1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
2   Copyright (C) 1992-2022 Free Software Foundation, Inc.
3   Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4
5   This file is part of GCC.
6
7   GCC is free software; you can redistribute it and/or modify it
8   under the terms of the GNU General Public License as published
9   by the Free Software Foundation; either version 3, or (at your
10   option) any later version.
11
12   GCC is distributed in the hope that it will be useful, but WITHOUT
13   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15   License for more details.
16
17   Under Section 7 of GPL version 3, you are granted additional
18   permissions described in the GCC Runtime Library Exception, version
19   3.1, as published by the Free Software Foundation.
20
21   You should have received a copy of the GNU General Public License and
22   a copy of the GCC Runtime Library Exception along with this program;
23   see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24   <http://www.gnu.org/licenses/>.  */
25
26/* Note that some other tm.h files include this one and then override
27   many of the definitions.  */
28
29#ifndef RS6000_OPTS_H
30#include "config/rs6000/rs6000-opts.h"
31#endif
32
33/* 128-bit floating point precision values.  */
34#ifndef RS6000_MODES_H
35#include "config/rs6000/rs6000-modes.h"
36#endif
37
38/* Definitions for the object file format.  These are set at
39   compile-time.  */
40
41#define OBJECT_XCOFF 1
42#define OBJECT_ELF 2
43#define OBJECT_MACHO 4
44
45#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
46#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
47#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
48
49#ifndef TARGET_AIX
50#define TARGET_AIX 0
51#endif
52
53#ifndef TARGET_AIX_OS
54#define TARGET_AIX_OS 0
55#endif
56
57/* Turn off TOC support if pc-relative addressing is used.  */
58#define TARGET_TOC             (TARGET_HAS_TOC && !TARGET_PCREL)
59
60/* On 32-bit systems without a TOC or pc-relative addressing, we need to use
61   ADDIS/ADDI to load up the address of a symbol.  */
62#define TARGET_NO_TOC_OR_PCREL (!TARGET_HAS_TOC && !TARGET_PCREL)
63
64/* Control whether function entry points use a "dot" symbol when
65   ABI_AIX.  */
66#define DOT_SYMBOLS 1
67
68/* Default string to use for cpu if not specified.  */
69#ifndef TARGET_CPU_DEFAULT
70#define TARGET_CPU_DEFAULT ((char *)0)
71#endif
72
73/* If configured for PPC405, support PPC405CR Erratum77.  */
74#ifdef CONFIG_PPC405CR
75#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
76#else
77#define PPC405_ERRATUM77 0
78#endif
79
80#ifndef SUBTARGET_DRIVER_SELF_SPECS
81# define SUBTARGET_DRIVER_SELF_SPECS ""
82#endif
83
84/* Only for use in the testsuite: -mdejagnu-cpu=<value> filters out all
85   -mcpu= as well as -mtune= options then simply adds -mcpu=<value>,
86   while -mdejagnu-tune=<value> filters out all -mtune= options then
87   simply adds -mtune=<value>.
88   With older versions of Dejagnu the command line arguments you set in
89   RUNTESTFLAGS override those set in the testcases; with these options,
90   the testcase will always win.  */
91#define DRIVER_SELF_SPECS \
92  "%{mdejagnu-cpu=*: %<mcpu=* %<mtune=* -mcpu=%*}", \
93  "%{mdejagnu-tune=*: %<mtune=* -mtune=%*}", \
94  "%{mdejagnu-*: %<mdejagnu-*}", \
95   SUBTARGET_DRIVER_SELF_SPECS
96
97#if CHECKING_P
98#define ASM_OPT_ANY ""
99#else
100#define ASM_OPT_ANY " -many"
101#endif
102
103/* Common ASM definitions used by ASM_SPEC among the various targets for
104   handling -mcpu=xxx switches.  There is a parallel list in driver-rs6000.cc to
105   provide the default assembler options if the user uses -mcpu=native, so if
106   you make changes here, make them also there.  PR63177: Do not pass -mpower8
107   to the assembler if -mpower9-vector was also used.  */
108#define ASM_CPU_SPEC \
109"%{mcpu=native: %(asm_cpu_native); \
110  mcpu=power10: -mpower10; \
111  mcpu=power9: -mpower9; \
112  mcpu=power8|mcpu=powerpc64le: %{mpower9-vector: -mpower9;: -mpower8}; \
113  mcpu=power7: -mpower7; \
114  mcpu=power6x: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \
115  mcpu=power6: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \
116  mcpu=power5+: -mpower5; \
117  mcpu=power5: -mpower5; \
118  mcpu=power4: -mpower4; \
119  mcpu=power3: -mppc64; \
120  mcpu=powerpc: -mppc; \
121  mcpu=powerpc64: -mppc64; \
122  mcpu=a2: -ma2; \
123  mcpu=cell: -mcell; \
124  mcpu=rs64: -mppc64; \
125  mcpu=401: -mppc; \
126  mcpu=403: -m403; \
127  mcpu=405: -m405; \
128  mcpu=405fp: -m405; \
129  mcpu=440: -m440; \
130  mcpu=440fp: -m440; \
131  mcpu=464: -m440; \
132  mcpu=464fp: -m440; \
133  mcpu=476: -m476; \
134  mcpu=476fp: -m476; \
135  mcpu=505: -mppc; \
136  mcpu=601: -m601; \
137  mcpu=602: -mppc; \
138  mcpu=603: -mppc; \
139  mcpu=603e: -mppc; \
140  mcpu=ec603e: -mppc; \
141  mcpu=604: -mppc; \
142  mcpu=604e: -mppc; \
143  mcpu=620: -mppc64; \
144  mcpu=630: -mppc64; \
145  mcpu=740: -mppc; \
146  mcpu=750: -mppc; \
147  mcpu=G3: -mppc; \
148  mcpu=7400: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
149  mcpu=7450: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
150  mcpu=G4: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
151  mcpu=801: -mppc; \
152  mcpu=821: -mppc; \
153  mcpu=823: -mppc; \
154  mcpu=860: -mppc; \
155  mcpu=970: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \
156  mcpu=G5: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \
157  mcpu=8540: -me500; \
158  mcpu=8548: -me500; \
159  mcpu=e300c2: -me300; \
160  mcpu=e300c3: -me300; \
161  mcpu=e500mc: -me500mc; \
162  mcpu=e500mc64: -me500mc64; \
163  mcpu=e5500: -me5500; \
164  mcpu=e6500: -me6500; \
165  mcpu=titan: -mtitan; \
166  !mcpu*: %{mpower9-vector: -mpower9; \
167	    mpower8-vector|mcrypto|mdirect-move|mhtm: -mpower8; \
168	    mvsx: -mpower7; \
169	    mpowerpc64: -mppc64;: %(asm_default)}; \
170  :%eMissing -mcpu option in ASM_CPU_SPEC?\n} \
171%{mvsx: -mvsx -maltivec; maltivec: -maltivec}" \
172ASM_OPT_ANY
173
174#define CPP_DEFAULT_SPEC ""
175
176#define ASM_DEFAULT_SPEC ""
177#define ASM_DEFAULT_EXTRA ""
178
179/* This macro defines names of additional specifications to put in the specs
180   that can be used in various specifications like CC1_SPEC.  Its definition
181   is an initializer with a subgrouping for each command option.
182
183   Each subgrouping contains a string constant, that defines the
184   specification name, and a string constant that used by the GCC driver
185   program.
186
187   Do not define this macro if it does not need to do anything.  */
188
189#define SUBTARGET_EXTRA_SPECS
190
191#define EXTRA_SPECS							\
192  { "cpp_default",		CPP_DEFAULT_SPEC },			\
193  { "asm_cpu",			ASM_CPU_SPEC },				\
194  { "asm_cpu_native",		ASM_CPU_NATIVE_SPEC },			\
195  { "asm_default",		ASM_DEFAULT_SPEC ASM_DEFAULT_EXTRA },	\
196  { "cc1_cpu",			CC1_CPU_SPEC },				\
197  SUBTARGET_EXTRA_SPECS
198
199/* -mcpu=native handling only makes sense with compiler running on
200   an PowerPC chip.  If changing this condition, also change
201   the condition in driver-rs6000.cc.  */
202#if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
203/* In driver-rs6000.cc.  */
204extern const char *host_detect_local_cpu (int argc, const char **argv);
205#define EXTRA_SPEC_FUNCTIONS \
206  { "local_cpu_detect", host_detect_local_cpu },
207#define HAVE_LOCAL_CPU_DETECT
208#define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
209
210#else
211#define ASM_CPU_NATIVE_SPEC "%(asm_default)"
212#endif
213
214#ifndef CC1_CPU_SPEC
215#ifdef HAVE_LOCAL_CPU_DETECT
216#define CC1_CPU_SPEC \
217"%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
218 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
219#else
220#define CC1_CPU_SPEC ""
221#endif
222#endif
223
224/* Architecture type.  */
225
226/* Define TARGET_MFCRF if the target assembler does not support the
227   optional field operand for mfcr.  */
228
229#ifndef HAVE_AS_MFCRF
230#undef  TARGET_MFCRF
231#define TARGET_MFCRF 0
232#endif
233
234#ifndef TARGET_SECURE_PLT
235#define TARGET_SECURE_PLT 0
236#endif
237
238#ifndef TARGET_CMODEL
239#define TARGET_CMODEL CMODEL_SMALL
240#endif
241
242#define TARGET_32BIT		(! TARGET_64BIT)
243
244#ifndef HAVE_AS_TLS
245#define HAVE_AS_TLS 0
246#endif
247
248#ifndef HAVE_AS_PLTSEQ
249#define HAVE_AS_PLTSEQ 0
250#endif
251
252#ifndef TARGET_PLTSEQ
253#define TARGET_PLTSEQ 0
254#endif
255
256#ifndef TARGET_LINK_STACK
257#define TARGET_LINK_STACK 0
258#endif
259
260#ifndef SET_TARGET_LINK_STACK
261#define SET_TARGET_LINK_STACK(X) do { } while (0)
262#endif
263
264#ifndef TARGET_FLOAT128_ENABLE_TYPE
265#define TARGET_FLOAT128_ENABLE_TYPE 0
266#endif
267
268/* Return 1 for a symbol ref for a thread-local storage symbol.  */
269#define RS6000_SYMBOL_REF_TLS_P(RTX) \
270  (SYMBOL_REF_P (RTX) && SYMBOL_REF_TLS_MODEL (RTX) != 0)
271
272#ifdef IN_LIBGCC2
273/* For libgcc2 we make sure this is a compile time constant */
274#if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
275#undef TARGET_POWERPC64
276#define TARGET_POWERPC64	1
277#else
278#undef TARGET_POWERPC64
279#define TARGET_POWERPC64	0
280#endif
281#else
282    /* The option machinery will define this.  */
283#endif
284
285#define TARGET_DEFAULT (MASK_MULTIPLE)
286
287/* Define generic processor types based upon current deployment.  */
288#define PROCESSOR_COMMON    PROCESSOR_PPC601
289#define PROCESSOR_POWERPC   PROCESSOR_PPC604
290#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
291
292/* Define the default processor.  This is overridden by other tm.h files.  */
293#define PROCESSOR_DEFAULT   PROCESSOR_PPC603
294#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
295
296/* Specify the dialect of assembler to use.  Only new mnemonics are supported
297   starting with GCC 4.8, i.e. just one dialect, but for backwards
298   compatibility with older inline asm ASSEMBLER_DIALECT needs to be
299   defined.  */
300#define ASSEMBLER_DIALECT 1
301
302/* Debug support */
303#define MASK_DEBUG_STACK	0x01	/* debug stack applications */
304#define	MASK_DEBUG_ARG		0x02	/* debug argument handling */
305#define MASK_DEBUG_REG		0x04	/* debug register handling */
306#define MASK_DEBUG_ADDR		0x08	/* debug memory addressing */
307#define MASK_DEBUG_COST		0x10	/* debug rtx codes */
308#define MASK_DEBUG_TARGET	0x20	/* debug target attribute/pragma */
309#define MASK_DEBUG_BUILTIN	0x40	/* debug builtins */
310#define MASK_DEBUG_ALL		(MASK_DEBUG_STACK \
311				 | MASK_DEBUG_ARG \
312				 | MASK_DEBUG_REG \
313				 | MASK_DEBUG_ADDR \
314				 | MASK_DEBUG_COST \
315				 | MASK_DEBUG_TARGET \
316				 | MASK_DEBUG_BUILTIN)
317
318#define	TARGET_DEBUG_STACK	(rs6000_debug & MASK_DEBUG_STACK)
319#define	TARGET_DEBUG_ARG	(rs6000_debug & MASK_DEBUG_ARG)
320#define TARGET_DEBUG_REG	(rs6000_debug & MASK_DEBUG_REG)
321#define TARGET_DEBUG_ADDR	(rs6000_debug & MASK_DEBUG_ADDR)
322#define TARGET_DEBUG_COST	(rs6000_debug & MASK_DEBUG_COST)
323#define TARGET_DEBUG_TARGET	(rs6000_debug & MASK_DEBUG_TARGET)
324#define TARGET_DEBUG_BUILTIN	(rs6000_debug & MASK_DEBUG_BUILTIN)
325
326/* Helper macros for TFmode.  Quad floating point (TFmode) can be either IBM
327   long double format that uses a pair of doubles, or IEEE 128-bit floating
328   point.  KFmode was added as a way to represent IEEE 128-bit floating point,
329   even if the default for long double is the IBM long double format.
