1/* Generic routines for manipulating PHIs
2   Copyright (C) 2003-2022 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 3, or (at your option)
9any later version.
10
11GCC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3.  If not see
18<http://www.gnu.org/licenses/>.  */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "backend.h"
24#include "tree.h"
25#include "gimple.h"
26#include "ssa.h"
27#include "fold-const.h"
28#include "gimple-iterator.h"
29#include "tree-ssa.h"
30
31/* Rewriting a function into SSA form can create a huge number of PHIs
32   many of which may be thrown away shortly after their creation if jumps
33   were threaded through PHI nodes.
34
35   While our garbage collection mechanisms will handle this situation, it
36   is extremely wasteful to create nodes and throw them away, especially
37   when the nodes can be reused.
38
39   For PR 8361, we can significantly reduce the number of nodes allocated
40   and thus the total amount of memory allocated by managing PHIs a
41   little.  This additionally helps reduce the amount of work done by the
42   garbage collector.  Similar results have been seen on a wider variety
43   of tests (such as the compiler itself).
44
45   PHI nodes have different sizes, so we can't have a single list of all
46   the PHI nodes as it would be too expensive to walk down that list to
47   find a PHI of a suitable size.
48
49   Instead we have an array of lists of free PHI nodes.  The array is
50   indexed by the number of PHI alternatives that PHI node can hold.
51   Except for the last array member, which holds all remaining PHI
52   nodes.
53
54   So to find a free PHI node, we compute its index into the free PHI
55   node array and see if there are any elements with an exact match.
56   If so, then we are done.  Otherwise, we test the next larger size
57   up and continue until we are in the last array element.
58
59   We do not actually walk members of the last array element.  While it
60   might allow us to pick up a few reusable PHI nodes, it could potentially
61   be very expensive if the program has released a bunch of large PHI nodes,
62   but keeps asking for even larger PHI nodes.  Experiments have shown that
63   walking the elements of the last array entry would result in finding less
64   than .1% additional reusable PHI nodes.
65
66   Note that we can never have less than two PHI argument slots.  Thus,
67   the -2 on all the calculations below.  */
68
69#define NUM_BUCKETS 10
70static GTY ((deletable (""))) vec<gimple *, va_gc> *free_phinodes[NUM_BUCKETS - 2];
71static unsigned long free_phinode_count;
72
73static int ideal_phi_node_len (int);
74
75unsigned int phi_nodes_reused;
76unsigned int phi_nodes_created;
77
78/* Dump some simple statistics regarding the re-use of PHI nodes.  */
79
80void
81phinodes_print_statistics (void)
82{
83  fprintf (stderr, "%-32s" PRsa (11) "\n", "PHI nodes allocated:",
84	   SIZE_AMOUNT (phi_nodes_created));
85  fprintf (stderr, "%-32s" PRsa (11) "\n", "PHI nodes reused:",
86	   SIZE_AMOUNT (phi_nodes_reused));
87}
88
89/* Allocate a PHI node with at least LEN arguments.  If the free list
90   happens to contain a PHI node with LEN arguments or more, return
91   that one.  */
92
93static inline gphi *
94allocate_phi_node (size_t len)
95{
96  gphi *phi;
97  size_t bucket = NUM_BUCKETS - 2;
98  size_t size = sizeof (struct gphi)
99	        + (len - 1) * sizeof (struct phi_arg_d);
100
101  if (free_phinode_count)
102    for (bucket = len - 2; bucket < NUM_BUCKETS - 2; bucket++)
103      if (free_phinodes[bucket])
104	break;
105
106  /* If our free list has an element, then use it.  */
107  if (bucket < NUM_BUCKETS - 2
108      && gimple_phi_capacity ((*free_phinodes[bucket])[0]) >= len)
109    {
110      free_phinode_count--;
111      phi = as_a <gphi *> (free_phinodes[bucket]->pop ());
112      if (free_phinodes[bucket]->is_empty ())
113	vec_free (free_phinodes[bucket]);
114      if (GATHER_STATISTICS)
115	phi_nodes_reused++;
116    }
117  else
118    {
119      phi = static_cast <gphi *> (ggc_internal_alloc (size));
120      if (GATHER_STATISTICS)
121	{
122	  enum gimple_alloc_kind kind = gimple_alloc_kind (GIMPLE_PHI);
123	  phi_nodes_created++;
124	  gimple_alloc_counts[(int) kind]++;
125	  gimple_alloc_sizes[(int) kind] += size;
126	}
127    }
128
129  return phi;
130}
131
132/* Given LEN, the original number of requested PHI arguments, return
133   a new, "ideal" length for the PHI node.  The "ideal" length rounds
134   the total size of the PHI node up to the next power of two bytes.
