code with and without frame pointers.  */
2073		if (u->Save_SP)
2074		  cache->saved_regs[reg].addr = offset;
2075		else
2076		  cache->saved_regs[reg].addr
2077		    = (u->Total_frame_size << 3) + offset;
2078	      }
2079	  }
2080
2081	/* GCC handles callee saved FP regs a little differently.
2082
2083	   It emits an instruction to put the value of the start of
2084	   the FP store area into %r1.  It then uses fstds,ma with a
2085	   basereg of %r1 for the stores.
2086
2087	   HP CC emits them at the current stack pointer modifying the
2088	   stack pointer as it stores each register.  */
2089
2090	/* ldo X(%r3),%r1 or ldo X(%r30),%r1.  */
2091	if ((inst & 0xffffc000) == 0x34610000
2092	    || (inst & 0xffffc000) == 0x37c10000)
2093	  fp_loc = hppa_extract_14 (inst);
2094
2095	reg = inst_saves_fr (inst);
2096	if (reg >= 12 && reg <= 21)
2097	  {
2098	    /* Note +4 braindamage below is necessary because the FP
2099	       status registers are internally 8 registers rather than
2100	       the expected 4 registers.  */
2101	    saved_fr_mask &= ~(1 << reg);
2102	    if (fp_loc == -1)
2103	      {
2104		/* 1st HP CC FP register store.  After this
2105		   instruction we've set enough state that the GCC and
2106		   HPCC code are both handled in the same manner.  */
2107		cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2108		fp_loc = 8;
2109	      }
2110	    else
2111	      {
2112		cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2113		fp_loc += 8;
2114	      }
2115	  }
2116
2117	/* Quit if we hit any kind of branch the previous iteration.  */
2118	if (final_iteration)
2119	  break;
2120	/* We want to look precisely one instruction beyond the branch
2121	   if we have not found everything yet.  */
2122	if (is_branch (inst))
2123	  final_iteration = 1;
2124      }
2125  }
2126
2127  {
2128    /* The frame base always represents the value of %sp at entry to
2129       the current function (and is thus equivalent to the "saved"
2130       stack pointer.  */
2131    CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2132                                                     HPPA_SP_REGNUM);
2133    CORE_ADDR fp;
2134
2135    if (hppa_debug)
2136      fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2137		          "prologue_end=%s) ",
2138		          paddress (gdbarch, this_sp),
2139			  paddress (gdbarch, get_frame_pc (this_frame)),
2140			  paddress (gdbarch, prologue_end));
2141
2142     /* Check to see if a frame pointer is available, and use it for
2143        frame unwinding if it is.
2144
2145        There are some situations where we need to rely on the frame
2146        pointer to do stack unwinding.  For example, if a function calls
2147        alloca (), the stack pointer can get adjusted inside the body of
2148        the function.  In this case, the ABI requires that the compiler
2149        maintain a frame pointer for the function.
2150
2151        The unwind record has a flag (alloca_frame) that indicates that
2152        a function has a variable frame; unfortunately, gcc/binutils
2153        does not set this flag.  Instead, whenever a frame pointer is used
2154        and saved on the stack, the Save_SP flag is set.  We use this to
2155        decide whether to use the frame pointer for unwinding.
2156
2157        TODO: For the HP compiler, maybe we should use the alloca_frame flag
2158	instead of Save_SP.  */
2159
2160     fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2161
2162     if (u->alloca_frame)
2163       fp -= u->Total_frame_size << 3;
2164
2165     if (get_frame_pc (this_frame) >= prologue_end
2166         && (u->Save_SP || u->alloca_frame) && fp != 0)
2167      {
2168 	cache->base = fp;
2169
2170 	if (hppa_debug)
2171	  fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2172			      paddress (gdbarch, cache->base));
2173      }
2174     else if (u->Save_SP
2175	      && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2176      {
2177            /* Both we're expecting the SP to be saved and the SP has been
2178	       saved.  The entry SP value is saved at this frame's SP
2179	       address.  */
2180            cache->base = read_memory_integer (this_sp, word_size, byte_order);
2181
2182	    if (hppa_debug)
2183	      fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2184			          paddress (gdbarch, cache->base));
2185      }
2186    else
2187      {
2188        /* The prologue has been slowly allocating stack space.  Adjust
2189	   the SP back.  */
2190        cache->base = this_sp - frame_size;
2191	if (hppa_debug)
2192	  fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2193			      paddress (gdbarch, cache->base));
2194
2195      }
2196    trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2197  }
2198
2199  /* The PC is found in the "return register", "Millicode" uses "r31"
2200     as the return register while normal code uses "rp".  */
2201  if (u->Millicode)
2202    {
2203      if (trad_frame_addr_p (cache->saved_regs, 31))
2204        {
2205          cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2206	  if (hppa_debug)
2207	    fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2208        }
2209      else
2210	{
2211	  ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2212	  trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2213	  if (hppa_debug)
2214	    fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2215        }
2216    }
2217  else
2218    {
2219      if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2220        {
2221          cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2222	    cache->saved_regs[HPPA_RP_REGNUM];
2223	  if (hppa_debug)
2224	    fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2225        }
2226      else
2227	{
2228	  ULONGEST rp = get_frame_register_unsigned (this_frame,
2229                                                     HPPA_RP_REGNUM);
2230	  trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2231	  if (hppa_debug)
2232	    fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2233	}
2234    }
2235
2236  /* If Save_SP is set, then we expect the frame pointer to be saved in the
2237     frame.  However, there is a one-insn window where we haven't saved it
2238     yet, but we've already clobbered it.  Detect this case and fix it up.
