1112158Sdas// Internal policy header for unordered_set and unordered_map -*- C++ -*-
2112158Sdas
3112158Sdas// Copyright (C) 2010-2022 Free Software Foundation, Inc.
4112158Sdas//
5112158Sdas// This file is part of the GNU ISO C++ Library.  This library is free
6112158Sdas// software; you can redistribute it and/or modify it under the
7112158Sdas// terms of the GNU General Public License as published by the
8112158Sdas// Free Software Foundation; either version 3, or (at your option)
9112158Sdas// any later version.
10112158Sdas
11112158Sdas// This library is distributed in the hope that it will be useful,
12112158Sdas// but WITHOUT ANY WARRANTY; without even the implied warranty of
13112158Sdas// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14112158Sdas// GNU General Public License for more details.
15112158Sdas
16112158Sdas// Under Section 7 of GPL version 3, you are granted additional
17112158Sdas// permissions described in the GCC Runtime Library Exception, version
18112158Sdas// 3.1, as published by the Free Software Foundation.
19112158Sdas
20112158Sdas// You should have received a copy of the GNU General Public License and
21112158Sdas// a copy of the GCC Runtime Library Exception along with this program;
22112158Sdas// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23112158Sdas// <http://www.gnu.org/licenses/>.
24112158Sdas
25112158Sdas/** @file bits/hashtable_policy.h
26112158Sdas *  This is an internal header file, included by other library headers.
27112158Sdas *  Do not attempt to use it directly.
28112158Sdas *  @headername{unordered_map,unordered_set}
29165743Sdas */
30165743Sdas
31112158Sdas#ifndef _HASHTABLE_POLICY_H
32112158Sdas#define _HASHTABLE_POLICY_H 1
33112158Sdas
34112158Sdas#include <tuple>		// for std::tuple, std::forward_as_tuple
35112158Sdas#include <bits/stl_algobase.h>	// for std::min, std::is_permutation.
36112158Sdas#include <ext/aligned_buffer.h>	// for __gnu_cxx::__aligned_buffer
37112158Sdas#include <ext/alloc_traits.h>	// for std::__alloc_rebind
38112158Sdas#include <ext/numeric_traits.h>	// for __gnu_cxx::__int_traits
39112158Sdas
40112158Sdasnamespace std _GLIBCXX_VISIBILITY(default)
41112158Sdas{
42112158Sdas_GLIBCXX_BEGIN_NAMESPACE_VERSION
43112158Sdas/// @cond undocumented
44112158Sdas
45112158Sdas  template<typename _Key, typename _Value, typename _Alloc,
46112158Sdas	   typename _ExtractKey, typename _Equal,
47112158Sdas	   typename _Hash, typename _RangeHash, typename _Unused,
48112158Sdas	   typename _RehashPolicy, typename _Traits>
49112158Sdas    class _Hashtable;
50112158Sdas
51112158Sdasnamespace __detail
52112158Sdas{
53112158Sdas  /**
54112158Sdas   *  @defgroup hashtable-detail Base and Implementation Classes
55112158Sdas   *  @ingroup unordered_associative_containers
56112158Sdas   *  @{
57112158Sdas   */
58112158Sdas  template<typename _Key, typename _Value, typename _ExtractKey,
59187808Sdas	   typename _Equal, typename _Hash, typename _RangeHash,
60112158Sdas	   typename _Unused, typename _Traits>
61112158Sdas    struct _Hashtable_base;
62112158Sdas
63112158Sdas  // Helper function: return distance(first, last) for forward
64187808Sdas  // iterators, or 0/1 for input iterators.
65187808Sdas  template<typename _Iterator>
66187808Sdas    inline typename std::iterator_traits<_Iterator>::difference_type
67187808Sdas    __distance_fw(_Iterator __first, _Iterator __last,
68187808Sdas		  std::input_iterator_tag)
69112158Sdas    { return __first != __last ? 1 : 0; }
70187808Sdas
71112158Sdas  template<typename _Iterator>
72112158Sdas    inline typename std::iterator_traits<_Iterator>::difference_type
73112158Sdas    __distance_fw(_Iterator __first, _Iterator __last,
74112158Sdas		  std::forward_iterator_tag)
75112158Sdas    { return std::distance(__first, __last); }
76112158Sdas
77112158Sdas  template<typename _Iterator>
78112158Sdas    inline typename std::iterator_traits<_Iterator>::difference_type
79112158Sdas    __distance_fw(_Iterator __first, _Iterator __last)
80112158Sdas    { return __distance_fw(__first, __last,
81112158Sdas			   std::__iterator_category(__first)); }
82112158Sdas
83112158Sdas  struct _Identity
84112158Sdas  {
85112158Sdas    template<typename _Tp>
86112158Sdas      _Tp&&
87112158Sdas      operator()(_Tp&& __x) const noexcept
88112158Sdas      { return std::forward<_Tp>(__x); }
89112158Sdas  };
90112158Sdas
91112158Sdas  struct _Select1st
92112158Sdas  {
93112158Sdas    template<typename _Pair>
94112158Sdas      struct __1st_type;
95112158Sdas
96112158Sdas    template<typename _Tp, typename _Up>
97112158Sdas      struct __1st_type<pair<_Tp, _Up>>
98165743Sdas      { using type = _Tp; };
99165743Sdas
100165743Sdas    template<typename _Tp, typename _Up>
101165743Sdas      struct __1st_type<const pair<_Tp, _Up>>
102112158Sdas      { using type = const _Tp; };
103112158Sdas
104112158Sdas    template<typename _Pair>
105112158Sdas      struct __1st_type<_Pair&>
106112158Sdas      { using type = typename __1st_type<_Pair>::type&; };
107
108    template<typename _Tp>
109      typename __1st_type<_Tp>::type&&
110      operator()(_Tp&& __x) const noexcept
111      { return std::forward<_Tp>(__x).first; }
112  };
113
114  template<typename _ExKey>
115    struct _NodeBuilder;
116
117  template<>
118    struct _NodeBuilder<_Select1st>
119    {
120      template<typename _Kt, typename _Arg, typename _NodeGenerator>
121	static auto
122	_S_build(_Kt&& __k, _Arg&& __arg, const _NodeGenerator& __node_gen)
123	-> typename _NodeGenerator::__node_type*
124	{
125	  return __node_gen(std::forward<_Kt>(__k),
126			    std::forward<_Arg>(__arg).second);
127	}
128    };
129
130  template<>
131    struct _NodeBuilder<_Identity>
132    {
133      template<typename _Kt, typename _Arg, typename _NodeGenerator>
134	static auto
135	_S_build(_Kt&& __k, _Arg&&, const _NodeGenerator& __node_gen)
136	-> typename _NodeGenerator::__node_type*
137	{ return __node_gen(std::forward<_Kt>(__k)); }
138    };
139
140  template<typename _NodeAlloc>
141    struct _Hashtable_alloc;
142
143  // Functor recycling a pool of nodes and using allocation once the pool is
144  // empty.
145  template<typename _NodeAlloc>
146    struct _ReuseOrAllocNode
147    {
148    private:
149      using __node_alloc_type = _NodeAlloc;
150      using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>;
151      using __node_alloc_traits =
152	typename __hashtable_alloc::__node_alloc_traits;
153
154    public:
155      using __node_type = typename __hashtable_alloc::__node_type;
156
157      _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h)
158      : _M_nodes(__nodes), _M_h(__h) { }
159      _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete;
160
161      ~_ReuseOrAllocNode()
162      { _M_h._M_deallocate_nodes(_M_nodes); }
163
164      template<typename... _Args>
165	__node_type*
166	operator()(_Args&&... __args) const
167	{
168	  if (_M_nodes)
169	    {
170	      __node_type* __node = _M_nodes;
171	      _M_nodes = _M_nodes->_M_next();
172	      __node->_M_nxt = nullptr;
173	      auto& __a = _M_h._M_node_allocator();
174	      __node_alloc_traits::destroy(__a, __node->_M_valptr());
175	      __try
176		{
177		  __node_alloc_traits::construct(__a, __node->_M_valptr(),
178						 std::forward<_Args>(__args)...);
179		}
180	      __catch(...)
181		{
182		  _M_h._M_deallocate_node_ptr(__node);
183		  __throw_exception_again;
184		}
185	      return __node;
186	    }
187	  return _M_h._M_allocate_node(std::forward<_Args>(__args)...);
188	}
189
190    private:
191      mutable __node_type* _M_nodes;
192      __hashtable_alloc& _M_h;
193    };
194
195  // Functor similar to the previous one but without any pool of nodes to
196  // recycle.
197  template<typename _NodeAlloc>
198    struct _AllocNode
199    {
200    private:
201      using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>;
202
203    public:
204      using __node_type = typename __hashtable_alloc::__node_type;
205
206      _AllocNode(__hashtable_alloc& __h)
207      : _M_h(__h) { }
208
209      template<typename... _Args>
210	__node_type*
211	operator()(_Args&&... __args) const
212	{ return _M_h._M_allocate_node(std::forward<_Args>(__args)...); }
213
214    private:
215      __hashtable_alloc& _M_h;
216    };
217
218  // Auxiliary types used for all instantiations of _Hashtable nodes
219  // and iterators.
220
221  /**
222   *  struct _Hashtable_traits
223   *
224   *  Important traits for hash tables.
