stl_map.h revision 1.1.1.12
1// Map implementation -*- C++ -*-
2
3// Copyright (C) 2001-2020 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/*
26 *
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation.  Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose.  It is provided "as is" without express or implied warranty.
37 *
38 *
39 * Copyright (c) 1996,1997
40 * Silicon Graphics Computer Systems, Inc.
41 *
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation.  Silicon Graphics makes no
47 * representations about the suitability of this software for any
48 * purpose.  It is provided "as is" without express or implied warranty.
49 */
50
51/** @file bits/stl_map.h
52 *  This is an internal header file, included by other library headers.
53 *  Do not attempt to use it directly. @headername{map}
54 */
55
56#ifndef _STL_MAP_H
57#define _STL_MAP_H 1
58
59#include <bits/functexcept.h>
60#include <bits/concept_check.h>
61#if __cplusplus >= 201103L
62#include <initializer_list>
63#include <tuple>
64#endif
65
66namespace std _GLIBCXX_VISIBILITY(default)
67{
68_GLIBCXX_BEGIN_NAMESPACE_VERSION
69_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
70
71  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
72    class multimap;
73
74  /**
75   *  @brief A standard container made up of (key,value) pairs, which can be
76   *  retrieved based on a key, in logarithmic time.
77   *
78   *  @ingroup associative_containers
79   *
80   *  @tparam _Key  Type of key objects.
81   *  @tparam  _Tp  Type of mapped objects.
82   *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
83   *  @tparam _Alloc  Allocator type, defaults to
84   *                  allocator<pair<const _Key, _Tp>.
85   *
86   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
87   *  <a href="tables.html#66">reversible container</a>, and an
88   *  <a href="tables.html#69">associative container</a> (using unique keys).
89   *  For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
90   *  value_type is std::pair<const Key,T>.
91   *
92   *  Maps support bidirectional iterators.
93   *
94   *  The private tree data is declared exactly the same way for map and
95   *  multimap; the distinction is made entirely in how the tree functions are
96   *  called (*_unique versus *_equal, same as the standard).
97  */
98  template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
99	    typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
100    class map
101    {
102    public:
103      typedef _Key					key_type;
104      typedef _Tp					mapped_type;
105      typedef std::pair<const _Key, _Tp>		value_type;
106      typedef _Compare					key_compare;
107      typedef _Alloc					allocator_type;
108
109    private:
110#ifdef _GLIBCXX_CONCEPT_CHECKS
111      // concept requirements
112      typedef typename _Alloc::value_type		_Alloc_value_type;
113# if __cplusplus < 201103L
114      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
115# endif
116      __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
117				_BinaryFunctionConcept)
118      __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
119#endif
120
121#if __cplusplus >= 201103L
122#if __cplusplus > 201703L || defined __STRICT_ANSI__
123      static_assert(is_same<typename _Alloc::value_type, value_type>::value,
124	  "std::map must have the same value_type as its allocator");
125#endif
126#endif
127
128    public:
129      class value_compare
130      : public std::binary_function<value_type, value_type, bool>
131      {
132	friend class map<_Key, _Tp, _Compare, _Alloc>;
133      protected:
134	_Compare comp;
135
136	value_compare(_Compare __c)
137	: comp(__c) { }
138
139      public:
140	bool operator()(const value_type& __x, const value_type& __y) const
141	{ return comp(__x.first, __y.first); }
142      };
143
144    private:
145      /// This turns a red-black tree into a [multi]map.
146      typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
147	rebind<value_type>::other _Pair_alloc_type;
148
149      typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
150		       key_compare, _Pair_alloc_type> _Rep_type;
151
152      /// The actual tree structure.
153      _Rep_type _M_t;
154
155      typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
156
157    public:
158      // many of these are specified differently in ISO, but the following are
159      // "functionally equivalent"
160      typedef typename _Alloc_traits::pointer		 pointer;
161      typedef typename _Alloc_traits::const_pointer	 const_pointer;
162      typedef typename _Alloc_traits::reference		 reference;
163      typedef typename _Alloc_traits::const_reference	 const_reference;
164      typedef typename _Rep_type::iterator		 iterator;
165      typedef typename _Rep_type::const_iterator	 const_iterator;
166      typedef typename _Rep_type::size_type		 size_type;
167      typedef typename _Rep_type::difference_type	 difference_type;
168      typedef typename _Rep_type::reverse_iterator	 reverse_iterator;
169      typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
170
171#if __cplusplus > 201402L
172      using node_type = typename _Rep_type::node_type;
173      using insert_return_type = typename _Rep_type::insert_return_type;
174#endif
175
176      // [23.3.1.1] construct/copy/destroy
177      // (get_allocator() is also listed in this section)
178
179      /**
180       *  @brief  Default constructor creates no elements.
181       */
182#if __cplusplus < 201103L
183      map() : _M_t() { }
184#else
185      map() = default;
186#endif
187
188      /**
189       *  @brief  Creates a %map with no elements.
190       *  @param  __comp  A comparison object.
191       *  @param  __a  An allocator object.
192       */
193      explicit
194      map(const _Compare& __comp,
195	  const allocator_type& __a = allocator_type())
196      : _M_t(__comp, _Pair_alloc_type(__a)) { }
197
198      /**
199       *  @brief  %Map copy constructor.
200       *
201       *  Whether the allocator is copied depends on the allocator traits.
202       */
203#if __cplusplus < 201103L
204      map(const map& __x)
205      : _M_t(__x._M_t) { }
206#else
207      map(const map&) = default;
208
209      /**
210       *  @brief  %Map move constructor.
211       *
212       *  The newly-created %map contains the exact contents of the moved
213       *  instance. The moved instance is a valid, but unspecified, %map.
214       */
215      map(map&&) = default;
216
217      /**
218       *  @brief  Builds a %map from an initializer_list.
219       *  @param  __l  An initializer_list.
220       *  @param  __comp  A comparison object.
221       *  @param  __a  An allocator object.
222       *
223       *  Create a %map consisting of copies of the elements in the
224       *  initializer_list @a __l.
225       *  This is linear in N if the range is already sorted, and NlogN
226       *  otherwise (where N is @a __l.size()).
227       */
228      map(initializer_list<value_type> __l,
229	  const _Compare& __comp = _Compare(),
230	  const allocator_type& __a = allocator_type())
231      : _M_t(__comp, _Pair_alloc_type(__a))
232      { _M_t._M_insert_range_unique(__l.begin(), __l.end()); }
233
234      /// Allocator-extended default constructor.
235      explicit
236      map(const allocator_type& __a)
237      : _M_t(_Pair_alloc_type(__a)) { }
238
239      /// Allocator-extended copy constructor.