2239
2240     The prologue sequence for frame-pointer functions is:
2241	0: stw %rp, -20(%sp)
2242	4: copy %r3, %r1
2243	8: copy %sp, %r3
2244	c: stw,ma %r1, XX(%sp)
2245
2246     So if we are at offset c, the r3 value that we want is not yet saved
2247     on the stack, but it's been overwritten.  The prologue analyzer will
2248     set fp_in_r1 when it sees the copy insn so we know to get the value
2249     from r1 instead.  */
2250  if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2251      && fp_in_r1)
2252    {
2253      ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2254      trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2255    }
2256
2257  {
2258    /* Convert all the offsets into addresses.  */
2259    int reg;
2260    for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2261      {
2262	if (trad_frame_addr_p (cache->saved_regs, reg))
2263	  cache->saved_regs[reg].addr += cache->base;
2264      }
2265  }
2266
2267  {
2268    struct gdbarch_tdep *tdep;
2269
2270    tdep = gdbarch_tdep (gdbarch);
2271
2272    if (tdep->unwind_adjust_stub)
2273      tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2274  }
2275
2276  if (hppa_debug)
2277    fprintf_unfiltered (gdb_stdlog, "base=%s }",
2278      paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
2279  return (struct hppa_frame_cache *) (*this_cache);
2280}
2281
2282static void
2283hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2284		    struct frame_id *this_id)
2285{
2286  struct hppa_frame_cache *info;
2287  struct unwind_table_entry *u;
2288
2289  info = hppa_frame_cache (this_frame, this_cache);
2290  u = hppa_find_unwind_entry_in_block (this_frame);
2291
2292  (*this_id) = frame_id_build (info->base, u->region_start);
2293}
2294
2295static struct value *
2296hppa_frame_prev_register (struct frame_info *this_frame,
2297			  void **this_cache, int regnum)
2298{
2299  struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2300
2301  return hppa_frame_prev_register_helper (this_frame,
2302					  info->saved_regs, regnum);
2303}
2304
2305static int
2306hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2307                           struct frame_info *this_frame, void **this_cache)
2308{
2309  if (hppa_find_unwind_entry_in_block (this_frame))
2310    return 1;
2311
2312  return 0;
2313}
2314
2315static const struct frame_unwind hppa_frame_unwind =
2316{
2317  NORMAL_FRAME,
2318  default_frame_unwind_stop_reason,
2319  hppa_frame_this_id,
2320  hppa_frame_prev_register,
2321  NULL,
2322  hppa_frame_unwind_sniffer
2323};
2324
2325/* This is a generic fallback frame unwinder that kicks in if we fail all
2326   the other ones.  Normally we would expect the stub and regular unwinder
2327   to work, but in some cases we might hit a function that just doesn't
2328   have any unwind information available.  In this case we try to do
2329   unwinding solely based on code reading.  This is obviously going to be
2330   slow, so only use this as a last resort.  Currently this will only
2331   identify the stack and pc for the frame.  */
2332
2333static struct hppa_frame_cache *
2334hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2335{
2336  struct gdbarch *gdbarch = get_frame_arch (this_frame);
2337  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2338  struct hppa_frame_cache *cache;
2339  unsigned int frame_size = 0;
2340  int found_rp = 0;
2341  CORE_ADDR start_pc;
2342
2343  if (hppa_debug)
2344    fprintf_unfiltered (gdb_stdlog,
2345			"{ hppa_fallback_frame_cache (frame=%d) -> ",
2346			frame_relative_level (this_frame));
2347
2348  cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2349  (*this_cache) = cache;
2350  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2351
2352  start_pc = get_frame_func (this_frame);
2353  if (start_pc)
2354    {
2355      CORE_ADDR cur_pc = get_frame_pc (this_frame);
2356      CORE_ADDR pc;
2357
2358      for (pc = start_pc; pc < cur_pc; pc += 4)
2359	{
2360	  unsigned int insn;
2361
2362	  insn = read_memory_unsigned_integer (pc, 4, byte_order);
2363	  frame_size += prologue_inst_adjust_sp (insn);
2364
2365	  /* There are limited ways to store the return pointer into the
2366	     stack.  */
2367	  if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2368	    {
2369	      cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2370	      found_rp = 1;
2371	    }
2372	  else if (insn == 0x0fc212c1
2373	           || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2374	    {
2375	      cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2376	      found_rp = 1;
2377	    }
2378	}
2379    }
2380
2381  if (hppa_debug)
2382    fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2383			frame_size, found_rp);
