1/* Implementation of the MINVAL intrinsic
2   Copyright (C) 2002-2022 Free Software Foundation, Inc.
3   Contributed by Paul Brook <paul@nowt.org>
4
5This file is part of the GNU Fortran runtime library (libgfortran).
6
7Libgfortran is free software; you can redistribute it and/or
8modify it under the terms of the GNU General Public
9License as published by the Free Software Foundation; either
10version 3 of the License, or (at your option) any later version.
11
12Libgfortran is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17Under Section 7 of GPL version 3, you are granted additional
18permissions described in the GCC Runtime Library Exception, version
193.1, as published by the Free Software Foundation.
20
21You should have received a copy of the GNU General Public License and
22a copy of the GCC Runtime Library Exception along with this program;
23see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24<http://www.gnu.org/licenses/>.  */
25
26#include "libgfortran.h"
27
28
29#if defined (HAVE_GFC_INTEGER_16) && defined (HAVE_GFC_INTEGER_16)
30
31
32extern void minval_i16 (gfc_array_i16 * const restrict,
33	gfc_array_i16 * const restrict, const index_type * const restrict);
34export_proto(minval_i16);
35
36void
37minval_i16 (gfc_array_i16 * const restrict retarray,
38	gfc_array_i16 * const restrict array,
39	const index_type * const restrict pdim)
40{
41  index_type count[GFC_MAX_DIMENSIONS];
42  index_type extent[GFC_MAX_DIMENSIONS];
43  index_type sstride[GFC_MAX_DIMENSIONS];
44  index_type dstride[GFC_MAX_DIMENSIONS];
45  const GFC_INTEGER_16 * restrict base;
46  GFC_INTEGER_16 * restrict dest;
47  index_type rank;
48  index_type n;
49  index_type len;
50  index_type delta;
51  index_type dim;
52  int continue_loop;
53
54  /* Make dim zero based to avoid confusion.  */
55  rank = GFC_DESCRIPTOR_RANK (array) - 1;
56  dim = (*pdim) - 1;
57
58  if (unlikely (dim < 0 || dim > rank))
59    {
60      runtime_error ("Dim argument incorrect in MINVAL intrinsic: "
61 		     "is %ld, should be between 1 and %ld",
62		     (long int) dim + 1, (long int) rank + 1);
63    }
64
65  len = GFC_DESCRIPTOR_EXTENT(array,dim);
66  if (len < 0)
67    len = 0;
68  delta = GFC_DESCRIPTOR_STRIDE(array,dim);
69
70  for (n = 0; n < dim; n++)
71    {
72      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
73      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
74
75      if (extent[n] < 0)
76	extent[n] = 0;
77    }
78  for (n = dim; n < rank; n++)
79    {
80      sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
81      extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
82
83      if (extent[n] < 0)
84	extent[n] = 0;
85    }
86
87  if (retarray->base_addr == NULL)
88    {
89      size_t alloc_size, str;
90
91      for (n = 0; n < rank; n++)
92	{
93	  if (n == 0)
94	    str = 1;
95	  else
96	    str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
97
98	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
99
100	}
101
102      retarray->offset = 0;
103      retarray->dtype.rank = rank;
104
105      alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
106
107      retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_16));
108      if (alloc_size == 0)
109	{
110	  /* Make sure we have a zero-sized array.  */
111	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
112	  return;
113
114	}
115    }
116  else
117    {
118      if (rank != GFC_DESCRIPTOR_RANK (retarray))
119	runtime_error ("rank of return array incorrect in"
120		       " MINVAL intrinsic: is %ld, should be %ld",
121		       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
122		       (long int) rank);
123
124      if (unlikely (compile_options.bounds_check))
125	bounds_ifunction_return ((array_t *) retarray, extent,
126				 "return value", "MINVAL");
127    }
128
129  for (n = 0; n < rank; n++)
130    {