240      map(const map& __m, const allocator_type& __a)
241      : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
242
243      /// Allocator-extended move constructor.
244      map(map&& __m, const allocator_type& __a)
245      noexcept(is_nothrow_copy_constructible<_Compare>::value
246	       && _Alloc_traits::_S_always_equal())
247      : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
248
249      /// Allocator-extended initialier-list constructor.
250      map(initializer_list<value_type> __l, const allocator_type& __a)
251      : _M_t(_Pair_alloc_type(__a))
252      { _M_t._M_insert_range_unique(__l.begin(), __l.end()); }
253
254      /// Allocator-extended range constructor.
255      template<typename _InputIterator>
256	map(_InputIterator __first, _InputIterator __last,
257	    const allocator_type& __a)
258	: _M_t(_Pair_alloc_type(__a))
259	{ _M_t._M_insert_range_unique(__first, __last); }
260#endif
261
262      /**
263       *  @brief  Builds a %map from a range.
264       *  @param  __first  An input iterator.
265       *  @param  __last  An input iterator.
266       *
267       *  Create a %map consisting of copies of the elements from
268       *  [__first,__last).  This is linear in N if the range is
269       *  already sorted, and NlogN otherwise (where N is
270       *  distance(__first,__last)).
271       */
272      template<typename _InputIterator>
273	map(_InputIterator __first, _InputIterator __last)
274	: _M_t()
275	{ _M_t._M_insert_range_unique(__first, __last); }
276
277      /**
278       *  @brief  Builds a %map from a range.
279       *  @param  __first  An input iterator.
280       *  @param  __last  An input iterator.
281       *  @param  __comp  A comparison functor.
282       *  @param  __a  An allocator object.
283       *
284       *  Create a %map consisting of copies of the elements from
285       *  [__first,__last).  This is linear in N if the range is
286       *  already sorted, and NlogN otherwise (where N is
287       *  distance(__first,__last)).
288       */
289      template<typename _InputIterator>
290	map(_InputIterator __first, _InputIterator __last,
291	    const _Compare& __comp,
292	    const allocator_type& __a = allocator_type())
293	: _M_t(__comp, _Pair_alloc_type(__a))
294	{ _M_t._M_insert_range_unique(__first, __last); }
295
296#if __cplusplus >= 201103L
297      /**
298       *  The dtor only erases the elements, and note that if the elements
299       *  themselves are pointers, the pointed-to memory is not touched in any
300       *  way.  Managing the pointer is the user's responsibility.
301       */
302      ~map() = default;
303#endif
304
305      /**
306       *  @brief  %Map assignment operator.
307       *
308       *  Whether the allocator is copied depends on the allocator traits.
309       */
310#if __cplusplus < 201103L
311      map&
312      operator=(const map& __x)
313      {
314	_M_t = __x._M_t;
315	return *this;
316      }
317#else
318      map&
319      operator=(const map&) = default;
320
321      /// Move assignment operator.
322      map&
323      operator=(map&&) = default;
324
325      /**
326       *  @brief  %Map list assignment operator.
327       *  @param  __l  An initializer_list.
328       *
329       *  This function fills a %map with copies of the elements in the
330       *  initializer list @a __l.
331       *
332       *  Note that the assignment completely changes the %map and
333       *  that the resulting %map's size is the same as the number
334       *  of elements assigned.
335       */
336      map&
337      operator=(initializer_list<value_type> __l)
338      {
339	_M_t._M_assign_unique(__l.begin(), __l.end());
340	return *this;
341      }
342#endif
343
344      /// Get a copy of the memory allocation object.
345      allocator_type
346      get_allocator() const _GLIBCXX_NOEXCEPT
347      { return allocator_type(_M_t.get_allocator()); }
348
349      // iterators
350      /**
351       *  Returns a read/write iterator that points to the first pair in the
352       *  %map.
353       *  Iteration is done in ascending order according to the keys.
354       */
355      iterator
356      begin() _GLIBCXX_NOEXCEPT
357      { return _M_t.begin(); }
358
359      /**
360       *  Returns a read-only (constant) iterator that points to the first pair
361       *  in the %map.  Iteration is done in ascending order according to the
362       *  keys.
363       */
364      const_iterator
365      begin() const _GLIBCXX_NOEXCEPT
366      { return _M_t.begin(); }
367
368      /**
369       *  Returns a read/write iterator that points one past the last
370       *  pair in the %map.  Iteration is done in ascending order
371       *  according to the keys.
372       */
373      iterator
374      end() _GLIBCXX_NOEXCEPT
375      { return _M_t.end(); }
376
377      /**
378       *  Returns a read-only (constant) iterator that points one past the last
379       *  pair in the %map.  Iteration is done in ascending order according to
380       *  the keys.
381       */
382      const_iterator
383      end() const _GLIBCXX_NOEXCEPT
384      { return _M_t.end(); }
385
386      /**
387       *  Returns a read/write reverse iterator that points to the last pair in
388       *  the %map.  Iteration is done in descending order according to the
389       *  keys.
390       */
391      reverse_iterator
392      rbegin() _GLIBCXX_NOEXCEPT
393      { return _M_t.rbegin(); }
394
395      /**
396       *  Returns a read-only (constant) reverse iterator that points to the
397       *  last pair in the %map.  Iteration is done in descending order
398       *  according to the keys.
399       */
400      const_reverse_iterator
401      rbegin() const _GLIBCXX_NOEXCEPT
402      { return _M_t.rbegin(); }
403
404      /**
405       *  Returns a read/write reverse iterator that points to one before the
406       *  first pair in the %map.  Iteration is done in descending order
407       *  according to the keys.
408       */
409      reverse_iterator
410      rend() _GLIBCXX_NOEXCEPT
411      { return _M_t.rend(); }
412
413      /**
414       *  Returns a read-only (constant) reverse iterator that points to one
415       *  before the first pair in the %map.  Iteration is done in descending
416       *  order according to the keys.
417       */
418      const_reverse_iterator
419      rend() const _GLIBCXX_NOEXCEPT
420      { return _M_t.rend(); }
421
422#if __cplusplus >= 201103L
423      /**
424       *  Returns a read-only (constant) iterator that points to the first pair
425       *  in the %map.  Iteration is done in ascending order according to the
426       *  keys.
427       */
428      const_iterator
429      cbegin() const noexcept
430      { return _M_t.begin(); }
431
432      /**
433       *  Returns a read-only (constant) iterator that points one past the last
434       *  pair in the %map.  Iteration is done in ascending order according to
435       *  the keys.
436       */
437      const_iterator
438      cend() const noexcept
439      { return _M_t.end(); }
440
441      /**
442       *  Returns a read-only (constant) reverse iterator that points to the
443       *  last pair in the %map.  Iteration is done in descending order
444       *  according to the keys.