225   *
226   *  @tparam _Cache_hash_code  Boolean value. True if the value of
227   *  the hash function is stored along with the value. This is a
228   *  time-space tradeoff.  Storing it may improve lookup speed by
229   *  reducing the number of times we need to call the _Hash or _Equal
230   *  functors.
231   *
232   *  @tparam _Constant_iterators  Boolean value. True if iterator and
233   *  const_iterator are both constant iterator types. This is true
234   *  for unordered_set and unordered_multiset, false for
235   *  unordered_map and unordered_multimap.
236   *
237   *  @tparam _Unique_keys  Boolean value. True if the return value
238   *  of _Hashtable::count(k) is always at most one, false if it may
239   *  be an arbitrary number. This is true for unordered_set and
240   *  unordered_map, false for unordered_multiset and
241   *  unordered_multimap.
242   */
243  template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys>
244    struct _Hashtable_traits
245    {
246      using __hash_cached = __bool_constant<_Cache_hash_code>;
247      using __constant_iterators = __bool_constant<_Constant_iterators>;
248      using __unique_keys = __bool_constant<_Unique_keys>;
249    };
250
251  /**
252   *  struct _Hashtable_hash_traits
253   *
254   *  Important traits for hash tables depending on associated hasher.
255   *
256   */
257  template<typename _Hash>
258    struct _Hashtable_hash_traits
259    {
260      static constexpr std::size_t
261      __small_size_threshold() noexcept
262      { return std::__is_fast_hash<_Hash>::value ? 0 : 20; }
263    };
264
265  /**
266   *  struct _Hash_node_base
267   *
268   *  Nodes, used to wrap elements stored in the hash table.  A policy
269   *  template parameter of class template _Hashtable controls whether
270   *  nodes also store a hash code. In some cases (e.g. strings) this
271   *  may be a performance win.
272   */
273  struct _Hash_node_base
274  {
275    _Hash_node_base* _M_nxt;
276
277    _Hash_node_base() noexcept : _M_nxt() { }
278
279    _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { }
280  };
281
282  /**
283   *  struct _Hash_node_value_base
284   *
285   *  Node type with the value to store.
286   */
287  template<typename _Value>
288    struct _Hash_node_value_base
289    {
290      typedef _Value value_type;
291
292      __gnu_cxx::__aligned_buffer<_Value> _M_storage;
293
294      _Value*
295      _M_valptr() noexcept
296      { return _M_storage._M_ptr(); }
297
298      const _Value*
299      _M_valptr() const noexcept
300      { return _M_storage._M_ptr(); }
301
302      _Value&
303      _M_v() noexcept
304      { return *_M_valptr(); }
305
306      const _Value&
307      _M_v() const noexcept
308      { return *_M_valptr(); }
309    };
310
311  /**
312   *  Primary template struct _Hash_node_code_cache.
313   */
314  template<bool _Cache_hash_code>
315    struct _Hash_node_code_cache
316    { };
317
318  /**
319   *  Specialization for node with cache, struct _Hash_node_code_cache.
320   */
321  template<>
322    struct _Hash_node_code_cache<true>
323    { std::size_t  _M_hash_code; };
324
325  template<typename _Value, bool _Cache_hash_code>
326    struct _Hash_node_value
327    : _Hash_node_value_base<_Value>
328    , _Hash_node_code_cache<_Cache_hash_code>
329    { };
330
331  /**
332   *  Primary template struct _Hash_node.
333   */
334  template<typename _Value, bool _Cache_hash_code>
335    struct _Hash_node
336    : _Hash_node_base
337    , _Hash_node_value<_Value, _Cache_hash_code>
338    {
339      _Hash_node*
340      _M_next() const noexcept
341      { return static_cast<_Hash_node*>(this->_M_nxt); }
342    };
343
344  /// Base class for node iterators.
345  template<typename _Value, bool _Cache_hash_code>
346    struct _Node_iterator_base
347    {
348      using __node_type = _Hash_node<_Value, _Cache_hash_code>;
349
350      __node_type* _M_cur;
351
352      _Node_iterator_base() : _M_cur(nullptr) { }
353      _Node_iterator_base(__node_type* __p) noexcept
354      : _M_cur(__p) { }
355
356      void
357      _M_incr() noexcept
358      { _M_cur = _M_cur->_M_next(); }
359
360      friend bool
361      operator==(const _Node_iterator_base& __x, const _Node_iterator_base& __y)
362      noexcept
363      { return __x._M_cur == __y._M_cur; }
364
365#if __cpp_impl_three_way_comparison < 201907L
366      friend bool
367      operator!=(const _Node_iterator_base& __x, const _Node_iterator_base& __y)
368      noexcept
369      { return __x._M_cur != __y._M_cur; }
370#endif
371    };
372
373  /// Node iterators, used to iterate through all the hashtable.
374  template<typename _Value, bool __constant_iterators, bool __cache>
375    struct _Node_iterator
376    : public _Node_iterator_base<_Value, __cache>
377    {
378    private:
379      using __base_type = _Node_iterator_base<_Value, __cache>;
380      using __node_type = typename __base_type::__node_type;
381
382    public:
383      using value_type = _Value;
384      using difference_type = std::ptrdiff_t;
385      using iterator_category = std::forward_iterator_tag;
386
387      using pointer = __conditional_t<__constant_iterators,
388				      const value_type*, value_type*>;
389
390      using reference = __conditional_t<__constant_iterators,
391					const value_type&, value_type&>;
392
393      _Node_iterator() = default;
394
395      explicit
396      _Node_iterator(__node_type* __p) noexcept
397      : __base_type(__p) { }
398
399      reference
400      operator*() const noexcept
401      { return this->_M_cur->_M_v(); }
402
403      pointer
404      operator->() const noexcept
405      { return this->_M_cur->_M_valptr(); }
406
407      _Node_iterator&
408      operator++() noexcept
409      {
410	this->_M_incr();
411	return *this;
412      }
413
414      _Node_iterator
415      operator++(int) noexcept
416      {
417	_Node_iterator __tmp(*this);
418	this->_M_incr();
419	return __tmp;
420      }
421    };
422
423  /// Node const_iterators, used to iterate through all the hashtable.
424  template<typename _Value, bool __constant_iterators, bool __cache>
425    struct _Node_const_iterator
426    : public _Node_iterator_base<_Value, __cache>
427    {
428    private:
429      using __base_type = _Node_iterator_base<_Value, __cache>;
430      using __node_type = typename __base_type::__node_type;
431
432    public:
433      typedef _Value					value_type;
434      typedef std::ptrdiff_t				difference_type;
435      typedef std::forward_iterator_tag			iterator_category;
436
437      typedef const value_type*				pointer;
438      typedef const value_type&				reference;
439
440      _Node_const_iterator() = default;
441
442      explicit
443      _Node_const_iterator(__node_type* __p) noexcept
444      : __base_type(__p) { }
445
446      _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
447			   __cache>& __x) noexcept
448      : __base_type(__x._M_cur) { }
449
450      reference
451      operator*() const noexcept
452      { return this->_M_cur->_M_v(); }
453
454      pointer
455      operator->() const noexcept
456      { return this->_M_cur->_M_valptr(); }
457
458      _Node_const_iterator&
459      operator++() noexcept
460      {
461	this->_M_incr();
462	return *this;
463      }
464
465      _Node_const_iterator
466      operator++(int) noexcept
467      {
468	_Node_const_iterator __tmp(*this);
469	this->_M_incr();
470	return __tmp;
471      }
472    };
473
474  // Many of class template _Hashtable's template parameters are policy
475  // classes.  These are defaults for the policies.
476
477  /// Default range hashing function: use division to fold a large number
478  /// into the range [0, N).
479  struct _Mod_range_hashing
480  {
481    typedef std::size_t first_argument_type;
482    typedef std::size_t second_argument_type;
483    typedef std::size_t result_type;
484
485    result_type
486    operator()(first_argument_type __num,
487	       second_argument_type __den) const noexcept
488    { return __num % __den; }
489  };
490
491  /// Default ranged hash function H.  In principle it should be a
492  /// function object composed from objects of type H1 and H2 such that
493  /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
494  /// h1 and h2.  So instead we'll just use a tag to tell class template
495  /// hashtable to do that composition.
496  struct _Default_ranged_hash { };
497
498  /// Default value for rehash policy.  Bucket size is (usually) the
499  /// smallest prime that keeps the load factor small enough.
500  struct _Prime_rehash_policy
501  {
502    using __has_load_factor = true_type;
503
504    _Prime_rehash_policy(float __z = 1.0) noexcept
505    : _M_max_load_factor(__z), _M_next_resize(0) { }
506
507    float
508    max_load_factor() const noexcept
509    { return _M_max_load_factor; }
510
511    // Return a bucket size no smaller than n.
512    std::size_t
513    _M_next_bkt(std::size_t __n) const;
514
515    // Return a bucket count appropriate for n elements
516    std::size_t
517    _M_bkt_for_elements(std::size_t __n) const
518    { return __builtin_ceil(__n / (double)_M_max_load_factor); }
519
520    // __n_bkt is current bucket count, __n_elt is current element count,
521    // and __n_ins is number of elements to be inserted.  Do we need to
522    // increase bucket count?  If so, return make_pair(true, n), where n
523    // is the new bucket count.  If not, return make_pair(false, 0).