131      count[n] = 0;
132      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
133      if (extent[n] <= 0)
134	return;
135    }
136
137  base = array->base_addr;
138  dest = retarray->base_addr;
139
140  continue_loop = 1;
141  while (continue_loop)
142    {
143      const GFC_INTEGER_16 * restrict src;
144      GFC_INTEGER_16 result;
145      src = base;
146      {
147
148#if defined (GFC_INTEGER_16_INFINITY)
149	result = GFC_INTEGER_16_INFINITY;
150#else
151	result = GFC_INTEGER_16_HUGE;
152#endif
153	if (len <= 0)
154	  *dest = GFC_INTEGER_16_HUGE;
155	else
156	  {
157#if ! defined HAVE_BACK_ARG
158	    for (n = 0; n < len; n++, src += delta)
159	      {
160#endif
161
162#if defined (GFC_INTEGER_16_QUIET_NAN)
163		if (*src <= result)
164		  break;
165	      }
166	    if (unlikely (n >= len))
167	      result = GFC_INTEGER_16_QUIET_NAN;
168	    else for (; n < len; n++, src += delta)
169	      {
170#endif
171		if (*src < result)
172		  result = *src;
173	      }
174
175	    *dest = result;
176	  }
177      }
178      /* Advance to the next element.  */
179      count[0]++;
180      base += sstride[0];
181      dest += dstride[0];
182      n = 0;
183      while (count[n] == extent[n])
184	{
185	  /* When we get to the end of a dimension, reset it and increment
186	     the next dimension.  */
187	  count[n] = 0;
188	  /* We could precalculate these products, but this is a less
189	     frequently used path so probably not worth it.  */
190	  base -= sstride[n] * extent[n];
191	  dest -= dstride[n] * extent[n];
192	  n++;
193	  if (n >= rank)
194	    {
195	      /* Break out of the loop.  */
196	      continue_loop = 0;
197	      break;
198	    }
199	  else
200	    {
201	      count[n]++;
202	      base += sstride[n];
203	      dest += dstride[n];
204	    }
205	}
206    }
207}
208
209
210extern void mminval_i16 (gfc_array_i16 * const restrict,
211	gfc_array_i16 * const restrict, const index_type * const restrict,
212	gfc_array_l1 * const restrict);
213export_proto(mminval_i16);
214
215void
216mminval_i16 (gfc_array_i16 * const restrict retarray,
217	gfc_array_i16 * const restrict array,
218	const index_type * const restrict pdim,
219	gfc_array_l1 * const restrict mask)
220{
221  index_type count[GFC_MAX_DIMENSIONS];
222  index_type extent[GFC_MAX_DIMENSIONS];
223  index_type sstride[GFC_MAX_DIMENSIONS];
224  index_type dstride[GFC_MAX_DIMENSIONS];
225  index_type mstride[GFC_MAX_DIMENSIONS];
226  GFC_INTEGER_16 * restrict dest;
227  const GFC_INTEGER_16 * restrict base;
228  const GFC_LOGICAL_1 * restrict mbase;
229  index_type rank;
230  index_type dim;
231  index_type n;
232  index_type len;
233  index_type delta;
234  index_type mdelta;
235  int mask_kind;
236
237  if (mask == NULL)
238    {
239#ifdef HAVE_BACK_ARG
240      minval_i16 (retarray, array, pdim, back);
241#else
242      minval_i16 (retarray, array, pdim);
243#endif
244      return;
245    }
246
247  dim = (*pdim) - 1;
248  rank = GFC_DESCRIPTOR_RANK (array) - 1;
249
250
251  if (unlikely (dim < 0 || dim > rank))
252    {
253      runtime_error ("Dim argument incorrect in MINVAL intrinsic: "
254 		     "is %ld, should be between 1 and %ld",
255		     (long int) dim + 1, (long int) rank + 1);
256    }
257
258  len = GFC_DESCRIPTOR_EXTENT(array,dim);
259  if (len <= 0)
260    return;
261
262  mbase = mask->base_addr;
263
264  mask_kind = GFC_DESCRIPTOR_SIZE (mask);
265
266  if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
267#ifdef HAVE_GFC_LOGICAL_16
268      || mask_kind == 16
269#endif
270      )
271    mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
272  else
273    runtime_error ("Funny sized logical array");
274
275  delta = GFC_DESCRIPTOR_STRIDE(array,dim);
276  mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
277
278  for (n = 0; n < dim; n++)
279    {
280      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