445       */
446      const_reverse_iterator
447      crbegin() const noexcept
448      { return _M_t.rbegin(); }
449
450      /**
451       *  Returns a read-only (constant) reverse iterator that points to one
452       *  before the first pair in the %map.  Iteration is done in descending
453       *  order according to the keys.
454       */
455      const_reverse_iterator
456      crend() const noexcept
457      { return _M_t.rend(); }
458#endif
459
460      // capacity
461      /** Returns true if the %map is empty.  (Thus begin() would equal
462       *  end().)
463      */
464      _GLIBCXX_NODISCARD bool
465      empty() const _GLIBCXX_NOEXCEPT
466      { return _M_t.empty(); }
467
468      /** Returns the size of the %map.  */
469      size_type
470      size() const _GLIBCXX_NOEXCEPT
471      { return _M_t.size(); }
472
473      /** Returns the maximum size of the %map.  */
474      size_type
475      max_size() const _GLIBCXX_NOEXCEPT
476      { return _M_t.max_size(); }
477
478      // [23.3.1.2] element access
479      /**
480       *  @brief  Subscript ( @c [] ) access to %map data.
481       *  @param  __k  The key for which data should be retrieved.
482       *  @return  A reference to the data of the (key,data) %pair.
483       *
484       *  Allows for easy lookup with the subscript ( @c [] )
485       *  operator.  Returns data associated with the key specified in
486       *  subscript.  If the key does not exist, a pair with that key
487       *  is created using default values, which is then returned.
488       *
489       *  Lookup requires logarithmic time.
490       */
491      mapped_type&
492      operator[](const key_type& __k)
493      {
494	// concept requirements
495	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
496
497	iterator __i = lower_bound(__k);
498	// __i->first is greater than or equivalent to __k.
499	if (__i == end() || key_comp()(__k, (*__i).first))
500#if __cplusplus >= 201103L
501	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
502					    std::tuple<const key_type&>(__k),
503					    std::tuple<>());
504#else
505	  __i = insert(__i, value_type(__k, mapped_type()));
506#endif
507	return (*__i).second;
508      }
509
510#if __cplusplus >= 201103L
511      mapped_type&
512      operator[](key_type&& __k)
513      {
514	// concept requirements
515	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
516
517	iterator __i = lower_bound(__k);
518	// __i->first is greater than or equivalent to __k.
519	if (__i == end() || key_comp()(__k, (*__i).first))
520	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
521					std::forward_as_tuple(std::move(__k)),
522					std::tuple<>());
523	return (*__i).second;
524      }
525#endif
526
527      // _GLIBCXX_RESOLVE_LIB_DEFECTS
528      // DR 464. Suggestion for new member functions in standard containers.
529      /**
530       *  @brief  Access to %map data.
531       *  @param  __k  The key for which data should be retrieved.
532       *  @return  A reference to the data whose key is equivalent to @a __k, if
533       *           such a data is present in the %map.
534       *  @throw  std::out_of_range  If no such data is present.
535       */
536      mapped_type&
537      at(const key_type& __k)
538      {
539	iterator __i = lower_bound(__k);
540	if (__i == end() || key_comp()(__k, (*__i).first))
541	  __throw_out_of_range(__N("map::at"));
542	return (*__i).second;
543      }
544
545      const mapped_type&
546      at(const key_type& __k) const
547      {
548	const_iterator __i = lower_bound(__k);
549	if (__i == end() || key_comp()(__k, (*__i).first))
550	  __throw_out_of_range(__N("map::at"));
551	return (*__i).second;
552      }
553
554      // modifiers
555#if __cplusplus >= 201103L
556      /**
557       *  @brief Attempts to build and insert a std::pair into the %map.
558       *
559       *  @param __args  Arguments used to generate a new pair instance (see
560       *	        std::piecewise_contruct for passing arguments to each
561       *	        part of the pair constructor).
562       *
563       *  @return  A pair, of which the first element is an iterator that points
564       *           to the possibly inserted pair, and the second is a bool that
565       *           is true if the pair was actually inserted.
566       *
567       *  This function attempts to build and insert a (key, value) %pair into
568       *  the %map.
569       *  A %map relies on unique keys and thus a %pair is only inserted if its
570       *  first element (the key) is not already present in the %map.
571       *
572       *  Insertion requires logarithmic time.
573       */
574      template<typename... _Args>
575	std::pair<iterator, bool>
576	emplace(_Args&&... __args)
577	{ return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); }
578
579      /**
580       *  @brief Attempts to build and insert a std::pair into the %map.
581       *
582       *  @param  __pos  An iterator that serves as a hint as to where the pair
583       *                should be inserted.
584       *  @param  __args  Arguments used to generate a new pair instance (see
585       *	         std::piecewise_contruct for passing arguments to each
586       *	         part of the pair constructor).
587       *  @return An iterator that points to the element with key of the
588       *          std::pair built from @a __args (may or may not be that
589       *          std::pair).
590       *
591       *  This function is not concerned about whether the insertion took place,
592       *  and thus does not return a boolean like the single-argument emplace()
593       *  does.
594       *  Note that the first parameter is only a hint and can potentially
595       *  improve the performance of the insertion process. A bad hint would
596       *  cause no gains in efficiency.
597       *
598       *  See
599       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
600       *  for more on @a hinting.
601       *
602       *  Insertion requires logarithmic time (if the hint is not taken).
603       */
604      template<typename... _Args>
605	iterator
606	emplace_hint(const_iterator __pos, _Args&&... __args)
607	{
608	  return _M_t._M_emplace_hint_unique(__pos,
609					     std::forward<_Args>(__args)...);
610	}
611#endif
612
613#if __cplusplus > 201402L
614      /// Extract a node.
615      node_type
616      extract(const_iterator __pos)
617      {
618	__glibcxx_assert(__pos != end());
619	return _M_t.extract(__pos);
620      }
621
622      /// Extract a node.
623      node_type
624      extract(const key_type& __x)
625      { return _M_t.extract(__x); }
626
627      /// Re-insert an extracted node.
628      insert_return_type
629      insert(node_type&& __nh)
630      { return _M_t._M_reinsert_node_unique(std::move(__nh)); }
631
632      /// Re-insert an extracted node.