2384
2385  cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2386  cache->base -= frame_size;
2387  trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2388
2389  if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2390    {
2391      cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2392      cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2393	cache->saved_regs[HPPA_RP_REGNUM];
2394    }
2395  else
2396    {
2397      ULONGEST rp;
2398      rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2399      trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2400    }
2401
2402  return cache;
2403}
2404
2405static void
2406hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2407			     struct frame_id *this_id)
2408{
2409  struct hppa_frame_cache *info =
2410    hppa_fallback_frame_cache (this_frame, this_cache);
2411
2412  (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2413}
2414
2415static struct value *
2416hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2417			           void **this_cache, int regnum)
2418{
2419  struct hppa_frame_cache *info
2420    = hppa_fallback_frame_cache (this_frame, this_cache);
2421
2422  return hppa_frame_prev_register_helper (this_frame,
2423					  info->saved_regs, regnum);
2424}
2425
2426static const struct frame_unwind hppa_fallback_frame_unwind =
2427{
2428  NORMAL_FRAME,
2429  default_frame_unwind_stop_reason,
2430  hppa_fallback_frame_this_id,
2431  hppa_fallback_frame_prev_register,
2432  NULL,
2433  default_frame_sniffer
2434};
2435
2436/* Stub frames, used for all kinds of call stubs.  */
2437struct hppa_stub_unwind_cache
2438{
2439  CORE_ADDR base;
2440  struct trad_frame_saved_reg *saved_regs;
2441};
2442
2443static struct hppa_stub_unwind_cache *
2444hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2445			      void **this_cache)
2446{
2447  struct gdbarch *gdbarch = get_frame_arch (this_frame);
2448  struct hppa_stub_unwind_cache *info;
2449  struct unwind_table_entry *u;
2450
2451  if (*this_cache)
2452    return (struct hppa_stub_unwind_cache *) *this_cache;
2453
2454  info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2455  *this_cache = info;
2456  info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2457
2458  info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2459
2460  if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2461    {
2462      /* HPUX uses export stubs in function calls; the export stub clobbers
2463         the return value of the caller, and, later restores it from the
2464	 stack.  */
2465      u = find_unwind_entry (get_frame_pc (this_frame));
2466
2467      if (u && u->stub_unwind.stub_type == EXPORT)
2468	{
2469          info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2470
2471	  return info;
2472	}
2473    }
2474
2475  /* By default we assume that stubs do not change the rp.  */
2476  info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2477
2478  return info;
2479}
2480
2481static void
2482hppa_stub_frame_this_id (struct frame_info *this_frame,
2483			 void **this_prologue_cache,
2484			 struct frame_id *this_id)
2485{
2486  struct hppa_stub_unwind_cache *info
2487    = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2488
2489  if (info)
2490    *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2491}
2492
2493static struct value *
2494hppa_stub_frame_prev_register (struct frame_info *this_frame,
2495			       void **this_prologue_cache, int regnum)
2496{
2497  struct hppa_stub_unwind_cache *info
2498    = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2499
2500  if (info == NULL)
2501    error (_("Requesting registers from null frame."));
2502
2503  return hppa_frame_prev_register_helper (this_frame,
2504					  info->saved_regs, regnum);
2505}
2506
2507static int
2508hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2509                          struct frame_info *this_frame,
2510                          void **this_cache)
2511{
2512  CORE_ADDR pc = get_frame_address_in_block (this_frame);
2513  struct gdbarch *gdbarch = get_frame_arch (this_frame);
2514  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2515
2516  if (pc == 0
2517      || (tdep->in_solib_call_trampoline != NULL
2518	  && tdep->in_solib_call_trampoline (gdbarch, pc))
2519      || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2520    return 1;
2521  return 0;
2522}
2523
2524static const struct frame_unwind hppa_stub_frame_unwind = {
2525  NORMAL_FRAME,
2526  default_frame_unwind_stop_reason,
2527  hppa_stub_frame_this_id,
2528  hppa_stub_frame_prev_register,
2529  NULL,
2530  hppa_stub_unwind_sniffer
2531};
2532
2533static struct frame_id
2534hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2535{