135
136   Rounding up will not result in wasting any memory since the size request
137   will be rounded up by the GC system anyway.  [ Note this is not entirely
138   true since the original length might have fit on one of the special
139   GC pages. ]  By rounding up, we may avoid the need to reallocate the
140   PHI node later if we increase the number of arguments for the PHI.  */
141
142static int
143ideal_phi_node_len (int len)
144{
145  size_t size, new_size;
146  int log2, new_len;
147
148  /* We do not support allocations of less than two PHI argument slots.  */
149  if (len < 2)
150    len = 2;
151
152  /* Compute the number of bytes of the original request.  */
153  size = sizeof (struct gphi)
154	 + (len - 1) * sizeof (struct phi_arg_d);
155
156  /* Round it up to the next power of two.  */
157  log2 = ceil_log2 (size);
158  new_size = 1 << log2;
159
160  /* Now compute and return the number of PHI argument slots given an
161     ideal size allocation.  */
162  new_len = len + (new_size - size) / sizeof (struct phi_arg_d);
163  return new_len;
164}
165
166/* Return a PHI node with LEN argument slots for variable VAR.  */
167
168static gphi *
169make_phi_node (tree var, int len)
170{
171  gphi *phi;
172  int capacity, i;
173
174  capacity = ideal_phi_node_len (len);
175
176  phi = allocate_phi_node (capacity);
177
178  /* We need to clear the entire PHI node, including the argument
179     portion, because we represent a "missing PHI argument" by placing
180     NULL_TREE in PHI_ARG_DEF.  */
181  memset (phi, 0, (sizeof (struct gphi)
182		   - sizeof (struct phi_arg_d)
183		   + sizeof (struct phi_arg_d) * len));
184  phi->code = GIMPLE_PHI;
185  gimple_init_singleton (phi);
186  phi->nargs = len;
187  phi->capacity = capacity;
188  if (!var)
189    ;
190  else if (TREE_CODE (var) == SSA_NAME)
191    gimple_phi_set_result (phi, var);
192  else
193    gimple_phi_set_result (phi, make_ssa_name (var, phi));
194
195  for (i = 0; i < len; i++)
196    {
197      use_operand_p  imm;
198
199      gimple_phi_arg_set_location (phi, i, UNKNOWN_LOCATION);
200      imm = gimple_phi_arg_imm_use_ptr (phi, i);
201      imm->use = gimple_phi_arg_def_ptr (phi, i);
202      imm->prev = NULL;
203      imm->next = NULL;
204      imm->loc.stmt = phi;
205    }
206
207  return phi;
208}
209
210/* We no longer need PHI, release it so that it may be reused.  */
211
212static void
213release_phi_node (gimple *phi)
214{
215  size_t bucket;
216  size_t len = gimple_phi_capacity (phi);
217  size_t x;
218
219  for (x = 0; x < gimple_phi_num_args (phi); x++)
220    {
221      use_operand_p  imm;
222      imm = gimple_phi_arg_imm_use_ptr (phi, x);
223      delink_imm_use (imm);
224    }
225
226  bucket = len > NUM_BUCKETS - 1 ? NUM_BUCKETS - 1 : len;
227  bucket -= 2;
228  vec_safe_push (free_phinodes[bucket], phi);
229  free_phinode_count++;
230}
231
232
233/* Resize an existing PHI node.  The only way is up.  Return the
234   possibly relocated phi.  */
235
236static gphi *
237resize_phi_node (gphi *phi, size_t len)
238{
239  size_t old_size, i;
240  gphi *new_phi;
241
242  gcc_assert (len > gimple_phi_capacity (phi));
243
244  /* The garbage collector will not look at the PHI node beyond the
245     first PHI_NUM_ARGS elements.  Therefore, all we have to copy is a