330   Similarly IFmode is the IBM long double format even if the default is IEEE
331   128-bit.  Don't allow IFmode if -msoft-float.  */
332#define FLOAT128_IEEE_P(MODE)						\
333  ((TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128				\
334    && ((MODE) == TFmode || (MODE) == TCmode))				\
335   || ((MODE) == KFmode) || ((MODE) == KCmode))
336
337#define FLOAT128_IBM_P(MODE)						\
338  ((!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128				\
339    && ((MODE) == TFmode || (MODE) == TCmode))				\
340   || (TARGET_HARD_FLOAT && ((MODE) == IFmode || (MODE) == ICmode)))
341
342/* Helper macros to say whether a 128-bit floating point type can go in a
343   single vector register, or whether it needs paired scalar values.  */
344#define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
345
346#define FLOAT128_2REG_P(MODE)						\
347  (FLOAT128_IBM_P (MODE)						\
348   || ((MODE) == TDmode)						\
349   || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
350
351/* Return true for floating point that does not use a vector register.  */
352#define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE)				\
353  (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
354
355/* Describe the vector unit used for arithmetic operations.  */
356extern enum rs6000_vector rs6000_vector_unit[];
357
358#define VECTOR_UNIT_NONE_P(MODE)			\
359  (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
360
361#define VECTOR_UNIT_VSX_P(MODE)				\
362  (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
363
364#define VECTOR_UNIT_P8_VECTOR_P(MODE)			\
365  (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
366
367#define VECTOR_UNIT_ALTIVEC_P(MODE)			\
368  (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
369
370#define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE)		\
371  (IN_RANGE ((int)rs6000_vector_unit[(MODE)],		\
372	     (int)VECTOR_VSX,				\
373	     (int)VECTOR_P8_VECTOR))
374
375/* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
376   altivec (VMX) or VSX vector instructions.  P8 vector support is upwards
377   compatible, so allow it as well, rather than changing all of the uses of the
378   macro.  */
379#define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE)		\
380  (IN_RANGE ((int)rs6000_vector_unit[(MODE)],		\
381	     (int)VECTOR_ALTIVEC,			\
382	     (int)VECTOR_P8_VECTOR))
383
384/* Describe whether to use VSX loads or Altivec loads.  For now, just use the
385   same unit as the vector unit we are using, but we may want to migrate to
386   using VSX style loads even for types handled by altivec.  */
387extern enum rs6000_vector rs6000_vector_mem[];
388
389#define VECTOR_MEM_NONE_P(MODE)				\
390  (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
391
392#define VECTOR_MEM_VSX_P(MODE)				\
393  (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
394
395#define VECTOR_MEM_P8_VECTOR_P(MODE)			\
396  (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
397
398#define VECTOR_MEM_ALTIVEC_P(MODE)			\
399  (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
400
401#define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE)		\
402  (IN_RANGE ((int)rs6000_vector_mem[(MODE)],		\
403	     (int)VECTOR_VSX,				\
404	     (int)VECTOR_P8_VECTOR))
405
406#define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE)		\
407  (IN_RANGE ((int)rs6000_vector_mem[(MODE)],		\
408	     (int)VECTOR_ALTIVEC,			\
409	     (int)VECTOR_P8_VECTOR))
410
411/* Return the alignment of a given vector type, which is set based on the
412   vector unit use.  VSX for instance can load 32 or 64 bit aligned words
413   without problems, while Altivec requires 128-bit aligned vectors.  */
414extern int rs6000_vector_align[];
415
416#define VECTOR_ALIGN(MODE)						\
417  ((rs6000_vector_align[(MODE)] != 0)					\
418   ? rs6000_vector_align[(MODE)]					\
419   : (int)GET_MODE_BITSIZE ((MODE)))
420
421/* Element number of the 64-bit value in a 128-bit vector that can be accessed
422   with scalar instructions.  */
423#define VECTOR_ELEMENT_SCALAR_64BIT	((BYTES_BIG_ENDIAN) ? 0 : 1)
424
425/* Element number of the 64-bit value in a 128-bit vector that can be accessed
426   with the ISA 3.0 MFVSRLD instructions.  */
427#define VECTOR_ELEMENT_MFVSRLD_64BIT	((BYTES_BIG_ENDIAN) ? 1 : 0)
428
429/* Alignment options for fields in structures for sub-targets following
430   AIX-like ABI.
431   ALIGN_POWER word-aligns FP doubles (default AIX ABI).
432   ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
433
434   Override the macro definitions when compiling libobjc to avoid undefined
435   reference to rs6000_alignment_flags due to library's use of GCC alignment
436   macros which use the macros below.  */
437
438#ifndef IN_TARGET_LIBS
439#define MASK_ALIGN_POWER   0x00000000
440#define MASK_ALIGN_NATURAL 0x00000001
441#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
442#else
443#define TARGET_ALIGN_NATURAL 0
444#endif
445
446/* We use values 126..128 to pick the appropriate long double type (IFmode,
447   KFmode, TFmode).  */
448#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size > 64)
449#define TARGET_IEEEQUAD rs6000_ieeequad
450#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
451#define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
452
453/* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
454   Enable 32-bit fcfid's on any of the switches for newer ISA machines.  */
455#define TARGET_FCFID	(TARGET_POWERPC64				\
456			 || TARGET_PPC_GPOPT	/* 970/power4 */	\
457			 || TARGET_POPCNTB	/* ISA 2.02 */		\
458			 || TARGET_CMPB		/* ISA 2.05 */		\
459			 || TARGET_POPCNTD)	/* ISA 2.06 */
460
461#define TARGET_FCTIDZ	TARGET_FCFID
462#define TARGET_STFIWX	TARGET_PPC_GFXOPT
463#define TARGET_LFIWAX	TARGET_CMPB
464#define TARGET_LFIWZX	TARGET_POPCNTD
465#define TARGET_FCFIDS	TARGET_POPCNTD
466#define TARGET_FCFIDU	TARGET_POPCNTD
467#define TARGET_FCFIDUS	TARGET_POPCNTD
468#define TARGET_FCTIDUZ	TARGET_POPCNTD
469#define TARGET_FCTIWUZ	TARGET_POPCNTD
470#define TARGET_CTZ	TARGET_MODULO
471#define TARGET_EXTSWSLI	(TARGET_MODULO && TARGET_POWERPC64)
472#define TARGET_MADDLD	TARGET_MODULO
473
474#define TARGET_XSCVDPSPN	(TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
475#define TARGET_XSCVSPDPN	(TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
476#define TARGET_VADDUQM		(TARGET_P8_VECTOR && TARGET_POWERPC64)
477#define TARGET_DIRECT_MOVE_128	(TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
478				 && TARGET_POWERPC64)
479#define TARGET_VEXTRACTUB	(TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
480				 && TARGET_POWERPC64)
481
482/* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI).  */
483#define TARGET_NO_SF_SUBREG	TARGET_DIRECT_MOVE_64BIT
484#define TARGET_ALLOW_SF_SUBREG	(!TARGET_DIRECT_MOVE_64BIT)
485
486/* This wants to be set for p8 and newer.  On p7, overlapping unaligned
487   loads are slow. */
488#define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
489
490/* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
491   in power7, so conditionalize them on p8 features.  TImode syncs need quad
492   memory support.  */
493#define TARGET_SYNC_HI_QI	(TARGET_QUAD_MEMORY			\
494				 || TARGET_QUAD_MEMORY_ATOMIC		\
495				 || TARGET_DIRECT_MOVE)
496
497#define TARGET_SYNC_TI		TARGET_QUAD_MEMORY_ATOMIC
498
499/* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
500   to allocate the SDmode stack slot to get the value into the proper location
501   in the register.  */
502#define TARGET_NO_SDMODE_STACK	(TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
503
504/* ISA 3.0 has new min/max functions that don't need fast math that are being
505   phased in.  Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
506   answers if the arguments are not in the normal range.  */
507#define TARGET_MINMAX	(TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT		\
508			 && (TARGET_P9_MINMAX || !flag_trapping_math))
509
510/* In switching from using target_flags to using rs6000_isa_flags, the options
511   machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>.  For now map
512   OPTION_MASK_<xxx> back into MASK_<xxx>.  */
513#define MASK_ALTIVEC			OPTION_MASK_ALTIVEC
514#define MASK_CMPB			OPTION_MASK_CMPB
515#define MASK_CRYPTO			OPTION_MASK_CRYPTO
516#define MASK_DFP			OPTION_MASK_DFP
517#define MASK_DIRECT_MOVE		OPTION_MASK_DIRECT_MOVE
518#define MASK_DLMZB			OPTION_MASK_DLMZB
519#define MASK_EABI			OPTION_MASK_EABI
520#define MASK_FLOAT128_KEYWORD		OPTION_MASK_FLOAT128_KEYWORD
521#define MASK_FLOAT128_HW		OPTION_MASK_FLOAT128_HW
522#define MASK_FPRND			OPTION_MASK_FPRND
523#define MASK_P8_FUSION			OPTION_MASK_P8_FUSION
524#define MASK_HARD_FLOAT			OPTION_MASK_HARD_FLOAT
525#define MASK_HTM			OPTION_MASK_HTM
526#define MASK_ISEL			OPTION_MASK_ISEL
527#define MASK_MFCRF			OPTION_MASK_MFCRF
528#define MASK_MMA			OPTION_MASK_MMA
529#define MASK_MULHW			OPTION_MASK_MULHW
530#define MASK_MULTIPLE			OPTION_MASK_MULTIPLE
531#define MASK_NO_UPDATE			OPTION_MASK_NO_UPDATE
532#define MASK_P8_VECTOR			OPTION_MASK_P8_VECTOR
533#define MASK_P9_VECTOR			OPTION_MASK_P9_VECTOR
534#define MASK_P9_MISC			OPTION_MASK_P9_MISC
535#define MASK_POPCNTB			OPTION_MASK_POPCNTB
536#define MASK_POPCNTD			OPTION_MASK_POPCNTD
537#define MASK_PPC_GFXOPT			OPTION_MASK_PPC_GFXOPT
538#define MASK_PPC_GPOPT			OPTION_MASK_PPC_GPOPT
539#define MASK_RECIP_PRECISION		OPTION_MASK_RECIP_PRECISION
540#define MASK_SOFT_FLOAT			OPTION_MASK_SOFT_FLOAT
541#define MASK_STRICT_ALIGN		OPTION_MASK_STRICT_ALIGN
542#define MASK_UPDATE			OPTION_MASK_UPDATE
543#define MASK_VSX			OPTION_MASK_VSX
544#define MASK_POWER10			OPTION_MASK_POWER10
545#define MASK_P10_FUSION			OPTION_MASK_P10_FUSION
546
547#ifndef IN_LIBGCC2
548#define MASK_POWERPC64			OPTION_MASK_POWERPC64
549#endif
550
551#ifdef TARGET_64BIT
552#define MASK_64BIT			OPTION_MASK_64BIT
553#endif
554
555#ifdef TARGET_LITTLE_ENDIAN
556#define MASK_LITTLE_ENDIAN		OPTION_MASK_LITTLE_ENDIAN
557#endif
558
559#ifdef TARGET_REGNAMES
560#define MASK_REGNAMES			OPTION_MASK_REGNAMES
561#endif
562
563#ifdef TARGET_PROTOTYPE
564#define MASK_PROTOTYPE			OPTION_MASK_PROTOTYPE
565#endif
566
567#ifdef TARGET_MODULO
568#define RS6000_BTM_MODULO		OPTION_MASK_MODULO
569#endif
570
571
572/* For power systems, we want to enable Altivec and VSX builtins even if the
573   user did not use -maltivec or -mvsx to allow the builtins to be used inside
574   of #pragma GCC target or the target attribute to change the code level for a
575   given system.  */
576
577#define TARGET_EXTRA_BUILTINS	(TARGET_POWERPC64			 \
578				 || TARGET_PPC_GPOPT /* 970/power4 */	 \
579				 || TARGET_POPCNTB   /* ISA 2.02 */	 \
580				 || TARGET_CMPB      /* ISA 2.05 */	 \
581				 || TARGET_POPCNTD   /* ISA 2.06 */	 \
582				 || TARGET_ALTIVEC			 \
583				 || TARGET_VSX				 \
584				 || TARGET_HARD_FLOAT)
585
586/* E500 cores only support plain "sync", not lwsync.  */
587#define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
588			  || rs6000_cpu == PROCESSOR_PPC8548)
589
590
591/* Which machine supports the various reciprocal estimate instructions.  */
592#define TARGET_FRES	(TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT)
593
594#define TARGET_FRE	(TARGET_HARD_FLOAT \
595			 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
596
597#define TARGET_FRSQRTES	(TARGET_HARD_FLOAT && TARGET_POPCNTB \
598			 && TARGET_PPC_GFXOPT)
599
600#define TARGET_FRSQRTE	(TARGET_HARD_FLOAT \
601			 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
602
603/* Macro to say whether we can do optimizations where we need to do parts of
604   the calculation in 64-bit GPRs and then is transfered to the vector
605   registers.  */
606#define TARGET_DIRECT_MOVE_64BIT	(TARGET_DIRECT_MOVE		\
607					 && TARGET_P8_VECTOR		\
608					 && TARGET_POWERPC64)
609
610/* Inlining allows targets to define the meanings of bits in target_info
611   field of ipa_fn_summary by itself, the used bits for rs6000 are listed
612   below.  */
613#define RS6000_FN_TARGET_INFO_HTM 1
614
615/* Whether the various reciprocal divide/square root estimate instructions
616   exist, and whether we should automatically generate code for the instruction
617   by default.  */
618#define RS6000_RECIP_MASK_HAVE_RE	0x1	/* have RE instruction.  */
619#define RS6000_RECIP_MASK_AUTO_RE	0x2	/* generate RE by default.  */
620#define RS6000_RECIP_MASK_HAVE_RSQRTE	0x4	/* have RSQRTE instruction.  */
621#define RS6000_RECIP_MASK_AUTO_RSQRTE	0x8	/* gen. RSQRTE by default.  */
622
623extern unsigned char rs6000_recip_bits[];
624
625#define RS6000_RECIP_HAVE_RE_P(MODE) \
626  (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
627
628#define RS6000_RECIP_AUTO_RE_P(MODE) \
629  (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
630
631#define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
632  (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
633
634#define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
635  (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
636
637/* The default CPU for TARGET_OPTION_OVERRIDE.  */
638#define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
639
640/* Target pragma.  */
641#define REGISTER_TARGET_PRAGMAS() do {				\
642  c_register_pragma (0, "longcall", rs6000_pragma_longcall);	\
643  targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
644  targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
645  rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
646} while (0)
647
648/* Target #defines.  */
649#define TARGET_CPU_CPP_BUILTINS() \
650  rs6000_cpu_cpp_builtins (pfile)
651
652/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
653   we're compiling for.  Some configurations may need to override it.  */
654#define RS6000_CPU_CPP_ENDIAN_BUILTINS()	\
655  do						\
656    {						\
657      if (BYTES_BIG_ENDIAN)			\
658	{					\
659	  builtin_define ("__BIG_ENDIAN__");	\
660	  builtin_define ("_BIG_ENDIAN");	\
661	  builtin_assert ("machine=bigendian");	\
662	}					\
663      else					\
664	{					\
665	  builtin_define ("__LITTLE_ENDIAN__");	\
666	  builtin_define ("_LITTLE_ENDIAN");	\
667	  builtin_assert ("machine=littleendian"); \
668	}					\
669    }						\
670  while (0)
671
672/* Target machine storage layout.  */
673
674/* Define this if most significant bit is lowest numbered
675   in instructions that operate on numbered bit-fields.  */
676/* That is true on RS/6000.  */
677#define BITS_BIG_ENDIAN 1
678
679/* Define this if most significant byte of a word is the lowest numbered.  */
680/* That is true on RS/6000.  */
681#define BYTES_BIG_ENDIAN 1
682
683/* Define this if most significant word of a multiword number is lowest
684   numbered.