2536  return frame_id_build (get_frame_register_unsigned (this_frame,
2537                                                      HPPA_SP_REGNUM),
2538			 get_frame_pc (this_frame));
2539}
2540
2541CORE_ADDR
2542hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2543{
2544  ULONGEST ipsw;
2545  CORE_ADDR pc;
2546
2547  ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2548  pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2549
2550  /* If the current instruction is nullified, then we are effectively
2551     still executing the previous instruction.  Pretend we are still
2552     there.  This is needed when single stepping; if the nullified
2553     instruction is on a different line, we don't want GDB to think
2554     we've stepped onto that line.  */
2555  if (ipsw & 0x00200000)
2556    pc -= 4;
2557
2558  return pc & ~0x3;
2559}
2560
2561/* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2562   Return NULL if no such symbol was found.  */
2563
2564struct bound_minimal_symbol
2565hppa_lookup_stub_minimal_symbol (const char *name,
2566                                 enum unwind_stub_types stub_type)
2567{
2568  struct objfile *objfile;
2569  struct minimal_symbol *msym;
2570  struct bound_minimal_symbol result = { NULL, NULL };
2571
2572  ALL_MSYMBOLS (objfile, msym)
2573    {
2574      if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
2575        {
2576          struct unwind_table_entry *u;
2577
2578          u = find_unwind_entry (MSYMBOL_VALUE (msym));
2579          if (u != NULL && u->stub_unwind.stub_type == stub_type)
2580	    {
2581	      result.objfile = objfile;
2582	      result.minsym = msym;
2583	      return result;
2584	    }
2585        }
2586    }
2587
2588  return result;
2589}
2590
2591static void
2592unwind_command (char *exp, int from_tty)
2593{
2594  CORE_ADDR address;
2595  struct unwind_table_entry *u;
2596
2597  /* If we have an expression, evaluate it and use it as the address.  */
2598
2599  if (exp != 0 && *exp != 0)
2600    address = parse_and_eval_address (exp);
2601  else
2602    return;
2603
2604  u = find_unwind_entry (address);
2605
2606  if (!u)
2607    {
2608      printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2609      return;
2610    }
2611
2612  printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
2613
2614  printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
2615  gdb_flush (gdb_stdout);
2616
2617  printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
2618  gdb_flush (gdb_stdout);
2619
2620#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2621
2622  printf_unfiltered ("\n\tflags =");
2623  pif (Cannot_unwind);
2624  pif (Millicode);
2625  pif (Millicode_save_sr0);
2626  pif (Entry_SR);
2627  pif (Args_stored);
2628  pif (Variable_Frame);
2629  pif (Separate_Package_Body);
2630  pif (Frame_Extension_Millicode);
2631  pif (Stack_Overflow_Check);
2632  pif (Two_Instruction_SP_Increment);
2633  pif (sr4export);
2634  pif (cxx_info);
2635  pif (cxx_try_catch);
2636  pif (sched_entry_seq);
2637  pif (Save_SP);
2638  pif (Save_RP);
2639  pif (Save_MRP_in_frame);
2640  pif (save_r19);
2641  pif (Cleanup_defined);
2642  pif (MPE_XL_interrupt_marker);
2643  pif (HP_UX_interrupt_marker);
2644  pif (Large_frame);
2645  pif (alloca_frame);
2646
2647  putchar_unfiltered ('\n');
2648
2649#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2650
2651  pin (Region_description);
2652  pin (Entry_FR);
2653  pin (Entry_GR);
2654  pin (Total_frame_size);
2655
2656  if (u->stub_unwind.stub_type)
2657    {
2658      printf_unfiltered ("\tstub type = ");
2659      switch (u->stub_unwind.stub_type)
2660        {
2661	  case LONG_BRANCH:
2662	    printf_unfiltered ("long branch\n");
2663	    break;
2664	  case PARAMETER_RELOCATION:
2665	    printf_unfiltered ("parameter relocation\n");
2666	    break;
2667	  case EXPORT:
2668	    printf_unfiltered ("export\n");
2669	    break;
2670	  case IMPORT:
2671	    printf_unfiltered ("import\n");
2672	    break;
2673	  case IMPORT_SHLIB:
2674	    printf_unfiltered ("import shlib\n");
2675	    break;
2676	  default:
2677	    printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2678	}
2679    }
2680}
2681
2682/* Return the GDB type object for the "standard" data type of data in
2683   register REGNUM.  */
2684
2685static struct type *
2686hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2687{
2688   if (regnum < HPPA_FP4_REGNUM)
2689     return builtin_type (gdbarch)->builtin_uint32;
2690   else
2691     return builtin_type (gdbarch)->builtin_float;
2692}
2693
2694static struct type *
2695hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2696{
2697   if (regnum < HPPA64_FP4_REGNUM)
2698     return builtin_type (gdbarch)->builtin_uint64;
