1;; Predicate definitions for HP PA-RISC.
2;; Copyright (C) 2005-2022 Free Software Foundation, Inc.
3;;
4;; This file is part of GCC.
5;;
6;; GCC is free software; you can redistribute it and/or modify
7;; it under the terms of the GNU General Public License as published by
8;; the Free Software Foundation; either version 3, or (at your option)
9;; any later version.
10;;
11;; GCC is distributed in the hope that it will be useful,
12;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14;; GNU General Public License for more details.
15;;
16;; You should have received a copy of the GNU General Public License
17;; along with GCC; see the file COPYING3.  If not see
18;; <http://www.gnu.org/licenses/>.
19
20;; Return truth value of whether OP is an integer which fits the range
21;; constraining 5-bit signed immediate operands in three-address insns.
22
23(define_predicate "int5_operand"
24  (and (match_code "const_int")
25       (match_test "INT_5_BITS (op)")))
26
27;; Return truth value of whether OP is an integer which fits the range
28;; constraining 5-bit unsigned immediate operands in three-address insns.
29
30(define_predicate "uint5_operand"
31  (and (match_code "const_int")
32       (match_test "INT_U5_BITS (op)")))
33
34;; Return truth value of whether OP is an integer which fits the range
35;; constraining 6-bit unsigned immediate operands in three-address insns.
36
37(define_predicate "uint6_operand"
38  (and (match_code "const_int")
39       (match_test "INT_U6_BITS (op)")))
40
41;; Return truth value of whether OP is an integer which fits the range
42;; constraining 11-bit signed immediate operands in three-address insns.
43
44(define_predicate "int11_operand"
45  (and (match_code "const_int")
46       (match_test "INT_11_BITS (op)")))
47
48;; Return truth value of whether OP is an integer which fits the range
49;; constraining 14-bit signed immediate operands in three-address insns.
50
51(define_predicate "int14_operand"
52  (and (match_code "const_int")
53       (match_test "INT_14_BITS (op)")))
54
55;; True iff OP is a const_int or const_double that will fit in 32 bits.
56
57(define_predicate "uint32_operand"
58  (if_then_else (match_test "HOST_BITS_PER_WIDE_INT > 32")
59    (and (match_code "const_int")
60         (match_test "INTVAL (op) >= 0
61		      && INTVAL (op) < (HOST_WIDE_INT) 1 << 32"))
62    (and (match_code "const_int,const_double")
63         (match_test "CONST_INT_P (op) || CONST_DOUBLE_HIGH (op) == 0"))))
64
65;; True iff depi can be used to compute (reg | OP).
66
67(define_predicate "cint_ior_operand"
68  (and (match_code "const_int")
69       (match_test "pa_ior_mask_p (INTVAL (op))")))
70
71;; True iff OP is CONST_INT that can be moved in one instruction
72;; into a general register.
73
74(define_predicate "cint_move_operand"
75  (and (match_code "const_int")
76       (match_test "pa_cint_ok_for_move (INTVAL (op))")))
77
78;; True iff OP is a CONST0_RTX for MODE.
79
80(define_predicate "const_0_operand"
81  (and (match_code "const_int,const_double")
82       (match_test "op == CONST0_RTX (mode)")))
83
84;; A constant integer suitable for use in a PRE_MODIFY memory reference.
85
86(define_predicate "pre_cint_operand"
87  (and (match_code "const_int")
88       (match_test "INTVAL (op) >= -0x2000 && INTVAL (op) < 0x10")))
89
90;; A constant integer suitable for use in a POST_MODIFY memory reference.
91
92(define_predicate "post_cint_operand"
93  (and (match_code "const_int")
94       (match_test "INTVAL (op) < 0x2000 && INTVAL (op) >= -0x10")))
95
96;; True iff depi or extru can be used to compute (reg & OP).
97
98(define_predicate "and_operand"
99  (ior (match_operand 0 "register_operand")
100       (and (match_code "const_int")
101	    (match_test "pa_and_mask_p (INTVAL (op))"))))
102
103;; Return truth value of whether OP can be used as an operand in a
104;; three operand arithmetic insn that accepts registers of mode MODE
105;; or 5-bit signed integers.
106
107(define_predicate "arith5_operand"
108  (ior (match_operand 0 "register_operand")
109       (match_operand 0 "int5_operand")))
110
111;; Return truth value of whether OP can be used as an operand in a
112;; three operand arithmetic insn that accepts registers of mode MODE
113;; or 11-bit signed integers.
