stl_map.h revision 1.1.1.6
1// Map implementation -*- C++ -*-
2
3// Copyright (C) 2001-2017 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/*
26 *
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation.  Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose.  It is provided "as is" without express or implied warranty.
37 *
38 *
39 * Copyright (c) 1996,1997
40 * Silicon Graphics Computer Systems, Inc.
41 *
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation.  Silicon Graphics makes no
47 * representations about the suitability of this software for any
48 * purpose.  It is provided "as is" without express or implied warranty.
49 */
50
51/** @file bits/stl_map.h
52 *  This is an internal header file, included by other library headers.
53 *  Do not attempt to use it directly. @headername{map}
54 */
55
56#ifndef _STL_MAP_H
57#define _STL_MAP_H 1
58
59#include <bits/functexcept.h>
60#include <bits/concept_check.h>
61#if __cplusplus >= 201103L
62#include <initializer_list>
63#include <tuple>
64#endif
65
66namespace std _GLIBCXX_VISIBILITY(default)
67{
68_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
69
70  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
71    class multimap;
72
73  /**
74   *  @brief A standard container made up of (key,value) pairs, which can be
75   *  retrieved based on a key, in logarithmic time.
76   *
77   *  @ingroup associative_containers
78   *
79   *  @tparam _Key  Type of key objects.
80   *  @tparam  _Tp  Type of mapped objects.
81   *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
82   *  @tparam _Alloc  Allocator type, defaults to
83   *                  allocator<pair<const _Key, _Tp>.
84   *
85   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
86   *  <a href="tables.html#66">reversible container</a>, and an
87   *  <a href="tables.html#69">associative container</a> (using unique keys).
88   *  For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
89   *  value_type is std::pair<const Key,T>.
90   *
91   *  Maps support bidirectional iterators.
92   *
93   *  The private tree data is declared exactly the same way for map and
94   *  multimap; the distinction is made entirely in how the tree functions are
95   *  called (*_unique versus *_equal, same as the standard).
96  */
97  template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
98	    typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
99    class map
100    {
101    public:
102      typedef _Key					key_type;
103      typedef _Tp					mapped_type;
104      typedef std::pair<const _Key, _Tp>		value_type;
105      typedef _Compare					key_compare;
106      typedef _Alloc					allocator_type;
107
108    private:
109#ifdef _GLIBCXX_CONCEPT_CHECKS
110      // concept requirements
111      typedef typename _Alloc::value_type		_Alloc_value_type;
112# if __cplusplus < 201103L
113      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
114# endif
115      __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
116				_BinaryFunctionConcept)
117      __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
118#endif
119
120    public:
121      class value_compare
122      : public std::binary_function<value_type, value_type, bool>
123      {
124	friend class map<_Key, _Tp, _Compare, _Alloc>;
125      protected:
126	_Compare comp;
127
128	value_compare(_Compare __c)
129	: comp(__c) { }
130
131      public:
132	bool operator()(const value_type& __x, const value_type& __y) const
133	{ return comp(__x.first, __y.first); }
134      };
135
136    private:
137      /// This turns a red-black tree into a [multi]map.
138      typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
139	rebind<value_type>::other _Pair_alloc_type;
140
141      typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
142		       key_compare, _Pair_alloc_type> _Rep_type;
143
144      /// The actual tree structure.
145      _Rep_type _M_t;
146
147      typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
148
149    public:
150      // many of these are specified differently in ISO, but the following are
151      // "functionally equivalent"
152      typedef typename _Alloc_traits::pointer		 pointer;
153      typedef typename _Alloc_traits::const_pointer	 const_pointer;
154      typedef typename _Alloc_traits::reference		 reference;
155      typedef typename _Alloc_traits::const_reference	 const_reference;
156      typedef typename _Rep_type::iterator		 iterator;
157      typedef typename _Rep_type::const_iterator	 const_iterator;
158      typedef typename _Rep_type::size_type		 size_type;
159      typedef typename _Rep_type::difference_type	 difference_type;
160      typedef typename _Rep_type::reverse_iterator	 reverse_iterator;
161      typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
162
163#if __cplusplus > 201402L
164      using node_type = typename _Rep_type::node_type;
165      using insert_return_type = typename _Rep_type::insert_return_type;
166#endif
167
168      // [23.3.1.1] construct/copy/destroy
169      // (get_allocator() is also listed in this section)
170
171      /**
172       *  @brief  Default constructor creates no elements.
173       */
174#if __cplusplus < 201103L
175      map() : _M_t() { }
176#else
177      map() = default;
178#endif
179
180      /**
181       *  @brief  Creates a %map with no elements.
182       *  @param  __comp  A comparison object.
183       *  @param  __a  An allocator object.
184       */
185      explicit
186      map(const _Compare& __comp,
187	  const allocator_type& __a = allocator_type())
188      : _M_t(__comp, _Pair_alloc_type(__a)) { }
189
190      /**
191       *  @brief  %Map copy constructor.
192       *
193       *  Whether the allocator is copied depends on the allocator traits.
194       */
195#if __cplusplus < 201103L
196      map(const map& __x)
197      : _M_t(__x._M_t) { }
198#else
199      map(const map&) = default;
200
201      /**
202       *  @brief  %Map move constructor.
203       *
204       *  The newly-created %map contains the exact contents of the moved
205       *  instance. The moved instance is a valid, but unspecified, %map.
206       */
207      map(map&&) = default;
208
209      /**
210       *  @brief  Builds a %map from an initializer_list.
211       *  @param  __l  An initializer_list.
212       *  @param  __comp  A comparison object.
213       *  @param  __a  An allocator object.
214       *
215       *  Create a %map consisting of copies of the elements in the
216       *  initializer_list @a __l.
217       *  This is linear in N if the range is already sorted, and NlogN
218       *  otherwise (where N is @a __l.size()).
219       */
220      map(initializer_list<value_type> __l,
221	  const _Compare& __comp = _Compare(),
222	  const allocator_type& __a = allocator_type())
223      : _M_t(__comp, _Pair_alloc_type(__a))
224      { _M_t._M_insert_unique(__l.begin(), __l.end()); }
225
226      /// Allocator-extended default constructor.