281      mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
282      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
283
284      if (extent[n] < 0)
285	extent[n] = 0;
286
287    }
288  for (n = dim; n < rank; n++)
289    {
290      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
291      mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
292      extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
293
294      if (extent[n] < 0)
295	extent[n] = 0;
296    }
297
298  if (retarray->base_addr == NULL)
299    {
300      size_t alloc_size, str;
301
302      for (n = 0; n < rank; n++)
303	{
304	  if (n == 0)
305	    str = 1;
306	  else
307	    str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
308
309	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
310
311	}
312
313      alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
314
315      retarray->offset = 0;
316      retarray->dtype.rank = rank;
317
318      if (alloc_size == 0)
319	{
320	  /* Make sure we have a zero-sized array.  */
321	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
322	  return;
323	}
324      else
325	retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_16));
326
327    }
328  else
329    {
330      if (rank != GFC_DESCRIPTOR_RANK (retarray))
331	runtime_error ("rank of return array incorrect in MINVAL intrinsic");
332
333      if (unlikely (compile_options.bounds_check))
334	{
335	  bounds_ifunction_return ((array_t *) retarray, extent,
336				   "return value", "MINVAL");
337	  bounds_equal_extents ((array_t *) mask, (array_t *) array,
338	  			"MASK argument", "MINVAL");
339	}
340    }
341
342  for (n = 0; n < rank; n++)
343    {
344      count[n] = 0;
345      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
346      if (extent[n] <= 0)
347	return;
348    }
349
350  dest = retarray->base_addr;
351  base = array->base_addr;
352
353  while (base)
354    {
355      const GFC_INTEGER_16 * restrict src;
356      const GFC_LOGICAL_1 * restrict msrc;
357      GFC_INTEGER_16 result;
358      src = base;
359      msrc = mbase;
360      {
361
362#if defined (GFC_INTEGER_16_INFINITY)
363	result = GFC_INTEGER_16_INFINITY;
364#else
365	result = GFC_INTEGER_16_HUGE;
366#endif
367#if defined (GFC_INTEGER_16_QUIET_NAN)
368	int non_empty_p = 0;
369#endif
370	for (n = 0; n < len; n++, src += delta, msrc += mdelta)
371	  {
372
373#if defined (GFC_INTEGER_16_INFINITY) || defined (GFC_INTEGER_16_QUIET_NAN)
374		if (*msrc)
375		  {
376#if defined (GFC_INTEGER_16_QUIET_NAN)
377		    non_empty_p = 1;
378		    if (*src <= result)
379#endif
380		      break;
381		  }
382	      }
383	    if (unlikely (n >= len))
384	      {
385#if defined (GFC_INTEGER_16_QUIET_NAN)
386		result = non_empty_p ? GFC_INTEGER_16_QUIET_NAN : GFC_INTEGER_16_HUGE;
387#else
388		result = GFC_INTEGER_16_HUGE;
389#endif
390	      }
391	    else for (; n < len; n++, src += delta, msrc += mdelta)
392	      {
393#endif
394		if (*msrc && *src < result)
395		  result = *src;
396	  }
397	*dest = result;
398      }
399      /* Advance to the next element.  */
400      count[0]++;
401      base += sstride[0];
402      mbase += mstride[0];
403      dest += dstride[0];
404      n = 0;
405      while (count[n] == extent[n])
406	{
407	  /* When we get to the end of a dimension, reset it and increment
408	     the next dimension.  */
409	  count[n] = 0;
410	  /* We could precalculate these products, but this is a less
411	     frequently used path so probably not worth it.  */
412	  base -= sstride[n] * extent[n];
413	  mbase -= mstride[n] * extent[n];
414	  dest -= dstride[n] * extent[n];
415	  n++;
416	  if (n >= rank)
417	    {
418	      /* Break out of the loop.  */
419	      base = NULL;
420	      break;
421	    }
422	  else
423	    {
424	      count[n]++;
425	      base += sstride[n];
426	      mbase += mstride[n];