633      iterator
634      insert(const_iterator __hint, node_type&& __nh)
635      { return _M_t._M_reinsert_node_hint_unique(__hint, std::move(__nh)); }
636
637      template<typename, typename>
638	friend class std::_Rb_tree_merge_helper;
639
640      template<typename _Cmp2>
641	void
642	merge(map<_Key, _Tp, _Cmp2, _Alloc>& __source)
643	{
644	  using _Merge_helper = _Rb_tree_merge_helper<map, _Cmp2>;
645	  _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source));
646	}
647
648      template<typename _Cmp2>
649	void
650	merge(map<_Key, _Tp, _Cmp2, _Alloc>&& __source)
651	{ merge(__source); }
652
653      template<typename _Cmp2>
654	void
655	merge(multimap<_Key, _Tp, _Cmp2, _Alloc>& __source)
656	{
657	  using _Merge_helper = _Rb_tree_merge_helper<map, _Cmp2>;
658	  _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source));
659	}
660
661      template<typename _Cmp2>
662	void
663	merge(multimap<_Key, _Tp, _Cmp2, _Alloc>&& __source)
664	{ merge(__source); }
665#endif // C++17
666
667#if __cplusplus > 201402L
668#define __cpp_lib_map_try_emplace 201411
669      /**
670       *  @brief Attempts to build and insert a std::pair into the %map.
671       *
672       *  @param __k    Key to use for finding a possibly existing pair in
673       *                the map.
674       *  @param __args  Arguments used to generate the .second for a new pair
675       *                instance.
676       *
677       *  @return  A pair, of which the first element is an iterator that points
678       *           to the possibly inserted pair, and the second is a bool that
679       *           is true if the pair was actually inserted.
680       *
681       *  This function attempts to build and insert a (key, value) %pair into
682       *  the %map.
683       *  A %map relies on unique keys and thus a %pair is only inserted if its
684       *  first element (the key) is not already present in the %map.
685       *  If a %pair is not inserted, this function has no effect.
686       *
687       *  Insertion requires logarithmic time.
688       */
689      template <typename... _Args>
690	pair<iterator, bool>
691	try_emplace(const key_type& __k, _Args&&... __args)
692	{
693	  iterator __i = lower_bound(__k);
694	  if (__i == end() || key_comp()(__k, (*__i).first))
695	    {
696	      __i = emplace_hint(__i, std::piecewise_construct,
697				 std::forward_as_tuple(__k),
698				 std::forward_as_tuple(
699				   std::forward<_Args>(__args)...));
700	      return {__i, true};
701	    }
702	  return {__i, false};
703	}
704
705      // move-capable overload
706      template <typename... _Args>
707	pair<iterator, bool>
708	try_emplace(key_type&& __k, _Args&&... __args)
709	{
710	  iterator __i = lower_bound(__k);
711	  if (__i == end() || key_comp()(__k, (*__i).first))
712	    {
713	      __i = emplace_hint(__i, std::piecewise_construct,
714				 std::forward_as_tuple(std::move(__k)),
715				 std::forward_as_tuple(
716				   std::forward<_Args>(__args)...));
717	      return {__i, true};
718	    }
719	  return {__i, false};
720	}
721
722      /**
723       *  @brief Attempts to build and insert a std::pair into the %map.
724       *
725       *  @param  __hint  An iterator that serves as a hint as to where the
726       *                  pair should be inserted.
727       *  @param __k    Key to use for finding a possibly existing pair in
728       *                the map.
729       *  @param __args  Arguments used to generate the .second for a new pair
730       *                instance.
731       *  @return An iterator that points to the element with key of the
732       *          std::pair built from @a __args (may or may not be that
733       *          std::pair).
734       *
735       *  This function is not concerned about whether the insertion took place,
736       *  and thus does not return a boolean like the single-argument
737       *  try_emplace() does. However, if insertion did not take place,
738       *  this function has no effect.
739       *  Note that the first parameter is only a hint and can potentially
740       *  improve the performance of the insertion process. A bad hint would
741       *  cause no gains in efficiency.
742       *
743       *  See
744       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
745       *  for more on @a hinting.
746       *
747       *  Insertion requires logarithmic time (if the hint is not taken).
748       */
749      template <typename... _Args>
750	iterator
751	try_emplace(const_iterator __hint, const key_type& __k,
752		    _Args&&... __args)
753	{
754	  iterator __i;
755	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
756	  if (__true_hint.second)
757	    __i = emplace_hint(iterator(__true_hint.second),
758			       std::piecewise_construct,
759			       std::forward_as_tuple(__k),
760			       std::forward_as_tuple(
761				 std::forward<_Args>(__args)...));
762	  else
763	    __i = iterator(__true_hint.first);
764	  return __i;
765	}
766
767      // move-capable overload
768      template <typename... _Args>
769	iterator
770	try_emplace(const_iterator __hint, key_type&& __k, _Args&&... __args)
771	{
772	  iterator __i;
773	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
774	  if (__true_hint.second)
775	    __i = emplace_hint(iterator(__true_hint.second),
776			       std::piecewise_construct,
777			       std::forward_as_tuple(std::move(__k)),
778			       std::forward_as_tuple(
779				 std::forward<_Args>(__args)...));
780	  else
781	    __i = iterator(__true_hint.first);
782	  return __i;
783	}
784#endif
785
786      /**
787       *  @brief Attempts to insert a std::pair into the %map.
788       *  @param __x Pair to be inserted (see std::make_pair for easy
789       *	     creation of pairs).
790       *
791       *  @return  A pair, of which the first element is an iterator that
792       *           points to the possibly inserted pair, and the second is
793       *           a bool that is true if the pair was actually inserted.
794       *
795       *  This function attempts to insert a (key, value) %pair into the %map.
796       *  A %map relies on unique keys and thus a %pair is only inserted if its
797       *  first element (the key) is not already present in the %map.
798       *
799       *  Insertion requires logarithmic time.
800       *  @{
801       */
802      std::pair<iterator, bool>
803      insert(const value_type& __x)
804      { return _M_t._M_insert_unique(__x); }
805
806#if __cplusplus >= 201103L
807      // _GLIBCXX_RESOLVE_LIB_DEFECTS
808      // 2354. Unnecessary copying when inserting into maps with braced-init
809      std::pair<iterator, bool>
810      insert(value_type&& __x)
811      { return _M_t._M_insert_unique(std::move(__x)); }
812
813      template<typename _Pair>
814	__enable_if_t<is_constructible<value_type, _Pair>::value,
815		      pair<iterator, bool>>
816	insert(_Pair&& __x)
817	{ return _M_t._M_emplace_unique(std::forward<_Pair>(__x)); }
818#endif
819      /// @}
820
821#if __cplusplus >= 201103L
822      /**
823       *  @brief Attempts to insert a list of std::pairs into the %map.
824       *  @param  __list  A std::initializer_list<value_type> of pairs to be
825       *                  inserted.
826       *
827       *  Complexity similar to that of the range constructor.
828       */
829      void
830      insert(std::initializer_list<value_type> __list)
831      { insert(__list.begin(), __list.end()); }
832#endif
833
834      /**
835       *  @brief Attempts to insert a std::pair into the %map.