227      explicit
228      map(const allocator_type& __a)
229      : _M_t(_Compare(), _Pair_alloc_type(__a)) { }
230
231      /// Allocator-extended copy constructor.
232      map(const map& __m, const allocator_type& __a)
233      : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
234
235      /// Allocator-extended move constructor.
236      map(map&& __m, const allocator_type& __a)
237      noexcept(is_nothrow_copy_constructible<_Compare>::value
238	       && _Alloc_traits::_S_always_equal())
239      : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
240
241      /// Allocator-extended initialier-list constructor.
242      map(initializer_list<value_type> __l, const allocator_type& __a)
243      : _M_t(_Compare(), _Pair_alloc_type(__a))
244      { _M_t._M_insert_unique(__l.begin(), __l.end()); }
245
246      /// Allocator-extended range constructor.
247      template<typename _InputIterator>
248	map(_InputIterator __first, _InputIterator __last,
249	    const allocator_type& __a)
250	: _M_t(_Compare(), _Pair_alloc_type(__a))
251	{ _M_t._M_insert_unique(__first, __last); }
252#endif
253
254      /**
255       *  @brief  Builds a %map from a range.
256       *  @param  __first  An input iterator.
257       *  @param  __last  An input iterator.
258       *
259       *  Create a %map consisting of copies of the elements from
260       *  [__first,__last).  This is linear in N if the range is
261       *  already sorted, and NlogN otherwise (where N is
262       *  distance(__first,__last)).
263       */
264      template<typename _InputIterator>
265	map(_InputIterator __first, _InputIterator __last)
266	: _M_t()
267	{ _M_t._M_insert_unique(__first, __last); }
268
269      /**
270       *  @brief  Builds a %map from a range.
271       *  @param  __first  An input iterator.
272       *  @param  __last  An input iterator.
273       *  @param  __comp  A comparison functor.
274       *  @param  __a  An allocator object.
275       *
276       *  Create a %map consisting of copies of the elements from
277       *  [__first,__last).  This is linear in N if the range is
278       *  already sorted, and NlogN otherwise (where N is
279       *  distance(__first,__last)).
280       */
281      template<typename _InputIterator>
282	map(_InputIterator __first, _InputIterator __last,
283	    const _Compare& __comp,
284	    const allocator_type& __a = allocator_type())
285	: _M_t(__comp, _Pair_alloc_type(__a))
286	{ _M_t._M_insert_unique(__first, __last); }
287
288#if __cplusplus >= 201103L
289      /**
290       *  The dtor only erases the elements, and note that if the elements
291       *  themselves are pointers, the pointed-to memory is not touched in any
292       *  way.  Managing the pointer is the user's responsibility.
293       */
294      ~map() = default;
295#endif
296
297      /**
298       *  @brief  %Map assignment operator.
299       *
300       *  Whether the allocator is copied depends on the allocator traits.
301       */
302#if __cplusplus < 201103L
303      map&
304      operator=(const map& __x)
305      {
306	_M_t = __x._M_t;
307	return *this;
308      }
309#else
310      map&
311      operator=(const map&) = default;
312
313      /// Move assignment operator.
314      map&
315      operator=(map&&) = default;
316
317      /**
318       *  @brief  %Map list assignment operator.
319       *  @param  __l  An initializer_list.
320       *
321       *  This function fills a %map with copies of the elements in the
322       *  initializer list @a __l.
323       *
324       *  Note that the assignment completely changes the %map and
325       *  that the resulting %map's size is the same as the number
326       *  of elements assigned.
327       */
328      map&
329      operator=(initializer_list<value_type> __l)
330      {
331	_M_t._M_assign_unique(__l.begin(), __l.end());
332	return *this;
333      }
334#endif
335
336      /// Get a copy of the memory allocation object.
337      allocator_type
338      get_allocator() const _GLIBCXX_NOEXCEPT
339      { return allocator_type(_M_t.get_allocator()); }
340
341      // iterators
342      /**
343       *  Returns a read/write iterator that points to the first pair in the
344       *  %map.
345       *  Iteration is done in ascending order according to the keys.
346       */
347      iterator
348      begin() _GLIBCXX_NOEXCEPT
349      { return _M_t.begin(); }
350
351      /**
352       *  Returns a read-only (constant) iterator that points to the first pair
353       *  in the %map.  Iteration is done in ascending order according to the
354       *  keys.
355       */
356      const_iterator
357      begin() const _GLIBCXX_NOEXCEPT
358      { return _M_t.begin(); }
359
360      /**
361       *  Returns a read/write iterator that points one past the last
362       *  pair in the %map.  Iteration is done in ascending order
363       *  according to the keys.
364       */
365      iterator
366      end() _GLIBCXX_NOEXCEPT
367      { return _M_t.end(); }
368
369      /**
370       *  Returns a read-only (constant) iterator that points one past the last
371       *  pair in the %map.  Iteration is done in ascending order according to
372       *  the keys.
373       */
374      const_iterator
375      end() const _GLIBCXX_NOEXCEPT
376      { return _M_t.end(); }
377
378      /**
379       *  Returns a read/write reverse iterator that points to the last pair in
380       *  the %map.  Iteration is done in descending order according to the
381       *  keys.
382       */
383      reverse_iterator
384      rbegin() _GLIBCXX_NOEXCEPT
385      { return _M_t.rbegin(); }
386
387      /**
388       *  Returns a read-only (constant) reverse iterator that points to the
389       *  last pair in the %map.  Iteration is done in descending order
390       *  according to the keys.
391       */
392      const_reverse_iterator
393      rbegin() const _GLIBCXX_NOEXCEPT
394      { return _M_t.rbegin(); }
395
396      /**
397       *  Returns a read/write reverse iterator that points to one before the
398       *  first pair in the %map.  Iteration is done in descending order
399       *  according to the keys.
400       */
401      reverse_iterator
402      rend() _GLIBCXX_NOEXCEPT
403      { return _M_t.rend(); }
404
405      /**
406       *  Returns a read-only (constant) reverse iterator that points to one
407       *  before the first pair in the %map.  Iteration is done in descending
408       *  order according to the keys.