427	      dest += dstride[n];
428	    }
429	}
430    }
431}
432
433
434extern void sminval_i16 (gfc_array_i16 * const restrict,
435	gfc_array_i16 * const restrict, const index_type * const restrict,
436	GFC_LOGICAL_4 *);
437export_proto(sminval_i16);
438
439void
440sminval_i16 (gfc_array_i16 * const restrict retarray,
441	gfc_array_i16 * const restrict array,
442	const index_type * const restrict pdim,
443	GFC_LOGICAL_4 * mask)
444{
445  index_type count[GFC_MAX_DIMENSIONS];
446  index_type extent[GFC_MAX_DIMENSIONS];
447  index_type dstride[GFC_MAX_DIMENSIONS];
448  GFC_INTEGER_16 * restrict dest;
449  index_type rank;
450  index_type n;
451  index_type dim;
452
453
454  if (mask == NULL || *mask)
455    {
456#ifdef HAVE_BACK_ARG
457      minval_i16 (retarray, array, pdim, back);
458#else
459      minval_i16 (retarray, array, pdim);
460#endif
461      return;
462    }
463  /* Make dim zero based to avoid confusion.  */
464  dim = (*pdim) - 1;
465  rank = GFC_DESCRIPTOR_RANK (array) - 1;
466
467  if (unlikely (dim < 0 || dim > rank))
468    {
469      runtime_error ("Dim argument incorrect in MINVAL intrinsic: "
470 		     "is %ld, should be between 1 and %ld",
471		     (long int) dim + 1, (long int) rank + 1);
472    }
473
474  for (n = 0; n < dim; n++)
475    {
476      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
477
478      if (extent[n] <= 0)
479	extent[n] = 0;
480    }
481
482  for (n = dim; n < rank; n++)
483    {
484      extent[n] =
485	GFC_DESCRIPTOR_EXTENT(array,n + 1);
486
487      if (extent[n] <= 0)
488	extent[n] = 0;
489    }
490
491  if (retarray->base_addr == NULL)
492    {
493      size_t alloc_size, str;
494
495      for (n = 0; n < rank; n++)
496	{
497	  if (n == 0)
498	    str = 1;
499	  else
500	    str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
501
502	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
503
504	}
505
506      retarray->offset = 0;
507      retarray->dtype.rank = rank;
508
509      alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
510
511      if (alloc_size == 0)
512	{
513	  /* Make sure we have a zero-sized array.  */
514	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
515	  return;
516	}
517      else
518	retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_16));
519    }
520  else
521    {
522      if (rank != GFC_DESCRIPTOR_RANK (retarray))
523	runtime_error ("rank of return array incorrect in"
524		       " MINVAL intrinsic: is %ld, should be %ld",
525		       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
526		       (long int) rank);
527
528      if (unlikely (compile_options.bounds_check))
529	{
530	  for (n=0; n < rank; n++)
531	    {
532	      index_type ret_extent;
533
534	      ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
535	      if (extent[n] != ret_extent)
536		runtime_error ("Incorrect extent in return value of"
537			       " MINVAL intrinsic in dimension %ld:"
538			       " is %ld, should be %ld", (long int) n + 1,
539			       (long int) ret_extent, (long int) extent[n]);
540	    }
541	}
542    }
543
544  for (n = 0; n < rank; n++)
545    {
546      count[n] = 0;
547      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
548    }
549
550  dest = retarray->base_addr;
551
552  while(1)
553    {
554      *dest = GFC_INTEGER_16_HUGE;
555      count[0]++;
556      dest += dstride[0];
557      n = 0;
558      while (count[n] == extent[n])
559	{
560	  /* When we get to the end of a dimension, reset it and increment
561	     the next dimension.  */
562	  count[n] = 0;
563	  /* We could precalculate these products, but this is a less
564	     frequently used path so probably not worth it.  */
565	  dest -= dstride[n] * extent[n];
566	  n++;
567	  if (n >= rank)
568	    return;
569	  else
570	    {
571	      count[n]++;
572	      dest += dstride[n];
573	    }
574      	}
575    }
576}
577
578#endif
579