246     portion of the PHI node currently in use.  */
247  old_size = sizeof (struct gphi)
248	     + (gimple_phi_num_args (phi) - 1) * sizeof (struct phi_arg_d);
249
250  new_phi = allocate_phi_node (len);
251
252  memcpy (new_phi, phi, old_size);
253  memset ((char *)new_phi + old_size, 0,
254	  (sizeof (struct gphi)
255	   - sizeof (struct phi_arg_d)
256	   + sizeof (struct phi_arg_d) * len) - old_size);
257
258  for (i = 0; i < gimple_phi_num_args (new_phi); i++)
259    {
260      use_operand_p imm, old_imm;
261      imm = gimple_phi_arg_imm_use_ptr (new_phi, i);
262      old_imm = gimple_phi_arg_imm_use_ptr (phi, i);
263      imm->use = gimple_phi_arg_def_ptr (new_phi, i);
264      relink_imm_use_stmt (imm, old_imm, new_phi);
265    }
266
267  new_phi->capacity = len;
268
269  return new_phi;
270}
271
272/* Reserve PHI arguments for a new edge to basic block BB.  */
273
274void
275reserve_phi_args_for_new_edge (basic_block bb)
276{
277  size_t len = EDGE_COUNT (bb->preds);
278  size_t cap = ideal_phi_node_len (len + 4);
279  gphi_iterator gsi;
280
281  for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
282    {
283      gphi *stmt = gsi.phi ();
284
285      if (len > gimple_phi_capacity (stmt))
286	{
287	  gphi *new_phi = resize_phi_node (stmt, cap);
288
289	  /* The result of the PHI is defined by this PHI node.  */
290	  SSA_NAME_DEF_STMT (gimple_phi_result (new_phi)) = new_phi;
291	  gsi_set_stmt (&gsi, new_phi);
292
293	  release_phi_node (stmt);
294	  stmt = new_phi;
295	}
296
297      stmt->nargs++;
298
299      /* We represent a "missing PHI argument" by placing NULL_TREE in
300	 the corresponding slot.  If PHI arguments were added
301	 immediately after an edge is created, this zeroing would not
302	 be necessary, but unfortunately this is not the case.  For
303	 example, the loop optimizer duplicates several basic blocks,
304	 redirects edges, and then fixes up PHI arguments later in
305	 batch.  */
306      use_operand_p imm = gimple_phi_arg_imm_use_ptr (stmt, len - 1);
307      imm->use = gimple_phi_arg_def_ptr (stmt, len - 1);
308      imm->prev = NULL;
309      imm->next = NULL;
310      imm->loc.stmt = stmt;
311      SET_PHI_ARG_DEF (stmt, len - 1, NULL_TREE);
312      gimple_phi_arg_set_location (stmt, len - 1, UNKNOWN_LOCATION);
313    }
314}
315
316/* Adds PHI to BB.  */
317
318void
319add_phi_node_to_bb (gphi *phi, basic_block bb)
320{
321  gimple_seq seq = phi_nodes (bb);
322  /* Add the new PHI node to the list of PHI nodes for block BB.  */
323  if (seq == NULL)
324    set_phi_nodes (bb, gimple_seq_alloc_with_stmt (phi));
325  else
326    {
327      gimple_seq_add_stmt (&seq, phi);
328      gcc_assert (seq == phi_nodes (bb));
329    }
330
331  /* Associate BB to the PHI node.  */
332  gimple_set_bb (phi, bb);
333
334}
335
336/* Create a new PHI node for variable VAR at basic block BB.  */
337
338gphi *
339create_phi_node (tree var, basic_block bb)
340{
341  gphi *phi = make_phi_node (var, EDGE_COUNT (bb->preds));
342
343  add_phi_node_to_bb (phi, bb);
344  return phi;
345}
346
347
348/* Add a new argument to PHI node PHI.  DEF is the incoming reaching
349   definition and E is the edge through which DEF reaches PHI.  The new
350   argument is added at the end of the argument list.