409       */
410      const_reverse_iterator
411      rend() const _GLIBCXX_NOEXCEPT
412      { return _M_t.rend(); }
413
414#if __cplusplus >= 201103L
415      /**
416       *  Returns a read-only (constant) iterator that points to the first pair
417       *  in the %map.  Iteration is done in ascending order according to the
418       *  keys.
419       */
420      const_iterator
421      cbegin() const noexcept
422      { return _M_t.begin(); }
423
424      /**
425       *  Returns a read-only (constant) iterator that points one past the last
426       *  pair in the %map.  Iteration is done in ascending order according to
427       *  the keys.
428       */
429      const_iterator
430      cend() const noexcept
431      { return _M_t.end(); }
432
433      /**
434       *  Returns a read-only (constant) reverse iterator that points to the
435       *  last pair in the %map.  Iteration is done in descending order
436       *  according to the keys.
437       */
438      const_reverse_iterator
439      crbegin() const noexcept
440      { return _M_t.rbegin(); }
441
442      /**
443       *  Returns a read-only (constant) reverse iterator that points to one
444       *  before the first pair in the %map.  Iteration is done in descending
445       *  order according to the keys.
446       */
447      const_reverse_iterator
448      crend() const noexcept
449      { return _M_t.rend(); }
450#endif
451
452      // capacity
453      /** Returns true if the %map is empty.  (Thus begin() would equal
454       *  end().)
455      */
456      bool
457      empty() const _GLIBCXX_NOEXCEPT
458      { return _M_t.empty(); }
459
460      /** Returns the size of the %map.  */
461      size_type
462      size() const _GLIBCXX_NOEXCEPT
463      { return _M_t.size(); }
464
465      /** Returns the maximum size of the %map.  */
466      size_type
467      max_size() const _GLIBCXX_NOEXCEPT
468      { return _M_t.max_size(); }
469
470      // [23.3.1.2] element access
471      /**
472       *  @brief  Subscript ( @c [] ) access to %map data.
473       *  @param  __k  The key for which data should be retrieved.
474       *  @return  A reference to the data of the (key,data) %pair.
475       *
476       *  Allows for easy lookup with the subscript ( @c [] )
477       *  operator.  Returns data associated with the key specified in
478       *  subscript.  If the key does not exist, a pair with that key
479       *  is created using default values, which is then returned.
480       *
481       *  Lookup requires logarithmic time.
482       */
483      mapped_type&
484      operator[](const key_type& __k)
485      {
486	// concept requirements
487	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
488
489	iterator __i = lower_bound(__k);
490	// __i->first is greater than or equivalent to __k.
491	if (__i == end() || key_comp()(__k, (*__i).first))
492#if __cplusplus >= 201103L
493	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
494					    std::tuple<const key_type&>(__k),
495					    std::tuple<>());
496#else
497	  __i = insert(__i, value_type(__k, mapped_type()));
498#endif
499	return (*__i).second;
500      }
501
502#if __cplusplus >= 201103L
503      mapped_type&
504      operator[](key_type&& __k)
505      {
506	// concept requirements
507	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
508
509	iterator __i = lower_bound(__k);
510	// __i->first is greater than or equivalent to __k.
511	if (__i == end() || key_comp()(__k, (*__i).first))
512	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
513					std::forward_as_tuple(std::move(__k)),
514					std::tuple<>());
515	return (*__i).second;
516      }
517#endif
518
519      // _GLIBCXX_RESOLVE_LIB_DEFECTS
520      // DR 464. Suggestion for new member functions in standard containers.
521      /**
522       *  @brief  Access to %map data.
523       *  @param  __k  The key for which data should be retrieved.
524       *  @return  A reference to the data whose key is equivalent to @a __k, if
525       *           such a data is present in the %map.
526       *  @throw  std::out_of_range  If no such data is present.
527       */
528      mapped_type&
529      at(const key_type& __k)
530      {
531	iterator __i = lower_bound(__k);
532	if (__i == end() || key_comp()(__k, (*__i).first))
533	  __throw_out_of_range(__N("map::at"));
534	return (*__i).second;
535      }
536
537      const mapped_type&
538      at(const key_type& __k) const
539      {
540	const_iterator __i = lower_bound(__k);
541	if (__i == end() || key_comp()(__k, (*__i).first))
542	  __throw_out_of_range(__N("map::at"));
543	return (*__i).second;
544      }
545
546      // modifiers
547#if __cplusplus >= 201103L
548      /**
549       *  @brief Attempts to build and insert a std::pair into the %map.
550       *
551       *  @param __args  Arguments used to generate a new pair instance (see
552       *	        std::piecewise_contruct for passing arguments to each
553       *	        part of the pair constructor).
554       *
555       *  @return  A pair, of which the first element is an iterator that points
556       *           to the possibly inserted pair, and the second is a bool that
557       *           is true if the pair was actually inserted.
558       *
559       *  This function attempts to build and insert a (key, value) %pair into
560       *  the %map.
561       *  A %map relies on unique keys and thus a %pair is only inserted if its
562       *  first element (the key) is not already present in the %map.
563       *
564       *  Insertion requires logarithmic time.
565       */
566      template<typename... _Args>
567	std::pair<iterator, bool>
568	emplace(_Args&&... __args)
569	{ return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); }
570
571      /**
572       *  @brief Attempts to build and insert a std::pair into the %map.
573       *
574       *  @param  __pos  An iterator that serves as a hint as to where the pair
575       *                should be inserted.
576       *  @param  __args  Arguments used to generate a new pair instance (see
577       *	         std::piecewise_contruct for passing arguments to each
578       *	         part of the pair constructor).
579       *  @return An iterator that points to the element with key of the
580       *          std::pair built from @a __args (may or may not be that
581       *          std::pair).
582       *
583       *  This function is not concerned about whether the insertion took place,
584       *  and thus does not return a boolean like the single-argument emplace()
585       *  does.
586       *  Note that the first parameter is only a hint and can potentially
587       *  improve the performance of the insertion process. A bad hint would
588       *  cause no gains in efficiency.
589       *
590       *  See
591       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
592       *  for more on @a hinting.
593       *
594       *  Insertion requires logarithmic time (if the hint is not taken).
