stl_map.h revision 1.1.1.5
1// Map implementation -*- C++ -*-
2
3// Copyright (C) 2001-2016 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/*
26 *
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation.  Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose.  It is provided "as is" without express or implied warranty.
37 *
38 *
39 * Copyright (c) 1996,1997
40 * Silicon Graphics Computer Systems, Inc.
41 *
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation.  Silicon Graphics makes no
47 * representations about the suitability of this software for any
48 * purpose.  It is provided "as is" without express or implied warranty.
49 */
50
51/** @file bits/stl_map.h
52 *  This is an internal header file, included by other library headers.
53 *  Do not attempt to use it directly. @headername{map}
54 */
55
56#ifndef _STL_MAP_H
57#define _STL_MAP_H 1
58
59#include <bits/functexcept.h>
60#include <bits/concept_check.h>
61#if __cplusplus >= 201103L
62#include <initializer_list>
63#include <tuple>
64#endif
65
66namespace std _GLIBCXX_VISIBILITY(default)
67{
68_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
69
70  /**
71   *  @brief A standard container made up of (key,value) pairs, which can be
72   *  retrieved based on a key, in logarithmic time.
73   *
74   *  @ingroup associative_containers
75   *
76   *  @tparam _Key  Type of key objects.
77   *  @tparam  _Tp  Type of mapped objects.
78   *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
79   *  @tparam _Alloc  Allocator type, defaults to
80   *                  allocator<pair<const _Key, _Tp>.
81   *
82   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
83   *  <a href="tables.html#66">reversible container</a>, and an
84   *  <a href="tables.html#69">associative container</a> (using unique keys).
85   *  For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
86   *  value_type is std::pair<const Key,T>.
87   *
88   *  Maps support bidirectional iterators.
89   *
90   *  The private tree data is declared exactly the same way for map and
91   *  multimap; the distinction is made entirely in how the tree functions are
92   *  called (*_unique versus *_equal, same as the standard).
93  */
94  template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
95            typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
96    class map
97    {
98    public:
99      typedef _Key                                          key_type;
100      typedef _Tp                                           mapped_type;
101      typedef std::pair<const _Key, _Tp>                    value_type;
102      typedef _Compare                                      key_compare;
103      typedef _Alloc                                        allocator_type;
104
105    private:
106      // concept requirements
107      typedef typename _Alloc::value_type                   _Alloc_value_type;
108      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
109      __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
110				_BinaryFunctionConcept)
111      __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
112
113    public:
114      class value_compare
115      : public std::binary_function<value_type, value_type, bool>
116      {
117	friend class map<_Key, _Tp, _Compare, _Alloc>;
118      protected:
119	_Compare comp;
120
121	value_compare(_Compare __c)
122	: comp(__c) { }
123
124      public:
125	bool operator()(const value_type& __x, const value_type& __y) const
126	{ return comp(__x.first, __y.first); }
127      };
128
129    private:
130      /// This turns a red-black tree into a [multi]map.
131      typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
132	rebind<value_type>::other _Pair_alloc_type;
133
134      typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
135		       key_compare, _Pair_alloc_type> _Rep_type;
136
137      /// The actual tree structure.
138      _Rep_type _M_t;
139
140      typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
141
142    public:
143      // many of these are specified differently in ISO, but the following are
144      // "functionally equivalent"
145      typedef typename _Alloc_traits::pointer            pointer;
146      typedef typename _Alloc_traits::const_pointer      const_pointer;
147      typedef typename _Alloc_traits::reference          reference;
148      typedef typename _Alloc_traits::const_reference    const_reference;
149      typedef typename _Rep_type::iterator               iterator;
150      typedef typename _Rep_type::const_iterator         const_iterator;
151      typedef typename _Rep_type::size_type              size_type;
152      typedef typename _Rep_type::difference_type        difference_type;
153      typedef typename _Rep_type::reverse_iterator       reverse_iterator;
154      typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
155
156      // [23.3.1.1] construct/copy/destroy
157      // (get_allocator() is also listed in this section)
158
159      /**
160       *  @brief  Default constructor creates no elements.
161       */
162      map()
163      _GLIBCXX_NOEXCEPT_IF(
164	  is_nothrow_default_constructible<allocator_type>::value
165	  && is_nothrow_default_constructible<key_compare>::value)
166      : _M_t() { }
167
168      /**
169       *  @brief  Creates a %map with no elements.
170       *  @param  __comp  A comparison object.
171       *  @param  __a  An allocator object.
172       */
173      explicit
174      map(const _Compare& __comp,
175	  const allocator_type& __a = allocator_type())
176      : _M_t(__comp, _Pair_alloc_type(__a)) { }
177
178      /**
179       *  @brief  %Map copy constructor.
180       *  @param  __x  A %map of identical element and allocator types.
181       *
182       *  The newly-created %map uses a copy of the allocation object
183       *  used by @a __x.
184       */
185      map(const map& __x)
186      : _M_t(__x._M_t) { }
187
188#if __cplusplus >= 201103L
189      /**
190       *  @brief  %Map move constructor.
191       *  @param  __x  A %map of identical element and allocator types.
192       *
193       *  The newly-created %map contains the exact contents of @a __x.
194       *  The contents of @a __x are a valid, but unspecified %map.
195       */
196      map(map&& __x)
197      noexcept(is_nothrow_copy_constructible<_Compare>::value)
198      : _M_t(std::move(__x._M_t)) { }
199
200      /**
201       *  @brief  Builds a %map from an initializer_list.
202       *  @param  __l  An initializer_list.
203       *  @param  __comp  A comparison object.
204       *  @param  __a  An allocator object.
205       *
206       *  Create a %map consisting of copies of the elements in the
207       *  initializer_list @a __l.