524    std::pair<bool, std::size_t>
525    _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
526		   std::size_t __n_ins) const;
527
528    typedef std::size_t _State;
529
530    _State
531    _M_state() const
532    { return _M_next_resize; }
533
534    void
535    _M_reset() noexcept
536    { _M_next_resize = 0; }
537
538    void
539    _M_reset(_State __state)
540    { _M_next_resize = __state; }
541
542    static const std::size_t _S_growth_factor = 2;
543
544    float		_M_max_load_factor;
545    mutable std::size_t	_M_next_resize;
546  };
547
548  /// Range hashing function assuming that second arg is a power of 2.
549  struct _Mask_range_hashing
550  {
551    typedef std::size_t first_argument_type;
552    typedef std::size_t second_argument_type;
553    typedef std::size_t result_type;
554
555    result_type
556    operator()(first_argument_type __num,
557	       second_argument_type __den) const noexcept
558    { return __num & (__den - 1); }
559  };
560
561  /// Compute closest power of 2 not less than __n
562  inline std::size_t
563  __clp2(std::size_t __n) noexcept
564  {
565    using __gnu_cxx::__int_traits;
566    // Equivalent to return __n ? std::bit_ceil(__n) : 0;
567    if (__n < 2)
568      return __n;
569    const unsigned __lz = sizeof(size_t) > sizeof(long)
570      ? __builtin_clzll(__n - 1ull)
571      : __builtin_clzl(__n - 1ul);
572    // Doing two shifts avoids undefined behaviour when __lz == 0.
573    return (size_t(1) << (__int_traits<size_t>::__digits - __lz - 1)) << 1;
574  }
575
576  /// Rehash policy providing power of 2 bucket numbers. Avoids modulo
577  /// operations.
578  struct _Power2_rehash_policy
579  {
580    using __has_load_factor = true_type;
581
582    _Power2_rehash_policy(float __z = 1.0) noexcept
583    : _M_max_load_factor(__z), _M_next_resize(0) { }
584
585    float
586    max_load_factor() const noexcept
587    { return _M_max_load_factor; }
588
589    // Return a bucket size no smaller than n (as long as n is not above the
590    // highest power of 2).
591    std::size_t
592    _M_next_bkt(std::size_t __n) noexcept
593    {
594      if (__n == 0)
595	// Special case on container 1st initialization with 0 bucket count
596	// hint. We keep _M_next_resize to 0 to make sure that next time we
597	// want to add an element allocation will take place.
598	return 1;
599
600      const auto __max_width = std::min<size_t>(sizeof(size_t), 8);
601      const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1);
602      std::size_t __res = __clp2(__n);
603
604      if (__res == 0)
605	__res = __max_bkt;
606      else if (__res == 1)
607	// If __res is 1 we force it to 2 to make sure there will be an
608	// allocation so that nothing need to be stored in the initial
609	// single bucket
610	__res = 2;
611
612      if (__res == __max_bkt)
613	// Set next resize to the max value so that we never try to rehash again
614	// as we already reach the biggest possible bucket number.
615	// Note that it might result in max_load_factor not being respected.
616	_M_next_resize = size_t(-1);
617      else
618	_M_next_resize
619	  = __builtin_floor(__res * (double)_M_max_load_factor);
620
621      return __res;
622    }
623
624    // Return a bucket count appropriate for n elements
625    std::size_t
626    _M_bkt_for_elements(std::size_t __n) const noexcept
627    { return __builtin_ceil(__n / (double)_M_max_load_factor); }
628
629    // __n_bkt is current bucket count, __n_elt is current element count,
630    // and __n_ins is number of elements to be inserted.  Do we need to
631    // increase bucket count?  If so, return make_pair(true, n), where n
632    // is the new bucket count.  If not, return make_pair(false, 0).
633    std::pair<bool, std::size_t>
634    _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
635		   std::size_t __n_ins) noexcept
636    {
637      if (__n_elt + __n_ins > _M_next_resize)
638	{
639	  // If _M_next_resize is 0 it means that we have nothing allocated so
640	  // far and that we start inserting elements. In this case we start
641	  // with an initial bucket size of 11.
642	  double __min_bkts
643	    = std::max<std::size_t>(__n_elt + __n_ins, _M_next_resize ? 0 : 11)
644	      / (double)_M_max_load_factor;
645	  if (__min_bkts >= __n_bkt)
646	    return { true,
647	      _M_next_bkt(std::max<std::size_t>(__builtin_floor(__min_bkts) + 1,
648						__n_bkt * _S_growth_factor)) };
649
650	  _M_next_resize
651	    = __builtin_floor(__n_bkt * (double)_M_max_load_factor);
652	  return { false, 0 };
653	}
654      else
655	return { false, 0 };
656    }
657
658    typedef std::size_t _State;
659
660    _State
661    _M_state() const noexcept
662    { return _M_next_resize; }
663
664    void
665    _M_reset() noexcept
666    { _M_next_resize = 0; }
667
668    void
669    _M_reset(_State __state) noexcept
670    { _M_next_resize = __state; }
671
672    static const std::size_t _S_growth_factor = 2;
673
674    float	_M_max_load_factor;
675    std::size_t	_M_next_resize;
676  };
677
678  // Base classes for std::_Hashtable.  We define these base classes
679  // because in some cases we want to do different things depending on
680  // the value of a policy class.  In some cases the policy class
681  // affects which member functions and nested typedefs are defined;
682  // we handle that by specializing base class templates.  Several of
683  // the base class templates need to access other members of class
684  // template _Hashtable, so we use a variant of the "Curiously
685  // Recurring Template Pattern" (CRTP) technique.
686
687  /**
688   *  Primary class template _Map_base.
689   *
690   *  If the hashtable has a value type of the form pair<const T1, T2> and
691   *  a key extraction policy (_ExtractKey) that returns the first part
692   *  of the pair, the hashtable gets a mapped_type typedef.  If it
693   *  satisfies those criteria and also has unique keys, then it also
694   *  gets an operator[].
695   */
696  template<typename _Key, typename _Value, typename _Alloc,
697	   typename _ExtractKey, typename _Equal,
698	   typename _Hash, typename _RangeHash, typename _Unused,
699	   typename _RehashPolicy, typename _Traits,
700	   bool _Unique_keys = _Traits::__unique_keys::value>
701    struct _Map_base { };
702
703  /// Partial specialization, __unique_keys set to false, std::pair value type.
704  template<typename _Key, typename _Val, typename _Alloc, typename _Equal,
705	   typename _Hash, typename _RangeHash, typename _Unused,
706	   typename _RehashPolicy, typename _Traits>
707    struct _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal,
708		     _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>
709    {
710      using mapped_type = _Val;
711    };
712
713  /// Partial specialization, __unique_keys set to true.
714  template<typename _Key, typename _Val, typename _Alloc, typename _Equal,
715	   typename _Hash, typename _RangeHash, typename _Unused,
716	   typename _RehashPolicy, typename _Traits>
717    struct _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal,
718		     _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>
719    {
720    private:
721      using __hashtable_base = _Hashtable_base<_Key, pair<const _Key, _Val>,
722					       _Select1st, _Equal, _Hash,
723					       _RangeHash, _Unused,
724					       _Traits>;
725
726      using __hashtable = _Hashtable<_Key, pair<const _Key, _Val>, _Alloc,
727				     _Select1st, _Equal, _Hash, _RangeHash,
728				     _Unused, _RehashPolicy, _Traits>;
729
730      using __hash_code = typename __hashtable_base::__hash_code;
731
732    public:
733      using key_type = typename __hashtable_base::key_type;
734      using mapped_type = _Val;
735
736      mapped_type&
737      operator[](const key_type& __k);
738
739      mapped_type&
740      operator[](key_type&& __k);
741
742      // _GLIBCXX_RESOLVE_LIB_DEFECTS
743      // DR 761. unordered_map needs an at() member function.
744      mapped_type&
745      at(const key_type& __k)
746      {
747	auto __ite = static_cast<__hashtable*>(this)->find(__k);
748	if (!__ite._M_cur)
749	  __throw_out_of_range(__N("unordered_map::at"));
750	return __ite->second;
751      }
752
753      const mapped_type&
754      at(const key_type& __k) const
755      {
756	auto __ite = static_cast<const __hashtable*>(this)->find(__k);
757	if (!__ite._M_cur)
758	  __throw_out_of_range(__N("unordered_map::at"));
759	return __ite->second;
760      }
761    };
762
763  template<typename _Key, typename _Val, typename _Alloc, typename _Equal,
764	   typename _Hash, typename _RangeHash, typename _Unused,
765	   typename _RehashPolicy, typename _Traits>
766    auto
767    _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal,
768	      _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>::
769    operator[](const key_type& __k)
770    -> mapped_type&
771    {
772      __hashtable* __h = static_cast<__hashtable*>(this);
773      __hash_code __code = __h->_M_hash_code(__k);
774      std::size_t __bkt = __h->_M_bucket_index(__code);
775      if (auto __node = __h->_M_find_node(__bkt, __k, __code))
776	return __node->_M_v().second;
777
778      typename __hashtable::_Scoped_node __node {
779	__h,
780	std::piecewise_construct,
781	std::tuple<const key_type&>(__k),
782	std::tuple<>()
783      };
784      auto __pos
785	= __h->_M_insert_unique_node(__bkt, __code, __node._M_node);
786      __node._M_node = nullptr;
787      return __pos->second;
788    }
789
790  template<typename _Key, typename _Val, typename _Alloc, typename _Equal,
791	   typename _Hash, typename _RangeHash, typename _Unused,
792	   typename _RehashPolicy, typename _Traits>
793    auto
794    _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal,
795	      _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>::
796    operator[](key_type&& __k)
797    -> mapped_type&
798    {
799      __hashtable* __h = static_cast<__hashtable*>(this);
800      __hash_code __code = __h->_M_hash_code(__k);
801      std::size_t __bkt = __h->_M_bucket_index(__code);
802      if (auto __node = __h->_M_find_node(__bkt, __k, __code))
803	return __node->_M_v().second;
804
805      typename __hashtable::_Scoped_node __node {
806	__h,
807	std::piecewise_construct,
808	std::forward_as_tuple(std::move(__k)),
809	std::tuple<>()
810      };
811      auto __pos
812	= __h->_M_insert_unique_node(__bkt, __code, __node._M_node);
813      __node._M_node = nullptr;
814      return __pos->second;
815    }
816
817  // Partial specialization for unordered_map<const T, U>, see PR 104174.