685
686   For RS/6000 we can decide arbitrarily since there are no machine
687   instructions for them.  Might as well be consistent with bits and bytes.  */
688#define WORDS_BIG_ENDIAN 1
689
690/* This says that for the IBM long double the larger magnitude double
691   comes first.  It's really a two element double array, and arrays
692   don't index differently between little- and big-endian.  */
693#define LONG_DOUBLE_LARGE_FIRST 1
694
695#define MAX_BITS_PER_WORD 64
696
697/* Width of a word, in units (bytes).  */
698#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
699#ifdef IN_LIBGCC2
700#define MIN_UNITS_PER_WORD UNITS_PER_WORD
701#else
702#define MIN_UNITS_PER_WORD 4
703#endif
704#define UNITS_PER_FP_WORD 8
705#define UNITS_PER_ALTIVEC_WORD 16
706#define UNITS_PER_VSX_WORD 16
707
708/* Type used for ptrdiff_t, as a string used in a declaration.  */
709#define PTRDIFF_TYPE "int"
710
711/* Type used for size_t, as a string used in a declaration.  */
712#define SIZE_TYPE "long unsigned int"
713
714/* Type used for wchar_t, as a string used in a declaration.  */
715#define WCHAR_TYPE "short unsigned int"
716
717/* Width of wchar_t in bits.  */
718#define WCHAR_TYPE_SIZE 16
719
720/* A C expression for the size in bits of the type `short' on the
721   target machine.  If you don't define this, the default is half a
722   word.  (If this would be less than one storage unit, it is
723   rounded up to one unit.)  */
724#define SHORT_TYPE_SIZE 16
725
726/* A C expression for the size in bits of the type `int' on the
727   target machine.  If you don't define this, the default is one
728   word.  */
729#define INT_TYPE_SIZE 32
730
731/* A C expression for the size in bits of the type `long' on the
732   target machine.  If you don't define this, the default is one
733   word.  */
734#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
735
736/* A C expression for the size in bits of the type `long long' on the
737   target machine.  If you don't define this, the default is two
738   words.  */
739#define LONG_LONG_TYPE_SIZE 64
740
741/* A C expression for the size in bits of the type `float' on the
742   target machine.  If you don't define this, the default is one
743   word.  */
744#define FLOAT_TYPE_SIZE 32
745
746/* A C expression for the size in bits of the type `double' on the
747   target machine.  If you don't define this, the default is two
748   words.  */
749#define DOUBLE_TYPE_SIZE 64
750
751/* A C expression for the size in bits of the type `long double' on the target
752   machine.  If you don't define this, the default is two words.  */
753#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
754
755/* Work around rs6000_long_double_type_size dependency in ada/targtyps.cc.  */
756#define WIDEST_HARDWARE_FP_SIZE 64
757
758/* Width in bits of a pointer.
759   See also the macro `Pmode' defined below.  */
760extern unsigned rs6000_pointer_size;
761#define POINTER_SIZE rs6000_pointer_size
762
763/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
764#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
765
766/* Boundary (in *bits*) on which stack pointer should be aligned.  */
767#define STACK_BOUNDARY	\
768  ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
769    ? 64 : 128)
770
771/* Allocation boundary (in *bits*) for the code of a function.  */
772#define FUNCTION_BOUNDARY 32
773
774/* No data type is required to be aligned rounder than this.  Warning, if
775   BIGGEST_ALIGNMENT is changed, then this may be an ABI break.  An example
776   of where this can break an ABI is in GLIBC's struct _Unwind_Exception.  */
777#define BIGGEST_ALIGNMENT 128
778
779/* Alignment of field after `int : 0' in a structure.  */
780#define EMPTY_FIELD_BOUNDARY 32
781
782/* Every structure's size must be a multiple of this.  */
783#define STRUCTURE_SIZE_BOUNDARY 8
784
785/* A bit-field declared as `int' forces `int' alignment for the struct.  */
786#define PCC_BITFIELD_TYPE_MATTERS 1
787
788enum data_align { align_abi, align_opt, align_both };
789
790/* A C expression to compute the alignment for a variables in the
791   local store.  TYPE is the data type, and ALIGN is the alignment
792   that the object would ordinarily have.  */
793#define LOCAL_ALIGNMENT(TYPE, ALIGN)				\
794  rs6000_data_alignment (TYPE, ALIGN, align_both)
795
796/* Make arrays of chars word-aligned for the same reasons.  */
797#define DATA_ALIGNMENT(TYPE, ALIGN) \
798  rs6000_data_alignment (TYPE, ALIGN, align_opt)
799
800/* Align vectors to 128 bits.  */
801#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
802  rs6000_data_alignment (TYPE, ALIGN, align_abi)
803
804/* Nonzero if move instructions will actually fail to work
805   when given unaligned data.  */
806#define STRICT_ALIGNMENT 0
807
808/* Standard register usage.  */
809
810/* Number of actual hardware registers.
811   The hardware registers are assigned numbers for the compiler
812   from 0 to just below FIRST_PSEUDO_REGISTER.
813   All registers that the compiler knows about must be given numbers,
814   even those that are not normally considered general registers.
815
816   RS/6000 has 32 fixed-point registers, 32 floating-point registers,
817   a count register, a link register, and 8 condition register fields,
818   which we view here as separate registers.  AltiVec adds 32 vector
819   registers and a VRsave register.
820
821   In addition, the difference between the frame and argument pointers is
822   a function of the number of registers saved, so we need to have a
823   register for AP that will later be eliminated in favor of SP or FP.
824   This is a normal register, but it is fixed.
825
826   We also create a pseudo register for float/int conversions, that will
827   really represent the memory location used.  It is represented here as
828   a register, in order to work around problems in allocating stack storage
829   in inline functions.
830
831   Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
832   pointer, which is eventually eliminated in favor of SP or FP.  */
833
834#define FIRST_PSEUDO_REGISTER 111
835
836/* Use standard DWARF numbering for DWARF debugging information.  */
837#define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
838
839/* Use gcc hard register numbering for eh_frame.  */
840#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
841
842/* Map register numbers held in the call frame info that gcc has
843   collected using DWARF_FRAME_REGNUM to those that should be output in
844   .debug_frame and .eh_frame.  */
845#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
846  rs6000_dbx_register_number ((REGNO), (FOR_EH) ? 2 : 1)
847
848/* 1 for registers that have pervasive standard uses
849   and are not available for the register allocator.
850
851   On RS/6000, r1 is used for the stack.  On Darwin, r2 is available
852   as a local register; for all other OS's r2 is the TOC pointer.
853
854   On System V implementations, r13 is fixed and not available for use.  */
855
856#define FIXED_REGISTERS  \
857  {/* GPRs */					   \
858   0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
859   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
860   /* FPRs */					   \
861   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
862   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
863   /* VRs */					   \
864   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
865   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
866   /* lr ctr ca ap */				   \
867   0, 0, 1, 1,					   \
868   /* cr0..cr7 */				   \
869   0, 0, 0, 0, 0, 0, 0, 0,			   \
870   /* vrsave vscr sfp */			   \
871   1, 1, 1					   \
872}
873
874/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
875   the entire set of `FIXED_REGISTERS' be included.
876   (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
877   This macro is optional.  If not specified, it defaults to the value
878   of `CALL_USED_REGISTERS'.  */
879
880#define CALL_REALLY_USED_REGISTERS  \
881  {/* GPRs */					   \
882   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
883   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
884   /* FPRs */					   \
885   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
886   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
887   /* VRs */					   \
888   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
889   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
890   /* lr ctr ca ap */				   \
891   1, 1, 1, 1,					   \
892   /* cr0..cr7 */				   \
893   1, 1, 0, 0, 0, 1, 1, 1,			   \
894   /* vrsave vscr sfp */			   \
895   0, 0, 0					   \
896}
897
898#define TOTAL_ALTIVEC_REGS	(LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
899
900#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
901#define FIRST_SAVED_FP_REGNO	  (14+32)
902#define FIRST_SAVED_GP_REGNO	  (FIXED_R13 ? 14 : 13)
903
904/* List the order in which to allocate registers.  Each register must be
905   listed once, even those in FIXED_REGISTERS.
906
907   We allocate in the following order:
908	fp0		(not saved or used for anything)
909	fp13 - fp2	(not saved; incoming fp arg registers)
910	fp1		(not saved; return value)
911	fp31 - fp14	(saved; order given to save least number)
912	cr7, cr5	(not saved or special)
913	cr6		(not saved, but used for vector operations)
914	cr1		(not saved, but used for FP operations)
915	cr0		(not saved, but used for arithmetic operations)
916	cr4, cr3, cr2	(saved)
917	r9		(not saved; best for TImode)
918	r10, r8-r4	(not saved; highest first for less conflict with params)
919	r3		(not saved; return value register)
920	r11		(not saved; later alloc to help shrink-wrap)
921	r0		(not saved; cannot be base reg)
922	r31 - r13	(saved; order given to save least number)
923	r12		(not saved; if used for DImode or DFmode would use r13)
924	ctr		(not saved; when we have the choice ctr is better)
925	lr		(saved)
926	r1, r2, ap, ca	(fixed)
927	v0 - v1		(not saved or used for anything)
928	v13 - v3	(not saved; incoming vector arg registers)
929	v2		(not saved; incoming vector arg reg; return value)
930	v19 - v14	(not saved or used for anything)
931	v31 - v20	(saved; order given to save least number)
932	vrsave, vscr	(fixed)
933	sfp		(fixed)
934*/
935
936#if FIXED_R2 == 1
937#define MAYBE_R2_AVAILABLE
938#define MAYBE_R2_FIXED 2,
939#else
940#define MAYBE_R2_AVAILABLE 2,
941#define MAYBE_R2_FIXED
942#endif
943
944#if FIXED_R13 == 1
945#define EARLY_R12 12,
946#define LATE_R12
947#else
948#define EARLY_R12
949#define LATE_R12 12,
950#endif
951
952#define REG_ALLOC_ORDER						\
953  {32,								\
954   /* move fr13 (ie 45) later, so if we need TFmode, it does */	\
955   /* not use fr14 which is a saved register.  */		\
956   44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45,		\
957   33,								\
958   63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51,		\
959   50, 49, 48, 47, 46,						\
960   100, 107, 105, 106, 101, 104, 103, 102,			\
961   MAYBE_R2_AVAILABLE						\
962   9, 10, 8, 7, 6, 5, 4,					\
963   3, EARLY_R12 11, 0,						\
964   31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,		\
965   18, 17, 16, 15, 14, 13, LATE_R12				\
966   97, 96,							\
967   1, MAYBE_R2_FIXED 99, 98,					\
968   /* AltiVec registers.  */					\
969   64, 65,							\
970   77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67,			\
971   66,								\
972   83, 82, 81, 80, 79, 78,					\
973   95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84,		\
974   108, 109,							\
975   110								\
976}
977
978/* True if register is floating-point.  */
979#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
980
981/* True if register is a condition register.  */
982#define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
983
984/* True if register is a condition register, but not cr0.  */
985#define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
986
987/* True if register is an integer register.  */
988#define INT_REGNO_P(N) \
989  ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
990
991/* True if register is the CA register.  */
992#define CA_REGNO_P(N) ((N) == CA_REGNO)
993
994/* True if register is an AltiVec register.  */
995#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
996
997/* True if register is a VSX register.  */
998#define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
999
1000/* Alternate name for any vector register supporting floating point, no matter
1001   which instruction set(s) are available.  */
1002#define VFLOAT_REGNO_P(N) \
1003  (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1004
1005/* Alternate name for any vector register supporting integer, no matter which
1006   instruction set(s) are available.  */
1007#define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1008
1009/* Alternate name for any vector register supporting logical operations, no
1010   matter which instruction set(s) are available.  Allow GPRs as well as the
1011   vector registers.  */
1012#define VLOGICAL_REGNO_P(N)						\
1013  (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N)				\
1014   || (TARGET_VSX && FP_REGNO_P (N)))					\
1015
1016/* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1017   enough space to account for vectors in FP regs.  However, TFmode/TDmode
1018   should not use VSX instructions to do a caller save. */
1019#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1020  ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO]			\
1021   ? (MODE)								\
1022   : TARGET_VSX								\
1023     && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE))	\
1024     && FP_REGNO_P (REGNO)						\
1025   ? V2DFmode								\
1026   : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO)			\
1027   ? DFmode								\
1028   : (MODE) == TDmode && FP_REGNO_P (REGNO)				\
1029   ? DImode								\
1030   : choose_hard_reg_mode ((REGNO), (NREGS), NULL))
1031
1032#define VSX_VECTOR_MODE(MODE)		\
1033	 ((MODE) == V4SFmode		\
1034	  || (MODE) == V2DFmode)	\
1035
1036/* Modes that are not vectors, but require vector alignment.  Treat these like
1037   vectors in terms of loads and stores.  */
1038#define VECTOR_ALIGNMENT_P(MODE)					\
1039  (FLOAT128_VECTOR_P (MODE) || (MODE) == OOmode || (MODE) == XOmode)
1040
1041#define ALTIVEC_VECTOR_MODE(MODE)					\
1042  ((MODE) == V16QImode							\
1043   || (MODE) == V8HImode						\
1044   || (MODE) == V4SFmode						\
1045   || (MODE) == V4SImode						\
1046   || VECTOR_ALIGNMENT_P (MODE))
1047
1048#define ALTIVEC_OR_VSX_VECTOR_MODE(MODE)				\
1049  (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE)			\
1050   || (MODE) == V2DImode || (MODE) == V1TImode)
1051
1052/* Post-reload, we can't use any new AltiVec registers, as we already
1053   emitted the vrsave mask.  */
1054
1055#define HARD_REGNO_RENAME_OK(SRC, DST) \
1056  (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1057
1058/* Specify the cost of a branch insn; roughly the number of extra insns that
1059   should be added to avoid a branch.
1060
1061   Set this to 3 on the RS/6000 since that is roughly the average cost of an
1062   unscheduled conditional branch.  */
1063
1064#define BRANCH_COST(speed_p, predictable_p) 3
1065
1066/* Override BRANCH_COST heuristic which empirically produces worse
1067   performance for removing short circuiting from the logical ops.  */
1068
1069#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1070
1071/* Specify the registers used for certain standard purposes.
1072   The values of these macros are register numbers.  */
1073
1074/* RS/6000 pc isn't overloaded on a register that the compiler knows about.  */
1075/* #define PC_REGNUM  */
1076
1077/* Register to use for pushing function arguments.  */
1078#define STACK_POINTER_REGNUM 1
1079
1080/* Base register for access to local variables of the function.  */
1081#define HARD_FRAME_POINTER_REGNUM 31
1082
1083/* Base register for access to local variables of the function.  */
1084#define FRAME_POINTER_REGNUM 110
1085
1086/* Base register for access to arguments of the function.  */
1087#define ARG_POINTER_REGNUM 99
1088
1089/* Place to put static chain when calling a function that requires it.  */
1090#define STATIC_CHAIN_REGNUM 11
1091
1092/* Base register for access to thread local storage variables.  */
1093#define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1094
1095
1096/* Define the classes of registers for register constraints in the
1097   machine description.  Also define ranges of constants.
1098
1099   One of the classes must always be named ALL_REGS and include all hard regs.
1100   If there is more than one class, another class must be named NO_REGS
1101   and contain no registers.