208       *  This is linear in N if the range is already sorted, and NlogN
209       *  otherwise (where N is @a __l.size()).
210       */
211      map(initializer_list<value_type> __l,
212	  const _Compare& __comp = _Compare(),
213	  const allocator_type& __a = allocator_type())
214      : _M_t(__comp, _Pair_alloc_type(__a))
215      { _M_t._M_insert_unique(__l.begin(), __l.end()); }
216
217      /// Allocator-extended default constructor.
218      explicit
219      map(const allocator_type& __a)
220      : _M_t(_Compare(), _Pair_alloc_type(__a)) { }
221
222      /// Allocator-extended copy constructor.
223      map(const map& __m, const allocator_type& __a)
224      : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
225
226      /// Allocator-extended move constructor.
227      map(map&& __m, const allocator_type& __a)
228      noexcept(is_nothrow_copy_constructible<_Compare>::value
229	       && _Alloc_traits::_S_always_equal())
230      : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
231
232      /// Allocator-extended initialier-list constructor.
233      map(initializer_list<value_type> __l, const allocator_type& __a)
234      : _M_t(_Compare(), _Pair_alloc_type(__a))
235      { _M_t._M_insert_unique(__l.begin(), __l.end()); }
236
237      /// Allocator-extended range constructor.
238      template<typename _InputIterator>
239        map(_InputIterator __first, _InputIterator __last,
240	    const allocator_type& __a)
241	: _M_t(_Compare(), _Pair_alloc_type(__a))
242        { _M_t._M_insert_unique(__first, __last); }
243#endif
244
245      /**
246       *  @brief  Builds a %map from a range.
247       *  @param  __first  An input iterator.
248       *  @param  __last  An input iterator.
249       *
250       *  Create a %map consisting of copies of the elements from
251       *  [__first,__last).  This is linear in N if the range is
252       *  already sorted, and NlogN otherwise (where N is
253       *  distance(__first,__last)).
254       */
255      template<typename _InputIterator>
256        map(_InputIterator __first, _InputIterator __last)
257	: _M_t()
258        { _M_t._M_insert_unique(__first, __last); }
259
260      /**
261       *  @brief  Builds a %map from a range.
262       *  @param  __first  An input iterator.
263       *  @param  __last  An input iterator.
264       *  @param  __comp  A comparison functor.
265       *  @param  __a  An allocator object.
266       *
267       *  Create a %map consisting of copies of the elements from
268       *  [__first,__last).  This is linear in N if the range is
269       *  already sorted, and NlogN otherwise (where N is
270       *  distance(__first,__last)).
271       */
272      template<typename _InputIterator>
273        map(_InputIterator __first, _InputIterator __last,
274	    const _Compare& __comp,
275	    const allocator_type& __a = allocator_type())
276	: _M_t(__comp, _Pair_alloc_type(__a))
277        { _M_t._M_insert_unique(__first, __last); }
278
279      // FIXME There is no dtor declared, but we should have something
280      // generated by Doxygen.  I don't know what tags to add to this
281      // paragraph to make that happen:
282      /**
283       *  The dtor only erases the elements, and note that if the elements
284       *  themselves are pointers, the pointed-to memory is not touched in any
285       *  way.  Managing the pointer is the user's responsibility.
286       */
287
288      /**
289       *  @brief  %Map assignment operator.
290       *  @param  __x  A %map of identical element and allocator types.
291       *
292       *  All the elements of @a __x are copied, but unlike the copy
293       *  constructor, the allocator object is not copied.
294       */
295      map&
296      operator=(const map& __x)
297      {
298	_M_t = __x._M_t;
299	return *this;
300      }
301
302#if __cplusplus >= 201103L
303      /// Move assignment operator.
304      map&
305      operator=(map&&) = default;
306
307      /**
308       *  @brief  %Map list assignment operator.
309       *  @param  __l  An initializer_list.
310       *
311       *  This function fills a %map with copies of the elements in the
312       *  initializer list @a __l.
313       *
314       *  Note that the assignment completely changes the %map and
315       *  that the resulting %map's size is the same as the number
316       *  of elements assigned.  Old data may be lost.
317       */
318      map&
319      operator=(initializer_list<value_type> __l)
320      {
321	_M_t._M_assign_unique(__l.begin(), __l.end());
322	return *this;
323      }
324#endif
325
326      /// Get a copy of the memory allocation object.
327      allocator_type
328      get_allocator() const _GLIBCXX_NOEXCEPT
329      { return allocator_type(_M_t.get_allocator()); }
330
331      // iterators
332      /**
333       *  Returns a read/write iterator that points to the first pair in the
334       *  %map.
335       *  Iteration is done in ascending order according to the keys.
336       */
337      iterator
338      begin() _GLIBCXX_NOEXCEPT
339      { return _M_t.begin(); }
340
341      /**
342       *  Returns a read-only (constant) iterator that points to the first pair
343       *  in the %map.  Iteration is done in ascending order according to the
344       *  keys.
345       */
346      const_iterator
347      begin() const _GLIBCXX_NOEXCEPT
348      { return _M_t.begin(); }
349
350      /**
351       *  Returns a read/write iterator that points one past the last
352       *  pair in the %map.  Iteration is done in ascending order
353       *  according to the keys.
354       */
355      iterator
356      end() _GLIBCXX_NOEXCEPT
357      { return _M_t.end(); }
358
359      /**
360       *  Returns a read-only (constant) iterator that points one past the last
361       *  pair in the %map.  Iteration is done in ascending order according to
362       *  the keys.
363       */
364      const_iterator
365      end() const _GLIBCXX_NOEXCEPT
366      { return _M_t.end(); }
367
368      /**
369       *  Returns a read/write reverse iterator that points to the last pair in
370       *  the %map.  Iteration is done in descending order according to the
371       *  keys.