818  template<typename _Key, typename _Val, typename _Alloc, typename _Equal,
819	   typename _Hash, typename _RangeHash, typename _Unused,
820	   typename _RehashPolicy, typename _Traits, bool __uniq>
821    struct _Map_base<const _Key, pair<const _Key, _Val>,
822		     _Alloc, _Select1st, _Equal, _Hash,
823		     _RangeHash, _Unused, _RehashPolicy, _Traits, __uniq>
824    : _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, _Hash,
825		_RangeHash, _Unused, _RehashPolicy, _Traits, __uniq>
826    { };
827
828  /**
829   *  Primary class template _Insert_base.
830   *
831   *  Defines @c insert member functions appropriate to all _Hashtables.
832   */
833  template<typename _Key, typename _Value, typename _Alloc,
834	   typename _ExtractKey, typename _Equal,
835	   typename _Hash, typename _RangeHash, typename _Unused,
836	   typename _RehashPolicy, typename _Traits>
837    struct _Insert_base
838    {
839    protected:
840      using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
841					       _Equal, _Hash, _RangeHash,
842					       _Unused, _Traits>;
843
844      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
845				     _Hash, _RangeHash,
846				     _Unused, _RehashPolicy, _Traits>;
847
848      using __hash_cached = typename _Traits::__hash_cached;
849      using __constant_iterators = typename _Traits::__constant_iterators;
850
851      using __hashtable_alloc = _Hashtable_alloc<
852	__alloc_rebind<_Alloc, _Hash_node<_Value,
853					  __hash_cached::value>>>;
854
855      using value_type = typename __hashtable_base::value_type;
856      using size_type = typename __hashtable_base::size_type;
857
858      using __unique_keys = typename _Traits::__unique_keys;
859      using __node_alloc_type = typename __hashtable_alloc::__node_alloc_type;
860      using __node_gen_type = _AllocNode<__node_alloc_type>;
861
862      __hashtable&
863      _M_conjure_hashtable()
864      { return *(static_cast<__hashtable*>(this)); }
865
866      template<typename _InputIterator, typename _NodeGetter>
867	void
868	_M_insert_range(_InputIterator __first, _InputIterator __last,
869			const _NodeGetter&, true_type __uks);
870
871      template<typename _InputIterator, typename _NodeGetter>
872	void
873	_M_insert_range(_InputIterator __first, _InputIterator __last,
874			const _NodeGetter&, false_type __uks);
875
876    public:
877      using iterator = _Node_iterator<_Value, __constant_iterators::value,
878				      __hash_cached::value>;
879
880      using const_iterator = _Node_const_iterator<_Value,
881						  __constant_iterators::value,
882						  __hash_cached::value>;
883
884      using __ireturn_type = __conditional_t<__unique_keys::value,
885					     std::pair<iterator, bool>,
886					     iterator>;
887
888      __ireturn_type
889      insert(const value_type& __v)
890      {
891	__hashtable& __h = _M_conjure_hashtable();
892	__node_gen_type __node_gen(__h);
893	return __h._M_insert(__v, __node_gen, __unique_keys{});
894      }
895
896      iterator
897      insert(const_iterator __hint, const value_type& __v)
898      {
899	__hashtable& __h = _M_conjure_hashtable();
900	__node_gen_type __node_gen(__h);
901	return __h._M_insert(__hint, __v, __node_gen, __unique_keys{});
902      }
903
904      template<typename _KType, typename... _Args>
905	std::pair<iterator, bool>
906	try_emplace(const_iterator, _KType&& __k, _Args&&... __args)
907	{
908	  __hashtable& __h = _M_conjure_hashtable();
909	  auto __code = __h._M_hash_code(__k);
910	  std::size_t __bkt = __h._M_bucket_index(__code);
911	  if (auto __node = __h._M_find_node(__bkt, __k, __code))
912	    return { iterator(__node), false };
913
914	  typename __hashtable::_Scoped_node __node {
915	    &__h,
916	    std::piecewise_construct,
917	    std::forward_as_tuple(std::forward<_KType>(__k)),
918	    std::forward_as_tuple(std::forward<_Args>(__args)...)
919	    };
920	  auto __it
921	    = __h._M_insert_unique_node(__bkt, __code, __node._M_node);
922	  __node._M_node = nullptr;
923	  return { __it, true };
924	}
925
926      void
927      insert(initializer_list<value_type> __l)
928      { this->insert(__l.begin(), __l.end()); }
929
930      template<typename _InputIterator>
931	void
932	insert(_InputIterator __first, _InputIterator __last)
933	{
934	  __hashtable& __h = _M_conjure_hashtable();
935	  __node_gen_type __node_gen(__h);
936	  return _M_insert_range(__first, __last, __node_gen, __unique_keys{});
937	}
938    };
939
940  template<typename _Key, typename _Value, typename _Alloc,
941	   typename _ExtractKey, typename _Equal,
942	   typename _Hash, typename _RangeHash, typename _Unused,
943	   typename _RehashPolicy, typename _Traits>
944    template<typename _InputIterator, typename _NodeGetter>
945      void
946      _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
947		   _Hash, _RangeHash, _Unused,
948		   _RehashPolicy, _Traits>::
949      _M_insert_range(_InputIterator __first, _InputIterator __last,
950		      const _NodeGetter& __node_gen, true_type __uks)
951      {
952	__hashtable& __h = _M_conjure_hashtable();
953	for (; __first != __last; ++__first)
954	  __h._M_insert(*__first, __node_gen, __uks);
955      }
956
957  template<typename _Key, typename _Value, typename _Alloc,
958	   typename _ExtractKey, typename _Equal,
959	   typename _Hash, typename _RangeHash, typename _Unused,
960	   typename _RehashPolicy, typename _Traits>
961    template<typename _InputIterator, typename _NodeGetter>
962      void
963      _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
964		   _Hash, _RangeHash, _Unused,
965		   _RehashPolicy, _Traits>::
966      _M_insert_range(_InputIterator __first, _InputIterator __last,
967		      const _NodeGetter& __node_gen, false_type __uks)
968      {
969	using __rehash_type = typename __hashtable::__rehash_type;
970	using __rehash_state = typename __hashtable::__rehash_state;
971	using pair_type = std::pair<bool, std::size_t>;
972
973	size_type __n_elt = __detail::__distance_fw(__first, __last);
974	if (__n_elt == 0)
975	  return;
976
977	__hashtable& __h = _M_conjure_hashtable();
978	__rehash_type& __rehash = __h._M_rehash_policy;
979	const __rehash_state& __saved_state = __rehash._M_state();
980	pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count,
981							__h._M_element_count,
982							__n_elt);
983
984	if (__do_rehash.first)
985	  __h._M_rehash(__do_rehash.second, __saved_state);
986
987	for (; __first != __last; ++__first)
988	  __h._M_insert(*__first, __node_gen, __uks);
989      }
990
991  /**
992   *  Primary class template _Insert.
993   *
994   *  Defines @c insert member functions that depend on _Hashtable policies,
995   *  via partial specializations.
996   */
997  template<typename _Key, typename _Value, typename _Alloc,
998	   typename _ExtractKey, typename _Equal,
999	   typename _Hash, typename _RangeHash, typename _Unused,
1000	   typename _RehashPolicy, typename _Traits,
1001	   bool _Constant_iterators = _Traits::__constant_iterators::value>
1002    struct _Insert;
1003
1004  /// Specialization.