1102
1103   The name GENERAL_REGS must be the name of a class (or an alias for
1104   another name such as ALL_REGS).  This is the class of registers
1105   that is allowed by "g" or "r" in a register constraint.
1106   Also, registers outside this class are allocated only when
1107   instructions express preferences for them.
1108
1109   The classes must be numbered in nondecreasing order; that is,
1110   a larger-numbered class must never be contained completely
1111   in a smaller-numbered class.
1112
1113   For any two classes, it is very desirable that there be another
1114   class that represents their union.  */
1115
1116/* The RS/6000 has three types of registers, fixed-point, floating-point, and
1117   condition registers, plus three special registers, CTR, and the link
1118   register.  AltiVec adds a vector register class.  VSX registers overlap the
1119   FPR registers and the Altivec registers.
1120
1121   However, r0 is special in that it cannot be used as a base register.
1122   So make a class for registers valid as base registers.
1123
1124   Also, cr0 is the only condition code register that can be used in
1125   arithmetic insns, so make a separate class for it.  */
1126
1127enum reg_class
1128{
1129  NO_REGS,
1130  BASE_REGS,
1131  GENERAL_REGS,
1132  FLOAT_REGS,
1133  ALTIVEC_REGS,
1134  VSX_REGS,
1135  VRSAVE_REGS,
1136  VSCR_REGS,
1137  GEN_OR_FLOAT_REGS,
1138  GEN_OR_VSX_REGS,
1139  LINK_REGS,
1140  CTR_REGS,
1141  LINK_OR_CTR_REGS,
1142  SPECIAL_REGS,
1143  SPEC_OR_GEN_REGS,
1144  CR0_REGS,
1145  CR_REGS,
1146  NON_FLOAT_REGS,
1147  CA_REGS,
1148  ALL_REGS,
1149  LIM_REG_CLASSES
1150};
1151
1152#define N_REG_CLASSES (int) LIM_REG_CLASSES
1153
1154/* Give names of register classes as strings for dump file.  */
1155
1156#define REG_CLASS_NAMES							\
1157{									\
1158  "NO_REGS",								\
1159  "BASE_REGS",								\
1160  "GENERAL_REGS",							\
1161  "FLOAT_REGS",								\
1162  "ALTIVEC_REGS",							\
1163  "VSX_REGS",								\
1164  "VRSAVE_REGS",							\
1165  "VSCR_REGS",								\
1166  "GEN_OR_FLOAT_REGS",							\
1167  "GEN_OR_VSX_REGS",							\
1168  "LINK_REGS",								\
1169  "CTR_REGS",								\
1170  "LINK_OR_CTR_REGS",							\
1171  "SPECIAL_REGS",							\
1172  "SPEC_OR_GEN_REGS",							\
1173  "CR0_REGS",								\
1174  "CR_REGS",								\
1175  "NON_FLOAT_REGS",							\
1176  "CA_REGS",								\
1177  "ALL_REGS"								\
1178}
1179
1180/* Define which registers fit in which classes.
1181   This is an initializer for a vector of HARD_REG_SET
1182   of length N_REG_CLASSES.  */
1183
1184#define REG_CLASS_CONTENTS						\
1185{									\
1186  /* NO_REGS.  */							\
1187  { 0x00000000, 0x00000000, 0x00000000, 0x00000000 },			\
1188  /* BASE_REGS.  */							\
1189  { 0xfffffffe, 0x00000000, 0x00000000, 0x00004008 },			\
1190  /* GENERAL_REGS.  */							\
1191  { 0xffffffff, 0x00000000, 0x00000000, 0x00004008 },			\
1192  /* FLOAT_REGS.  */							\
1193  { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 },			\
1194  /* ALTIVEC_REGS.  */							\
1195  { 0x00000000, 0x00000000, 0xffffffff, 0x00000000 },			\
1196  /* VSX_REGS.  */							\
1197  { 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 },			\
1198  /* VRSAVE_REGS.  */							\
1199  { 0x00000000, 0x00000000, 0x00000000, 0x00001000 },			\
1200  /* VSCR_REGS.  */							\
1201  { 0x00000000, 0x00000000, 0x00000000, 0x00002000 },			\
1202  /* GEN_OR_FLOAT_REGS.  */						\
1203  { 0xffffffff, 0xffffffff, 0x00000000, 0x00004008 },			\
1204  /* GEN_OR_VSX_REGS.  */						\
1205  { 0xffffffff, 0xffffffff, 0xffffffff, 0x00004008 },			\
1206  /* LINK_REGS.  */							\
1207  { 0x00000000, 0x00000000, 0x00000000, 0x00000001 },			\
1208  /* CTR_REGS.  */							\
1209  { 0x00000000, 0x00000000, 0x00000000, 0x00000002 },			\
1210  /* LINK_OR_CTR_REGS.  */						\
1211  { 0x00000000, 0x00000000, 0x00000000, 0x00000003 },			\
1212  /* SPECIAL_REGS.  */							\
1213  { 0x00000000, 0x00000000, 0x00000000, 0x00001003 },			\
1214  /* SPEC_OR_GEN_REGS.  */						\
1215  { 0xffffffff, 0x00000000, 0x00000000, 0x0000500b },			\
1216  /* CR0_REGS.  */							\
1217  { 0x00000000, 0x00000000, 0x00000000, 0x00000010 },			\
1218  /* CR_REGS.  */							\
1219  { 0x00000000, 0x00000000, 0x00000000, 0x00000ff0 },			\
1220  /* NON_FLOAT_REGS.  */						\
1221  { 0xffffffff, 0x00000000, 0x00000000, 0x00004ffb },			\
1222  /* CA_REGS.  */							\
1223  { 0x00000000, 0x00000000, 0x00000000, 0x00000004 },			\
1224  /* ALL_REGS.  */							\
1225  { 0xffffffff, 0xffffffff, 0xffffffff, 0x00007fff }			\
1226}
1227
1228/* The same information, inverted:
1229   Return the class number of the smallest class containing
1230   reg number REGNO.  This could be a conditional expression
1231   or could index an array.  */
1232
1233extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1234
1235#define REGNO_REG_CLASS(REGNO) 						\
1236  (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
1237   rs6000_regno_regclass[(REGNO)])
1238
1239/* Register classes for various constraints that are based on the target
1240   switches.  */
1241enum r6000_reg_class_enum {
1242  RS6000_CONSTRAINT_d,		/* fpr registers for double values */
1243  RS6000_CONSTRAINT_f,		/* fpr registers for single values */
1244  RS6000_CONSTRAINT_v,		/* Altivec registers */
1245  RS6000_CONSTRAINT_wa,		/* Any VSX register */
1246  RS6000_CONSTRAINT_we,		/* VSX register if ISA 3.0 vector. */
1247  RS6000_CONSTRAINT_wr,		/* GPR register if 64-bit  */
1248  RS6000_CONSTRAINT_wx,		/* FPR register for STFIWX */
1249  RS6000_CONSTRAINT_wA,		/* BASE_REGS if 64-bit.  */
1250  RS6000_CONSTRAINT_MAX
1251};
1252
1253extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1254
1255/* The class value for index registers, and the one for base regs.  */
1256#define INDEX_REG_CLASS GENERAL_REGS
1257#define BASE_REG_CLASS BASE_REGS
1258
1259/* Return whether a given register class can hold VSX objects.  */
1260#define VSX_REG_CLASS_P(CLASS)			\
1261  ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1262
1263/* Return whether a given register class targets general purpose registers.  */
1264#define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1265
1266/* Given an rtx X being reloaded into a reg required to be
1267   in class CLASS, return the class of reg to actually use.
1268   In general this is just CLASS; but on some machines
1269   in some cases it is preferable to use a more restrictive class.
1270
1271   On the RS/6000, we have to return NO_REGS when we want to reload a
1272   floating-point CONST_DOUBLE to force it to be copied to memory.
1273
1274   We also don't want to reload integer values into floating-point
1275   registers if we can at all help it.  In fact, this can
1276   cause reload to die, if it tries to generate a reload of CTR
1277   into a FP register and discovers it doesn't have the memory location
1278   required.
1279
1280   ??? Would it be a good idea to have reload do the converse, that is
1281   try to reload floating modes into FP registers if possible?
1282 */
1283
1284#define PREFERRED_RELOAD_CLASS(X,CLASS)			\
1285  rs6000_preferred_reload_class_ptr (X, CLASS)
1286
1287/* Return the register class of a scratch register needed to copy IN into
1288   or out of a register in CLASS in MODE.  If it can be done directly,
1289   NO_REGS is returned.  */
1290
1291#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1292  rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1293
1294/* Return the maximum number of consecutive registers
1295   needed to represent mode MODE in a register of class CLASS.
1296
1297   On RS/6000, this is the size of MODE in words, except in the FP regs, where
1298   a single reg is enough for two words, unless we have VSX, where the FP
1299   registers can hold 128 bits.  */
1300#define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1301
1302/* Stack layout; function entry, exit and calling.  */
1303
1304/* Define this if pushing a word on the stack
1305   makes the stack pointer a smaller address.  */
1306#define STACK_GROWS_DOWNWARD 1
1307
1308/* Offsets recorded in opcodes are a multiple of this alignment factor.  */
1309#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1310
1311/* Define this to nonzero if the nominal address of the stack frame
1312   is at the high-address end of the local variables;
1313   that is, each additional local variable allocated
1314   goes at a more negative offset in the frame.
1315
1316   On the RS/6000, we grow upwards, from the area after the outgoing
1317   arguments.  */
1318#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0			\
1319			      || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1320
1321/* Size of the fixed area on the stack */
1322#define RS6000_SAVE_AREA \
1323  ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24)	\
1324   << (TARGET_64BIT ? 1 : 0))
1325
1326/* Stack offset for toc save slot.  */
1327#define RS6000_TOC_SAVE_SLOT \
1328  ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1329
1330/* Align an address */
1331#define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
1332
1333/* Offset within stack frame to start allocating local variables at.
1334   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1335   first local allocated.  Otherwise, it is the offset to the BEGINNING
1336   of the first local allocated.
1337
1338   On the RS/6000, the frame pointer is the same as the stack pointer,
1339   except for dynamic allocations.  So we start after the fixed area and
1340   outgoing parameter area.
1341
1342   If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1343   space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1344   sizes of the fixed area and the parameter area must be a multiple of
1345   STACK_BOUNDARY.  */
1346
1347#define RS6000_STARTING_FRAME_OFFSET					\
1348  (cfun->calls_alloca							\
1349   ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA,	\
1350		    (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 ))		\
1351   : (RS6000_ALIGN (crtl->outgoing_args_size,				\
1352		    (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)		\
1353      + RS6000_SAVE_AREA))
1354
1355/* Offset from the stack pointer register to an item dynamically
1356   allocated on the stack, e.g., by `alloca'.
1357
1358   The default value for this macro is `STACK_POINTER_OFFSET' plus the
1359   length of the outgoing arguments.  The default is correct for most
1360   machines.  See `function.cc' for details.
1361
1362   This value must be a multiple of STACK_BOUNDARY (hard coded in
1363   `emit-rtl.cc').  */
1364#define STACK_DYNAMIC_OFFSET(FUNDECL)					\
1365  RS6000_ALIGN (crtl->outgoing_args_size.to_constant ()			\
1366		+ STACK_POINTER_OFFSET,					\
1367		(TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
1368
1369/* If we generate an insn to push BYTES bytes,
1370   this says how many the stack pointer really advances by.
1371   On RS/6000, don't define this because there are no push insns.  */
1372/*  #define PUSH_ROUNDING(BYTES) */
1373
1374/* Offset of first parameter from the argument pointer register value.
1375   On the RS/6000, we define the argument pointer to the start of the fixed
1376   area.  */
1377#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1378
1379/* Offset from the argument pointer register value to the top of
1380   stack.  This is different from FIRST_PARM_OFFSET because of the
1381   register save area.  */
1382#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1383
1384/* Define this if stack space is still allocated for a parameter passed
1385   in a register.  The value is the number of bytes allocated to this
1386   area.  */
1387#define REG_PARM_STACK_SPACE(FNDECL) \
1388  rs6000_reg_parm_stack_space ((FNDECL), false)
1389
1390/* Define this macro if space guaranteed when compiling a function body
1391   is different to space required when making a call, a situation that
1392   can arise with K&R style function definitions.  */
1393#define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1394  rs6000_reg_parm_stack_space ((FNDECL), true)
1395
1396/* Define this if the above stack space is to be considered part of the
1397   space allocated by the caller.  */
1398#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1399
1400/* This is the difference between the logical top of stack and the actual sp.
1401
1402   For the RS/6000, sp points past the fixed area.  */
1403#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1404
1405/* Define this if the maximum size of all the outgoing args is to be
1406   accumulated and pushed during the prologue.  The amount can be
1407   found in the variable crtl->outgoing_args_size.  */
1408#define ACCUMULATE_OUTGOING_ARGS 1
1409
1410/* Define how to find the value returned by a library function
1411   assuming the value has mode MODE.  */
1412
1413#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1414
1415/* DRAFT_V4_STRUCT_RET defaults off.  */
1416#define DRAFT_V4_STRUCT_RET 0
1417
1418/* Let TARGET_RETURN_IN_MEMORY control what happens.  */
1419#define DEFAULT_PCC_STRUCT_RETURN 0
1420
1421/* Mode of stack savearea.
1422   FUNCTION is VOIDmode because calling convention maintains SP.
1423   BLOCK needs Pmode for SP.
1424   NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
1425#define STACK_SAVEAREA_MODE(LEVEL)	\
1426  (LEVEL == SAVE_FUNCTION ? VOIDmode	\
1427  : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1428
1429/* Minimum and maximum general purpose registers used to hold arguments.  */
1430#define GP_ARG_MIN_REG 3
1431#define GP_ARG_MAX_REG 10
1432#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1433
1434/* Minimum and maximum floating point registers used to hold arguments.  */
1435#define FP_ARG_MIN_REG 33
1436#define	FP_ARG_AIX_MAX_REG 45
1437#define	FP_ARG_V4_MAX_REG  40
1438#define	FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4				\
1439			? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1440#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1441
1442/* Minimum and maximum AltiVec registers used to hold arguments.  */
1443#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1444#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1445#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1446
1447/* Maximum number of registers per ELFv2 homogeneous aggregate argument.  */
1448#define AGGR_ARG_NUM_REG 8
1449
1450/* Return registers */
1451#define GP_ARG_RETURN GP_ARG_MIN_REG
1452#define FP_ARG_RETURN FP_ARG_MIN_REG
1453#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1454#define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN	\
1455			   : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1456#define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2		\
1457				? (ALTIVEC_ARG_RETURN			\
1458				   + (TARGET_FLOAT128_TYPE ? 1 : 0))	\
1459			        : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1460
1461/* Flags for the call/call_value rtl operations set up by function_arg */
1462#define CALL_NORMAL		0x00000000	/* no special processing */
1463/* Bits in 0x00000001 are unused.  */
1464#define CALL_V4_CLEAR_FP_ARGS	0x00000002	/* V.4, no FP args passed */
1465#define CALL_V4_SET_FP_ARGS	0x00000004	/* V.4, FP args were passed */
1466#define CALL_LONG		0x00000008	/* always call indirect */
1467#define CALL_LIBCALL		0x00000010	/* libcall */
1468
1469/* Identify PLT sequence for rs6000_pltseq_template.  */
1470enum rs6000_pltseq_enum {
1471  RS6000_PLTSEQ_TOCSAVE,
1472  RS6000_PLTSEQ_PLT16_HA,
1473  RS6000_PLTSEQ_PLT16_LO,
1474  RS6000_PLTSEQ_MTCTR,
1475  RS6000_PLTSEQ_PLT_PCREL34
1476};
1477
1478#define IS_V4_FP_ARGS(OP) \
1479  ((INTVAL (OP) & (CALL_V4_CLEAR_FP_ARGS | CALL_V4_SET_FP_ARGS)) != 0)
1480
1481/* We don't have prologue and epilogue functions to save/restore
1482   everything for most ABIs.  */
1483#define WORLD_SAVE_P(INFO) 0
1484
1485/* 1 if N is a possible register number for a function value
1486   as seen by the caller.