595       */
596      template<typename... _Args>
597	iterator
598	emplace_hint(const_iterator __pos, _Args&&... __args)
599	{
600	  return _M_t._M_emplace_hint_unique(__pos,
601					     std::forward<_Args>(__args)...);
602	}
603#endif
604
605#if __cplusplus > 201402L
606      /// Extract a node.
607      node_type
608      extract(const_iterator __pos)
609      {
610	__glibcxx_assert(__pos != end());
611	return _M_t.extract(__pos);
612      }
613
614      /// Extract a node.
615      node_type
616      extract(const key_type& __x)
617      { return _M_t.extract(__x); }
618
619      /// Re-insert an extracted node.
620      insert_return_type
621      insert(node_type&& __nh)
622      { return _M_t._M_reinsert_node_unique(std::move(__nh)); }
623
624      /// Re-insert an extracted node.
625      iterator
626      insert(const_iterator __hint, node_type&& __nh)
627      { return _M_t._M_reinsert_node_hint_unique(__hint, std::move(__nh)); }
628
629      template<typename, typename>
630	friend class _Rb_tree_merge_helper;
631
632      template<typename _C2>
633	void
634	merge(map<_Key, _Tp, _C2, _Alloc>& __source)
635	{
636	  using _Merge_helper = _Rb_tree_merge_helper<map, _C2>;
637	  _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source));
638	}
639
640      template<typename _C2>
641	void
642	merge(map<_Key, _Tp, _C2, _Alloc>&& __source)
643	{ merge(__source); }
644
645      template<typename _C2>
646	void
647	merge(multimap<_Key, _Tp, _C2, _Alloc>& __source)
648	{
649	  using _Merge_helper = _Rb_tree_merge_helper<map, _C2>;
650	  _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source));
651	}
652
653      template<typename _C2>
654	void
655	merge(multimap<_Key, _Tp, _C2, _Alloc>&& __source)
656	{ merge(__source); }
657#endif // C++17
658
659#if __cplusplus > 201402L
660#define __cpp_lib_map_try_emplace 201411
661      /**
662       *  @brief Attempts to build and insert a std::pair into the %map.
663       *
664       *  @param __k    Key to use for finding a possibly existing pair in
665       *                the map.
666       *  @param __args  Arguments used to generate the .second for a new pair
667       *                instance.
668       *
669       *  @return  A pair, of which the first element is an iterator that points
670       *           to the possibly inserted pair, and the second is a bool that
671       *           is true if the pair was actually inserted.
672       *
673       *  This function attempts to build and insert a (key, value) %pair into
674       *  the %map.
675       *  A %map relies on unique keys and thus a %pair is only inserted if its
676       *  first element (the key) is not already present in the %map.
677       *  If a %pair is not inserted, this function has no effect.
678       *
679       *  Insertion requires logarithmic time.
680       */
681      template <typename... _Args>
682	pair<iterator, bool>
683	try_emplace(const key_type& __k, _Args&&... __args)
684	{
685	  iterator __i = lower_bound(__k);
686	  if (__i == end() || key_comp()(__k, (*__i).first))
687	    {
688	      __i = emplace_hint(__i, std::piecewise_construct,
689				 std::forward_as_tuple(__k),
690				 std::forward_as_tuple(
691				   std::forward<_Args>(__args)...));
692	      return {__i, true};
693	    }
694	  return {__i, false};
695	}
696
697      // move-capable overload
698      template <typename... _Args>
699	pair<iterator, bool>
700	try_emplace(key_type&& __k, _Args&&... __args)
701	{
702	  iterator __i = lower_bound(__k);
703	  if (__i == end() || key_comp()(__k, (*__i).first))
704	    {
705	      __i = emplace_hint(__i, std::piecewise_construct,
706				 std::forward_as_tuple(std::move(__k)),
707				 std::forward_as_tuple(
708				   std::forward<_Args>(__args)...));
709	      return {__i, true};
710	    }
711	  return {__i, false};
712	}
713
714      /**
715       *  @brief Attempts to build and insert a std::pair into the %map.
716       *
717       *  @param  __hint  An iterator that serves as a hint as to where the
718       *                  pair should be inserted.
719       *  @param __k    Key to use for finding a possibly existing pair in
720       *                the map.
721       *  @param __args  Arguments used to generate the .second for a new pair
722       *                instance.
723       *  @return An iterator that points to the element with key of the
724       *          std::pair built from @a __args (may or may not be that
725       *          std::pair).
726       *
727       *  This function is not concerned about whether the insertion took place,
728       *  and thus does not return a boolean like the single-argument
729       *  try_emplace() does. However, if insertion did not take place,
730       *  this function has no effect.
731       *  Note that the first parameter is only a hint and can potentially
732       *  improve the performance of the insertion process. A bad hint would
733       *  cause no gains in efficiency.
734       *
735       *  See
736       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
737       *  for more on @a hinting.
738       *
739       *  Insertion requires logarithmic time (if the hint is not taken).
740       */
741      template <typename... _Args>
742	iterator
743	try_emplace(const_iterator __hint, const key_type& __k,
744		    _Args&&... __args)
745	{
746	  iterator __i;
747	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
748	  if (__true_hint.second)
749	    __i = emplace_hint(iterator(__true_hint.second),
750			       std::piecewise_construct,
751			       std::forward_as_tuple(__k),
752			       std::forward_as_tuple(
753				 std::forward<_Args>(__args)...));
754	  else
755	    __i = iterator(__true_hint.first);
756	  return __i;
757	}
758
759      // move-capable overload
760      template <typename... _Args>
761	iterator
762	try_emplace(const_iterator __hint, key_type&& __k, _Args&&... __args)
763	{
764	  iterator __i;
765	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
766	  if (__true_hint.second)
767	    __i = emplace_hint(iterator(__true_hint.second),
768			       std::piecewise_construct,
769			       std::forward_as_tuple(std::move(__k)),
770			       std::forward_as_tuple(
771				 std::forward<_Args>(__args)...));
772	  else
773	    __i = iterator(__true_hint.first);
774	  return __i;
775	}
776#endif
777
778      /**
779       *  @brief Attempts to insert a std::pair into the %map.