1005  template<typename _Key, typename _Value, typename _Alloc,
1006	   typename _ExtractKey, typename _Equal,
1007	   typename _Hash, typename _RangeHash, typename _Unused,
1008	   typename _RehashPolicy, typename _Traits>
1009    struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1010		   _Hash, _RangeHash, _Unused,
1011		   _RehashPolicy, _Traits, true>
1012    : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1013			  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>
1014    {
1015      using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
1016				       _Equal, _Hash, _RangeHash, _Unused,
1017				       _RehashPolicy, _Traits>;
1018
1019      using value_type = typename __base_type::value_type;
1020      using iterator = typename __base_type::iterator;
1021      using const_iterator =  typename __base_type::const_iterator;
1022      using __ireturn_type = typename __base_type::__ireturn_type;
1023
1024      using __unique_keys = typename __base_type::__unique_keys;
1025      using __hashtable = typename __base_type::__hashtable;
1026      using __node_gen_type = typename __base_type::__node_gen_type;
1027
1028      using __base_type::insert;
1029
1030      __ireturn_type
1031      insert(value_type&& __v)
1032      {
1033	__hashtable& __h = this->_M_conjure_hashtable();
1034	__node_gen_type __node_gen(__h);
1035	return __h._M_insert(std::move(__v), __node_gen, __unique_keys{});
1036      }
1037
1038      iterator
1039      insert(const_iterator __hint, value_type&& __v)
1040      {
1041	__hashtable& __h = this->_M_conjure_hashtable();
1042	__node_gen_type __node_gen(__h);
1043	return __h._M_insert(__hint, std::move(__v), __node_gen,
1044			     __unique_keys{});
1045      }
1046    };
1047
1048  /// Specialization.
1049  template<typename _Key, typename _Value, typename _Alloc,
1050	   typename _ExtractKey, typename _Equal,
1051	   typename _Hash, typename _RangeHash, typename _Unused,
1052	   typename _RehashPolicy, typename _Traits>
1053    struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1054		   _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>
1055    : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1056			  _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>
1057    {
1058      using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
1059				       _Equal, _Hash, _RangeHash, _Unused,
1060				       _RehashPolicy, _Traits>;
1061      using value_type = typename __base_type::value_type;
1062      using iterator = typename __base_type::iterator;
1063      using const_iterator =  typename __base_type::const_iterator;
1064
1065      using __unique_keys = typename __base_type::__unique_keys;
1066      using __hashtable = typename __base_type::__hashtable;
1067      using __ireturn_type = typename __base_type::__ireturn_type;
1068
1069      using __base_type::insert;
1070
1071      template<typename _Pair>
1072	using __is_cons = std::is_constructible<value_type, _Pair&&>;
1073
1074      template<typename _Pair>
1075	using _IFcons = std::enable_if<__is_cons<_Pair>::value>;
1076
1077      template<typename _Pair>
1078	using _IFconsp = typename _IFcons<_Pair>::type;
1079
1080      template<typename _Pair, typename = _IFconsp<_Pair>>
1081	__ireturn_type
1082	insert(_Pair&& __v)
1083	{
1084	  __hashtable& __h = this->_M_conjure_hashtable();
1085	  return __h._M_emplace(__unique_keys{}, std::forward<_Pair>(__v));
1086	}
1087
1088      template<typename _Pair, typename = _IFconsp<_Pair>>
1089	iterator
1090	insert(const_iterator __hint, _Pair&& __v)
1091	{
1092	  __hashtable& __h = this->_M_conjure_hashtable();
1093	  return __h._M_emplace(__hint, __unique_keys{},
1094				std::forward<_Pair>(__v));
1095	}
1096   };
1097
1098  template<typename _Policy>
1099    using __has_load_factor = typename _Policy::__has_load_factor;
1100
1101  /**
1102   *  Primary class template  _Rehash_base.
1103   *
1104   *  Give hashtable the max_load_factor functions and reserve iff the
1105   *  rehash policy supports it.
1106  */
1107  template<typename _Key, typename _Value, typename _Alloc,
1108	   typename _ExtractKey, typename _Equal,
1109	   typename _Hash, typename _RangeHash, typename _Unused,
1110	   typename _RehashPolicy, typename _Traits,
1111	   typename =
1112	     __detected_or_t<false_type, __has_load_factor, _RehashPolicy>>
1113    struct _Rehash_base;
1114
1115  /// Specialization when rehash policy doesn't provide load factor management.
1116  template<typename _Key, typename _Value, typename _Alloc,
1117	   typename _ExtractKey, typename _Equal,
1118	   typename _Hash, typename _RangeHash, typename _Unused,
1119	   typename _RehashPolicy, typename _Traits>
1120    struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1121			_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits,
1122			false_type /* Has load factor */>
1123    {
1124    };
1125
1126  /// Specialization when rehash policy provide load factor management.
1127  template<typename _Key, typename _Value, typename _Alloc,
1128	   typename _ExtractKey, typename _Equal,
1129	   typename _Hash, typename _RangeHash, typename _Unused,
1130	   typename _RehashPolicy, typename _Traits>
1131    struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1132			_Hash, _RangeHash, _Unused, _RehashPolicy, _Traits,
1133			true_type /* Has load factor */>
1134    {
1135    private:
1136      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1137				     _Equal, _Hash, _RangeHash, _Unused,
1138				     _RehashPolicy, _Traits>;
1139
1140    public:
1141      float
1142      max_load_factor() const noexcept
1143      {
1144	const __hashtable* __this = static_cast<const __hashtable*>(this);
1145	return __this->__rehash_policy().max_load_factor();
1146      }
1147
1148      void
1149      max_load_factor(float __z)
1150      {
1151	__hashtable* __this = static_cast<__hashtable*>(this);
1152	__this->__rehash_policy(_RehashPolicy(__z));
1153      }
1154
1155      void
1156      reserve(std::size_t __n)
1157      {
1158	__hashtable* __this = static_cast<__hashtable*>(this);
1159	__this->rehash(__this->__rehash_policy()._M_bkt_for_elements(__n));
1160      }
1161    };
1162
1163  /**
1164   *  Primary class template _Hashtable_ebo_helper.
1165   *
1166   *  Helper class using EBO when it is not forbidden (the type is not
1167   *  final) and when it is worth it (the type is empty.)
1168   */
1169  template<int _Nm, typename _Tp,
1170	   bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
1171    struct _Hashtable_ebo_helper;
1172
1173  /// Specialization using EBO.
1174  template<int _Nm, typename _Tp>
1175    struct _Hashtable_ebo_helper<_Nm, _Tp, true>
1176    : private _Tp
1177    {
1178      _Hashtable_ebo_helper() noexcept(noexcept(_Tp())) : _Tp() { }
1179
1180      template<typename _OtherTp>
1181	_Hashtable_ebo_helper(_OtherTp&& __tp)
1182	: _Tp(std::forward<_OtherTp>(__tp))
1183	{ }
1184
1185      const _Tp& _M_cget() const { return static_cast<const _Tp&>(*this); }
1186      _Tp& _M_get() { return static_cast<_Tp&>(*this); }
1187    };
1188
1189  /// Specialization not using EBO.
1190  template<int _Nm, typename _Tp>
1191    struct _Hashtable_ebo_helper<_Nm, _Tp, false>
1192    {
1193      _Hashtable_ebo_helper() = default;
1194
1195      template<typename _OtherTp>
1196	_Hashtable_ebo_helper(_OtherTp&& __tp)
1197	: _M_tp(std::forward<_OtherTp>(__tp))
1198	{ }
1199
1200      const _Tp& _M_cget() const { return _M_tp; }
1201      _Tp& _M_get() { return _M_tp; }
1202
1203    private:
1204      _Tp _M_tp{};
1205    };
1206
1207  /**
1208   *  Primary class template _Local_iterator_base.
1209   *
1210   *  Base class for local iterators, used to iterate within a bucket
1211   *  but not between buckets.
1212   */
1213  template<typename _Key, typename _Value, typename _ExtractKey,
1214	   typename _Hash, typename _RangeHash, typename _Unused,
1215	   bool __cache_hash_code>
1216    struct _Local_iterator_base;
1217
1218  /**
1219   *  Primary class template _Hash_code_base.
1220   *
1221   *  Encapsulates two policy issues that aren't quite orthogonal.
1222   *   (1) the difference between using a ranged hash function and using
1223   *       the combination of a hash function and a range-hashing function.
1224   *       In the former case we don't have such things as hash codes, so
1225   *       we have a dummy type as placeholder.
1226   *   (2) Whether or not we cache hash codes.  Caching hash codes is
1227   *       meaningless if we have a ranged hash function.
1228   *
1229   *  We also put the key extraction objects here, for convenience.
1230   *  Each specialization derives from one or more of the template
1231   *  parameters to benefit from Ebo. This is important as this type
1232   *  is inherited in some cases by the _Local_iterator_base type used
1233   *  to implement local_iterator and const_local_iterator. As with
1234   *  any iterator type we prefer to make it as small as possible.
1235   */
1236  template<typename _Key, typename _Value, typename _ExtractKey,
1237	   typename _Hash, typename _RangeHash, typename _Unused,
1238	   bool __cache_hash_code>
1239    struct _Hash_code_base
1240    : private _Hashtable_ebo_helper<1, _Hash>
1241    {
1242    private:
1243      using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>;
1244
1245      // Gives the local iterator implementation access to _M_bucket_index().
1246      friend struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1247					 _Hash, _RangeHash, _Unused, false>;
1248
1249    public:
1250      typedef _Hash					hasher;
1251
1252      hasher
1253      hash_function() const
1254      { return _M_hash(); }
1255
1256    protected:
1257      typedef std::size_t 				__hash_code;
1258
1259      // We need the default constructor for the local iterators and _Hashtable
1260      // default constructor.