1487
1488   On RS/6000, this is r3, fp1, and v2 (for AltiVec).  */
1489#define FUNCTION_VALUE_REGNO_P(N)					\
1490  ((N) == GP_ARG_RETURN							\
1491   || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN)			\
1492       && TARGET_HARD_FLOAT)						\
1493   || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN)	\
1494       && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1495
1496/* 1 if N is a possible register number for function argument passing.
1497   On RS/6000, these are r3-r10 and fp1-fp13.
1498   On AltiVec, v2 - v13 are used for passing vectors.  */
1499#define FUNCTION_ARG_REGNO_P(N)						\
1500  (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG)			\
1501   || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG)		\
1502       && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)				\
1503   || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG)			\
1504       && TARGET_HARD_FLOAT))
1505
1506/* Define a data type for recording info about an argument list
1507   during the scan of that argument list.  This data type should
1508   hold all necessary information about the function itself
1509   and about the args processed so far, enough to enable macros
1510   such as FUNCTION_ARG to determine where the next arg should go.
1511
1512   On the RS/6000, this is a structure.  The first element is the number of
1513   total argument words, the second is used to store the next
1514   floating-point register number, and the third says how many more args we
1515   have prototype types for.
1516
1517   For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1518   the next available GP register, `fregno' is the next available FP
1519   register, and `words' is the number of words used on the stack.
1520
1521   The varargs/stdarg support requires that this structure's size
1522   be a multiple of sizeof(int).  */
1523
1524typedef struct rs6000_args
1525{
1526  int words;			/* # words used for passing GP registers */
1527  int fregno;			/* next available FP register */
1528  int vregno;			/* next available AltiVec register */
1529  int nargs_prototype;		/* # args left in the current prototype */
1530  int prototype;		/* Whether a prototype was defined */
1531  int stdarg;			/* Whether function is a stdarg function.  */
1532  int call_cookie;		/* Do special things for this call */
1533  int sysv_gregno;		/* next available GP register */
1534  int intoffset;		/* running offset in struct (darwin64) */
1535  int use_stack;		/* any part of struct on stack (darwin64) */
1536  int floats_in_gpr;		/* count of SFmode floats taking up
1537				   GPR space (darwin64) */
1538  int named;			/* false for varargs params */
1539  int escapes;			/* if function visible outside tu */
1540  int libcall;			/* If this is a compiler generated call.  */
1541} CUMULATIVE_ARGS;
1542
1543/* Initialize a variable CUM of type CUMULATIVE_ARGS
1544   for a call to a function whose data type is FNTYPE.
1545   For a library call, FNTYPE is 0.  */
1546
1547#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1548  init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1549			N_NAMED_ARGS, FNDECL, VOIDmode)
1550
1551/* Similar, but when scanning the definition of a procedure.  We always
1552   set NARGS_PROTOTYPE large so we never return an EXPR_LIST.  */
1553
1554#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1555  init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1556			1000, current_function_decl, VOIDmode)
1557
1558/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls.  */
1559
1560#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1561  init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1562			0, NULL_TREE, MODE)
1563
1564#define PAD_VARARGS_DOWN \
1565  (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
1566
1567/* Output assembler code to FILE to increment profiler label # LABELNO
1568   for profiling a function entry.  */
1569
1570#define FUNCTION_PROFILER(FILE, LABELNO)	\
1571  output_function_profiler ((FILE), (LABELNO));
1572
1573/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1574   the stack pointer does not matter. No definition is equivalent to
1575   always zero.
1576
1577   On the RS/6000, this is nonzero because we can restore the stack from
1578   its backpointer, which we maintain.  */
1579#define EXIT_IGNORE_STACK	1
1580
1581/* Define this macro as a C expression that is nonzero for registers
1582   that are used by the epilogue or the return' pattern.  The stack
1583   and frame pointer registers are already be assumed to be used as
1584   needed.  */
1585
1586#define	EPILOGUE_USES(REGNO)					\
1587  ((reload_completed && (REGNO) == LR_REGNO)			\
1588   || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO)		\
1589   || (crtl->calls_eh_return					\
1590       && TARGET_AIX						\
1591       && (REGNO) == 2))
1592
1593
1594/* Length in units of the trampoline for entering a nested function.  */
1595
1596#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1597
1598/* Definitions for __builtin_return_address and __builtin_frame_address.
1599   __builtin_return_address (0) should give link register (LR_REGNO), enable
1600   this.  */
1601/* This should be uncommented, so that the link register is used, but
1602   currently this would result in unmatched insns and spilling fixed
1603   registers so we'll leave it for another day.  When these problems are
1604   taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1605   (mrs) */
1606/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1607
1608/* Number of bytes into the frame return addresses can be found.  See
1609   rs6000_stack_info in rs6000.cc for more information on how the different
1610   abi's store the return address.  */
1611#define RETURN_ADDRESS_OFFSET \
1612  ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1613
1614/* The current return address is in the link register.  The return address
1615   of anything farther back is accessed normally at an offset of 8 from the
1616   frame pointer.  */
1617#define RETURN_ADDR_RTX(COUNT, FRAME)                 \
1618  (rs6000_return_addr (COUNT, FRAME))
1619
1620
1621/* Definitions for register eliminations.
1622
1623   We have two registers that can be eliminated on the RS/6000.  First, the
1624   frame pointer register can often be eliminated in favor of the stack
1625   pointer register.  Secondly, the argument pointer register can always be
1626   eliminated; it is replaced with either the stack or frame pointer.
1627
1628   In addition, we use the elimination mechanism to see if r30 is needed
1629   Initially we assume that it isn't.  If it is, we spill it.  This is done
1630   by making it an eliminable register.  We replace it with itself so that
1631   if it isn't needed, then existing uses won't be modified.  */
1632
1633/* This is an array of structures.  Each structure initializes one pair
1634   of eliminable registers.  The "from" register number is given first,
1635   followed by "to".  Eliminations of the same "from" register are listed
1636   in order of preference.  */
1637#define ELIMINABLE_REGS					\
1638{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1639 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1640 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1641 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1642 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1643 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1644
1645/* Define the offset between two registers, one to be eliminated, and the other
1646   its replacement, at the start of a routine.  */
1647#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1648  ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1649
1650/* Addressing modes, and classification of registers for them.  */
1651
1652#define HAVE_PRE_DECREMENT 1
1653#define HAVE_PRE_INCREMENT 1
1654#define HAVE_PRE_MODIFY_DISP 1
1655#define HAVE_PRE_MODIFY_REG 1
1656
1657/* Macros to check register numbers against specific register classes.  */
1658
1659/* These assume that REGNO is a hard or pseudo reg number.
1660   They give nonzero only if REGNO is a hard reg of the suitable class
1661   or a pseudo reg currently allocated to a suitable hard reg.
1662   Since they use reg_renumber, they are safe only once reg_renumber
1663   has been allocated, which happens in reginfo.cc during register
1664   allocation.  */
1665
1666#define REGNO_OK_FOR_INDEX_P(REGNO)				\
1667(HARD_REGISTER_NUM_P (REGNO)					\
1668 ? (REGNO) <= 31						\
1669   || (REGNO) == ARG_POINTER_REGNUM				\
1670   || (REGNO) == FRAME_POINTER_REGNUM				\
1671 : (reg_renumber[REGNO] >= 0					\
1672    && (reg_renumber[REGNO] <= 31				\
1673	|| reg_renumber[REGNO] == ARG_POINTER_REGNUM		\
1674	|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1675
1676#define REGNO_OK_FOR_BASE_P(REGNO)				\
1677(HARD_REGISTER_NUM_P (REGNO)					\
1678 ? ((REGNO) > 0 && (REGNO) <= 31)				\
1679   || (REGNO) == ARG_POINTER_REGNUM				\
1680   || (REGNO) == FRAME_POINTER_REGNUM				\
1681 : (reg_renumber[REGNO] > 0					\
1682    && (reg_renumber[REGNO] <= 31				\
1683	|| reg_renumber[REGNO] == ARG_POINTER_REGNUM		\
1684	|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1685
1686/* Nonzero if X is a hard reg that can be used as an index
1687   or if it is a pseudo reg in the non-strict case.  */
1688#define INT_REG_OK_FOR_INDEX_P(X, STRICT)			\
1689  ((!(STRICT) && !HARD_REGISTER_P (X))				\
1690   || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1691
1692/* Nonzero if X is a hard reg that can be used as a base reg
1693   or if it is a pseudo reg in the non-strict case.  */
1694#define INT_REG_OK_FOR_BASE_P(X, STRICT)			\
1695  ((!(STRICT) && !HARD_REGISTER_P (X))				\
1696   || REGNO_OK_FOR_BASE_P (REGNO (X)))
1697
1698
1699/* Maximum number of registers that can appear in a valid memory address.  */
1700
1701#define MAX_REGS_PER_ADDRESS 2
1702
1703/* Recognize any constant value that is a valid address.  */
1704
1705#define CONSTANT_ADDRESS_P(X)   \
1706  (GET_CODE (X) == LABEL_REF || SYMBOL_REF_P (X)			\
1707   || CONST_INT_P (X) || GET_CODE (X) == CONST				\
1708   || GET_CODE (X) == HIGH)
1709
1710#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1711#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n))	\
1712				    && EASY_VECTOR_15((n) >> 1) \
1713				    && ((n) & 1) == 0)
1714
1715#define EASY_VECTOR_MSB(n,mode)						\
1716  ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) ==		\
1717   ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1718
1719
1720#define FIND_BASE_TERM rs6000_find_base_term
1721
1722/* The register number of the register used to address a table of
1723   static data addresses in memory.  In some cases this register is
1724   defined by a processor's "application binary interface" (ABI).
1725   When this macro is defined, RTL is generated for this register
1726   once, as with the stack pointer and frame pointer registers.  If
1727   this macro is not defined, it is up to the machine-dependent files
1728   to allocate such a register (if necessary).  */
1729
1730#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1731#define PIC_OFFSET_TABLE_REGNUM \
1732  (TARGET_TOC ? TOC_REGISTER			\
1733   : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM	\
1734   : INVALID_REGNUM)
1735
1736#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1737
1738/* Define this macro if the register defined by
1739   `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls.  Do not define
1740   this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined.  */
1741
1742/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1743
1744/* A C expression that is nonzero if X is a legitimate immediate
1745   operand on the target machine when generating position independent
1746   code.  You can assume that X satisfies `CONSTANT_P', so you need
1747   not check this.  You can also assume FLAG_PIC is true, so you need
1748   not check it either.  You need not define this macro if all
1749   constants (including `SYMBOL_REF') can be immediate operands when
1750   generating position independent code.  */
1751
1752/* #define LEGITIMATE_PIC_OPERAND_P (X) */
1753
1754/* Define as C expression which evaluates to nonzero if the tablejump
1755   instruction expects the table to contain offsets from the address of the
1756   table.
1757   Do not define this if the table should contain absolute addresses.  */
1758#define CASE_VECTOR_PC_RELATIVE rs6000_relative_jumptables
1759
1760/* Specify the machine mode that this machine uses
1761   for the index in the tablejump instruction.  */
1762#define CASE_VECTOR_MODE (rs6000_relative_jumptables ? SImode : Pmode)
1763
1764/* Define this as 1 if `char' should by default be signed; else as 0.  */
1765#define DEFAULT_SIGNED_CHAR 0
1766
1767/* An integer expression for the size in bits of the largest integer machine
1768   mode that should actually be used.  */
1769
1770/* Allow pairs of registers to be used, which is the intent of the default.  */
1771#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1772
1773/* Max number of bytes we can move from memory to memory
1774   in one reasonably fast instruction.  */
1775#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1776#define MAX_MOVE_MAX 8
1777
1778/* Nonzero if access to memory by bytes is no faster than for words.
1779   Also nonzero if doing byte operations (specifically shifts) in registers
1780   is undesirable.  */
1781#define SLOW_BYTE_ACCESS 1
1782
1783/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1784   will either zero-extend or sign-extend.  The value of this macro should
1785   be the code that says which one of the two operations is implicitly
1786   done, UNKNOWN if none.  */
1787#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1788
1789/* Define if loading short immediate values into registers sign extends.  */
1790#define SHORT_IMMEDIATES_SIGN_EXTEND 1
1791
1792/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero.  */
1793#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1794  ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1795
1796/* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
1797   zero.  The hardware instructions added in Power9 and the sequences using
1798   popcount return 32 or 64.  */
1799#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)				\
1800  (TARGET_CTZ || TARGET_POPCNTD						\
1801   ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2)				\
1802   : ((VALUE) = -1, 2))
1803
1804/* Specify the machine mode that pointers have.
1805   After generation of rtl, the compiler makes no further distinction
1806   between pointers and any other objects of this machine mode.  */
1807extern scalar_int_mode rs6000_pmode;
1808#define Pmode rs6000_pmode
1809
1810/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space.  */
1811#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1812
1813/* Mode of a function address in a call instruction (for indexing purposes).
1814   Doesn't matter on RS/6000.  */
1815#define FUNCTION_MODE SImode
1816
1817/* Define this if addresses of constant functions
1818   shouldn't be put through pseudo regs where they can be cse'd.
1819   Desirable on machines where ordinary constants are expensive
1820   but a CALL with constant address is cheap.  */
1821#define NO_FUNCTION_CSE 1
1822
1823/* Define this to be nonzero if shift instructions ignore all but the low-order
1824   few bits.