372       */
373      reverse_iterator
374      rbegin() _GLIBCXX_NOEXCEPT
375      { return _M_t.rbegin(); }
376
377      /**
378       *  Returns a read-only (constant) reverse iterator that points to the
379       *  last pair in the %map.  Iteration is done in descending order
380       *  according to the keys.
381       */
382      const_reverse_iterator
383      rbegin() const _GLIBCXX_NOEXCEPT
384      { return _M_t.rbegin(); }
385
386      /**
387       *  Returns a read/write reverse iterator that points to one before the
388       *  first pair in the %map.  Iteration is done in descending order
389       *  according to the keys.
390       */
391      reverse_iterator
392      rend() _GLIBCXX_NOEXCEPT
393      { return _M_t.rend(); }
394
395      /**
396       *  Returns a read-only (constant) reverse iterator that points to one
397       *  before the first pair in the %map.  Iteration is done in descending
398       *  order according to the keys.
399       */
400      const_reverse_iterator
401      rend() const _GLIBCXX_NOEXCEPT
402      { return _M_t.rend(); }
403
404#if __cplusplus >= 201103L
405      /**
406       *  Returns a read-only (constant) iterator that points to the first pair
407       *  in the %map.  Iteration is done in ascending order according to the
408       *  keys.
409       */
410      const_iterator
411      cbegin() const noexcept
412      { return _M_t.begin(); }
413
414      /**
415       *  Returns a read-only (constant) iterator that points one past the last
416       *  pair in the %map.  Iteration is done in ascending order according to
417       *  the keys.
418       */
419      const_iterator
420      cend() const noexcept
421      { return _M_t.end(); }
422
423      /**
424       *  Returns a read-only (constant) reverse iterator that points to the
425       *  last pair in the %map.  Iteration is done in descending order
426       *  according to the keys.
427       */
428      const_reverse_iterator
429      crbegin() const noexcept
430      { return _M_t.rbegin(); }
431
432      /**
433       *  Returns a read-only (constant) reverse iterator that points to one
434       *  before the first pair in the %map.  Iteration is done in descending
435       *  order according to the keys.
436       */
437      const_reverse_iterator
438      crend() const noexcept
439      { return _M_t.rend(); }
440#endif
441
442      // capacity
443      /** Returns true if the %map is empty.  (Thus begin() would equal
444       *  end().)
445      */
446      bool
447      empty() const _GLIBCXX_NOEXCEPT
448      { return _M_t.empty(); }
449
450      /** Returns the size of the %map.  */
451      size_type
452      size() const _GLIBCXX_NOEXCEPT
453      { return _M_t.size(); }
454
455      /** Returns the maximum size of the %map.  */
456      size_type
457      max_size() const _GLIBCXX_NOEXCEPT
458      { return _M_t.max_size(); }
459
460      // [23.3.1.2] element access
461      /**
462       *  @brief  Subscript ( @c [] ) access to %map data.
463       *  @param  __k  The key for which data should be retrieved.
464       *  @return  A reference to the data of the (key,data) %pair.
465       *
466       *  Allows for easy lookup with the subscript ( @c [] )
467       *  operator.  Returns data associated with the key specified in
468       *  subscript.  If the key does not exist, a pair with that key
469       *  is created using default values, which is then returned.
470       *
471       *  Lookup requires logarithmic time.
472       */
473      mapped_type&
474      operator[](const key_type& __k)
475      {
476	// concept requirements
477	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
478
479	iterator __i = lower_bound(__k);
480	// __i->first is greater than or equivalent to __k.
481	if (__i == end() || key_comp()(__k, (*__i).first))
482#if __cplusplus >= 201103L
483	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
484					    std::tuple<const key_type&>(__k),
485					    std::tuple<>());
486#else
487          __i = insert(__i, value_type(__k, mapped_type()));
488#endif
489	return (*__i).second;
490      }
491
492#if __cplusplus >= 201103L
493      mapped_type&
494      operator[](key_type&& __k)
495      {
496	// concept requirements
497	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
498
499	iterator __i = lower_bound(__k);
500	// __i->first is greater than or equivalent to __k.
501	if (__i == end() || key_comp()(__k, (*__i).first))
502	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
503					std::forward_as_tuple(std::move(__k)),
504					std::tuple<>());
505	return (*__i).second;
506      }
507#endif
508
509      // _GLIBCXX_RESOLVE_LIB_DEFECTS
510      // DR 464. Suggestion for new member functions in standard containers.
511      /**
512       *  @brief  Access to %map data.
513       *  @param  __k  The key for which data should be retrieved.
514       *  @return  A reference to the data whose key is equivalent to @a __k, if
515       *           such a data is present in the %map.
516       *  @throw  std::out_of_range  If no such data is present.
517       */
518      mapped_type&
519      at(const key_type& __k)
520      {
521	iterator __i = lower_bound(__k);
522	if (__i == end() || key_comp()(__k, (*__i).first))
523	  __throw_out_of_range(__N("map::at"));
524	return (*__i).second;
525      }
526
527      const mapped_type&
528      at(const key_type& __k) const
529      {
530	const_iterator __i = lower_bound(__k);
531	if (__i == end() || key_comp()(__k, (*__i).first))
532	  __throw_out_of_range(__N("map::at"));
533	return (*__i).second;
534      }
535
536      // modifiers
537#if __cplusplus >= 201103L
538      /**
539       *  @brief Attempts to build and insert a std::pair into the %map.
540       *
541       *  @param __args  Arguments used to generate a new pair instance (see
542       *	        std::piecewise_contruct for passing arguments to each
543       *	        part of the pair constructor).
544       *
545       *  @return  A pair, of which the first element is an iterator that points
546       *           to the possibly inserted pair, and the second is a bool that
547       *           is true if the pair was actually inserted.