2699   else
2700     return builtin_type (gdbarch)->builtin_double;
2701}
2702
2703/* Return non-zero if REGNUM is not a register available to the user
2704   through ptrace/ttrace.  */
2705
2706static int
2707hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2708{
2709  return (regnum == 0
2710          || regnum == HPPA_PCSQ_HEAD_REGNUM
2711          || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2712          || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2713}
2714
2715static int
2716hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2717{
2718  /* cr26 and cr27 are readable (but not writable) from userspace.  */
2719  if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2720    return 0;
2721  else
2722    return hppa32_cannot_store_register (gdbarch, regnum);
2723}
2724
2725static int
2726hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2727{
2728  return (regnum == 0
2729          || regnum == HPPA_PCSQ_HEAD_REGNUM
2730          || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2731          || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2732}
2733
2734static int
2735hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2736{
2737  /* cr26 and cr27 are readable (but not writable) from userspace.  */
2738  if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2739    return 0;
2740  else
2741    return hppa64_cannot_store_register (gdbarch, regnum);
2742}
2743
2744static CORE_ADDR
2745hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2746{
2747  /* The low two bits of the PC on the PA contain the privilege level.
2748     Some genius implementing a (non-GCC) compiler apparently decided
2749     this means that "addresses" in a text section therefore include a
2750     privilege level, and thus symbol tables should contain these bits.
2751     This seems like a bonehead thing to do--anyway, it seems to work
2752     for our purposes to just ignore those bits.  */
2753
2754  return (addr &= ~0x3);
2755}
2756
2757/* Get the ARGIth function argument for the current function.  */
2758
2759static CORE_ADDR
2760hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2761			     struct type *type)
2762{
2763  return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2764}
2765
2766static enum register_status
2767hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2768			   int regnum, gdb_byte *buf)
2769{
2770  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2771  ULONGEST tmp;
2772  enum register_status status;
2773
2774  status = regcache_raw_read_unsigned (regcache, regnum, &tmp);
2775  if (status == REG_VALID)
2776    {
2777      if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2778	tmp &= ~0x3;
2779      store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2780    }
2781  return status;
2782}
2783
2784static CORE_ADDR
2785hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2786{
2787  return 0;
2788}
2789
2790struct value *
2791hppa_frame_prev_register_helper (struct frame_info *this_frame,
2792			         struct trad_frame_saved_reg saved_regs[],
2793				 int regnum)
2794{
2795  struct gdbarch *arch = get_frame_arch (this_frame);
2796  enum bfd_endian byte_order = gdbarch_byte_order (arch);
2797
2798  if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2799    {
2800      int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2801      CORE_ADDR pc;
2802      struct value *pcoq_val =
2803        trad_frame_get_prev_register (this_frame, saved_regs,
2804                                      HPPA_PCOQ_HEAD_REGNUM);
2805
2806      pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2807				     size, byte_order);
2808      return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2809    }
2810
2811  return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2812}
2813
2814
2815/* An instruction to match.  */
2816struct insn_pattern
2817{
2818  unsigned int data;            /* See if it matches this....  */
2819  unsigned int mask;            /* ... with this mask.  */
2820};
2821
2822/* See bfd/elf32-hppa.c */
2823static struct insn_pattern hppa_long_branch_stub[] = {
2824  /* ldil LR'xxx,%r1 */
2825  { 0x20200000, 0xffe00000 },
2826  /* be,n RR'xxx(%sr4,%r1) */
2827  { 0xe0202002, 0xffe02002 },
2828  { 0, 0 }
2829};
2830
2831static struct insn_pattern hppa_long_branch_pic_stub[] = {
2832  /* b,l .+8, %r1 */
2833  { 0xe8200000, 0xffe00000 },
2834  /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2835  { 0x28200000, 0xffe00000 },
2836  /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2837  { 0xe0202002, 0xffe02002 },
2838  { 0, 0 }
2839};
2840
2841static struct insn_pattern hppa_import_stub[] = {
2842  /* addil LR'xxx, %dp */
2843  { 0x2b600000, 0xffe00000 },