1825
1826   The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1827   have been dropped from the PowerPC architecture.  */
1828#define SHIFT_COUNT_TRUNCATED 0
1829
1830/* Adjust the length of an INSN.  LENGTH is the currently-computed length and
1831   should be adjusted to reflect any required changes.  This macro is used when
1832   there is some systematic length adjustment required that would be difficult
1833   to express in the length attribute.
1834
1835   In the PowerPC, we use this to adjust the length of an instruction if one or
1836   more prefixed instructions are generated, using the attribute
1837   num_prefixed_insns.  A prefixed instruction is 8 bytes instead of 4, but the
1838   hardware requires that a prefied instruciton does not cross a 64-byte
1839   boundary.  This means the compiler has to assume the length of the first
1840   prefixed instruction is 12 bytes instead of 8 bytes.  Since the length is
1841   already set for the non-prefixed instruction, we just need to udpate for the
1842   difference.  */
1843
1844#define ADJUST_INSN_LENGTH(INSN,LENGTH)					\
1845  (LENGTH) = rs6000_adjust_insn_length ((INSN), (LENGTH))
1846
1847/* Given a comparison code (EQ, NE, etc.) and the first operand of a
1848   COMPARE, return the mode to be used for the comparison.  For
1849   floating-point, CCFPmode should be used.  CCUNSmode should be used
1850   for unsigned comparisons.  CCEQmode should be used when we are
1851   doing an inequality comparison on the result of a
1852   comparison.  CCmode should be used in all other cases.  */
1853
1854#define SELECT_CC_MODE(OP,X,Y) \
1855  (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode	\
1856   : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1857   : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X)			  \
1858      ? CCEQmode : CCmode))
1859
1860/* Can the condition code MODE be safely reversed?  This is safe in
1861   all cases on this port, because at present it doesn't use the
1862   trapping FP comparisons (fcmpo).  */
1863#define REVERSIBLE_CC_MODE(MODE) 1
1864
1865/* Given a condition code and a mode, return the inverse condition.  */
1866#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1867
1868
1869/* Target cpu costs.  */
1870
1871struct processor_costs {
1872  const int mulsi;	  /* cost of SImode multiplication.  */
1873  const int mulsi_const;  /* cost of SImode multiplication by constant.  */
1874  const int mulsi_const9; /* cost of SImode mult by short constant.  */
1875  const int muldi;	  /* cost of DImode multiplication.  */
1876  const int divsi;	  /* cost of SImode division.  */
1877  const int divdi;	  /* cost of DImode division.  */
1878  const int fp;		  /* cost of simple SFmode and DFmode insns.  */
1879  const int dmul;	  /* cost of DFmode multiplication (and fmadd).  */
1880  const int sdiv;	  /* cost of SFmode division (fdivs).  */
1881  const int ddiv;	  /* cost of DFmode division (fdiv).  */
1882  const int cache_line_size;    /* cache line size in bytes. */
1883  const int l1_cache_size;	/* size of l1 cache, in kilobytes.  */
1884  const int l2_cache_size;	/* size of l2 cache, in kilobytes.  */
1885  const int simultaneous_prefetches; /* number of parallel prefetch
1886					operations.  */
1887  const int sfdf_convert;	/* cost of SF->DF conversion.  */
1888};
1889
1890extern const struct processor_costs *rs6000_cost;
1891
1892/* Control the assembler format that we output.  */
1893
1894/* A C string constant describing how to begin a comment in the target
1895   assembler language.  The compiler assumes that the comment will end at
1896   the end of the line.  */
1897#define ASM_COMMENT_START " #"
1898
1899/* Flag to say the TOC is initialized */
1900extern int toc_initialized;
1901
1902/* Macro to output a special constant pool entry.  Go to WIN if we output
1903   it.  Otherwise, it is written the usual way.
1904
1905   On the RS/6000, toc entries are handled this way.  */
1906
1907#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1908{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE))			  \
1909    {									  \
1910      output_toc (FILE, X, LABELNO, MODE);				  \
1911      goto WIN;								  \
1912    }									  \
1913}
1914
1915#ifdef HAVE_GAS_WEAK
1916#define RS6000_WEAK 1
1917#else
1918#define RS6000_WEAK 0
1919#endif
1920
1921#if RS6000_WEAK
1922/* Used in lieu of ASM_WEAKEN_LABEL.  */
1923#define        ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
1924  rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
1925#endif
1926
1927#if HAVE_GAS_WEAKREF
1928#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE)			\
1929  do									\
1930    {									\
1931      fputs ("\t.weakref\t", (FILE));					\
1932      RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 				\
1933      fputs (", ", (FILE));						\
1934      RS6000_OUTPUT_BASENAME ((FILE), (VALUE));				\
1935      if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL			\
1936	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
1937	{								\
1938	  fputs ("\n\t.weakref\t.", (FILE));				\
1939	  RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
1940	  fputs (", .", (FILE));					\
1941	  RS6000_OUTPUT_BASENAME ((FILE), (VALUE));			\
1942	}								\
1943      fputc ('\n', (FILE));						\
1944    } while (0)
1945#endif
1946
1947/* This implements the `alias' attribute.  */
1948#undef	ASM_OUTPUT_DEF_FROM_DECLS
1949#define	ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET)			\
1950  do									\
1951    {									\
1952      const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0);		\
1953      const char *name = IDENTIFIER_POINTER (TARGET);			\
1954      if (TREE_CODE (DECL) == FUNCTION_DECL				\
1955	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
1956	{								\
1957	  if (TREE_PUBLIC (DECL))					\
1958	    {								\
1959	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
1960		{							\
1961		  fputs ("\t.globl\t.", FILE);				\
1962		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
1963		  putc ('\n', FILE);					\
1964		}							\
1965	    }								\
1966	  else if (TARGET_XCOFF)					\
1967	    {								\
1968	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
1969		{							\
1970		  fputs ("\t.lglobl\t.", FILE);				\
1971		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
1972		  putc ('\n', FILE);					\
1973		  fputs ("\t.lglobl\t", FILE);				\
1974		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
1975		  putc ('\n', FILE);					\
1976		}							\
1977	    }								\
1978	  fputs ("\t.set\t.", FILE);					\
1979	  RS6000_OUTPUT_BASENAME (FILE, alias);				\
1980	  fputs (",.", FILE);						\
1981	  RS6000_OUTPUT_BASENAME (FILE, name);				\
1982	  fputc ('\n', FILE);						\
1983	}								\
1984      ASM_OUTPUT_DEF (FILE, alias, name);				\
1985    }									\
1986   while (0)
1987
1988#define TARGET_ASM_FILE_START rs6000_file_start
1989
1990/* Output to assembler file text saying following lines
1991   may contain character constants, extra white space, comments, etc.  */
1992
1993#define ASM_APP_ON ""
1994
1995/* Output to assembler file text saying following lines
1996   no longer contain unusual constructs.  */
1997
1998#define ASM_APP_OFF ""
1999
2000/* How to refer to registers in assembler output.
2001   This sequence is indexed by compiler's hard-register-number (see above).  */
2002
2003extern char rs6000_reg_names[][8];	/* register names (0 vs. %r0).  */
2004
2005#define REGISTER_NAMES							\
2006{									\
2007  &rs6000_reg_names[ 0][0],	/* r0   */				\
2008  &rs6000_reg_names[ 1][0],	/* r1	*/				\
2009  &rs6000_reg_names[ 2][0],	/* r2	*/				\
2010  &rs6000_reg_names[ 3][0],	/* r3	*/				\
2011  &rs6000_reg_names[ 4][0],	/* r4	*/				\
2012  &rs6000_reg_names[ 5][0],	/* r5	*/				\
2013  &rs6000_reg_names[ 6][0],	/* r6	*/				\
2014  &rs6000_reg_names[ 7][0],	/* r7	*/				\
2015  &rs6000_reg_names[ 8][0],	/* r8	*/				\
2016  &rs6000_reg_names[ 9][0],	/* r9	*/				\
2017  &rs6000_reg_names[10][0],	/* r10  */				\
2018  &rs6000_reg_names[11][0],	/* r11  */				\
2019  &rs6000_reg_names[12][0],	/* r12  */				\
2020  &rs6000_reg_names[13][0],	/* r13  */				\
2021  &rs6000_reg_names[14][0],	/* r14  */				\
2022  &rs6000_reg_names[15][0],	/* r15  */				\
2023  &rs6000_reg_names[16][0],	/* r16  */				\
2024  &rs6000_reg_names[17][0],	/* r17  */				\
2025  &rs6000_reg_names[18][0],	/* r18  */				\
2026  &rs6000_reg_names[19][0],	/* r19  */				\
2027  &rs6000_reg_names[20][0],	/* r20  */				\
2028  &rs6000_reg_names[21][0],	/* r21  */				\
2029  &rs6000_reg_names[22][0],	/* r22  */				\
2030  &rs6000_reg_names[23][0],	/* r23  */				\
2031  &rs6000_reg_names[24][0],	/* r24  */				\
2032  &rs6000_reg_names[25][0],	/* r25  */				\
2033  &rs6000_reg_names[26][0],	/* r26  */				\
2034  &rs6000_reg_names[27][0],	/* r27  */				\
2035  &rs6000_reg_names[28][0],	/* r28  */				\
2036  &rs6000_reg_names[29][0],	/* r29  */				\
2037  &rs6000_reg_names[30][0],	/* r30  */				\
2038  &rs6000_reg_names[31][0],	/* r31  */				\
2039									\
2040  &rs6000_reg_names[32][0],	/* fr0  */				\
2041  &rs6000_reg_names[33][0],	/* fr1  */				\
2042  &rs6000_reg_names[34][0],	/* fr2  */				\
2043  &rs6000_reg_names[35][0],	/* fr3  */				\
2044  &rs6000_reg_names[36][0],	/* fr4  */				\
2045  &rs6000_reg_names[37][0],	/* fr5  */				\
2046  &rs6000_reg_names[38][0],	/* fr6  */				\
2047  &rs6000_reg_names[39][0],	/* fr7  */				\
2048  &rs6000_reg_names[40][0],	/* fr8  */				\
2049  &rs6000_reg_names[41][0],	/* fr9  */				\
2050  &rs6000_reg_names[42][0],	/* fr10 */				\
2051  &rs6000_reg_names[43][0],	/* fr11 */				\
2052  &rs6000_reg_names[44][0],	/* fr12 */				\
2053  &rs6000_reg_names[45][0],	/* fr13 */				\
2054  &rs6000_reg_names[46][0],	/* fr14 */				\
2055  &rs6000_reg_names[47][0],	/* fr15 */				\
2056  &rs6000_reg_names[48][0],	/* fr16 */				\
2057  &rs6000_reg_names[49][0],	/* fr17 */				\
2058  &rs6000_reg_names[50][0],	/* fr18 */				\
2059  &rs6000_reg_names[51][0],	/* fr19 */				\
2060  &rs6000_reg_names[52][0],	/* fr20 */				\
2061  &rs6000_reg_names[53][0],	/* fr21 */				\
2062  &rs6000_reg_names[54][0],	/* fr22 */				\
2063  &rs6000_reg_names[55][0],	/* fr23 */				\
2064  &rs6000_reg_names[56][0],	/* fr24 */				\
2065  &rs6000_reg_names[57][0],	/* fr25 */				\
2066  &rs6000_reg_names[58][0],	/* fr26 */				\
2067  &rs6000_reg_names[59][0],	/* fr27 */				\
2068  &rs6000_reg_names[60][0],	/* fr28 */				\
2069  &rs6000_reg_names[61][0],	/* fr29 */				\
2070  &rs6000_reg_names[62][0],	/* fr30 */				\
2071  &rs6000_reg_names[63][0],	/* fr31 */				\
2072									\
2073  &rs6000_reg_names[64][0],	/* vr0  */				\
2074  &rs6000_reg_names[65][0],	/* vr1  */				\
2075  &rs6000_reg_names[66][0],	/* vr2  */				\
2076  &rs6000_reg_names[67][0],	/* vr3  */				\
2077  &rs6000_reg_names[68][0],	/* vr4  */				\
2078  &rs6000_reg_names[69][0],	/* vr5  */				\
2079  &rs6000_reg_names[70][0],	/* vr6  */				\
2080  &rs6000_reg_names[71][0],	/* vr7  */				\
2081  &rs6000_reg_names[72][0],	/* vr8  */				\
2082  &rs6000_reg_names[73][0],	/* vr9  */				\
2083  &rs6000_reg_names[74][0],	/* vr10 */				\
2084  &rs6000_reg_names[75][0],	/* vr11 */				\
2085  &rs6000_reg_names[76][0],	/* vr12 */				\
2086  &rs6000_reg_names[77][0],	/* vr13 */				\
2087  &rs6000_reg_names[78][0],	/* vr14 */				\
2088  &rs6000_reg_names[79][0],	/* vr15 */				\
2089  &rs6000_reg_names[80][0],	/* vr16 */				\
2090  &rs6000_reg_names[81][0],	/* vr17 */				\
2091  &rs6000_reg_names[82][0],	/* vr18 */				\
2092  &rs6000_reg_names[83][0],	/* vr19 */				\
2093  &rs6000_reg_names[84][0],	/* vr20 */				\
2094  &rs6000_reg_names[85][0],	/* vr21 */				\
2095  &rs6000_reg_names[86][0],	/* vr22 */				\
2096  &rs6000_reg_names[87][0],	/* vr23 */				\
2097  &rs6000_reg_names[88][0],	/* vr24 */				\
2098  &rs6000_reg_names[89][0],	/* vr25 */				\
2099  &rs6000_reg_names[90][0],	/* vr26 */				\
2100  &rs6000_reg_names[91][0],	/* vr27 */				\
2101  &rs6000_reg_names[92][0],	/* vr28 */				\
2102  &rs6000_reg_names[93][0],	/* vr29 */				\
2103  &rs6000_reg_names[94][0],	/* vr30 */				\
2104  &rs6000_reg_names[95][0],	/* vr31 */				\
2105									\
2106  &rs6000_reg_names[96][0],	/* lr   */				\
2107  &rs6000_reg_names[97][0],	/* ctr  */				\
2108  &rs6000_reg_names[98][0],	/* ca  */				\
2109  &rs6000_reg_names[99][0],	/* ap   */				\
2110									\
2111  &rs6000_reg_names[100][0],	/* cr0  */				\
2112  &rs6000_reg_names[101][0],	/* cr1  */				\
2113  &rs6000_reg_names[102][0],	/* cr2  */				\
2114  &rs6000_reg_names[103][0],	/* cr3  */				\
2115  &rs6000_reg_names[104][0],	/* cr4  */				\
2116  &rs6000_reg_names[105][0],	/* cr5  */				\