780       *  @param __x Pair to be inserted (see std::make_pair for easy
781       *	     creation of pairs).
782       *
783       *  @return  A pair, of which the first element is an iterator that
784       *           points to the possibly inserted pair, and the second is
785       *           a bool that is true if the pair was actually inserted.
786       *
787       *  This function attempts to insert a (key, value) %pair into the %map.
788       *  A %map relies on unique keys and thus a %pair is only inserted if its
789       *  first element (the key) is not already present in the %map.
790       *
791       *  Insertion requires logarithmic time.
792       *  @{
793       */
794      std::pair<iterator, bool>
795      insert(const value_type& __x)
796      { return _M_t._M_insert_unique(__x); }
797
798#if __cplusplus >= 201103L
799      // _GLIBCXX_RESOLVE_LIB_DEFECTS
800      // 2354. Unnecessary copying when inserting into maps with braced-init
801      std::pair<iterator, bool>
802      insert(value_type&& __x)
803      { return _M_t._M_insert_unique(std::move(__x)); }
804
805      template<typename _Pair>
806	__enable_if_t<is_constructible<value_type, _Pair>::value,
807		      pair<iterator, bool>>
808	insert(_Pair&& __x)
809	{ return _M_t._M_emplace_unique(std::forward<_Pair>(__x)); }
810#endif
811      // @}
812
813#if __cplusplus >= 201103L
814      /**
815       *  @brief Attempts to insert a list of std::pairs into the %map.
816       *  @param  __list  A std::initializer_list<value_type> of pairs to be
817       *                  inserted.
818       *
819       *  Complexity similar to that of the range constructor.
820       */
821      void
822      insert(std::initializer_list<value_type> __list)
823      { insert(__list.begin(), __list.end()); }
824#endif
825
826      /**
827       *  @brief Attempts to insert a std::pair into the %map.
828       *  @param  __position  An iterator that serves as a hint as to where the
829       *                    pair should be inserted.
830       *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
831       *               of pairs).
832       *  @return An iterator that points to the element with key of
833       *           @a __x (may or may not be the %pair passed in).
834       *
835
836       *  This function is not concerned about whether the insertion
837       *  took place, and thus does not return a boolean like the
838       *  single-argument insert() does.  Note that the first
839       *  parameter is only a hint and can potentially improve the
840       *  performance of the insertion process.  A bad hint would
841       *  cause no gains in efficiency.
842       *
843       *  See
844       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
845       *  for more on @a hinting.
846       *
847       *  Insertion requires logarithmic time (if the hint is not taken).
848       *  @{
849       */
850      iterator
851#if __cplusplus >= 201103L
852      insert(const_iterator __position, const value_type& __x)
853#else
854      insert(iterator __position, const value_type& __x)
855#endif
856      { return _M_t._M_insert_unique_(__position, __x); }
857
858#if __cplusplus >= 201103L
859      // _GLIBCXX_RESOLVE_LIB_DEFECTS
860      // 2354. Unnecessary copying when inserting into maps with braced-init
861      iterator
862      insert(const_iterator __position, value_type&& __x)
863      { return _M_t._M_insert_unique_(__position, std::move(__x)); }
864
865      template<typename _Pair>
866	__enable_if_t<is_constructible<value_type, _Pair>::value, iterator>
867	insert(const_iterator __position, _Pair&& __x)
868	{
869	  return _M_t._M_emplace_hint_unique(__position,
870					     std::forward<_Pair>(__x));
871	}
872#endif
873      // @}
874
875      /**
876       *  @brief Template function that attempts to insert a range of elements.
877       *  @param  __first  Iterator pointing to the start of the range to be
878       *                   inserted.
879       *  @param  __last  Iterator pointing to the end of the range.
880       *
881       *  Complexity similar to that of the range constructor.
882       */
883      template<typename _InputIterator>
884	void
885	insert(_InputIterator __first, _InputIterator __last)
886	{ _M_t._M_insert_unique(__first, __last); }
887
888#if __cplusplus > 201402L
889#define __cpp_lib_map_insertion 201411
890      /**
891       *  @brief Attempts to insert or assign a std::pair into the %map.
892       *  @param __k    Key to use for finding a possibly existing pair in
893       *                the map.
894       *  @param __obj  Argument used to generate the .second for a pair
895       *                instance.
896       *
897       *  @return  A pair, of which the first element is an iterator that
898       *           points to the possibly inserted pair, and the second is
899       *           a bool that is true if the pair was actually inserted.
900       *
901       *  This function attempts to insert a (key, value) %pair into the %map.
902       *  A %map relies on unique keys and thus a %pair is only inserted if its
903       *  first element (the key) is not already present in the %map.
904       *  If the %pair was already in the %map, the .second of the %pair
905       *  is assigned from __obj.
906       *
907       *  Insertion requires logarithmic time.
908       */
909      template <typename _Obj>
910	pair<iterator, bool>
911	insert_or_assign(const key_type& __k, _Obj&& __obj)
912	{
913	  iterator __i = lower_bound(__k);
914	  if (__i == end() || key_comp()(__k, (*__i).first))
915	    {
916	      __i = emplace_hint(__i, std::piecewise_construct,
917				 std::forward_as_tuple(__k),
918				 std::forward_as_tuple(
919				   std::forward<_Obj>(__obj)));
920	      return {__i, true};
921	    }
922	  (*__i).second = std::forward<_Obj>(__obj);
923	  return {__i, false};
924	}
925
926      // move-capable overload
927      template <typename _Obj>
928	pair<iterator, bool>
929	insert_or_assign(key_type&& __k, _Obj&& __obj)
930	{
931	  iterator __i = lower_bound(__k);
932	  if (__i == end() || key_comp()(__k, (*__i).first))
933	    {
934	      __i = emplace_hint(__i, std::piecewise_construct,
935				 std::forward_as_tuple(std::move(__k)),
936				 std::forward_as_tuple(
937				   std::forward<_Obj>(__obj)));
938	      return {__i, true};
939	    }
940	  (*__i).second = std::forward<_Obj>(__obj);
941	  return {__i, false};
942	}
943
944      /**
945       *  @brief Attempts to insert or assign a std::pair into the %map.