548       *
549       *  This function attempts to build and insert a (key, value) %pair into
550       *  the %map.
551       *  A %map relies on unique keys and thus a %pair is only inserted if its
552       *  first element (the key) is not already present in the %map.
553       *
554       *  Insertion requires logarithmic time.
555       */
556      template<typename... _Args>
557	std::pair<iterator, bool>
558	emplace(_Args&&... __args)
559	{ return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); }
560
561      /**
562       *  @brief Attempts to build and insert a std::pair into the %map.
563       *
564       *  @param  __pos  An iterator that serves as a hint as to where the pair
565       *                should be inserted.
566       *  @param  __args  Arguments used to generate a new pair instance (see
567       *	         std::piecewise_contruct for passing arguments to each
568       *	         part of the pair constructor).
569       *  @return An iterator that points to the element with key of the
570       *          std::pair built from @a __args (may or may not be that
571       *          std::pair).
572       *
573       *  This function is not concerned about whether the insertion took place,
574       *  and thus does not return a boolean like the single-argument emplace()
575       *  does.
576       *  Note that the first parameter is only a hint and can potentially
577       *  improve the performance of the insertion process. A bad hint would
578       *  cause no gains in efficiency.
579       *
580       *  See
581       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
582       *  for more on @a hinting.
583       *
584       *  Insertion requires logarithmic time (if the hint is not taken).
585       */
586      template<typename... _Args>
587	iterator
588	emplace_hint(const_iterator __pos, _Args&&... __args)
589	{
590	  return _M_t._M_emplace_hint_unique(__pos,
591					     std::forward<_Args>(__args)...);
592	}
593#endif
594
595#if __cplusplus > 201402L
596#define __cpp_lib_map_try_emplace 201411
597      /**
598       *  @brief Attempts to build and insert a std::pair into the %map.
599       *
600       *  @param __k    Key to use for finding a possibly existing pair in
601       *                the map.
602       *  @param __args  Arguments used to generate the .second for a new pair
603       *                instance.
604       *
605       *  @return  A pair, of which the first element is an iterator that points
606       *           to the possibly inserted pair, and the second is a bool that
607       *           is true if the pair was actually inserted.
608       *
609       *  This function attempts to build and insert a (key, value) %pair into
610       *  the %map.
611       *  A %map relies on unique keys and thus a %pair is only inserted if its
612       *  first element (the key) is not already present in the %map.
613       *  If a %pair is not inserted, this function has no effect.
614       *
615       *  Insertion requires logarithmic time.
616       */
617      template <typename... _Args>
618        pair<iterator, bool>
619        try_emplace(const key_type& __k, _Args&&... __args)
620        {
621          iterator __i = lower_bound(__k);
622          if (__i == end() || key_comp()(__k, (*__i).first))
623            {
624              __i = emplace_hint(__i, std::piecewise_construct,
625                                 std::forward_as_tuple(__k),
626                                 std::forward_as_tuple(
627                                   std::forward<_Args>(__args)...));
628              return {__i, true};
629            }
630          return {__i, false};
631        }
632
633      // move-capable overload
634      template <typename... _Args>
635        pair<iterator, bool>
636        try_emplace(key_type&& __k, _Args&&... __args)
637        {
638          iterator __i = lower_bound(__k);
639          if (__i == end() || key_comp()(__k, (*__i).first))
640            {
641              __i = emplace_hint(__i, std::piecewise_construct,
642                                 std::forward_as_tuple(std::move(__k)),
643                                 std::forward_as_tuple(
644                                   std::forward<_Args>(__args)...));
645              return {__i, true};
646            }
647          return {__i, false};
648        }
649
650      /**
651       *  @brief Attempts to build and insert a std::pair into the %map.
652       *
653       *  @param  __hint  An iterator that serves as a hint as to where the
654       *                  pair should be inserted.
655       *  @param __k    Key to use for finding a possibly existing pair in
656       *                the map.
657       *  @param __args  Arguments used to generate the .second for a new pair
658       *                instance.
659       *  @return An iterator that points to the element with key of the
660       *          std::pair built from @a __args (may or may not be that
661       *          std::pair).
662       *
663       *  This function is not concerned about whether the insertion took place,
664       *  and thus does not return a boolean like the single-argument
665       *  try_emplace() does. However, if insertion did not take place,
666       *  this function has no effect.
667       *  Note that the first parameter is only a hint and can potentially
668       *  improve the performance of the insertion process. A bad hint would
669       *  cause no gains in efficiency.
670       *
671       *  See
672       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
673       *  for more on @a hinting.
674       *
675       *  Insertion requires logarithmic time (if the hint is not taken).
676       */
677      template <typename... _Args>
678        iterator
679        try_emplace(const_iterator __hint, const key_type& __k,
680                    _Args&&... __args)
681        {
682          iterator __i;
683          auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
684          if (__true_hint.second)
685            __i = emplace_hint(iterator(__true_hint.second),
686                               std::piecewise_construct,
687                               std::forward_as_tuple(__k),
688                               std::forward_as_tuple(
689                                 std::forward<_Args>(__args)...));
690          else
691            __i = iterator(__true_hint.first);
692          return __i;
693        }
694
695      // move-capable overload
696      template <typename... _Args>
697        iterator
698        try_emplace(const_iterator __hint, key_type&& __k, _Args&&... __args)
699        {
700          iterator __i;
701          auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
702          if (__true_hint.second)
703            __i = emplace_hint(iterator(__true_hint.second),
704                               std::piecewise_construct,
705                               std::forward_as_tuple(std::move(__k)),
706                               std::forward_as_tuple(
707                                 std::forward<_Args>(__args)...));
708          else
709            __i = iterator(__true_hint.first);
710          return __i;
711        }
712#endif
713
714      /**
715       *  @brief Attempts to insert a std::pair into the %map.