351   If PHI has reached its maximum capacity, add a few slots.  In this case,
352   PHI points to the reallocated phi node when we return.  */
353
354void
355add_phi_arg (gphi *phi, tree def, edge e, location_t locus)
356{
357  basic_block bb = e->dest;
358
359  gcc_assert (bb == gimple_bb (phi));
360
361  /* We resize PHI nodes upon edge creation.  We should always have
362     enough room at this point.  */
363  gcc_assert (gimple_phi_num_args (phi) <= gimple_phi_capacity (phi));
364
365  /* We resize PHI nodes upon edge creation.  We should always have
366     enough room at this point.  */
367  gcc_assert (e->dest_idx < gimple_phi_num_args (phi));
368
369  /* Copy propagation needs to know what object occur in abnormal
370     PHI nodes.  This is a convenient place to record such information.  */
371  if (e->flags & EDGE_ABNORMAL)
372    {
373      SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def) = 1;
374      SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)) = 1;
375    }
376
377  SET_PHI_ARG_DEF (phi, e->dest_idx, def);
378  gimple_phi_arg_set_location (phi, e->dest_idx, locus);
379}
380
381
382/* Remove the Ith argument from PHI's argument list.  This routine
383   implements removal by swapping the last alternative with the
384   alternative we want to delete and then shrinking the vector, which
385   is consistent with how we remove an edge from the edge vector.  */
386
387static void
388remove_phi_arg_num (gphi *phi, int i)
389{
390  int num_elem = gimple_phi_num_args (phi);
391
392  gcc_assert (i < num_elem);
393
394  /* Delink the item which is being removed.  */
395  delink_imm_use (gimple_phi_arg_imm_use_ptr (phi, i));
396
397  /* If it is not the last element, move the last element
398     to the element we want to delete, resetting all the links. */
399  if (i != num_elem - 1)
400    {
401      use_operand_p old_p, new_p;
402      old_p = gimple_phi_arg_imm_use_ptr (phi, num_elem - 1);
403      new_p = gimple_phi_arg_imm_use_ptr (phi, i);
404      /* Set use on new node, and link into last element's place.  */
405      *(new_p->use) = *(old_p->use);
406      relink_imm_use (new_p, old_p);
407      /* Move the location as well.  */
408      gimple_phi_arg_set_location (phi, i,
409				   gimple_phi_arg_location (phi, num_elem - 1));
410    }
411
412  /* Shrink the vector and return.  Note that we do not have to clear
413     PHI_ARG_DEF because the garbage collector will not look at those
414     elements beyond the first PHI_NUM_ARGS elements of the array.  */
415  phi->nargs--;
416}
417
418
419/* Remove all PHI arguments associated with edge E.  */
420
421void
422remove_phi_args (edge e)
423{
424  gphi_iterator gsi;
425
426  for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
427    remove_phi_arg_num (gsi.phi (),
428			e->dest_idx);
429}
430
431
432/* Remove the PHI node pointed-to by iterator GSI from basic block BB.  After
433   removal, iterator GSI is updated to point to the next PHI node in the
434   sequence. If RELEASE_LHS_P is true, the LHS of this PHI node is released
435   into the free pool of SSA names.  */
436
437void
438remove_phi_node (gimple_stmt_iterator *gsi, bool release_lhs_p)
439{
440  gimple *phi = gsi_stmt (*gsi);
441
442  if (release_lhs_p)
443    insert_debug_temps_for_defs (gsi);
444
445  gsi_remove (gsi, false);
446
447  /* If we are deleting the PHI node, then we should release the
448     SSA_NAME node so that it can be reused.  */
449  release_phi_node (phi);
450  if (release_lhs_p)
451    release_ssa_name (gimple_phi_result (phi));
452}
453
454/* Remove all the phi nodes from BB.  */
455
456void
457remove_phi_nodes (basic_block bb)
458{
459  gphi_iterator gsi;
460
461  for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
462    remove_phi_node (&gsi, true);
463
464  set_phi_nodes (bb, NULL);
465}
466
467/* Given PHI, return its RHS if the PHI is a degenerate, otherwise return
468   NULL.  */
469
470tree
471degenerate_phi_result (gphi *phi)
472{
473  tree lhs = gimple_phi_result (phi);
474  tree val = NULL;
475  size_t i;
476
477  /* Ignoring arguments which are the same as LHS, if all the remaining
478     arguments are the same, then the PHI is a degenerate and has the
479     value of that common argument.  */
480  for (i = 0; i < gimple_phi_num_args (phi); i++)
481    {
482      tree arg = gimple_phi_arg_def (phi, i);
483
484      if (arg == lhs)
485	continue;
486      else if (!arg)
487	break;
488      else if (!val)
489	val = arg;
490      else if (arg == val)
491	continue;
492      /* We bring in some of operand_equal_p not only to speed things
493	 up, but also to avoid crashing when dereferencing the type of
494	 a released SSA name.  */
495      else if (TREE_CODE (val) != TREE_CODE (arg)
496	       || TREE_CODE (val) == SSA_NAME
497	       || !operand_equal_p (arg, val, 0))
498	break;
499    }
500  return (i == gimple_phi_num_args (phi) ? val : NULL);
501}
502
503/* Set PHI nodes of a basic block BB to SEQ.  */
504
505void
506set_phi_nodes (basic_block bb, gimple_seq seq)
507{
508  gimple_stmt_iterator i;
509
510  gcc_checking_assert (!(bb->flags & BB_RTL));
511  bb->il.gimple.phi_nodes = seq;
512  if (seq)
513    for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
514      gimple_set_bb (gsi_stmt (i), bb);
515}
516
517#include "gt-tree-phinodes.h"
518