946       *  @param  __hint  An iterator that serves as a hint as to where the
947       *                  pair should be inserted.
948       *  @param __k    Key to use for finding a possibly existing pair in
949       *                the map.
950       *  @param __obj  Argument used to generate the .second for a pair
951       *                instance.
952       *
953       *  @return An iterator that points to the element with key of
954       *           @a __x (may or may not be the %pair passed in).
955       *
956       *  This function attempts to insert a (key, value) %pair into the %map.
957       *  A %map relies on unique keys and thus a %pair is only inserted if its
958       *  first element (the key) is not already present in the %map.
959       *  If the %pair was already in the %map, the .second of the %pair
960       *  is assigned from __obj.
961       *
962       *  Insertion requires logarithmic time.
963       */
964      template <typename _Obj>
965	iterator
966	insert_or_assign(const_iterator __hint,
967			 const key_type& __k, _Obj&& __obj)
968	{
969	  iterator __i;
970	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
971	  if (__true_hint.second)
972	    {
973	      return emplace_hint(iterator(__true_hint.second),
974				  std::piecewise_construct,
975				  std::forward_as_tuple(__k),
976				  std::forward_as_tuple(
977				    std::forward<_Obj>(__obj)));
978	    }
979	  __i = iterator(__true_hint.first);
980	  (*__i).second = std::forward<_Obj>(__obj);
981	  return __i;
982	}
983
984      // move-capable overload
985      template <typename _Obj>
986	iterator
987	insert_or_assign(const_iterator __hint, key_type&& __k, _Obj&& __obj)
988	{
989	  iterator __i;
990	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
991	  if (__true_hint.second)
992	    {
993	      return emplace_hint(iterator(__true_hint.second),
994				  std::piecewise_construct,
995				  std::forward_as_tuple(std::move(__k)),
996				  std::forward_as_tuple(
997				    std::forward<_Obj>(__obj)));
998	    }
999	  __i = iterator(__true_hint.first);
1000	  (*__i).second = std::forward<_Obj>(__obj);
1001	  return __i;
1002	}
1003#endif
1004
1005#if __cplusplus >= 201103L
1006      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1007      // DR 130. Associative erase should return an iterator.
1008      /**
1009       *  @brief Erases an element from a %map.
1010       *  @param  __position  An iterator pointing to the element to be erased.
1011       *  @return An iterator pointing to the element immediately following
1012       *          @a position prior to the element being erased. If no such
1013       *          element exists, end() is returned.
1014       *
1015       *  This function erases an element, pointed to by the given
1016       *  iterator, from a %map.  Note that this function only erases
1017       *  the element, and that if the element is itself a pointer,
1018       *  the pointed-to memory is not touched in any way.  Managing
1019       *  the pointer is the user's responsibility.
1020       *
1021       *  @{
1022       */
1023      iterator
1024      erase(const_iterator __position)
1025      { return _M_t.erase(__position); }
1026
1027      // LWG 2059
1028      _GLIBCXX_ABI_TAG_CXX11
1029      iterator
1030      erase(iterator __position)
1031      { return _M_t.erase(__position); }
1032      // @}
1033#else
1034      /**
1035       *  @brief Erases an element from a %map.
1036       *  @param  __position  An iterator pointing to the element to be erased.
1037       *
1038       *  This function erases an element, pointed to by the given
1039       *  iterator, from a %map.  Note that this function only erases
1040       *  the element, and that if the element is itself a pointer,
1041       *  the pointed-to memory is not touched in any way.  Managing
1042       *  the pointer is the user's responsibility.
1043       */
1044      void
1045      erase(iterator __position)
1046      { _M_t.erase(__position); }
1047#endif
1048
1049      /**
1050       *  @brief Erases elements according to the provided key.
1051       *  @param  __x  Key of element to be erased.
1052       *  @return  The number of elements erased.
1053       *
1054       *  This function erases all the elements located by the given key from
1055       *  a %map.
1056       *  Note that this function only erases the element, and that if
1057       *  the element is itself a pointer, the pointed-to memory is not touched
1058       *  in any way.  Managing the pointer is the user's responsibility.
1059       */
1060      size_type
1061      erase(const key_type& __x)
1062      { return _M_t.erase(__x); }
1063
1064#if __cplusplus >= 201103L
1065      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1066      // DR 130. Associative erase should return an iterator.
1067      /**
1068       *  @brief Erases a [first,last) range of elements from a %map.
1069       *  @param  __first  Iterator pointing to the start of the range to be
1070       *                   erased.
1071       *  @param __last Iterator pointing to the end of the range to
1072       *                be erased.
1073       *  @return The iterator @a __last.
1074       *
1075       *  This function erases a sequence of elements from a %map.
1076       *  Note that this function only erases the element, and that if
1077       *  the element is itself a pointer, the pointed-to memory is not touched
1078       *  in any way.  Managing the pointer is the user's responsibility.
1079       */
1080      iterator
1081      erase(const_iterator __first, const_iterator __last)
1082      { return _M_t.erase(__first, __last); }
1083#else
1084      /**
1085       *  @brief Erases a [__first,__last) range of elements from a %map.
1086       *  @param  __first  Iterator pointing to the start of the range to be
1087       *                   erased.
1088       *  @param __last Iterator pointing to the end of the range to
1089       *                be erased.
1090       *
1091       *  This function erases a sequence of elements from a %map.
1092       *  Note that this function only erases the element, and that if
1093       *  the element is itself a pointer, the pointed-to memory is not touched
1094       *  in any way.  Managing the pointer is the user's responsibility.
1095       */
1096      void
1097      erase(iterator __first, iterator __last)
1098      { _M_t.erase(__first, __last); }
1099#endif
1100
1101      /**
1102       *  @brief  Swaps data with another %map.
1103       *  @param  __x  A %map of the same element and allocator types.
1104       *
1105       *  This exchanges the elements between two maps in constant
1106       *  time.  (It is only swapping a pointer, an integer, and an
1107       *  instance of the @c Compare type (which itself is often
1108       *  stateless and empty), so it should be quite fast.)  Note
1109       *  that the global std::swap() function is specialized such
1110       *  that std::swap(m1,m2) will feed to this function.