716
717       *  @param __x Pair to be inserted (see std::make_pair for easy
718       *	     creation of pairs).
719       *
720       *  @return  A pair, of which the first element is an iterator that
721       *           points to the possibly inserted pair, and the second is
722       *           a bool that is true if the pair was actually inserted.
723       *
724       *  This function attempts to insert a (key, value) %pair into the %map.
725       *  A %map relies on unique keys and thus a %pair is only inserted if its
726       *  first element (the key) is not already present in the %map.
727       *
728       *  Insertion requires logarithmic time.
729       */
730      std::pair<iterator, bool>
731      insert(const value_type& __x)
732      { return _M_t._M_insert_unique(__x); }
733
734#if __cplusplus >= 201103L
735      template<typename _Pair, typename = typename
736	       std::enable_if<std::is_constructible<value_type,
737						    _Pair&&>::value>::type>
738        std::pair<iterator, bool>
739        insert(_Pair&& __x)
740        { return _M_t._M_insert_unique(std::forward<_Pair>(__x)); }
741#endif
742
743#if __cplusplus >= 201103L
744      /**
745       *  @brief Attempts to insert a list of std::pairs into the %map.
746       *  @param  __list  A std::initializer_list<value_type> of pairs to be
747       *                  inserted.
748       *
749       *  Complexity similar to that of the range constructor.
750       */
751      void
752      insert(std::initializer_list<value_type> __list)
753      { insert(__list.begin(), __list.end()); }
754#endif
755
756      /**
757       *  @brief Attempts to insert a std::pair into the %map.
758       *  @param  __position  An iterator that serves as a hint as to where the
759       *                    pair should be inserted.
760       *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
761       *               of pairs).
762       *  @return An iterator that points to the element with key of
763       *           @a __x (may or may not be the %pair passed in).
764       *
765
766       *  This function is not concerned about whether the insertion
767       *  took place, and thus does not return a boolean like the
768       *  single-argument insert() does.  Note that the first
769       *  parameter is only a hint and can potentially improve the
770       *  performance of the insertion process.  A bad hint would
771       *  cause no gains in efficiency.
772       *
773       *  See
774       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
775       *  for more on @a hinting.
776       *
777       *  Insertion requires logarithmic time (if the hint is not taken).
778       */
779      iterator
780#if __cplusplus >= 201103L
781      insert(const_iterator __position, const value_type& __x)
782#else
783      insert(iterator __position, const value_type& __x)
784#endif
785      { return _M_t._M_insert_unique_(__position, __x); }
786
787#if __cplusplus >= 201103L
788      template<typename _Pair, typename = typename
789	       std::enable_if<std::is_constructible<value_type,
790						    _Pair&&>::value>::type>
791        iterator
792        insert(const_iterator __position, _Pair&& __x)
793        { return _M_t._M_insert_unique_(__position,
794					std::forward<_Pair>(__x)); }
795#endif
796
797      /**
798       *  @brief Template function that attempts to insert a range of elements.
799       *  @param  __first  Iterator pointing to the start of the range to be
800       *                   inserted.
801       *  @param  __last  Iterator pointing to the end of the range.
802       *
803       *  Complexity similar to that of the range constructor.
804       */
805      template<typename _InputIterator>
806        void
807        insert(_InputIterator __first, _InputIterator __last)
808        { _M_t._M_insert_unique(__first, __last); }
809
810#if __cplusplus > 201402L
811#define __cpp_lib_map_insertion 201411
812      /**
813       *  @brief Attempts to insert or assign a std::pair into the %map.
814       *  @param __k    Key to use for finding a possibly existing pair in
815       *                the map.
816       *  @param __obj  Argument used to generate the .second for a pair
817       *                instance.
818       *
819       *  @return  A pair, of which the first element is an iterator that
820       *           points to the possibly inserted pair, and the second is
821       *           a bool that is true if the pair was actually inserted.
822       *
823       *  This function attempts to insert a (key, value) %pair into the %map.
824       *  A %map relies on unique keys and thus a %pair is only inserted if its
825       *  first element (the key) is not already present in the %map.
826       *  If the %pair was already in the %map, the .second of the %pair
827       *  is assigned from __obj.
828       *
829       *  Insertion requires logarithmic time.
830       */
831      template <typename _Obj>
832        pair<iterator, bool>
833        insert_or_assign(const key_type& __k, _Obj&& __obj)
834        {
835          iterator __i = lower_bound(__k);
836          if (__i == end() || key_comp()(__k, (*__i).first))
837            {
838              __i = emplace_hint(__i, std::piecewise_construct,
839                                 std::forward_as_tuple(__k),
840                                 std::forward_as_tuple(
841                                   std::forward<_Obj>(__obj)));
842              return {__i, true};
843            }
844          (*__i).second = std::forward<_Obj>(__obj);
845          return {__i, false};
846        }
847
848      // move-capable overload
849      template <typename _Obj>
850        pair<iterator, bool>
851        insert_or_assign(key_type&& __k, _Obj&& __obj)
852        {
853          iterator __i = lower_bound(__k);
854          if (__i == end() || key_comp()(__k, (*__i).first))
855            {
856              __i = emplace_hint(__i, std::piecewise_construct,
857                                 std::forward_as_tuple(std::move(__k)),
858                                 std::forward_as_tuple(
859                                   std::forward<_Obj>(__obj)));
860              return {__i, true};
861            }
862          (*__i).second = std::forward<_Obj>(__obj);
863          return {__i, false};
864        }
865
866      /**
867       *  @brief Attempts to insert or assign a std::pair into the %map.
868       *  @param  __hint  An iterator that serves as a hint as to where the
869       *                  pair should be inserted.
870       *  @param __k    Key to use for finding a possibly existing pair in
871       *                the map.