836       *  @param  __position  An iterator that serves as a hint as to where the
837       *                    pair should be inserted.
838       *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
839       *               of pairs).
840       *  @return An iterator that points to the element with key of
841       *           @a __x (may or may not be the %pair passed in).
842       *
843
844       *  This function is not concerned about whether the insertion
845       *  took place, and thus does not return a boolean like the
846       *  single-argument insert() does.  Note that the first
847       *  parameter is only a hint and can potentially improve the
848       *  performance of the insertion process.  A bad hint would
849       *  cause no gains in efficiency.
850       *
851       *  See
852       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
853       *  for more on @a hinting.
854       *
855       *  Insertion requires logarithmic time (if the hint is not taken).
856       *  @{
857       */
858      iterator
859#if __cplusplus >= 201103L
860      insert(const_iterator __position, const value_type& __x)
861#else
862      insert(iterator __position, const value_type& __x)
863#endif
864      { return _M_t._M_insert_unique_(__position, __x); }
865
866#if __cplusplus >= 201103L
867      // _GLIBCXX_RESOLVE_LIB_DEFECTS
868      // 2354. Unnecessary copying when inserting into maps with braced-init
869      iterator
870      insert(const_iterator __position, value_type&& __x)
871      { return _M_t._M_insert_unique_(__position, std::move(__x)); }
872
873      template<typename _Pair>
874	__enable_if_t<is_constructible<value_type, _Pair>::value, iterator>
875	insert(const_iterator __position, _Pair&& __x)
876	{
877	  return _M_t._M_emplace_hint_unique(__position,
878					     std::forward<_Pair>(__x));
879	}
880#endif
881      /// @}
882
883      /**
884       *  @brief Template function that attempts to insert a range of elements.
885       *  @param  __first  Iterator pointing to the start of the range to be
886       *                   inserted.
887       *  @param  __last  Iterator pointing to the end of the range.
888       *
889       *  Complexity similar to that of the range constructor.
890       */
891      template<typename _InputIterator>
892	void
893	insert(_InputIterator __first, _InputIterator __last)
894	{ _M_t._M_insert_range_unique(__first, __last); }
895
896#if __cplusplus > 201402L
897      /**
898       *  @brief Attempts to insert or assign a std::pair into the %map.
899       *  @param __k    Key to use for finding a possibly existing pair in
900       *                the map.
901       *  @param __obj  Argument used to generate the .second for a pair
902       *                instance.
903       *
904       *  @return  A pair, of which the first element is an iterator that
905       *           points to the possibly inserted pair, and the second is
906       *           a bool that is true if the pair was actually inserted.
907       *
908       *  This function attempts to insert a (key, value) %pair into the %map.
909       *  A %map relies on unique keys and thus a %pair is only inserted if its
910       *  first element (the key) is not already present in the %map.
911       *  If the %pair was already in the %map, the .second of the %pair
912       *  is assigned from __obj.
913       *
914       *  Insertion requires logarithmic time.
915       */
916      template <typename _Obj>
917	pair<iterator, bool>
918	insert_or_assign(const key_type& __k, _Obj&& __obj)
919	{
920	  iterator __i = lower_bound(__k);
921	  if (__i == end() || key_comp()(__k, (*__i).first))
922	    {
923	      __i = emplace_hint(__i, std::piecewise_construct,
924				 std::forward_as_tuple(__k),
925				 std::forward_as_tuple(
926				   std::forward<_Obj>(__obj)));
927	      return {__i, true};
928	    }
929	  (*__i).second = std::forward<_Obj>(__obj);
930	  return {__i, false};
931	}
932
933      // move-capable overload
934      template <typename _Obj>
935	pair<iterator, bool>
936	insert_or_assign(key_type&& __k, _Obj&& __obj)
937	{
938	  iterator __i = lower_bound(__k);
939	  if (__i == end() || key_comp()(__k, (*__i).first))
940	    {
941	      __i = emplace_hint(__i, std::piecewise_construct,
942				 std::forward_as_tuple(std::move(__k)),
943				 std::forward_as_tuple(
944				   std::forward<_Obj>(__obj)));
945	      return {__i, true};
946	    }
947	  (*__i).second = std::forward<_Obj>(__obj);
948	  return {__i, false};
949	}
950
951      /**
952       *  @brief Attempts to insert or assign a std::pair into the %map.
953       *  @param  __hint  An iterator that serves as a hint as to where the
954       *                  pair should be inserted.
955       *  @param __k    Key to use for finding a possibly existing pair in
956       *                the map.
957       *  @param __obj  Argument used to generate the .second for a pair
958       *                instance.
959       *
960       *  @return An iterator that points to the element with key of
961       *           @a __x (may or may not be the %pair passed in).
962       *
963       *  This function attempts to insert a (key, value) %pair into the %map.
964       *  A %map relies on unique keys and thus a %pair is only inserted if its
965       *  first element (the key) is not already present in the %map.
966       *  If the %pair was already in the %map, the .second of the %pair
967       *  is assigned from __obj.
968       *
969       *  Insertion requires logarithmic time.
970       */
971      template <typename _Obj>
972	iterator
973	insert_or_assign(const_iterator __hint,
974			 const key_type& __k, _Obj&& __obj)
975	{
976	  iterator __i;
977	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
978	  if (__true_hint.second)
979	    {
980	      return emplace_hint(iterator(__true_hint.second),
981				  std::piecewise_construct,
982				  std::forward_as_tuple(__k),
983				  std::forward_as_tuple(
984				    std::forward<_Obj>(__obj)));
985	    }
986	  __i = iterator(__true_hint.first);
987	  (*__i).second = std::forward<_Obj>(__obj);
988	  return __i;
989	}
990
991      // move-capable overload
992      template <typename _Obj>
993	iterator
994	insert_or_assign(const_iterator __hint, key_type&& __k, _Obj&& __obj)
995	{
996	  iterator __i;
997	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
998	  if (__true_hint.second)
999	    {
1000	      return emplace_hint(iterator(__true_hint.second),
1001				  std::piecewise_construct,
1002				  std::forward_as_tuple(std::move(__k)),
1003				  std::forward_as_tuple(
1004				    std::forward<_Obj>(__obj)));
1005	    }
1006	  __i = iterator(__true_hint.first);
1007	  (*__i).second = std::forward<_Obj>(__obj);
1008	  return __i;
1009	}
1010#endif
1011
1012#if __cplusplus >= 201103L
1013      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1014      // DR 130. Associative erase should return an iterator.
1015      /**
1016       *  @brief Erases an element from a %map.
1017       *  @param  __position  An iterator pointing to the element to be erased.