1261      _Hash_code_base() = default;
1262
1263      _Hash_code_base(const _Hash& __hash) : __ebo_hash(__hash) { }
1264
1265      __hash_code
1266      _M_hash_code(const _Key& __k) const
1267      {
1268	static_assert(__is_invocable<const _Hash&, const _Key&>{},
1269	    "hash function must be invocable with an argument of key type");
1270	return _M_hash()(__k);
1271      }
1272
1273      template<typename _Kt>
1274	__hash_code
1275	_M_hash_code_tr(const _Kt& __k) const
1276	{
1277	  static_assert(__is_invocable<const _Hash&, const _Kt&>{},
1278	    "hash function must be invocable with an argument of key type");
1279	  return _M_hash()(__k);
1280	}
1281
1282      __hash_code
1283      _M_hash_code(const _Hash&,
1284		   const _Hash_node_value<_Value, true>& __n) const
1285      { return __n._M_hash_code; }
1286
1287      // Compute hash code using _Hash as __n _M_hash_code, if present, was
1288      // computed using _H2.
1289      template<typename _H2>
1290	__hash_code
1291	_M_hash_code(const _H2&,
1292		const _Hash_node_value<_Value, __cache_hash_code>& __n) const
1293	{ return _M_hash_code(_ExtractKey{}(__n._M_v())); }
1294
1295      __hash_code
1296      _M_hash_code(const _Hash_node_value<_Value, false>& __n) const
1297      { return _M_hash_code(_ExtractKey{}(__n._M_v())); }
1298
1299      __hash_code
1300      _M_hash_code(const _Hash_node_value<_Value, true>& __n) const
1301      { return __n._M_hash_code; }
1302
1303      std::size_t
1304      _M_bucket_index(__hash_code __c, std::size_t __bkt_count) const
1305      { return _RangeHash{}(__c, __bkt_count); }
1306
1307      std::size_t
1308      _M_bucket_index(const _Hash_node_value<_Value, false>& __n,
1309		      std::size_t __bkt_count) const
1310	noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>()))
1311		  && noexcept(declval<const _RangeHash&>()((__hash_code)0,
1312							   (std::size_t)0)) )
1313      {
1314	return _RangeHash{}(_M_hash_code(_ExtractKey{}(__n._M_v())),
1315			    __bkt_count);
1316      }
1317
1318      std::size_t
1319      _M_bucket_index(const _Hash_node_value<_Value, true>& __n,
1320		      std::size_t __bkt_count) const
1321	noexcept( noexcept(declval<const _RangeHash&>()((__hash_code)0,
1322							(std::size_t)0)) )
1323      { return _RangeHash{}(__n._M_hash_code, __bkt_count); }
1324
1325      void
1326      _M_store_code(_Hash_node_code_cache<false>&, __hash_code) const
1327      { }
1328
1329      void
1330      _M_copy_code(_Hash_node_code_cache<false>&,
1331		   const _Hash_node_code_cache<false>&) const
1332      { }
1333
1334      void
1335      _M_store_code(_Hash_node_code_cache<true>& __n, __hash_code __c) const
1336      { __n._M_hash_code = __c; }
1337
1338      void
1339      _M_copy_code(_Hash_node_code_cache<true>& __to,
1340		   const _Hash_node_code_cache<true>& __from) const
1341      { __to._M_hash_code = __from._M_hash_code; }
1342
1343      void
1344      _M_swap(_Hash_code_base& __x)
1345      { std::swap(__ebo_hash::_M_get(), __x.__ebo_hash::_M_get()); }
1346
1347      const _Hash&
1348      _M_hash() const { return __ebo_hash::_M_cget(); }
1349    };
1350
1351  /// Partial specialization used when nodes contain a cached hash code.
1352  template<typename _Key, typename _Value, typename _ExtractKey,
1353	   typename _Hash, typename _RangeHash, typename _Unused>
1354    struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1355				_Hash, _RangeHash, _Unused, true>
1356    : public _Node_iterator_base<_Value, true>
1357    {
1358    protected:
1359      using __base_node_iter = _Node_iterator_base<_Value, true>;
1360      using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1361					      _Hash, _RangeHash, _Unused, true>;
1362
1363      _Local_iterator_base() = default;
1364      _Local_iterator_base(const __hash_code_base&,
1365			   _Hash_node<_Value, true>* __p,
1366			   std::size_t __bkt, std::size_t __bkt_count)
1367      : __base_node_iter(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
1368      { }
1369
1370      void
1371      _M_incr()
1372      {
1373	__base_node_iter::_M_incr();
1374	if (this->_M_cur)
1375	  {
1376	    std::size_t __bkt
1377	      = _RangeHash{}(this->_M_cur->_M_hash_code, _M_bucket_count);
1378	    if (__bkt != _M_bucket)
1379	      this->_M_cur = nullptr;
1380	  }
1381      }
1382
1383      std::size_t _M_bucket;
1384      std::size_t _M_bucket_count;
1385
1386    public:
1387      std::size_t
1388      _M_get_bucket() const { return _M_bucket; }  // for debug mode
1389    };
1390
1391  // Uninitialized storage for a _Hash_code_base.
1392  // This type is DefaultConstructible and Assignable even if the
1393  // _Hash_code_base type isn't, so that _Local_iterator_base<..., false>
1394  // can be DefaultConstructible and Assignable.
1395  template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value>
1396    struct _Hash_code_storage
1397    {
1398      __gnu_cxx::__aligned_buffer<_Tp> _M_storage;
1399
1400      _Tp*
1401      _M_h() { return _M_storage._M_ptr(); }
1402
1403      const _Tp*
1404      _M_h() const { return _M_storage._M_ptr(); }
1405    };
1406
1407  // Empty partial specialization for empty _Hash_code_base types.
1408  template<typename _Tp>
1409    struct _Hash_code_storage<_Tp, true>
1410    {
1411      static_assert( std::is_empty<_Tp>::value, "Type must be empty" );
1412
1413      // As _Tp is an empty type there will be no bytes written/read through
1414      // the cast pointer, so no strict-aliasing violation.
1415      _Tp*
1416      _M_h() { return reinterpret_cast<_Tp*>(this); }
1417
1418      const _Tp*
1419      _M_h() const { return reinterpret_cast<const _Tp*>(this); }
1420    };
1421
1422  template<typename _Key, typename _Value, typename _ExtractKey,
1423	   typename _Hash, typename _RangeHash, typename _Unused>
1424    using __hash_code_for_local_iter
1425      = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey,
1426					   _Hash, _RangeHash, _Unused, false>>;
1427
1428  // Partial specialization used when hash codes are not cached
1429  template<typename _Key, typename _Value, typename _ExtractKey,
1430	   typename _Hash, typename _RangeHash, typename _Unused>
1431    struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1432				_Hash, _RangeHash, _Unused, false>
1433    : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _Hash, _RangeHash,
1434				 _Unused>
1435    , _Node_iterator_base<_Value, false>
1436    {
1437    protected:
1438      using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1439					     _Hash, _RangeHash, _Unused, false>;
1440      using __node_iter_base = _Node_iterator_base<_Value, false>;
1441
1442      _Local_iterator_base() : _M_bucket_count(-1) { }
1443
1444      _Local_iterator_base(const __hash_code_base& __base,
1445			   _Hash_node<_Value, false>* __p,
1446			   std::size_t __bkt, std::size_t __bkt_count)
1447      : __node_iter_base(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
1448      { _M_init(__base); }
1449
1450      ~_Local_iterator_base()
1451      {
1452	if (_M_bucket_count != size_t(-1))
1453	  _M_destroy();
1454      }
1455
1456      _Local_iterator_base(const _Local_iterator_base& __iter)
1457      : __node_iter_base(__iter._M_cur), _M_bucket(__iter._M_bucket)
1458      , _M_bucket_count(__iter._M_bucket_count)
1459      {
1460	if (_M_bucket_count != size_t(-1))
1461	  _M_init(*__iter._M_h());
1462      }
1463
1464      _Local_iterator_base&
1465      operator=(const _Local_iterator_base& __iter)
1466      {
1467	if (_M_bucket_count != -1)
1468	  _M_destroy();
1469	this->_M_cur = __iter._M_cur;
1470	_M_bucket = __iter._M_bucket;
1471	_M_bucket_count = __iter._M_bucket_count;
1472	if (_M_bucket_count != -1)
1473	  _M_init(*__iter._M_h());
1474	return *this;
1475      }
1476
1477      void
1478      _M_incr()
1479      {
1480	__node_iter_base::_M_incr();
1481	if (this->_M_cur)
1482	  {
1483	    std::size_t __bkt = this->_M_h()->_M_bucket_index(*this->_M_cur,
1484							      _M_bucket_count);
1485	    if (__bkt != _M_bucket)
1486	      this->_M_cur = nullptr;
1487	  }
1488      }
1489
1490      std::size_t _M_bucket;
1491      std::size_t _M_bucket_count;
1492
1493      void
1494      _M_init(const __hash_code_base& __base)
1495      { ::new(this->_M_h()) __hash_code_base(__base); }
1496
1497      void
1498      _M_destroy() { this->_M_h()->~__hash_code_base(); }
1499
1500    public:
1501      std::size_t