872       *  @param __obj  Argument used to generate the .second for a pair
873       *                instance.
874       *
875       *  @return An iterator that points to the element with key of
876       *           @a __x (may or may not be the %pair passed in).
877       *
878       *  This function attempts to insert a (key, value) %pair into the %map.
879       *  A %map relies on unique keys and thus a %pair is only inserted if its
880       *  first element (the key) is not already present in the %map.
881       *  If the %pair was already in the %map, the .second of the %pair
882       *  is assigned from __obj.
883       *
884       *  Insertion requires logarithmic time.
885       */
886      template <typename _Obj>
887        iterator
888        insert_or_assign(const_iterator __hint,
889                         const key_type& __k, _Obj&& __obj)
890        {
891          iterator __i;
892          auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
893          if (__true_hint.second)
894            {
895              return emplace_hint(iterator(__true_hint.second),
896                                  std::piecewise_construct,
897                                  std::forward_as_tuple(__k),
898                                  std::forward_as_tuple(
899                                    std::forward<_Obj>(__obj)));
900            }
901          __i = iterator(__true_hint.first);
902          (*__i).second = std::forward<_Obj>(__obj);
903          return __i;
904        }
905
906      // move-capable overload
907      template <typename _Obj>
908        iterator
909        insert_or_assign(const_iterator __hint, key_type&& __k, _Obj&& __obj)
910        {
911          iterator __i;
912          auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
913          if (__true_hint.second)
914            {
915              return emplace_hint(iterator(__true_hint.second),
916                                  std::piecewise_construct,
917                                  std::forward_as_tuple(std::move(__k)),
918                                  std::forward_as_tuple(
919                                    std::forward<_Obj>(__obj)));
920            }
921          __i = iterator(__true_hint.first);
922          (*__i).second = std::forward<_Obj>(__obj);
923          return __i;
924        }
925#endif
926
927#if __cplusplus >= 201103L
928      // _GLIBCXX_RESOLVE_LIB_DEFECTS
929      // DR 130. Associative erase should return an iterator.
930      /**
931       *  @brief Erases an element from a %map.
932       *  @param  __position  An iterator pointing to the element to be erased.
933       *  @return An iterator pointing to the element immediately following
934       *          @a position prior to the element being erased. If no such
935       *          element exists, end() is returned.
936       *
937       *  This function erases an element, pointed to by the given
938       *  iterator, from a %map.  Note that this function only erases
939       *  the element, and that if the element is itself a pointer,
940       *  the pointed-to memory is not touched in any way.  Managing
941       *  the pointer is the user's responsibility.
942       */
943      iterator
944      erase(const_iterator __position)
945      { return _M_t.erase(__position); }
946
947      // LWG 2059
948      _GLIBCXX_ABI_TAG_CXX11
949      iterator
950      erase(iterator __position)
951      { return _M_t.erase(__position); }
952#else
953      /**
954       *  @brief Erases an element from a %map.
955       *  @param  __position  An iterator pointing to the element to be erased.
956       *
957       *  This function erases an element, pointed to by the given
958       *  iterator, from a %map.  Note that this function only erases
959       *  the element, and that if the element is itself a pointer,
960       *  the pointed-to memory is not touched in any way.  Managing
961       *  the pointer is the user's responsibility.
962       */
963      void
964      erase(iterator __position)
965      { _M_t.erase(__position); }
966#endif
967
968      /**
969       *  @brief Erases elements according to the provided key.
970       *  @param  __x  Key of element to be erased.
971       *  @return  The number of elements erased.
972       *
973       *  This function erases all the elements located by the given key from
974       *  a %map.
975       *  Note that this function only erases the element, and that if
976       *  the element is itself a pointer, the pointed-to memory is not touched
977       *  in any way.  Managing the pointer is the user's responsibility.
978       */
979      size_type
980      erase(const key_type& __x)
981      { return _M_t.erase(__x); }
982
983#if __cplusplus >= 201103L
984      // _GLIBCXX_RESOLVE_LIB_DEFECTS
985      // DR 130. Associative erase should return an iterator.
986      /**
987       *  @brief Erases a [first,last) range of elements from a %map.
988       *  @param  __first  Iterator pointing to the start of the range to be
989       *                   erased.
990       *  @param __last Iterator pointing to the end of the range to
991       *                be erased.
992       *  @return The iterator @a __last.
993       *
994       *  This function erases a sequence of elements from a %map.
995       *  Note that this function only erases the element, and that if
996       *  the element is itself a pointer, the pointed-to memory is not touched
997       *  in any way.  Managing the pointer is the user's responsibility.
998       */
999      iterator
1000      erase(const_iterator __first, const_iterator __last)
1001      { return _M_t.erase(__first, __last); }
1002#else
1003      /**
1004       *  @brief Erases a [__first,__last) range of elements from a %map.
1005       *  @param  __first  Iterator pointing to the start of the range to be
1006       *                   erased.
1007       *  @param __last Iterator pointing to the end of the range to
1008       *                be erased.
1009       *
1010       *  This function erases a sequence of elements from a %map.
1011       *  Note that this function only erases the element, and that if
1012       *  the element is itself a pointer, the pointed-to memory is not touched
1013       *  in any way.  Managing the pointer is the user's responsibility.
1014       */
1015      void
1016      erase(iterator __first, iterator __last)
1017      { _M_t.erase(__first, __last); }
1018#endif
1019
1020      /**
1021       *  @brief  Swaps data with another %map.
1022       *  @param  __x  A %map of the same element and allocator types.
1023       *
1024       *  This exchanges the elements between two maps in constant
1025       *  time.  (It is only swapping a pointer, an integer, and an
1026       *  instance of the @c Compare type (which itself is often
1027       *  stateless and empty), so it should be quite fast.)  Note
1028       *  that the global std::swap() function is specialized such
1029       *  that std::swap(m1,m2) will feed to this function.