1018       *  @return An iterator pointing to the element immediately following
1019       *          @a position prior to the element being erased. If no such
1020       *          element exists, end() is returned.
1021       *
1022       *  This function erases an element, pointed to by the given
1023       *  iterator, from a %map.  Note that this function only erases
1024       *  the element, and that if the element is itself a pointer,
1025       *  the pointed-to memory is not touched in any way.  Managing
1026       *  the pointer is the user's responsibility.
1027       *
1028       *  @{
1029       */
1030      iterator
1031      erase(const_iterator __position)
1032      { return _M_t.erase(__position); }
1033
1034      // LWG 2059
1035      _GLIBCXX_ABI_TAG_CXX11
1036      iterator
1037      erase(iterator __position)
1038      { return _M_t.erase(__position); }
1039      /// @}
1040#else
1041      /**
1042       *  @brief Erases an element from a %map.
1043       *  @param  __position  An iterator pointing to the element to be erased.
1044       *
1045       *  This function erases an element, pointed to by the given
1046       *  iterator, from a %map.  Note that this function only erases
1047       *  the element, and that if the element is itself a pointer,
1048       *  the pointed-to memory is not touched in any way.  Managing
1049       *  the pointer is the user's responsibility.
1050       */
1051      void
1052      erase(iterator __position)
1053      { _M_t.erase(__position); }
1054#endif
1055
1056      /**
1057       *  @brief Erases elements according to the provided key.
1058       *  @param  __x  Key of element to be erased.
1059       *  @return  The number of elements erased.
1060       *
1061       *  This function erases all the elements located by the given key from
1062       *  a %map.
1063       *  Note that this function only erases the element, and that if
1064       *  the element is itself a pointer, the pointed-to memory is not touched
1065       *  in any way.  Managing the pointer is the user's responsibility.
1066       */
1067      size_type
1068      erase(const key_type& __x)
1069      { return _M_t.erase(__x); }
1070
1071#if __cplusplus >= 201103L
1072      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1073      // DR 130. Associative erase should return an iterator.
1074      /**
1075       *  @brief Erases a [first,last) range of elements from a %map.
1076       *  @param  __first  Iterator pointing to the start of the range to be
1077       *                   erased.
1078       *  @param __last Iterator pointing to the end of the range to
1079       *                be erased.
1080       *  @return The iterator @a __last.
1081       *
1082       *  This function erases a sequence of elements from a %map.
1083       *  Note that this function only erases the element, and that if
1084       *  the element is itself a pointer, the pointed-to memory is not touched
1085       *  in any way.  Managing the pointer is the user's responsibility.
1086       */
1087      iterator
1088      erase(const_iterator __first, const_iterator __last)
1089      { return _M_t.erase(__first, __last); }
1090#else
1091      /**
1092       *  @brief Erases a [__first,__last) range of elements from a %map.
1093       *  @param  __first  Iterator pointing to the start of the range to be
1094       *                   erased.
1095       *  @param __last Iterator pointing to the end of the range to
1096       *                be erased.
1097       *
1098       *  This function erases a sequence of elements from a %map.
1099       *  Note that this function only erases the element, and that if
1100       *  the element is itself a pointer, the pointed-to memory is not touched
1101       *  in any way.  Managing the pointer is the user's responsibility.
1102       */
1103      void
1104      erase(iterator __first, iterator __last)
1105      { _M_t.erase(__first, __last); }
1106#endif
1107
1108      /**
1109       *  @brief  Swaps data with another %map.
1110       *  @param  __x  A %map of the same element and allocator types.
1111       *
1112       *  This exchanges the elements between two maps in constant
1113       *  time.  (It is only swapping a pointer, an integer, and an
1114       *  instance of the @c Compare type (which itself is often
1115       *  stateless and empty), so it should be quite fast.)  Note
1116       *  that the global std::swap() function is specialized such
1117       *  that std::swap(m1,m2) will feed to this function.
1118       *
1119       *  Whether the allocators are swapped depends on the allocator traits.
1120       */
1121      void
1122      swap(map& __x)
1123      _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
1124      { _M_t.swap(__x._M_t); }
1125
1126      /**
1127       *  Erases all elements in a %map.  Note that this function only
1128       *  erases the elements, and that if the elements themselves are
1129       *  pointers, the pointed-to memory is not touched in any way.
1130       *  Managing the pointer is the user's responsibility.
1131       */
1132      void
1133      clear() _GLIBCXX_NOEXCEPT
1134      { _M_t.clear(); }
1135
1136      // observers
1137      /**
1138       *  Returns the key comparison object out of which the %map was
1139       *  constructed.
1140       */
1141      key_compare
1142      key_comp() const
1143      { return _M_t.key_comp(); }
1144
1145      /**
1146       *  Returns a value comparison object, built from the key comparison
1147       *  object out of which the %map was constructed.
1148       */
1149      value_compare
1150      value_comp() const
1151      { return value_compare(_M_t.key_comp()); }
1152
1153      // [23.3.1.3] map operations
1154
1155      ///@{
1156      /**
1157       *  @brief Tries to locate an element in a %map.
1158       *  @param  __x  Key of (key, value) %pair to be located.
1159       *  @return  Iterator pointing to sought-after element, or end() if not
1160       *           found.
1161       *
1162       *  This function takes a key and tries to locate the element with which
1163       *  the key matches.  If successful the function returns an iterator
1164       *  pointing to the sought after %pair.  If unsuccessful it returns the
1165       *  past-the-end ( @c end() ) iterator.
1166       */
1167
1168      iterator
1169      find(const key_type& __x)
1170      { return _M_t.find(__x); }
1171
1172#if __cplusplus > 201103L
1173      template<typename _Kt>
1174	auto
1175	find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
1176	{ return _M_t._M_find_tr(__x); }
1177#endif
1178      ///@}
1179
1180      ///@{
1181      /**
1182       *  @brief Tries to locate an element in a %map.
1183       *  @param  __x  Key of (key, value) %pair to be located.
1184       *  @return  Read-only (constant) iterator pointing to sought-after
1185       *           element, or end() if not found.
1186       *
1187       *  This function takes a key and tries to locate the element with which
1188       *  the key matches.  If successful the function returns a constant
1189       *  iterator pointing to the sought after %pair. If unsuccessful it
1190       *  returns the past-the-end ( @c end() ) iterator.
1191       */
1192
1193      const_iterator
1194      find(const key_type& __x) const
1195      { return _M_t.find(__x); }
1196
1197#if __cplusplus > 201103L
1198      template<typename _Kt>
1199	auto
1200	find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
1201	{ return _M_t._M_find_tr(__x); }
1202#endif
1203      ///@}
1204
1205      ///@{
1206      /**
1207       *  @brief  Finds the number of elements with given key.