1111       *
1112       *  Whether the allocators are swapped depends on the allocator traits.
1113       */
1114      void
1115      swap(map& __x)
1116      _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
1117      { _M_t.swap(__x._M_t); }
1118
1119      /**
1120       *  Erases all elements in a %map.  Note that this function only
1121       *  erases the elements, and that if the elements themselves are
1122       *  pointers, the pointed-to memory is not touched in any way.
1123       *  Managing the pointer is the user's responsibility.
1124       */
1125      void
1126      clear() _GLIBCXX_NOEXCEPT
1127      { _M_t.clear(); }
1128
1129      // observers
1130      /**
1131       *  Returns the key comparison object out of which the %map was
1132       *  constructed.
1133       */
1134      key_compare
1135      key_comp() const
1136      { return _M_t.key_comp(); }
1137
1138      /**
1139       *  Returns a value comparison object, built from the key comparison
1140       *  object out of which the %map was constructed.
1141       */
1142      value_compare
1143      value_comp() const
1144      { return value_compare(_M_t.key_comp()); }
1145
1146      // [23.3.1.3] map operations
1147
1148      //@{
1149      /**
1150       *  @brief Tries to locate an element in a %map.
1151       *  @param  __x  Key of (key, value) %pair to be located.
1152       *  @return  Iterator pointing to sought-after element, or end() if not
1153       *           found.
1154       *
1155       *  This function takes a key and tries to locate the element with which
1156       *  the key matches.  If successful the function returns an iterator
1157       *  pointing to the sought after %pair.  If unsuccessful it returns the
1158       *  past-the-end ( @c end() ) iterator.
1159       */
1160
1161      iterator
1162      find(const key_type& __x)
1163      { return _M_t.find(__x); }
1164
1165#if __cplusplus > 201103L
1166      template<typename _Kt>
1167	auto
1168	find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
1169	{ return _M_t._M_find_tr(__x); }
1170#endif
1171      //@}
1172
1173      //@{
1174      /**
1175       *  @brief Tries to locate an element in a %map.
1176       *  @param  __x  Key of (key, value) %pair to be located.
1177       *  @return  Read-only (constant) iterator pointing to sought-after
1178       *           element, or end() if not found.
1179       *
1180       *  This function takes a key and tries to locate the element with which
1181       *  the key matches.  If successful the function returns a constant
1182       *  iterator pointing to the sought after %pair. If unsuccessful it
1183       *  returns the past-the-end ( @c end() ) iterator.
1184       */
1185
1186      const_iterator
1187      find(const key_type& __x) const
1188      { return _M_t.find(__x); }
1189
1190#if __cplusplus > 201103L
1191      template<typename _Kt>
1192	auto
1193	find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
1194	{ return _M_t._M_find_tr(__x); }
1195#endif
1196      //@}
1197
1198      //@{
1199      /**
1200       *  @brief  Finds the number of elements with given key.
1201       *  @param  __x  Key of (key, value) pairs to be located.
1202       *  @return  Number of elements with specified key.
1203       *
1204       *  This function only makes sense for multimaps; for map the result will
1205       *  either be 0 (not present) or 1 (present).
1206       */
1207      size_type
1208      count(const key_type& __x) const
1209      { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
1210
1211#if __cplusplus > 201103L
1212      template<typename _Kt>
1213	auto
1214	count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
1215	{ return _M_t._M_count_tr(__x); }
1216#endif
1217      //@}
1218
1219      //@{
1220      /**
1221       *  @brief Finds the beginning of a subsequence matching given key.
1222       *  @param  __x  Key of (key, value) pair to be located.
1223       *  @return  Iterator pointing to first element equal to or greater
1224       *           than key, or end().
1225       *
1226       *  This function returns the first element of a subsequence of elements
1227       *  that matches the given key.  If unsuccessful it returns an iterator
1228       *  pointing to the first element that has a greater value than given key
1229       *  or end() if no such element exists.
1230       */
1231      iterator
1232      lower_bound(const key_type& __x)
1233      { return _M_t.lower_bound(__x); }
1234
1235#if __cplusplus > 201103L
1236      template<typename _Kt>
1237	auto
1238	lower_bound(const _Kt& __x)
1239	-> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
1240	{ return iterator(_M_t._M_lower_bound_tr(__x)); }
1241#endif
1242      //@}
1243
1244      //@{
1245      /**
1246       *  @brief Finds the beginning of a subsequence matching given key.
1247       *  @param  __x  Key of (key, value) pair to be located.
1248       *  @return  Read-only (constant) iterator pointing to first element
1249       *           equal to or greater than key, or end().
1250       *
1251       *  This function returns the first element of a subsequence of elements
1252       *  that matches the given key.  If unsuccessful it returns an iterator
1253       *  pointing to the first element that has a greater value than given key
1254       *  or end() if no such element exists.
1255       */
1256      const_iterator
1257      lower_bound(const key_type& __x) const
1258      { return _M_t.lower_bound(__x); }
1259
1260#if __cplusplus > 201103L
1261      template<typename _Kt>
1262	auto
1263	lower_bound(const _Kt& __x) const
1264	-> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
1265	{ return const_iterator(_M_t._M_lower_bound_tr(__x)); }
1266#endif
1267      //@}
1268
1269      //@{
1270      /**
1271       *  @brief Finds the end of a subsequence matching given key.
1272       *  @param  __x  Key of (key, value) pair to be located.
1273       *  @return Iterator pointing to the first element
1274       *          greater than key, or end().
1275       */
1276      iterator
1277      upper_bound(const key_type& __x)
1278      { return _M_t.upper_bound(__x); }
1279
1280#if __cplusplus > 201103L
1281      template<typename _Kt>
1282	auto
1283	upper_bound(const _Kt& __x)
1284	-> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
1285	{ return iterator(_M_t._M_upper_bound_tr(__x)); }
1286#endif
1287      //@}
1288
1289      //@{
1290      /**
1291       *  @brief Finds the end of a subsequence matching given key.
1292       *  @param  __x  Key of (key, value) pair to be located.
1293       *  @return  Read-only (constant) iterator pointing to first iterator
1294       *           greater than key, or end().