2117  &rs6000_reg_names[106][0],	/* cr6  */				\
2118  &rs6000_reg_names[107][0],	/* cr7  */				\
2119									\
2120  &rs6000_reg_names[108][0],	/* vrsave  */				\
2121  &rs6000_reg_names[109][0],	/* vscr  */				\
2122									\
2123  &rs6000_reg_names[110][0]	/* sfp  */				\
2124}
2125
2126/* Table of additional register names to use in user input.  */
2127
2128#define ADDITIONAL_REGISTER_NAMES \
2129 {{"r0",    0}, {"r1",    1}, {"r2",    2}, {"r3",    3},	\
2130  {"r4",    4}, {"r5",    5}, {"r6",    6}, {"r7",    7},	\
2131  {"r8",    8}, {"r9",    9}, {"r10",  10}, {"r11",  11},	\
2132  {"r12",  12}, {"r13",  13}, {"r14",  14}, {"r15",  15},	\
2133  {"r16",  16}, {"r17",  17}, {"r18",  18}, {"r19",  19},	\
2134  {"r20",  20}, {"r21",  21}, {"r22",  22}, {"r23",  23},	\
2135  {"r24",  24}, {"r25",  25}, {"r26",  26}, {"r27",  27},	\
2136  {"r28",  28}, {"r29",  29}, {"r30",  30}, {"r31",  31},	\
2137  {"fr0",  32}, {"fr1",  33}, {"fr2",  34}, {"fr3",  35},	\
2138  {"fr4",  36}, {"fr5",  37}, {"fr6",  38}, {"fr7",  39},	\
2139  {"fr8",  40}, {"fr9",  41}, {"fr10", 42}, {"fr11", 43},	\
2140  {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47},	\
2141  {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51},	\
2142  {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55},	\
2143  {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59},	\
2144  {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63},	\
2145  {"v0",   64}, {"v1",   65}, {"v2",   66}, {"v3",   67},	\
2146  {"v4",   68}, {"v5",   69}, {"v6",   70}, {"v7",   71},	\
2147  {"v8",   72}, {"v9",   73}, {"v10",  74}, {"v11",  75},	\
2148  {"v12",  76}, {"v13",  77}, {"v14",  78}, {"v15",  79},	\
2149  {"v16",  80}, {"v17",  81}, {"v18",  82}, {"v19",  83},	\
2150  {"v20",  84}, {"v21",  85}, {"v22",  86}, {"v23",  87},	\
2151  {"v24",  88}, {"v25",  89}, {"v26",  90}, {"v27",  91},	\
2152  {"v28",  92}, {"v29",  93}, {"v30",  94}, {"v31",  95},	\
2153  {"vrsave", 108}, {"vscr", 109},				\
2154  /* no additional names for: lr, ctr, ap */			\
2155  {"cr0",  100},{"cr1",  101},{"cr2",  102},{"cr3",  103},	\
2156  {"cr4",  104},{"cr5",  105},{"cr6",  106},{"cr7",  107},	\
2157  {"cc",   100},{"sp",    1}, {"toc",   2},			\
2158  /* CA is only part of XER, but we do not model the other parts (yet).  */ \
2159  {"xer",  98},							\
2160  /* VSX registers overlaid on top of FR, Altivec registers */	\
2161  {"vs0",  32}, {"vs1",  33}, {"vs2",  34}, {"vs3",  35},	\
2162  {"vs4",  36}, {"vs5",  37}, {"vs6",  38}, {"vs7",  39},	\
2163  {"vs8",  40}, {"vs9",  41}, {"vs10", 42}, {"vs11", 43},	\
2164  {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47},	\
2165  {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51},	\
2166  {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55},	\
2167  {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59},	\
2168  {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63},	\
2169  {"vs32", 64}, {"vs33", 65}, {"vs34", 66}, {"vs35", 67},	\
2170  {"vs36", 68}, {"vs37", 69}, {"vs38", 70}, {"vs39", 71},	\
2171  {"vs40", 72}, {"vs41", 73}, {"vs42", 74}, {"vs43", 75},	\
2172  {"vs44", 76}, {"vs45", 77}, {"vs46", 78}, {"vs47", 79},	\
2173  {"vs48", 80}, {"vs49", 81}, {"vs50", 82}, {"vs51", 83},	\
2174  {"vs52", 84}, {"vs53", 85}, {"vs54", 86}, {"vs55", 87},	\
2175  {"vs56", 88}, {"vs57", 89}, {"vs58", 90}, {"vs59", 91},	\
2176  {"vs60", 92}, {"vs61", 93}, {"vs62", 94}, {"vs63", 95},	\
2177}
2178
2179/* This is how to output an element of a case-vector that is relative.  */
2180
2181#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2182  do { char buf[100];					\
2183       fputs ("\t.long ", FILE);			\
2184       ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE);	\
2185       assemble_name (FILE, buf);			\
2186       putc ('-', FILE);				\
2187       ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL);	\
2188       assemble_name (FILE, buf);			\
2189       putc ('\n', FILE);				\
2190     } while (0)
2191
2192/* This is how to output an element of a case-vector
2193   that is non-relative.  */
2194#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2195  rs6000_output_addr_vec_elt ((FILE), (VALUE))
2196
2197/* This is how to output an assembler line
2198   that says to advance the location counter
2199   to a multiple of 2**LOG bytes.  */
2200
2201#define ASM_OUTPUT_ALIGN(FILE,LOG)	\
2202  if ((LOG) != 0)			\
2203    fprintf (FILE, "\t.align %d\n", (LOG))
2204
2205/* How to align the given loop. */
2206#define LOOP_ALIGN(LABEL)  rs6000_loop_align(LABEL)
2207
2208/* Alignment guaranteed by __builtin_malloc.  */
2209/* FIXME:  128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2210   However, specifying the stronger guarantee currently leads to
2211   a regression in SPEC CPU2006 437.leslie3d.  The stronger
2212   guarantee should be implemented here once that's fixed.  */
2213#define MALLOC_ABI_ALIGNMENT (64)
2214
2215/* Pick up the return address upon entry to a procedure. Used for
2216   dwarf2 unwind information.  This also enables the table driven
2217   mechanism.  */
2218
2219#define INCOMING_RETURN_ADDR_RTX   gen_rtx_REG (Pmode, LR_REGNO)
2220#define DWARF_FRAME_RETURN_COLUMN  DWARF_FRAME_REGNUM (LR_REGNO)
2221
2222/* Describe how we implement __builtin_eh_return.  */
2223#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2224#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 10)
2225
2226/* Print operand X (an rtx) in assembler syntax to file FILE.
2227   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2228   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2229
2230#define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
2231
2232/* Define which CODE values are valid.  */
2233
2234#define PRINT_OPERAND_PUNCT_VALID_P(CODE)  ((CODE) == '&')
2235
2236/* Print a memory address as an operand to reference that memory location.  */
2237
2238#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2239
2240/* For switching between functions with different target attributes.  */
2241#define SWITCHABLE_TARGET 1
2242
2243/* uncomment for disabling the corresponding default options */
2244/* #define  MACHINE_no_sched_interblock */
2245/* #define  MACHINE_no_sched_speculative */
2246/* #define  MACHINE_no_sched_speculative_load */
2247
2248/* General flags.  */
2249extern int frame_pointer_needed;
2250
2251/* Classification of the builtin functions as to which switches enable the
2252   builtin, and what attributes it should have.  We used to use the target
2253   flags macros, but we've run out of bits, so we now map the options into new
2254   settings used here.  */
2255
2256/* Builtin operand count.  */
2257#define RS6000_BTC_UNARY	0x00000001	/* normal unary function.  */
2258#define RS6000_BTC_BINARY	0x00000002	/* normal binary function.  */
2259#define RS6000_BTC_TERNARY	0x00000003	/* normal ternary function.  */
2260#define RS6000_BTC_QUATERNARY	0x00000004	/* normal quaternary
2261						   function. */
2262#define RS6000_BTC_QUINARY	0x00000005	/* normal quinary function.  */
2263#define RS6000_BTC_SENARY	0x00000006	/* normal senary function.  */
2264#define RS6000_BTC_OPND_MASK	0x00000007	/* Mask to isolate operands. */
2265
2266/* Builtin attributes.  */
2267#define RS6000_BTC_SPECIAL	0x00000000	/* Special function.  */
2268#define RS6000_BTC_PREDICATE	0x00000008	/* predicate function.  */
2269#define RS6000_BTC_ABS		0x00000010	/* Altivec/VSX ABS
2270						   function.  */
2271#define RS6000_BTC_DST		0x00000020	/* Altivec DST function.  */
2272
2273#define RS6000_BTC_TYPE_MASK	0x0000003f	/* Mask to isolate types */
2274
2275#define RS6000_BTC_MISC		0x00000000	/* No special attributes.  */
2276#define RS6000_BTC_CONST	0x00000100	/* Neither uses, nor
2277						   modifies global state.  */
2278#define RS6000_BTC_PURE		0x00000200	/* reads global
2279						   state/mem and does
2280						   not modify global state.  */
2281#define RS6000_BTC_FP		0x00000400	/* depends on rounding mode.  */
2282#define RS6000_BTC_QUAD		0x00000800	/* Uses a register quad.  */
2283#define RS6000_BTC_PAIR		0x00001000	/* Uses a register pair.  */
2284#define RS6000_BTC_QUADPAIR	0x00001800	/* Uses a quad and a pair.  */
2285#define RS6000_BTC_ATTR_MASK	0x00001f00	/* Mask of the attributes.  */
2286
2287/* Miscellaneous information.  */
2288#define RS6000_BTC_SPR		0x01000000	/* function references SPRs.  */
2289#define RS6000_BTC_VOID		0x02000000	/* function has no return value.  */
2290#define RS6000_BTC_CR		0x04000000	/* function references a CR.  */
2291#define RS6000_BTC_OVERLOADED	0x08000000	/* function is overloaded.  */
2292#define RS6000_BTC_GIMPLE	0x10000000	/* function should be expanded
2293						   into gimple.  */
2294#define RS6000_BTC_MISC_MASK	0x1f000000	/* Mask of the misc info.  */
2295
2296/* Convenience macros to document the instruction type.  */
2297#define RS6000_BTC_MEM		RS6000_BTC_MISC	/* load/store touches mem.  */
2298#define RS6000_BTC_SAT		RS6000_BTC_MISC	/* saturate sets VSCR.  */
2299
2300/* Builtin targets.  For now, we reuse the masks for those options that are in
2301   target flags, and pick a random bit for ldbl128, which isn't in
2302   target_flags.  */
2303#define RS6000_BTM_ALWAYS	0		/* Always enabled.  */
2304#define RS6000_BTM_ALTIVEC	MASK_ALTIVEC	/* VMX/altivec vectors.  */
2305#define RS6000_BTM_CMPB		MASK_CMPB	/* ISA 2.05: compare bytes.  */
2306#define RS6000_BTM_VSX		MASK_VSX	/* VSX (vector/scalar).  */
2307#define RS6000_BTM_P8_VECTOR	MASK_P8_VECTOR	/* ISA 2.07 vector.  */
2308#define RS6000_BTM_P9_VECTOR	MASK_P9_VECTOR	/* ISA 3.0 vector.  */
2309#define RS6000_BTM_P9_MISC	MASK_P9_MISC	/* ISA 3.0 misc. non-vector */
2310#define RS6000_BTM_CRYPTO	MASK_CRYPTO	/* crypto funcs.  */
2311#define RS6000_BTM_HTM		MASK_HTM	/* hardware TM funcs.  */
2312#define RS6000_BTM_FRE		MASK_POPCNTB	/* FRE instruction.  */
2313#define RS6000_BTM_FRES		MASK_PPC_GFXOPT	/* FRES instruction.  */
2314#define RS6000_BTM_FRSQRTE	MASK_PPC_GFXOPT	/* FRSQRTE instruction.  */
2315#define RS6000_BTM_FRSQRTES	MASK_POPCNTB	/* FRSQRTES instruction.  */
2316#define RS6000_BTM_POPCNTD	MASK_POPCNTD	/* Target supports ISA 2.06.  */
2317#define RS6000_BTM_CELL		MASK_FPRND	/* Target is cell powerpc.  */
2318#define RS6000_BTM_DFP		MASK_DFP	/* Decimal floating point.  */
2319#define RS6000_BTM_HARD_FLOAT	MASK_SOFT_FLOAT	/* Hardware floating point.  */
2320#define RS6000_BTM_LDBL128	MASK_MULTIPLE	/* 128-bit long double.  */
2321#define RS6000_BTM_64BIT	MASK_64BIT	/* 64-bit addressing.  */
2322#define RS6000_BTM_POWERPC64	MASK_POWERPC64	/* 64-bit registers.  */
2323#define RS6000_BTM_FLOAT128	MASK_FLOAT128_KEYWORD /* IEEE 128-bit float.  */
2324#define RS6000_BTM_FLOAT128_HW	MASK_FLOAT128_HW /* IEEE 128-bit float h/w.  */
2325#define RS6000_BTM_MMA		MASK_MMA	/* ISA 3.1 MMA.  */
2326#define RS6000_BTM_P10		MASK_POWER10
2327
2328#define RS6000_BTM_COMMON	(RS6000_BTM_ALTIVEC			\
2329				 | RS6000_BTM_VSX			\
2330				 | RS6000_BTM_P8_VECTOR			\
2331				 | RS6000_BTM_P9_VECTOR			\
2332				 | RS6000_BTM_P9_MISC			\
2333				 | RS6000_BTM_MODULO                    \
2334				 | RS6000_BTM_CRYPTO			\
2335				 | RS6000_BTM_FRE			\
2336				 | RS6000_BTM_FRES			\
2337				 | RS6000_BTM_FRSQRTE			\
2338				 | RS6000_BTM_FRSQRTES			\
2339				 | RS6000_BTM_HTM			\
2340				 | RS6000_BTM_POPCNTD			\
2341				 | RS6000_BTM_CELL			\
2342				 | RS6000_BTM_DFP			\
2343				 | RS6000_BTM_HARD_FLOAT		\
2344				 | RS6000_BTM_LDBL128			\
2345				 | RS6000_BTM_POWERPC64			\
2346				 | RS6000_BTM_FLOAT128			\
2347				 | RS6000_BTM_FLOAT128_HW		\
2348				 | RS6000_BTM_MMA			\
2349				 | RS6000_BTM_P10)
2350
2351enum rs6000_builtin_type_index
2352{
2353  RS6000_BTI_NOT_OPAQUE,
2354  RS6000_BTI_opaque_V4SI,
2355  RS6000_BTI_V16QI,              /* __vector signed char */
2356  RS6000_BTI_V1TI,
2357  RS6000_BTI_V2DI,
2358  RS6000_BTI_V2DF,
2359  RS6000_BTI_V4HI,
2360  RS6000_BTI_V4SI,
2361  RS6000_BTI_V4SF,
2362  RS6000_BTI_V8HI,
2363  RS6000_BTI_unsigned_V16QI,     /* __vector unsigned char */
2364  RS6000_BTI_unsigned_V1TI,
2365  RS6000_BTI_unsigned_V8HI,
2366  RS6000_BTI_unsigned_V4SI,
2367  RS6000_BTI_unsigned_V2DI,
2368  RS6000_BTI_bool_char,          /* __bool char */
2369  RS6000_BTI_bool_short,         /* __bool short */
2370  RS6000_BTI_bool_int,           /* __bool int */
2371  RS6000_BTI_bool_long_long,     /* __bool long long */
2372  RS6000_BTI_pixel,              /* __pixel (16 bits arranged as 4
2373				    channels of 1, 5, 5, and 5 bits
2374				    respectively as packed with the
2375				    vpkpx insn.  __pixel is only
2376				    meaningful as a vector type.