1208       *  @param  __x  Key of (key, value) pairs to be located.
1209       *  @return  Number of elements with specified key.
1210       *
1211       *  This function only makes sense for multimaps; for map the result will
1212       *  either be 0 (not present) or 1 (present).
1213       */
1214      size_type
1215      count(const key_type& __x) const
1216      { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
1217
1218#if __cplusplus > 201103L
1219      template<typename _Kt>
1220	auto
1221	count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
1222	{ return _M_t._M_count_tr(__x); }
1223#endif
1224      ///@}
1225
1226#if __cplusplus > 201703L
1227      ///@{
1228      /**
1229       *  @brief  Finds whether an element with the given key exists.
1230       *  @param  __x  Key of (key, value) pairs to be located.
1231       *  @return  True if there is an element with the specified key.
1232       */
1233      bool
1234      contains(const key_type& __x) const
1235      { return _M_t.find(__x) != _M_t.end(); }
1236
1237      template<typename _Kt>
1238	auto
1239	contains(const _Kt& __x) const
1240	-> decltype(_M_t._M_find_tr(__x), void(), true)
1241	{ return _M_t._M_find_tr(__x) != _M_t.end(); }
1242      ///@}
1243#endif
1244
1245      ///@{
1246      /**
1247       *  @brief Finds the beginning of a subsequence matching given key.
1248       *  @param  __x  Key of (key, value) pair to be located.
1249       *  @return  Iterator pointing to first element equal to or greater
1250       *           than key, or end().
1251       *
1252       *  This function returns the first element of a subsequence of elements
1253       *  that matches the given key.  If unsuccessful it returns an iterator
1254       *  pointing to the first element that has a greater value than given key
1255       *  or end() if no such element exists.
1256       */
1257      iterator
1258      lower_bound(const key_type& __x)
1259      { return _M_t.lower_bound(__x); }
1260
1261#if __cplusplus > 201103L
1262      template<typename _Kt>
1263	auto
1264	lower_bound(const _Kt& __x)
1265	-> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
1266	{ return iterator(_M_t._M_lower_bound_tr(__x)); }
1267#endif
1268      ///@}
1269
1270      ///@{
1271      /**
1272       *  @brief Finds the beginning of a subsequence matching given key.
1273       *  @param  __x  Key of (key, value) pair to be located.
1274       *  @return  Read-only (constant) iterator pointing to first element
1275       *           equal to or greater than key, or end().
1276       *
1277       *  This function returns the first element of a subsequence of elements
1278       *  that matches the given key.  If unsuccessful it returns an iterator
1279       *  pointing to the first element that has a greater value than given key
1280       *  or end() if no such element exists.
1281       */
1282      const_iterator
1283      lower_bound(const key_type& __x) const
1284      { return _M_t.lower_bound(__x); }
1285
1286#if __cplusplus > 201103L
1287      template<typename _Kt>
1288	auto
1289	lower_bound(const _Kt& __x) const
1290	-> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
1291	{ return const_iterator(_M_t._M_lower_bound_tr(__x)); }
1292#endif
1293      ///@}
1294
1295      ///@{
1296      /**
1297       *  @brief Finds the end of a subsequence matching given key.
1298       *  @param  __x  Key of (key, value) pair to be located.
1299       *  @return Iterator pointing to the first element
1300       *          greater than key, or end().
1301       */
1302      iterator
1303      upper_bound(const key_type& __x)
1304      { return _M_t.upper_bound(__x); }
1305
1306#if __cplusplus > 201103L
1307      template<typename _Kt>
1308	auto
1309	upper_bound(const _Kt& __x)
1310	-> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
1311	{ return iterator(_M_t._M_upper_bound_tr(__x)); }
1312#endif
1313      ///@}
1314
1315      ///@{
1316      /**
1317       *  @brief Finds the end of a subsequence matching given key.
1318       *  @param  __x  Key of (key, value) pair to be located.
1319       *  @return  Read-only (constant) iterator pointing to first iterator
1320       *           greater than key, or end().
1321       */
1322      const_iterator
1323      upper_bound(const key_type& __x) const
1324      { return _M_t.upper_bound(__x); }
1325
1326#if __cplusplus > 201103L
1327      template<typename _Kt>
1328	auto
1329	upper_bound(const _Kt& __x) const
1330	-> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
1331	{ return const_iterator(_M_t._M_upper_bound_tr(__x)); }
1332#endif
1333      ///@}
1334
1335      ///@{
1336      /**
1337       *  @brief Finds a subsequence matching given key.
1338       *  @param  __x  Key of (key, value) pairs to be located.
1339       *  @return  Pair of iterators that possibly points to the subsequence
1340       *           matching given key.
1341       *
1342       *  This function is equivalent to
1343       *  @code
1344       *    std::make_pair(c.lower_bound(val),
1345       *                   c.upper_bound(val))
1346       *  @endcode
1347       *  (but is faster than making the calls separately).
1348       *
1349       *  This function probably only makes sense for multimaps.
1350       */
1351      std::pair<iterator, iterator>
1352      equal_range(const key_type& __x)
1353      { return _M_t.equal_range(__x); }
1354
1355#if __cplusplus > 201103L
1356      template<typename _Kt>
1357	auto
1358	equal_range(const _Kt& __x)
1359	-> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
1360	{ return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
1361#endif
1362      ///@}
1363
1364      ///@{
1365      /**
1366       *  @brief Finds a subsequence matching given key.
1367       *  @param  __x  Key of (key, value) pairs to be located.
1368       *  @return  Pair of read-only (constant) iterators that possibly points
1369       *           to the subsequence matching given key.
1370       *
1371       *  This function is equivalent to
1372       *  @code
1373       *    std::make_pair(c.lower_bound(val),
1374       *                   c.upper_bound(val))
1375       *  @endcode
1376       *  (but is faster than making the calls separately).
1377       *
1378       *  This function probably only makes sense for multimaps.