1502      _M_get_bucket() const { return _M_bucket; }  // for debug mode
1503    };
1504
1505  /// local iterators
1506  template<typename _Key, typename _Value, typename _ExtractKey,
1507	   typename _Hash, typename _RangeHash, typename _Unused,
1508	   bool __constant_iterators, bool __cache>
1509    struct _Local_iterator
1510    : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1511				  _Hash, _RangeHash, _Unused, __cache>
1512    {
1513    private:
1514      using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1515					   _Hash, _RangeHash, _Unused, __cache>;
1516      using __hash_code_base = typename __base_type::__hash_code_base;
1517
1518    public:
1519      using value_type = _Value;
1520      using pointer = __conditional_t<__constant_iterators,
1521				      const value_type*, value_type*>;
1522      using reference = __conditional_t<__constant_iterators,
1523					const value_type&, value_type&>;
1524      using difference_type = ptrdiff_t;
1525      using iterator_category = forward_iterator_tag;
1526
1527      _Local_iterator() = default;
1528
1529      _Local_iterator(const __hash_code_base& __base,
1530		      _Hash_node<_Value, __cache>* __n,
1531		      std::size_t __bkt, std::size_t __bkt_count)
1532      : __base_type(__base, __n, __bkt, __bkt_count)
1533      { }
1534
1535      reference
1536      operator*() const
1537      { return this->_M_cur->_M_v(); }
1538
1539      pointer
1540      operator->() const
1541      { return this->_M_cur->_M_valptr(); }
1542
1543      _Local_iterator&
1544      operator++()
1545      {
1546	this->_M_incr();
1547	return *this;
1548      }
1549
1550      _Local_iterator
1551      operator++(int)
1552      {
1553	_Local_iterator __tmp(*this);
1554	this->_M_incr();
1555	return __tmp;
1556      }
1557    };
1558
1559  /// local const_iterators
1560  template<typename _Key, typename _Value, typename _ExtractKey,
1561	   typename _Hash, typename _RangeHash, typename _Unused,
1562	   bool __constant_iterators, bool __cache>
1563    struct _Local_const_iterator
1564    : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1565				  _Hash, _RangeHash, _Unused, __cache>
1566    {
1567    private:
1568      using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1569					   _Hash, _RangeHash, _Unused, __cache>;
1570      using __hash_code_base = typename __base_type::__hash_code_base;
1571
1572    public:
1573      typedef _Value					value_type;
1574      typedef const value_type*				pointer;
1575      typedef const value_type&				reference;
1576      typedef std::ptrdiff_t				difference_type;
1577      typedef std::forward_iterator_tag			iterator_category;
1578
1579      _Local_const_iterator() = default;
1580
1581      _Local_const_iterator(const __hash_code_base& __base,
1582			    _Hash_node<_Value, __cache>* __n,
1583			    std::size_t __bkt, std::size_t __bkt_count)
1584      : __base_type(__base, __n, __bkt, __bkt_count)
1585      { }
1586
1587      _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
1588						  _Hash, _RangeHash, _Unused,
1589						  __constant_iterators,
1590						  __cache>& __x)
1591      : __base_type(__x)
1592      { }
1593
1594      reference
1595      operator*() const
1596      { return this->_M_cur->_M_v(); }
1597
1598      pointer
1599      operator->() const
1600      { return this->_M_cur->_M_valptr(); }
1601
1602      _Local_const_iterator&
1603      operator++()
1604      {
1605	this->_M_incr();
1606	return *this;
1607      }
1608
1609      _Local_const_iterator
1610      operator++(int)
1611      {
1612	_Local_const_iterator __tmp(*this);
1613	this->_M_incr();
1614	return __tmp;
1615      }
1616    };
1617
1618  /**
1619   *  Primary class template _Hashtable_base.
1620   *
1621   *  Helper class adding management of _Equal functor to
1622   *  _Hash_code_base type.
1623   *
1624   *  Base class templates are:
1625   *    - __detail::_Hash_code_base
1626   *    - __detail::_Hashtable_ebo_helper
1627   */
1628  template<typename _Key, typename _Value, typename _ExtractKey,
1629	   typename _Equal, typename _Hash, typename _RangeHash,
1630	   typename _Unused, typename _Traits>
1631    struct _Hashtable_base
1632    : public _Hash_code_base<_Key, _Value, _ExtractKey, _Hash, _RangeHash,
1633			     _Unused, _Traits::__hash_cached::value>,
1634      private _Hashtable_ebo_helper<0, _Equal>
1635    {
1636    public:
1637      typedef _Key					key_type;
1638      typedef _Value					value_type;
1639      typedef _Equal					key_equal;
1640      typedef std::size_t				size_type;
1641      typedef std::ptrdiff_t				difference_type;
1642
1643      using __traits_type = _Traits;
1644      using __hash_cached = typename __traits_type::__hash_cached;
1645
1646      using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1647					       _Hash, _RangeHash, _Unused,
1648					       __hash_cached::value>;
1649
1650      using __hash_code = typename __hash_code_base::__hash_code;
1651
1652    private:
1653      using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>;
1654
1655      static bool
1656      _S_equals(__hash_code, const _Hash_node_code_cache<false>&)
1657      { return true; }
1658
1659      static bool
1660      _S_node_equals(const _Hash_node_code_cache<false>&,
1661		     const _Hash_node_code_cache<false>&)
1662      { return true; }
1663
1664      static bool
1665      _S_equals(__hash_code __c, const _Hash_node_code_cache<true>& __n)
1666      { return __c == __n._M_hash_code; }
1667
1668      static bool
1669      _S_node_equals(const _Hash_node_code_cache<true>& __lhn,
1670		     const _Hash_node_code_cache<true>& __rhn)
1671      { return __lhn._M_hash_code == __rhn._M_hash_code; }
1672
1673    protected:
1674      _Hashtable_base() = default;
1675
1676      _Hashtable_base(const _Hash& __hash, const _Equal& __eq)
1677      : __hash_code_base(__hash), _EqualEBO(__eq)
1678      { }
1679
1680      bool
1681      _M_key_equals(const _Key& __k,
1682		    const _Hash_node_value<_Value,
1683					   __hash_cached::value>& __n) const
1684      {
1685	static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{},
1686	  "key equality predicate must be invocable with two arguments of "
1687	  "key type");
1688	return _M_eq()(__k, _ExtractKey{}(__n._M_v()));
1689      }
1690
1691      template<typename _Kt>
1692	bool
1693	_M_key_equals_tr(const _Kt& __k,
1694			 const _Hash_node_value<_Value,
1695					     __hash_cached::value>& __n) const
1696	{
1697	  static_assert(
1698	    __is_invocable<const _Equal&, const _Kt&, const _Key&>{},
1699	    "key equality predicate must be invocable with two arguments of "
1700	    "key type");
1701	  return _M_eq()(__k, _ExtractKey{}(__n._M_v()));
1702	}
1703
1704      bool
1705      _M_equals(const _Key& __k, __hash_code __c,
1706		const _Hash_node_value<_Value, __hash_cached::value>& __n) const
1707      { return _S_equals(__c, __n) && _M_key_equals(__k, __n); }
1708
1709      template<typename _Kt>
1710	bool
1711	_M_equals_tr(const _Kt& __k, __hash_code __c,
1712		     const _Hash_node_value<_Value,
1713					    __hash_cached::value>& __n) const
1714	{ return _S_equals(__c, __n) && _M_key_equals_tr(__k, __n); }
1715
1716      bool
1717      _M_node_equals(
1718	const _Hash_node_value<_Value, __hash_cached::value>& __lhn,
1719	const _Hash_node_value<_Value, __hash_cached::value>& __rhn) const
1720      {
1721	return _S_node_equals(__lhn, __rhn)
1722	  && _M_key_equals(_ExtractKey{}(__lhn._M_v()), __rhn);
1723      }
1724
1725      void
1726      _M_swap(_Hashtable_base& __x)
1727      {
1728	__hash_code_base::_M_swap(__x);
1729	std::swap(_EqualEBO::_M_get(), __x._EqualEBO::_M_get());
1730      }
1731
1732      const _Equal&
1733      _M_eq() const { return _EqualEBO::_M_cget(); }
1734    };
1735
1736  /**
1737   *  Primary class template  _Equality.
1738   *
1739   *  This is for implementing equality comparison for unordered
1740   *  containers, per N3068, by John Lakos and Pablo Halpern.
1741   *  Algorithmically, we follow closely the reference implementations
1742   *  therein.
1743   */
1744  template<typename _Key, typename _Value, typename _Alloc,
1745	   typename _ExtractKey, typename _Equal,
1746	   typename _Hash, typename _RangeHash, typename _Unused,
1747	   typename _RehashPolicy, typename _Traits,
1748	   bool _Unique_keys = _Traits::__unique_keys::value>
1749    struct _Equality;
1750
1751  /// unordered_map and unordered_set specializations.