2377				    There is no corresponding scalar
2378				    __pixel data type.)  */
2379  RS6000_BTI_bool_V16QI,         /* __vector __bool char */
2380  RS6000_BTI_bool_V8HI,          /* __vector __bool short */
2381  RS6000_BTI_bool_V4SI,          /* __vector __bool int */
2382  RS6000_BTI_bool_V2DI,          /* __vector __bool long */
2383  RS6000_BTI_bool_V1TI,          /* __vector __bool 128-bit */
2384  RS6000_BTI_pixel_V8HI,         /* __vector __pixel */
2385  RS6000_BTI_long,	         /* long_integer_type_node */
2386  RS6000_BTI_unsigned_long,      /* long_unsigned_type_node */
2387  RS6000_BTI_long_long,	         /* long_long_integer_type_node */
2388  RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2389  RS6000_BTI_INTQI,	         /* (signed) intQI_type_node */
2390  RS6000_BTI_UINTQI,		 /* unsigned_intQI_type_node */
2391  RS6000_BTI_INTHI,	         /* intHI_type_node */
2392  RS6000_BTI_UINTHI,		 /* unsigned_intHI_type_node */
2393  RS6000_BTI_INTSI,		 /* intSI_type_node (signed) */
2394  RS6000_BTI_UINTSI,		 /* unsigned_intSI_type_node */
2395  RS6000_BTI_INTDI,		 /* intDI_type_node */
2396  RS6000_BTI_UINTDI,		 /* unsigned_intDI_type_node */
2397  RS6000_BTI_INTTI,		 /* intTI_type_node */
2398  RS6000_BTI_UINTTI,		 /* unsigned_intTI_type_node */
2399  RS6000_BTI_float,	         /* float_type_node */
2400  RS6000_BTI_double,	         /* double_type_node */
2401  RS6000_BTI_long_double,        /* long_double_type_node */
2402  RS6000_BTI_dfloat64,		 /* dfloat64_type_node */
2403  RS6000_BTI_dfloat128,		 /* dfloat128_type_node */
2404  RS6000_BTI_void,	         /* void_type_node */
2405  RS6000_BTI_ieee128_float,	 /* ieee 128-bit floating point */
2406  RS6000_BTI_ibm128_float,	 /* IBM 128-bit floating point */
2407  RS6000_BTI_const_str,		 /* pointer to const char * */
2408  RS6000_BTI_vector_pair,	 /* unsigned 256-bit types (vector pair).  */
2409  RS6000_BTI_vector_quad,	 /* unsigned 512-bit types (vector quad).  */
2410  RS6000_BTI_const_ptr_void,     /* const pointer to void */
2411  RS6000_BTI_ptr_V16QI,
2412  RS6000_BTI_ptr_V1TI,
2413  RS6000_BTI_ptr_V2DI,
2414  RS6000_BTI_ptr_V2DF,
2415  RS6000_BTI_ptr_V4SI,
2416  RS6000_BTI_ptr_V4SF,
2417  RS6000_BTI_ptr_V8HI,
2418  RS6000_BTI_ptr_unsigned_V16QI,
2419  RS6000_BTI_ptr_unsigned_V1TI,
2420  RS6000_BTI_ptr_unsigned_V8HI,
2421  RS6000_BTI_ptr_unsigned_V4SI,
2422  RS6000_BTI_ptr_unsigned_V2DI,
2423  RS6000_BTI_ptr_bool_V16QI,
2424  RS6000_BTI_ptr_bool_V8HI,
2425  RS6000_BTI_ptr_bool_V4SI,
2426  RS6000_BTI_ptr_bool_V2DI,
2427  RS6000_BTI_ptr_bool_V1TI,
2428  RS6000_BTI_ptr_pixel_V8HI,
2429  RS6000_BTI_ptr_INTQI,
2430  RS6000_BTI_ptr_UINTQI,
2431  RS6000_BTI_ptr_INTHI,
2432  RS6000_BTI_ptr_UINTHI,
2433  RS6000_BTI_ptr_INTSI,
2434  RS6000_BTI_ptr_UINTSI,
2435  RS6000_BTI_ptr_INTDI,
2436  RS6000_BTI_ptr_UINTDI,
2437  RS6000_BTI_ptr_INTTI,
2438  RS6000_BTI_ptr_UINTTI,
2439  RS6000_BTI_ptr_long_integer,
2440  RS6000_BTI_ptr_long_unsigned,
2441  RS6000_BTI_ptr_float,
2442  RS6000_BTI_ptr_double,
2443  RS6000_BTI_ptr_long_double,
2444  RS6000_BTI_ptr_dfloat64,
2445  RS6000_BTI_ptr_dfloat128,
2446  RS6000_BTI_ptr_vector_pair,
2447  RS6000_BTI_ptr_vector_quad,
2448  RS6000_BTI_ptr_long_long,
2449  RS6000_BTI_ptr_long_long_unsigned,
2450  RS6000_BTI_MAX
2451};
2452
2453
2454#define opaque_V4SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2455#define V16QI_type_node               (rs6000_builtin_types[RS6000_BTI_V16QI])
2456#define V1TI_type_node                (rs6000_builtin_types[RS6000_BTI_V1TI])
2457#define V2DI_type_node                (rs6000_builtin_types[RS6000_BTI_V2DI])
2458#define V2DF_type_node                (rs6000_builtin_types[RS6000_BTI_V2DF])
2459#define V4HI_type_node                (rs6000_builtin_types[RS6000_BTI_V4HI])
2460#define V4SI_type_node                (rs6000_builtin_types[RS6000_BTI_V4SI])
2461#define V4SF_type_node                (rs6000_builtin_types[RS6000_BTI_V4SF])
2462#define V8HI_type_node                (rs6000_builtin_types[RS6000_BTI_V8HI])
2463#define unsigned_V16QI_type_node      (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2464#define unsigned_V1TI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2465#define unsigned_V8HI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2466#define unsigned_V4SI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2467#define unsigned_V2DI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2468#define bool_char_type_node           (rs6000_builtin_types[RS6000_BTI_bool_char])
2469#define bool_short_type_node          (rs6000_builtin_types[RS6000_BTI_bool_short])
2470#define bool_int_type_node            (rs6000_builtin_types[RS6000_BTI_bool_int])
2471#define bool_long_long_type_node      (rs6000_builtin_types[RS6000_BTI_bool_long_long])
2472#define pixel_type_node               (rs6000_builtin_types[RS6000_BTI_pixel])
2473#define bool_V16QI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2474#define bool_V8HI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2475#define bool_V4SI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2476#define bool_V2DI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2477#define bool_V1TI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V1TI])
2478#define pixel_V8HI_type_node	      (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2479
2480#define long_long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long_long])
2481#define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2482#define long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long])
2483#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2484#define intQI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTQI])
2485#define uintQI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTQI])
2486#define intHI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTHI])
2487#define uintHI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTHI])
2488#define intSI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTSI])
2489#define uintSI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTSI])
2490#define intDI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTDI])
2491#define uintDI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTDI])
2492#define intTI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTTI])
2493#define uintTI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTTI])
2494#define float_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_float])
2495#define double_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_double])
2496#define long_double_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_long_double])
2497#define dfloat64_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_dfloat64])
2498#define dfloat128_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_dfloat128])
2499#define void_type_internal_node		 (rs6000_builtin_types[RS6000_BTI_void])
2500#define ieee128_float_type_node		 (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2501#define ibm128_float_type_node		 (rs6000_builtin_types[RS6000_BTI_ibm128_float])
2502#define const_str_type_node		 (rs6000_builtin_types[RS6000_BTI_const_str])
2503#define vector_pair_type_node		 (rs6000_builtin_types[RS6000_BTI_vector_pair])
2504#define vector_quad_type_node		 (rs6000_builtin_types[RS6000_BTI_vector_quad])
2505#define pcvoid_type_node		 (rs6000_builtin_types[RS6000_BTI_const_ptr_void])
2506#define ptr_V16QI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_V16QI])
2507#define ptr_V1TI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_V1TI])
2508#define ptr_V2DI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_V2DI])
2509#define ptr_V2DF_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_V2DF])
2510#define ptr_V4SI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_V4SI])
2511#define ptr_V4SF_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_V4SF])
2512#define ptr_V8HI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_V8HI])
2513#define ptr_unsigned_V16QI_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V16QI])
2514#define ptr_unsigned_V1TI_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V1TI])
2515#define ptr_unsigned_V8HI_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V8HI])
2516#define ptr_unsigned_V4SI_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V4SI])
2517#define ptr_unsigned_V2DI_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V2DI])
2518#define ptr_bool_V16QI_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_bool_V16QI])
2519#define ptr_bool_V8HI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_bool_V8HI])
2520#define ptr_bool_V4SI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_bool_V4SI])
2521#define ptr_bool_V2DI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_bool_V2DI])
2522#define ptr_bool_V1TI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_bool_V1TI])
2523#define ptr_pixel_V8HI_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_pixel_V8HI])
2524#define ptr_intQI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_INTQI])
2525#define ptr_uintQI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_UINTQI])
2526#define ptr_intHI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_INTHI])
2527#define ptr_uintHI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_UINTHI])
2528#define ptr_intSI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_INTSI])
2529#define ptr_uintSI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_UINTSI])
2530#define ptr_intDI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_INTDI])
2531#define ptr_uintDI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_UINTDI])
2532#define ptr_intTI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_INTTI])
2533#define ptr_uintTI_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_UINTTI])
2534#define ptr_long_integer_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_long_integer])
2535#define ptr_long_unsigned_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_long_unsigned])
2536#define ptr_float_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_float])
2537#define ptr_double_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_double])
2538#define ptr_long_double_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_long_double])
2539#define ptr_dfloat64_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_dfloat64])
2540#define ptr_dfloat128_type_node		 (rs6000_builtin_types[RS6000_BTI_ptr_dfloat128])
2541#define ptr_vector_pair_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_vector_pair])
2542#define ptr_vector_quad_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_vector_quad])
2543#define ptr_long_long_integer_type_node	 (rs6000_builtin_types[RS6000_BTI_ptr_long_long])
2544#define ptr_long_long_unsigned_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_long_unsigned])
2545
2546extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2547
2548#ifndef USED_FOR_TARGET
2549extern GTY(()) tree altivec_builtin_mask_for_load;
2550extern GTY(()) section *toc_section;
2551
2552/* A C structure for machine-specific, per-function data.
2553   This is added to the cfun structure.  */
2554typedef struct GTY(()) machine_function
2555{
2556  /* Flags if __builtin_return_address (n) with n >= 1 was used.  */
2557  int ra_needs_full_frame;
2558  /* Flags if __builtin_return_address (0) was used.  */
2559  int ra_need_lr;
2560  /* Cache lr_save_p after expansion of builtin_eh_return.  */
2561  int lr_save_state;
2562  /* Whether we need to save the TOC to the reserved stack location in the
2563     function prologue.  */
2564  bool save_toc_in_prologue;
2565  /* Offset from virtual_stack_vars_rtx to the start of the ABI_V4
2566     varargs save area.  */
2567  HOST_WIDE_INT varargs_save_offset;
2568  /* Alternative internal arg pointer for -fsplit-stack.  */
2569  rtx split_stack_arg_pointer;
2570  bool split_stack_argp_used;
2571  /* Flag if r2 setup is needed with ELFv2 ABI.  */
2572  bool r2_setup_needed;
2573  /* The number of components we use for separate shrink-wrapping.  */
2574  int n_components;
2575  /* The components already handled by separate shrink-wrapping, which should
2576     not be considered by the prologue and epilogue.  */
2577  bool gpr_is_wrapped_separately[32];
2578  bool fpr_is_wrapped_separately[32];
2579  bool lr_is_wrapped_separately;
2580  bool toc_is_wrapped_separately;
2581  bool mma_return_type_error;
2582} machine_function;
2583#endif
2584
2585
2586#define TARGET_SUPPORTS_WIDE_INT 1
2587
2588#if (GCC_VERSION >= 3000)
2589#pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2590#endif
2591
2592/* Whether a given VALUE is a valid 16 or 34-bit signed integer.  */
2593#define SIGNED_INTEGER_NBIT_P(VALUE, N)					\
2594  IN_RANGE ((VALUE),							\
2595	    -(HOST_WIDE_INT_1 << ((N)-1)),				\
2596	    (HOST_WIDE_INT_1 << ((N)-1)) - 1)
2597
2598#define SIGNED_INTEGER_16BIT_P(VALUE)	SIGNED_INTEGER_NBIT_P (VALUE, 16)
2599#define SIGNED_INTEGER_34BIT_P(VALUE)	SIGNED_INTEGER_NBIT_P (VALUE, 34)
2600
2601/* Like SIGNED_INTEGER_16BIT_P and SIGNED_INTEGER_34BIT_P, but with an extra
2602   argument that gives a length to validate a range of addresses, to allow for
2603   splitting insns into several insns, each of which has an offsettable
2604   address.  */
2605#define SIGNED_16BIT_OFFSET_EXTRA_P(VALUE, EXTRA)			\
2606  IN_RANGE ((VALUE),							\
2607	    -(HOST_WIDE_INT_1 << 15),					\
2608	    (HOST_WIDE_INT_1 << 15) - 1 - (EXTRA))
2609
2610#define SIGNED_34BIT_OFFSET_EXTRA_P(VALUE, EXTRA)			\
2611  IN_RANGE ((VALUE),							\
2612	    -(HOST_WIDE_INT_1 << 33),					\
2613	    (HOST_WIDE_INT_1 << 33) - 1 - (EXTRA))
2614
2615/* Define this if some processing needs to be done before outputting the
2616   assembler code.  On the PowerPC, we remember if the current insn is a normal
2617   prefixed insn where we need to emit a 'p' before the insn.  */
2618#define FINAL_PRESCAN_INSN(INSN, OPERANDS, NOPERANDS)			\
2619do									\
2620  {									\
2621    if (TARGET_PREFIXED)						\
2622      rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS);		\
2623  }									\
2624while (0)
2625
2626/* Do anything special before emitting an opcode.  We use it to emit a 'p' for
2627   prefixed insns that is set in FINAL_PRESCAN_INSN.  */
2628#define ASM_OUTPUT_OPCODE(STREAM, OPCODE)				\
2629  do									\
2630    {									\
2631     if (TARGET_PREFIXED)						\
2632       rs6000_asm_output_opcode (STREAM);				\
2633    }									\
2634  while (0)
2635