2844  /* ldw RR'xxx(%r1), %r21 */
2845  { 0x48350000, 0xffffb000 },
2846  /* bv %r0(%r21) */
2847  { 0xeaa0c000, 0xffffffff },
2848  /* ldw RR'xxx+4(%r1), %r19 */
2849  { 0x48330000, 0xffffb000 },
2850  { 0, 0 }
2851};
2852
2853static struct insn_pattern hppa_import_pic_stub[] = {
2854  /* addil LR'xxx,%r19 */
2855  { 0x2a600000, 0xffe00000 },
2856  /* ldw RR'xxx(%r1),%r21 */
2857  { 0x48350000, 0xffffb000 },
2858  /* bv %r0(%r21) */
2859  { 0xeaa0c000, 0xffffffff },
2860  /* ldw RR'xxx+4(%r1),%r19 */
2861  { 0x48330000, 0xffffb000 },
2862  { 0, 0 },
2863};
2864
2865static struct insn_pattern hppa_plt_stub[] = {
2866  /* b,l 1b, %r20 - 1b is 3 insns before here */
2867  { 0xea9f1fdd, 0xffffffff },
2868  /* depi 0,31,2,%r20 */
2869  { 0xd6801c1e, 0xffffffff },
2870  { 0, 0 }
2871};
2872
2873/* Maximum number of instructions on the patterns above.  */
2874#define HPPA_MAX_INSN_PATTERN_LEN	4
2875
2876/* Return non-zero if the instructions at PC match the series
2877   described in PATTERN, or zero otherwise.  PATTERN is an array of
2878   'struct insn_pattern' objects, terminated by an entry whose mask is
2879   zero.
2880
2881   When the match is successful, fill INSN[i] with what PATTERN[i]
2882   matched.  */
2883
2884static int
2885hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2886		  struct insn_pattern *pattern, unsigned int *insn)
2887{
2888  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2889  CORE_ADDR npc = pc;
2890  int i;
2891
2892  for (i = 0; pattern[i].mask; i++)
2893    {
2894      gdb_byte buf[HPPA_INSN_SIZE];
2895
2896      target_read_memory (npc, buf, HPPA_INSN_SIZE);
2897      insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
2898      if ((insn[i] & pattern[i].mask) == pattern[i].data)
2899        npc += 4;
2900      else
2901        return 0;
2902    }
2903
2904  return 1;
2905}
2906
2907/* This relaxed version of the insstruction matcher allows us to match
2908   from somewhere inside the pattern, by looking backwards in the
2909   instruction scheme.  */
2910
2911static int
2912hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2913			  struct insn_pattern *pattern, unsigned int *insn)
2914{
2915  int offset, len = 0;
2916
2917  while (pattern[len].mask)
2918    len++;
2919
2920  for (offset = 0; offset < len; offset++)
2921    if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2922			  pattern, insn))
2923      return 1;
2924
2925  return 0;
2926}
2927
2928static int
2929hppa_in_dyncall (CORE_ADDR pc)
2930{
2931  struct unwind_table_entry *u;
2932
2933  u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2934  if (!u)
2935    return 0;
2936
2937  return (pc >= u->region_start && pc <= u->region_end);
2938}
2939
2940int
2941hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
2942{
2943  unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2944  struct unwind_table_entry *u;
2945
2946  if (in_plt_section (pc) || hppa_in_dyncall (pc))
2947    return 1;
2948
2949  /* The GNU toolchain produces linker stubs without unwind
2950     information.  Since the pattern matching for linker stubs can be
2951     quite slow, so bail out if we do have an unwind entry.  */
2952
2953  u = find_unwind_entry (pc);
2954  if (u != NULL)
2955    return 0;
2956
2957  return
2958    (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2959     || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2960     || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2961     || hppa_match_insns_relaxed (gdbarch, pc,
2962				  hppa_long_branch_pic_stub, insn));
2963}
2964
2965/* This code skips several kind of "trampolines" used on PA-RISC
2966   systems: $$dyncall, import stubs and PLT stubs.  */
2967
2968CORE_ADDR
2969hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2970{
2971  struct gdbarch *gdbarch = get_frame_arch (frame);
2972  struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2973
2974  unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2975  int dp_rel;
2976
2977  /* $$dyncall handles both PLABELs and direct addresses.  */
2978  if (hppa_in_dyncall (pc))
2979    {
2980      pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2981
2982      /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it.  */
2983      if (pc & 0x2)
2984	pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
2985
2986      return pc;
2987    }
2988
2989  dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2990  if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
2991    {
2992      /* Extract the target address from the addil/ldw sequence.  */
2993      pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2994
2995      if (dp_rel)
2996        pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2997      else