1030       */
1031      void
1032      swap(map& __x)
1033      _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
1034      { _M_t.swap(__x._M_t); }
1035
1036      /**
1037       *  Erases all elements in a %map.  Note that this function only
1038       *  erases the elements, and that if the elements themselves are
1039       *  pointers, the pointed-to memory is not touched in any way.
1040       *  Managing the pointer is the user's responsibility.
1041       */
1042      void
1043      clear() _GLIBCXX_NOEXCEPT
1044      { _M_t.clear(); }
1045
1046      // observers
1047      /**
1048       *  Returns the key comparison object out of which the %map was
1049       *  constructed.
1050       */
1051      key_compare
1052      key_comp() const
1053      { return _M_t.key_comp(); }
1054
1055      /**
1056       *  Returns a value comparison object, built from the key comparison
1057       *  object out of which the %map was constructed.
1058       */
1059      value_compare
1060      value_comp() const
1061      { return value_compare(_M_t.key_comp()); }
1062
1063      // [23.3.1.3] map operations
1064
1065      //@{
1066      /**
1067       *  @brief Tries to locate an element in a %map.
1068       *  @param  __x  Key of (key, value) %pair to be located.
1069       *  @return  Iterator pointing to sought-after element, or end() if not
1070       *           found.
1071       *
1072       *  This function takes a key and tries to locate the element with which
1073       *  the key matches.  If successful the function returns an iterator
1074       *  pointing to the sought after %pair.  If unsuccessful it returns the
1075       *  past-the-end ( @c end() ) iterator.
1076       */
1077
1078      iterator
1079      find(const key_type& __x)
1080      { return _M_t.find(__x); }
1081
1082#if __cplusplus > 201103L
1083      template<typename _Kt>
1084	auto
1085	find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
1086	{ return _M_t._M_find_tr(__x); }
1087#endif
1088      //@}
1089
1090      //@{
1091      /**
1092       *  @brief Tries to locate an element in a %map.
1093       *  @param  __x  Key of (key, value) %pair to be located.
1094       *  @return  Read-only (constant) iterator pointing to sought-after
1095       *           element, or end() if not found.
1096       *
1097       *  This function takes a key and tries to locate the element with which
1098       *  the key matches.  If successful the function returns a constant
1099       *  iterator pointing to the sought after %pair. If unsuccessful it
1100       *  returns the past-the-end ( @c end() ) iterator.
1101       */
1102
1103      const_iterator
1104      find(const key_type& __x) const
1105      { return _M_t.find(__x); }
1106
1107#if __cplusplus > 201103L
1108      template<typename _Kt>
1109	auto
1110	find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
1111	{ return _M_t._M_find_tr(__x); }
1112#endif
1113      //@}
1114
1115      //@{
1116      /**
1117       *  @brief  Finds the number of elements with given key.
1118       *  @param  __x  Key of (key, value) pairs to be located.
1119       *  @return  Number of elements with specified key.
1120       *
1121       *  This function only makes sense for multimaps; for map the result will
1122       *  either be 0 (not present) or 1 (present).
1123       */
1124      size_type
1125      count(const key_type& __x) const
1126      { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
1127
1128#if __cplusplus > 201103L
1129      template<typename _Kt>
1130	auto
1131	count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
1132	{ return _M_t._M_count_tr(__x); }
1133#endif
1134      //@}
1135
1136      //@{
1137      /**
1138       *  @brief Finds the beginning of a subsequence matching given key.
1139       *  @param  __x  Key of (key, value) pair to be located.
1140       *  @return  Iterator pointing to first element equal to or greater
1141       *           than key, or end().
1142       *
1143       *  This function returns the first element of a subsequence of elements
1144       *  that matches the given key.  If unsuccessful it returns an iterator
1145       *  pointing to the first element that has a greater value than given key
1146       *  or end() if no such element exists.
1147       */
1148      iterator
1149      lower_bound(const key_type& __x)
1150      { return _M_t.lower_bound(__x); }
1151
1152#if __cplusplus > 201103L
1153      template<typename _Kt>
1154	auto
1155	lower_bound(const _Kt& __x)
1156	-> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
1157	{ return iterator(_M_t._M_lower_bound_tr(__x)); }
1158#endif
1159      //@}
1160
1161      //@{
1162      /**
1163       *  @brief Finds the beginning of a subsequence matching given key.
1164       *  @param  __x  Key of (key, value) pair to be located.
1165       *  @return  Read-only (constant) iterator pointing to first element
1166       *           equal to or greater than key, or end().
1167       *
1168       *  This function returns the first element of a subsequence of elements
1169       *  that matches the given key.  If unsuccessful it returns an iterator
1170       *  pointing to the first element that has a greater value than given key
1171       *  or end() if no such element exists.
1172       */
1173      const_iterator
1174      lower_bound(const key_type& __x) const
1175      { return _M_t.lower_bound(__x); }
1176
1177#if __cplusplus > 201103L
1178      template<typename _Kt>
1179	auto
1180	lower_bound(const _Kt& __x) const
1181	-> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
1182	{ return const_iterator(_M_t._M_lower_bound_tr(__x)); }
1183#endif
1184      //@}
1185
1186      //@{
1187      /**
1188       *  @brief Finds the end of a subsequence matching given key.
1189       *  @param  __x  Key of (key, value) pair to be located.
1190       *  @return Iterator pointing to the first element
1191       *          greater than key, or end().
1192       */
1193      iterator
1194      upper_bound(const key_type& __x)
1195      { return _M_t.upper_bound(__x); }
1196
1197#if __cplusplus > 201103L
1198      template<typename _Kt>
1199	auto
1200	upper_bound(const _Kt& __x)
1201	-> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
1202	{ return iterator(_M_t._M_upper_bound_tr(__x)); }
1203#endif
1204      //@}
1205
1206      //@{
1207      /**
1208       *  @brief Finds the end of a subsequence matching given key.