1752  template<typename _Key, typename _Value, typename _Alloc,
1753	   typename _ExtractKey, typename _Equal,
1754	   typename _Hash, typename _RangeHash, typename _Unused,
1755	   typename _RehashPolicy, typename _Traits>
1756    struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1757		     _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>
1758    {
1759      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1760				     _Hash, _RangeHash, _Unused,
1761				     _RehashPolicy, _Traits>;
1762
1763      bool
1764      _M_equal(const __hashtable&) const;
1765    };
1766
1767  template<typename _Key, typename _Value, typename _Alloc,
1768	   typename _ExtractKey, typename _Equal,
1769	   typename _Hash, typename _RangeHash, typename _Unused,
1770	   typename _RehashPolicy, typename _Traits>
1771    bool
1772    _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1773	      _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>::
1774    _M_equal(const __hashtable& __other) const
1775    {
1776      using __node_type = typename __hashtable::__node_type;
1777      const __hashtable* __this = static_cast<const __hashtable*>(this);
1778      if (__this->size() != __other.size())
1779	return false;
1780
1781      for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
1782	{
1783	  std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur);
1784	  auto __prev_n = __other._M_buckets[__ybkt];
1785	  if (!__prev_n)
1786	    return false;
1787
1788	  for (__node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);;
1789	       __n = __n->_M_next())
1790	    {
1791	      if (__n->_M_v() == *__itx)
1792		break;
1793
1794	      if (!__n->_M_nxt
1795		  || __other._M_bucket_index(*__n->_M_next()) != __ybkt)
1796		return false;
1797	    }
1798	}
1799
1800      return true;
1801    }
1802
1803  /// unordered_multiset and unordered_multimap specializations.
1804  template<typename _Key, typename _Value, typename _Alloc,
1805	   typename _ExtractKey, typename _Equal,
1806	   typename _Hash, typename _RangeHash, typename _Unused,
1807	   typename _RehashPolicy, typename _Traits>
1808    struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1809		     _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>
1810    {
1811      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1812				     _Hash, _RangeHash, _Unused,
1813				     _RehashPolicy, _Traits>;
1814
1815      bool
1816      _M_equal(const __hashtable&) const;
1817    };
1818
1819  template<typename _Key, typename _Value, typename _Alloc,
1820	   typename _ExtractKey, typename _Equal,
1821	   typename _Hash, typename _RangeHash, typename _Unused,
1822	   typename _RehashPolicy, typename _Traits>
1823    bool
1824    _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1825	      _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>::
1826    _M_equal(const __hashtable& __other) const
1827    {
1828      using __node_type = typename __hashtable::__node_type;
1829      const __hashtable* __this = static_cast<const __hashtable*>(this);
1830      if (__this->size() != __other.size())
1831	return false;
1832
1833      for (auto __itx = __this->begin(); __itx != __this->end();)
1834	{
1835	  std::size_t __x_count = 1;
1836	  auto __itx_end = __itx;
1837	  for (++__itx_end; __itx_end != __this->end()
1838		 && __this->key_eq()(_ExtractKey{}(*__itx),
1839				     _ExtractKey{}(*__itx_end));
1840	       ++__itx_end)
1841	    ++__x_count;
1842
1843	  std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur);
1844	  auto __y_prev_n = __other._M_buckets[__ybkt];
1845	  if (!__y_prev_n)
1846	    return false;
1847
1848	  __node_type* __y_n = static_cast<__node_type*>(__y_prev_n->_M_nxt);
1849	  for (;;)
1850	    {
1851	      if (__this->key_eq()(_ExtractKey{}(__y_n->_M_v()),
1852				   _ExtractKey{}(*__itx)))
1853		break;
1854
1855	      auto __y_ref_n = __y_n;
1856	      for (__y_n = __y_n->_M_next(); __y_n; __y_n = __y_n->_M_next())
1857		if (!__other._M_node_equals(*__y_ref_n, *__y_n))
1858		  break;
1859
1860	      if (!__y_n || __other._M_bucket_index(*__y_n) != __ybkt)
1861		return false;
1862	    }
1863
1864	  typename __hashtable::const_iterator __ity(__y_n);
1865	  for (auto __ity_end = __ity; __ity_end != __other.end(); ++__ity_end)
1866	    if (--__x_count == 0)
1867	      break;
1868
1869	  if (__x_count != 0)
1870	    return false;
1871
1872	  if (!std::is_permutation(__itx, __itx_end, __ity))
1873	    return false;
1874
1875	  __itx = __itx_end;
1876	}
1877      return true;
1878    }
1879
1880  /**
1881   * This type deals with all allocation and keeps an allocator instance
1882   * through inheritance to benefit from EBO when possible.
1883   */
1884  template<typename _NodeAlloc>
1885    struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc>
1886    {
1887    private:
1888      using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>;
1889
1890      template<typename>
1891	struct __get_value_type;
1892      template<typename _Val, bool _Cache_hash_code>
1893	struct __get_value_type<_Hash_node<_Val, _Cache_hash_code>>
1894	{ using type = _Val; };
1895
1896    public:
1897      using __node_type = typename _NodeAlloc::value_type;
1898      using __node_alloc_type = _NodeAlloc;
1899      // Use __gnu_cxx to benefit from _S_always_equal and al.
1900      using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>;
1901
1902      using __value_alloc_traits = typename __node_alloc_traits::template
1903	rebind_traits<typename __get_value_type<__node_type>::type>;
1904
1905      using __node_ptr = __node_type*;
1906      using __node_base = _Hash_node_base;
1907      using __node_base_ptr = __node_base*;
1908      using __buckets_alloc_type =
1909	__alloc_rebind<__node_alloc_type, __node_base_ptr>;
1910      using __buckets_alloc_traits = std::allocator_traits<__buckets_alloc_type>;
1911      using __buckets_ptr = __node_base_ptr*;
1912
1913      _Hashtable_alloc() = default;
1914      _Hashtable_alloc(const _Hashtable_alloc&) = default;
1915      _Hashtable_alloc(_Hashtable_alloc&&) = default;
1916
1917      template<typename _Alloc>
1918	_Hashtable_alloc(_Alloc&& __a)
1919	: __ebo_node_alloc(std::forward<_Alloc>(__a))
1920	{ }
1921
1922      __node_alloc_type&
1923      _M_node_allocator()
1924      { return __ebo_node_alloc::_M_get(); }
1925
1926      const __node_alloc_type&
1927      _M_node_allocator() const
1928      { return __ebo_node_alloc::_M_cget(); }
1929
1930      // Allocate a node and construct an element within it.
1931      template<typename... _Args>
1932	__node_ptr
1933	_M_allocate_node(_Args&&... __args);
1934
1935      // Destroy the element within a node and deallocate the node.
1936      void
1937      _M_deallocate_node(__node_ptr __n);
1938
1939      // Deallocate a node.
1940      void
1941      _M_deallocate_node_ptr(__node_ptr __n);
1942
1943      // Deallocate the linked list of nodes pointed to by __n.
1944      // The elements within the nodes are destroyed.
1945      void
1946      _M_deallocate_nodes(__node_ptr __n);
1947
1948      __buckets_ptr
1949      _M_allocate_buckets(std::size_t __bkt_count);
1950
1951      void
1952      _M_deallocate_buckets(__buckets_ptr, std::size_t __bkt_count);
1953    };
1954
1955  // Definitions of class template _Hashtable_alloc's out-of-line member
1956  // functions.
1957  template<typename _NodeAlloc>
1958    template<typename... _Args>
1959      auto
1960      _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args)
1961      -> __node_ptr
1962      {
1963	auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1);
1964	__node_ptr __n = std::__to_address(__nptr);
1965	__try
1966	  {
1967	    ::new ((void*)__n) __node_type;
1968	    __node_alloc_traits::construct(_M_node_allocator(),
1969					   __n->_M_valptr(),
1970					   std::forward<_Args>(__args)...);
1971	    return __n;
1972	  }
1973	__catch(...)
1974	  {
1975	    __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1);
1976	    __throw_exception_again;
1977	  }
1978      }
1979
1980  template<typename _NodeAlloc>
1981    void
1982    _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_ptr __n)
1983    {
1984      __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr());
1985      _M_deallocate_node_ptr(__n);
1986    }
1987
1988  template<typename _NodeAlloc>
1989    void
1990    _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node_ptr(__node_ptr __n)
1991    {
1992      typedef typename __node_alloc_traits::pointer _Ptr;
1993      auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n);
1994      __n->~__node_type();
1995      __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1);
1996    }
1997
1998  template<typename _NodeAlloc>
1999    void
2000    _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_ptr __n)
2001    {
2002      while (__n)
2003	{
2004	  __node_ptr __tmp = __n;
2005	  __n = __n->_M_next();
2006	  _M_deallocate_node(__tmp);
2007	}
2008    }
2009
2010  template<typename _NodeAlloc>
2011    auto
2012    _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __bkt_count)
2013    -> __buckets_ptr
2014    {
2015      __buckets_alloc_type __alloc(_M_node_allocator());
2016
2017      auto __ptr = __buckets_alloc_traits::allocate(__alloc, __bkt_count);
2018      __buckets_ptr __p = std::__to_address(__ptr);
2019      __builtin_memset(__p, 0, __bkt_count * sizeof(__node_base_ptr));
2020      return __p;
2021    }
2022
2023  template<typename _NodeAlloc>
2024    void
2025    _Hashtable_alloc<_NodeAlloc>::
2026    _M_deallocate_buckets(__buckets_ptr __bkts,
2027			  std::size_t __bkt_count)
2028    {
2029      typedef typename __buckets_alloc_traits::pointer _Ptr;
2030      auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts);
2031      __buckets_alloc_type __alloc(_M_node_allocator());
2032      __buckets_alloc_traits::deallocate(__alloc, __ptr, __bkt_count);
2033    }
2034
2035 ///@} hashtable-detail
2036} // namespace __detail
2037/// @endcond
2038_GLIBCXX_END_NAMESPACE_VERSION
2039} // namespace std
2040
2041#endif // _HASHTABLE_POLICY_H
2042