2998        pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2999
3000      /* fallthrough */
3001    }
3002
3003  if (in_plt_section (pc))
3004    {
3005      pc = read_memory_typed_address (pc, func_ptr_type);
3006
3007      /* If the PLT slot has not yet been resolved, the target will be
3008         the PLT stub.  */
3009      if (in_plt_section (pc))
3010	{
3011	  /* Sanity check: are we pointing to the PLT stub?  */
3012  	  if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
3013	    {
3014	      warning (_("Cannot resolve PLT stub at %s."),
3015		       paddress (gdbarch, pc));
3016	      return 0;
3017	    }
3018
3019	  /* This should point to the fixup routine.  */
3020	  pc = read_memory_typed_address (pc + 8, func_ptr_type);
3021	}
3022    }
3023
3024  return pc;
3025}
3026
3027
3028/* Here is a table of C type sizes on hppa with various compiles
3029   and options.  I measured this on PA 9000/800 with HP-UX 11.11
3030   and these compilers:
3031
3032     /usr/ccs/bin/cc    HP92453-01 A.11.01.21
3033     /opt/ansic/bin/cc  HP92453-01 B.11.11.28706.GP
3034     /opt/aCC/bin/aCC   B3910B A.03.45
3035     gcc                gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3036
3037     cc            : 1 2 4 4 8 : 4 8 -- : 4 4
3038     ansic +DA1.1  : 1 2 4 4 8 : 4 8 16 : 4 4
3039     ansic +DA2.0  : 1 2 4 4 8 : 4 8 16 : 4 4
3040     ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3041     acc   +DA1.1  : 1 2 4 4 8 : 4 8 16 : 4 4
3042     acc   +DA2.0  : 1 2 4 4 8 : 4 8 16 : 4 4
3043     acc   +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3044     gcc           : 1 2 4 4 8 : 4 8 16 : 4 4
3045
3046   Each line is:
3047
3048     compiler and options
3049     char, short, int, long, long long
3050     float, double, long double
3051     char *, void (*)()
3052
3053   So all these compilers use either ILP32 or LP64 model.
3054   TODO: gcc has more options so it needs more investigation.
3055
3056   For floating point types, see:
3057
3058     http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3059     HP-UX floating-point guide, hpux 11.00
3060
3061   -- chastain 2003-12-18  */
3062
3063static struct gdbarch *
3064hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3065{
3066  struct gdbarch_tdep *tdep;
3067  struct gdbarch *gdbarch;
3068
3069  /* Try to determine the ABI of the object we are loading.  */
3070  if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
3071    {
3072      /* If it's a SOM file, assume it's HP/UX SOM.  */
3073      if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3074	info.osabi = GDB_OSABI_HPUX_SOM;
3075    }
3076
3077  /* find a candidate among the list of pre-declared architectures.  */
3078  arches = gdbarch_list_lookup_by_info (arches, &info);
3079  if (arches != NULL)
3080    return (arches->gdbarch);
3081
3082  /* If none found, then allocate and initialize one.  */
3083  tdep = XCNEW (struct gdbarch_tdep);
3084  gdbarch = gdbarch_alloc (&info, tdep);
3085
3086  /* Determine from the bfd_arch_info structure if we are dealing with
3087     a 32 or 64 bits architecture.  If the bfd_arch_info is not available,
3088     then default to a 32bit machine.  */
3089  if (info.bfd_arch_info != NULL)
3090    tdep->bytes_per_address =
3091      info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3092  else
3093    tdep->bytes_per_address = 4;
3094
3095  tdep->find_global_pointer = hppa_find_global_pointer;
3096
3097  /* Some parts of the gdbarch vector depend on whether we are running
3098     on a 32 bits or 64 bits target.  */
3099  switch (tdep->bytes_per_address)
3100    {
3101      case 4:
3102        set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3103        set_gdbarch_register_name (gdbarch, hppa32_register_name);
3104        set_gdbarch_register_type (gdbarch, hppa32_register_type);
3105	set_gdbarch_cannot_store_register (gdbarch,
3106					   hppa32_cannot_store_register);
3107	set_gdbarch_cannot_fetch_register (gdbarch,
3108					   hppa32_cannot_fetch_register);
3109        break;
3110      case 8:
3111        set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3112        set_gdbarch_register_name (gdbarch, hppa64_register_name);
3113        set_gdbarch_register_type (gdbarch, hppa64_register_type);
3114        set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3115	set_gdbarch_cannot_store_register (gdbarch,
3116					   hppa64_cannot_store_register);
3117	set_gdbarch_cannot_fetch_register (gdbarch,
3118					   hppa64_cannot_fetch_register);
3119        break;
3120      default:
3121        internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3122                        tdep->bytes_per_address);
3123    }
3124