1295       */
1296      const_iterator
1297      upper_bound(const key_type& __x) const
1298      { return _M_t.upper_bound(__x); }
1299
1300#if __cplusplus > 201103L
1301      template<typename _Kt>
1302	auto
1303	upper_bound(const _Kt& __x) const
1304	-> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
1305	{ return const_iterator(_M_t._M_upper_bound_tr(__x)); }
1306#endif
1307      //@}
1308
1309      //@{
1310      /**
1311       *  @brief Finds a subsequence matching given key.
1312       *  @param  __x  Key of (key, value) pairs to be located.
1313       *  @return  Pair of iterators that possibly points to the subsequence
1314       *           matching given key.
1315       *
1316       *  This function is equivalent to
1317       *  @code
1318       *    std::make_pair(c.lower_bound(val),
1319       *                   c.upper_bound(val))
1320       *  @endcode
1321       *  (but is faster than making the calls separately).
1322       *
1323       *  This function probably only makes sense for multimaps.
1324       */
1325      std::pair<iterator, iterator>
1326      equal_range(const key_type& __x)
1327      { return _M_t.equal_range(__x); }
1328
1329#if __cplusplus > 201103L
1330      template<typename _Kt>
1331	auto
1332	equal_range(const _Kt& __x)
1333	-> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
1334	{ return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
1335#endif
1336      //@}
1337
1338      //@{
1339      /**
1340       *  @brief Finds a subsequence matching given key.
1341       *  @param  __x  Key of (key, value) pairs to be located.
1342       *  @return  Pair of read-only (constant) iterators that possibly points
1343       *           to the subsequence matching given key.
1344       *
1345       *  This function is equivalent to
1346       *  @code
1347       *    std::make_pair(c.lower_bound(val),
1348       *                   c.upper_bound(val))
1349       *  @endcode
1350       *  (but is faster than making the calls separately).
1351       *
1352       *  This function probably only makes sense for multimaps.
1353       */
1354      std::pair<const_iterator, const_iterator>
1355      equal_range(const key_type& __x) const
1356      { return _M_t.equal_range(__x); }
1357
1358#if __cplusplus > 201103L
1359      template<typename _Kt>
1360	auto
1361	equal_range(const _Kt& __x) const
1362	-> decltype(pair<const_iterator, const_iterator>(
1363	      _M_t._M_equal_range_tr(__x)))
1364	{
1365	  return pair<const_iterator, const_iterator>(
1366	      _M_t._M_equal_range_tr(__x));
1367	}
1368#endif
1369      //@}
1370
1371      template<typename _K1, typename _T1, typename _C1, typename _A1>
1372	friend bool
1373	operator==(const map<_K1, _T1, _C1, _A1>&,
1374		   const map<_K1, _T1, _C1, _A1>&);
1375
1376      template<typename _K1, typename _T1, typename _C1, typename _A1>
1377	friend bool
1378	operator<(const map<_K1, _T1, _C1, _A1>&,
1379		  const map<_K1, _T1, _C1, _A1>&);
1380    };
1381
1382  /**
1383   *  @brief  Map equality comparison.
1384   *  @param  __x  A %map.
1385   *  @param  __y  A %map of the same type as @a x.
1386   *  @return  True iff the size and elements of the maps are equal.
1387   *
1388   *  This is an equivalence relation.  It is linear in the size of the
1389   *  maps.  Maps are considered equivalent if their sizes are equal,
1390   *  and if corresponding elements compare equal.
1391  */
1392  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1393    inline bool
1394    operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1395	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
1396    { return __x._M_t == __y._M_t; }
1397
1398  /**
1399   *  @brief  Map ordering relation.
1400   *  @param  __x  A %map.
1401   *  @param  __y  A %map of the same type as @a x.
1402   *  @return  True iff @a x is lexicographically less than @a y.
1403   *
1404   *  This is a total ordering relation.  It is linear in the size of the
1405   *  maps.  The elements must be comparable with @c <.
1406   *
1407   *  See std::lexicographical_compare() for how the determination is made.
1408  */
1409  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1410    inline bool
1411    operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1412	      const map<_Key, _Tp, _Compare, _Alloc>& __y)
1413    { return __x._M_t < __y._M_t; }
1414
1415  /// Based on operator==
1416  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1417    inline bool
1418    operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1419	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
1420    { return !(__x == __y); }
1421
1422  /// Based on operator<
1423  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1424    inline bool
1425    operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1426	      const map<_Key, _Tp, _Compare, _Alloc>& __y)
1427    { return __y < __x; }
1428
1429  /// Based on operator<
1430  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1431    inline bool
1432    operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1433	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
1434    { return !(__y < __x); }
1435
1436  /// Based on operator<
1437  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1438    inline bool
1439    operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1440	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
1441    { return !(__x < __y); }
1442
1443  /// See std::map::swap().
1444  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1445    inline void
1446    swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
1447	 map<_Key, _Tp, _Compare, _Alloc>& __y)
1448    _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
1449    { __x.swap(__y); }
1450
1451_GLIBCXX_END_NAMESPACE_CONTAINER
1452
1453#if __cplusplus > 201402L
1454_GLIBCXX_BEGIN_NAMESPACE_VERSION
1455  // Allow std::map access to internals of compatible maps.
1456  template<typename _Key, typename _Val, typename _Cmp1, typename _Alloc,
1457	   typename _Cmp2>
1458    struct
1459    _Rb_tree_merge_helper<_GLIBCXX_STD_C::map<_Key, _Val, _Cmp1, _Alloc>,
1460			  _Cmp2>
1461    {
1462    private:
1463      friend class _GLIBCXX_STD_C::map<_Key, _Val, _Cmp1, _Alloc>;
1464
1465      static auto&
1466      _S_get_tree(_GLIBCXX_STD_C::map<_Key, _Val, _Cmp2, _Alloc>& __map)
1467      { return __map._M_t; }
1468
1469      static auto&
1470      _S_get_tree(_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp2, _Alloc>& __map)
1471      { return __map._M_t; }
1472    };
1473_GLIBCXX_END_NAMESPACE_VERSION
1474#endif // C++17
1475
1476} // namespace std
1477
1478#endif /* _STL_MAP_H */
1479