1379       */
1380      std::pair<const_iterator, const_iterator>
1381      equal_range(const key_type& __x) const
1382      { return _M_t.equal_range(__x); }
1383
1384#if __cplusplus > 201103L
1385      template<typename _Kt>
1386	auto
1387	equal_range(const _Kt& __x) const
1388	-> decltype(pair<const_iterator, const_iterator>(
1389	      _M_t._M_equal_range_tr(__x)))
1390	{
1391	  return pair<const_iterator, const_iterator>(
1392	      _M_t._M_equal_range_tr(__x));
1393	}
1394#endif
1395      ///@}
1396
1397      template<typename _K1, typename _T1, typename _C1, typename _A1>
1398	friend bool
1399	operator==(const map<_K1, _T1, _C1, _A1>&,
1400		   const map<_K1, _T1, _C1, _A1>&);
1401
1402#if __cpp_lib_three_way_comparison
1403      template<typename _K1, typename _T1, typename _C1, typename _A1>
1404	friend __detail::__synth3way_t<pair<const _K1, _T1>>
1405	operator<=>(const map<_K1, _T1, _C1, _A1>&,
1406		    const map<_K1, _T1, _C1, _A1>&);
1407#else
1408      template<typename _K1, typename _T1, typename _C1, typename _A1>
1409	friend bool
1410	operator<(const map<_K1, _T1, _C1, _A1>&,
1411		  const map<_K1, _T1, _C1, _A1>&);
1412#endif
1413    };
1414
1415
1416#if __cpp_deduction_guides >= 201606
1417
1418  template<typename _InputIterator,
1419	   typename _Compare = less<__iter_key_t<_InputIterator>>,
1420	   typename _Allocator = allocator<__iter_to_alloc_t<_InputIterator>>,
1421	   typename = _RequireInputIter<_InputIterator>,
1422	   typename = _RequireNotAllocator<_Compare>,
1423	   typename = _RequireAllocator<_Allocator>>
1424    map(_InputIterator, _InputIterator,
1425	_Compare = _Compare(), _Allocator = _Allocator())
1426    -> map<__iter_key_t<_InputIterator>, __iter_val_t<_InputIterator>,
1427	   _Compare, _Allocator>;
1428
1429  template<typename _Key, typename _Tp, typename _Compare = less<_Key>,
1430	   typename _Allocator = allocator<pair<const _Key, _Tp>>,
1431	   typename = _RequireNotAllocator<_Compare>,
1432	   typename = _RequireAllocator<_Allocator>>
1433    map(initializer_list<pair<_Key, _Tp>>,
1434	_Compare = _Compare(), _Allocator = _Allocator())
1435    -> map<_Key, _Tp, _Compare, _Allocator>;
1436
1437  template <typename _InputIterator, typename _Allocator,
1438	    typename = _RequireInputIter<_InputIterator>,
1439	    typename = _RequireAllocator<_Allocator>>
1440    map(_InputIterator, _InputIterator, _Allocator)
1441    -> map<__iter_key_t<_InputIterator>, __iter_val_t<_InputIterator>,
1442	   less<__iter_key_t<_InputIterator>>, _Allocator>;
1443
1444  template<typename _Key, typename _Tp, typename _Allocator,
1445	   typename = _RequireAllocator<_Allocator>>
1446    map(initializer_list<pair<_Key, _Tp>>, _Allocator)
1447    -> map<_Key, _Tp, less<_Key>, _Allocator>;
1448
1449#endif // deduction guides
1450
1451  /**
1452   *  @brief  Map equality comparison.
1453   *  @param  __x  A %map.
1454   *  @param  __y  A %map of the same type as @a x.
1455   *  @return  True iff the size and elements of the maps are equal.
1456   *
1457   *  This is an equivalence relation.  It is linear in the size of the
1458   *  maps.  Maps are considered equivalent if their sizes are equal,
1459   *  and if corresponding elements compare equal.
1460  */
1461  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1462    inline bool
1463    operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1464	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
1465    { return __x._M_t == __y._M_t; }
1466
1467#if __cpp_lib_three_way_comparison
1468  /**
1469   *  @brief  Map ordering relation.
1470   *  @param  __x  A `map`.
1471   *  @param  __y  A `map` of the same type as `x`.
1472   *  @return  A value indicating whether `__x` is less than, equal to,
1473   *           greater than, or incomparable with `__y`.
1474   *
1475   *  This is a total ordering relation.  It is linear in the size of the
1476   *  maps.  The elements must be comparable with @c <.
1477   *
1478   *  See `std::lexicographical_compare_three_way()` for how the determination
1479   *  is made. This operator is used to synthesize relational operators like
1480   *  `<` and `>=` etc.
1481  */
1482  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1483    inline __detail::__synth3way_t<pair<const _Key, _Tp>>
1484    operator<=>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1485		const map<_Key, _Tp, _Compare, _Alloc>& __y)
1486    { return __x._M_t <=> __y._M_t; }
1487#else
1488  /**
1489   *  @brief  Map ordering relation.
1490   *  @param  __x  A %map.
1491   *  @param  __y  A %map of the same type as @a x.
1492   *  @return  True iff @a x is lexicographically less than @a y.
1493   *
1494   *  This is a total ordering relation.  It is linear in the size of the
1495   *  maps.  The elements must be comparable with @c <.
1496   *
1497   *  See std::lexicographical_compare() for how the determination is made.
1498  */
1499  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1500    inline bool
1501    operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1502	      const map<_Key, _Tp, _Compare, _Alloc>& __y)
1503    { return __x._M_t < __y._M_t; }
1504
1505  /// Based on operator==
1506  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1507    inline bool
1508    operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1509	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
1510    { return !(__x == __y); }
1511
1512  /// Based on operator<
1513  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1514    inline bool
1515    operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1516	      const map<_Key, _Tp, _Compare, _Alloc>& __y)
1517    { return __y < __x; }
1518
1519  /// Based on operator<
1520  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1521    inline bool
1522    operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1523	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
1524    { return !(__y < __x); }
1525
1526  /// Based on operator<
1527  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1528    inline bool
1529    operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1530	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
1531    { return !(__x < __y); }
1532#endif // three-way comparison
1533
1534  /// See std::map::swap().
1535  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1536    inline void
1537    swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
1538	 map<_Key, _Tp, _Compare, _Alloc>& __y)
1539    _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
1540    { __x.swap(__y); }
1541
1542_GLIBCXX_END_NAMESPACE_CONTAINER
1543
1544#if __cplusplus > 201402L
1545  // Allow std::map access to internals of compatible maps.
1546  template<typename _Key, typename _Val, typename _Cmp1, typename _Alloc,
1547	   typename _Cmp2>
1548    struct
1549    _Rb_tree_merge_helper<_GLIBCXX_STD_C::map<_Key, _Val, _Cmp1, _Alloc>,
1550			  _Cmp2>
1551    {
1552    private:
1553      friend class _GLIBCXX_STD_C::map<_Key, _Val, _Cmp1, _Alloc>;
1554
1555      static auto&
1556      _S_get_tree(_GLIBCXX_STD_C::map<_Key, _Val, _Cmp2, _Alloc>& __map)
1557      { return __map._M_t; }
1558
1559      static auto&
1560      _S_get_tree(_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp2, _Alloc>& __map)
1561      { return __map._M_t; }
1562    };
1563#endif // C++17
1564
1565_GLIBCXX_END_NAMESPACE_VERSION
1566} // namespace std
1567
1568#endif /* _STL_MAP_H */
1569