3125  set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3126  set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3127
3128  /* The following gdbarch vector elements are the same in both ILP32
3129     and LP64, but might show differences some day.  */
3130  set_gdbarch_long_long_bit (gdbarch, 64);
3131  set_gdbarch_long_double_bit (gdbarch, 128);
3132  set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3133
3134  /* The following gdbarch vector elements do not depend on the address
3135     size, or in any other gdbarch element previously set.  */
3136  set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3137  set_gdbarch_stack_frame_destroyed_p (gdbarch,
3138				       hppa_stack_frame_destroyed_p);
3139  set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3140  set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3141  set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3142  set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
3143  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3144  set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3145  set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3146
3147  /* Helper for function argument information.  */
3148  set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3149
3150  set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3151
3152  /* When a hardware watchpoint triggers, we'll move the inferior past
3153     it by removing all eventpoints; stepping past the instruction
3154     that caused the trigger; reinserting eventpoints; and checking
3155     whether any watched location changed.  */
3156  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3157
3158  /* Inferior function call methods.  */
3159  switch (tdep->bytes_per_address)
3160    {
3161    case 4:
3162      set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3163      set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3164      set_gdbarch_convert_from_func_ptr_addr
3165        (gdbarch, hppa32_convert_from_func_ptr_addr);
3166      break;
3167    case 8:
3168      set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3169      set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3170      break;
3171    default:
3172      internal_error (__FILE__, __LINE__, _("bad switch"));
3173    }
3174
3175  /* Struct return methods.  */
3176  switch (tdep->bytes_per_address)
3177    {
3178    case 4:
3179      set_gdbarch_return_value (gdbarch, hppa32_return_value);
3180      break;
3181    case 8:
3182      set_gdbarch_return_value (gdbarch, hppa64_return_value);
3183      break;
3184    default:
3185      internal_error (__FILE__, __LINE__, _("bad switch"));
3186    }
3187
3188  set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3189  set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3190
3191  /* Frame unwind methods.  */
3192  set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3193  set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3194
3195  /* Hook in ABI-specific overrides, if they have been registered.  */
3196  gdbarch_init_osabi (info, gdbarch);
3197
3198  /* Hook in the default unwinders.  */
3199  frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3200  frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3201  frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3202
3203  return gdbarch;
3204}
3205
3206static void
3207hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3208{
3209  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3210
3211  fprintf_unfiltered (file, "bytes_per_address = %d\n",
3212                      tdep->bytes_per_address);
3213  fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3214}
3215
3216/* Provide a prototype to silence -Wmissing-prototypes.  */
3217extern initialize_file_ftype _initialize_hppa_tdep;
3218
3219void
3220_initialize_hppa_tdep (void)
3221{
3222  gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3223
3224  hppa_objfile_priv_data = register_objfile_data ();
3225
3226  add_cmd ("unwind", class_maintenance, unwind_command,
3227	   _("Print unwind table entry at given address."),
3228	   &maintenanceprintlist);
3229
3230  /* Debug this files internals.  */
3231  add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3232Set whether hppa target specific debugging information should be displayed."),
3233			   _("\
3234Show whether hppa target specific debugging information is displayed."), _("\
3235This flag controls whether hppa target specific debugging information is\n\
3236displayed.  This information is particularly useful for debugging frame\n\
3237unwinding problems."),
3238			   NULL,
3239			   NULL, /* FIXME: i18n: hppa debug flag is %s.  */
3240			   &setdebuglist, &showdebuglist);
3241}
3242