1209       *  @param  __x  Key of (key, value) pair to be located.
1210       *  @return  Read-only (constant) iterator pointing to first iterator
1211       *           greater than key, or end().
1212       */
1213      const_iterator
1214      upper_bound(const key_type& __x) const
1215      { return _M_t.upper_bound(__x); }
1216
1217#if __cplusplus > 201103L
1218      template<typename _Kt>
1219	auto
1220	upper_bound(const _Kt& __x) const
1221	-> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
1222	{ return const_iterator(_M_t._M_upper_bound_tr(__x)); }
1223#endif
1224      //@}
1225
1226      //@{
1227      /**
1228       *  @brief Finds a subsequence matching given key.
1229       *  @param  __x  Key of (key, value) pairs to be located.
1230       *  @return  Pair of iterators that possibly points to the subsequence
1231       *           matching given key.
1232       *
1233       *  This function is equivalent to
1234       *  @code
1235       *    std::make_pair(c.lower_bound(val),
1236       *                   c.upper_bound(val))
1237       *  @endcode
1238       *  (but is faster than making the calls separately).
1239       *
1240       *  This function probably only makes sense for multimaps.
1241       */
1242      std::pair<iterator, iterator>
1243      equal_range(const key_type& __x)
1244      { return _M_t.equal_range(__x); }
1245
1246#if __cplusplus > 201103L
1247      template<typename _Kt>
1248	auto
1249	equal_range(const _Kt& __x)
1250	-> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
1251	{ return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
1252#endif
1253      //@}
1254
1255      //@{
1256      /**
1257       *  @brief Finds a subsequence matching given key.
1258       *  @param  __x  Key of (key, value) pairs to be located.
1259       *  @return  Pair of read-only (constant) iterators that possibly points
1260       *           to the subsequence matching given key.
1261       *
1262       *  This function is equivalent to
1263       *  @code
1264       *    std::make_pair(c.lower_bound(val),
1265       *                   c.upper_bound(val))
1266       *  @endcode
1267       *  (but is faster than making the calls separately).
1268       *
1269       *  This function probably only makes sense for multimaps.
1270       */
1271      std::pair<const_iterator, const_iterator>
1272      equal_range(const key_type& __x) const
1273      { return _M_t.equal_range(__x); }
1274
1275#if __cplusplus > 201103L
1276      template<typename _Kt>
1277	auto
1278	equal_range(const _Kt& __x) const
1279	-> decltype(pair<const_iterator, const_iterator>(
1280	      _M_t._M_equal_range_tr(__x)))
1281	{
1282	  return pair<const_iterator, const_iterator>(
1283	      _M_t._M_equal_range_tr(__x));
1284	}
1285#endif
1286      //@}
1287
1288      template<typename _K1, typename _T1, typename _C1, typename _A1>
1289        friend bool
1290        operator==(const map<_K1, _T1, _C1, _A1>&,
1291		   const map<_K1, _T1, _C1, _A1>&);
1292
1293      template<typename _K1, typename _T1, typename _C1, typename _A1>
1294        friend bool
1295        operator<(const map<_K1, _T1, _C1, _A1>&,
1296		  const map<_K1, _T1, _C1, _A1>&);
1297    };
1298
1299  /**
1300   *  @brief  Map equality comparison.
1301   *  @param  __x  A %map.
1302   *  @param  __y  A %map of the same type as @a x.
1303   *  @return  True iff the size and elements of the maps are equal.
1304   *
1305   *  This is an equivalence relation.  It is linear in the size of the
1306   *  maps.  Maps are considered equivalent if their sizes are equal,
1307   *  and if corresponding elements compare equal.
1308  */
1309  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1310    inline bool
1311    operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1312               const map<_Key, _Tp, _Compare, _Alloc>& __y)
1313    { return __x._M_t == __y._M_t; }
1314
1315  /**
1316   *  @brief  Map ordering relation.
1317   *  @param  __x  A %map.
1318   *  @param  __y  A %map of the same type as @a x.
1319   *  @return  True iff @a x is lexicographically less than @a y.
1320   *
1321   *  This is a total ordering relation.  It is linear in the size of the
1322   *  maps.  The elements must be comparable with @c <.
1323   *
1324   *  See std::lexicographical_compare() for how the determination is made.
1325  */
1326  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1327    inline bool
1328    operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1329              const map<_Key, _Tp, _Compare, _Alloc>& __y)
1330    { return __x._M_t < __y._M_t; }
1331
1332  /// Based on operator==
1333  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1334    inline bool
1335    operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1336               const map<_Key, _Tp, _Compare, _Alloc>& __y)
1337    { return !(__x == __y); }
1338
1339  /// Based on operator<
1340  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1341    inline bool
1342    operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1343              const map<_Key, _Tp, _Compare, _Alloc>& __y)
1344    { return __y < __x; }
1345
1346  /// Based on operator<
1347  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1348    inline bool
1349    operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1350               const map<_Key, _Tp, _Compare, _Alloc>& __y)
1351    { return !(__y < __x); }
1352
1353  /// Based on operator<
1354  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1355    inline bool
1356    operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1357               const map<_Key, _Tp, _Compare, _Alloc>& __y)
1358    { return !(__x < __y); }
1359
1360  /// See std::map::swap().
1361  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1362    inline void
1363    swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
1364	 map<_Key, _Tp, _Compare, _Alloc>& __y)
1365    _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
1366    { __x.swap(__y); }
1367
1368_GLIBCXX_END_NAMESPACE_CONTAINER
1369} // namespace std
1370
1371#endif /* _STL_MAP_H */
1372