114
115(define_predicate "arith11_operand"
116  (ior (match_operand 0 "register_operand")
117       (match_operand 0 "int11_operand")))
118
119;; Return truth value of whether OP can be used as an operand in a
120;; three operand arithmetic insn that accepts registers of mode MODE
121;; or 14-bit signed integers.
122
123(define_predicate "arith14_operand"
124  (ior (match_operand 0 "register_operand")
125       (match_operand 0 "int14_operand")))
126
127;; Return truth value of whether OP can be used as an operand in a
128;; three operand arithmetic insn that accepts registers of mode MODE
129;; or 32-bit signed integers.
130
131(define_predicate "arith32_operand"
132  (ior (match_operand 0 "register_operand")
133       (match_code "const_int")))
134
135;; Return truth value of whether OP can be used as a shift operand in
136;; a shift insn that accepts registers of mode MODE or 5-bit shift amounts.
137
138(define_predicate "shift5_operand"
139  (ior (match_operand 0 "register_operand")
140       (match_operand 0 "uint5_operand")))
141
142;; Return truth value of whether OP can be used as a shift operand in
143;; a shift insn that accepts registers of mode MODE or 6-bit shift amounts.
144
145(define_predicate "shift6_operand"
146  (ior (match_operand 0 "register_operand")
147       (match_operand 0 "uint6_operand")))
148
149;; True iff OP can be used as an operand in an adddi3 insn.
150
151(define_predicate "adddi3_operand"
152  (if_then_else (match_test "TARGET_64BIT")
153    (match_operand 0 "arith14_operand")
154    (match_operand 0 "arith11_operand")))
155
156;; True iff OP is valid as a base or index register in a REG+REG address.
157
158(define_predicate "borx_reg_operand"
159  (match_code "reg")
160{
161  /* We must reject virtual registers as the only expressions that
162     can be instantiated are REG and REG+CONST.  */
163  if (op == virtual_incoming_args_rtx
164      || op == virtual_stack_vars_rtx
165      || op == virtual_stack_dynamic_rtx
166      || op == virtual_outgoing_args_rtx
167      || op == virtual_cfa_rtx)
168    return false;
169
170  /* While it's always safe to index off the frame pointer, it's not
171     profitable to do so when the frame pointer is being eliminated.  */
172  if (!reload_completed
173      && flag_omit_frame_pointer
174      && !cfun->calls_alloca
175      && op == frame_pointer_rtx)
176    return false;
177
178  return register_operand (op, mode);
179})
180
181;; Return nonzero if OP is suitable for use in a call to a named
182;; function.
183;;
184;; For 2.5 try to eliminate either call_operand_address or
185;; function_label_operand, they perform very similar functions.
186
187(define_predicate "call_operand_address"
188  (match_code "label_ref,symbol_ref,const_int,const_double,const,high")
189{
190  return (GET_MODE (op) == word_mode
191	  && CONSTANT_P (op) && ! TARGET_PORTABLE_RUNTIME);
192})
193
194;; True iff OP can be used as the divisor in a div millicode call.
195
196(define_predicate "div_operand"
197  (match_code "reg,const_int")
198{
199  return (mode == SImode
200	  && ((REG_P (op) && REGNO (op) == 25)
201	      || (CONST_INT_P (op)
202		  && INTVAL (op) > 0 && INTVAL (op) < 16
203		  && pa_magic_milli[INTVAL (op)])));
204})
205
206;; True iff OP is a reloading floating point register
207
208(define_predicate "fp_reg_operand"
209  (and (match_code "reg")
210       (match_test "reg_renumber && FP_REG_P (op)")))
211
212;; True iff OP is a function label operand.
213
214(define_special_predicate "function_label_operand"
215  (and (match_code "symbol_ref")
216       (match_test "FUNCTION_NAME_P (XSTR (op, 0))")))
217
218;; True iff OP is an indexed memory operand.
219
220(define_predicate "indexed_memory_operand"
221  (match_code "subreg,mem")
222{
223  if (GET_MODE (op) != mode)
224    return false;
225
226  /* Before reload, a (SUBREG (MEM...)) forces reloading into a register.  */
227  if (reload_completed && GET_CODE (op) == SUBREG)
228    op = SUBREG_REG (op);
229
230  if (! MEM_P (op))
231    return false;
232
233  op = XEXP (op, 0);
234  return IS_INDEX_ADDR_P (op) && memory_address_p (mode, op);
235})
236
237;; True iff OP is a register plus base memory operand.
238
239(define_predicate "reg_plus_base_memory_operand"
240  (match_code "subreg,mem")
241{
242  if (GET_MODE (op) != mode)
243    return false;
244
245  /* Before reload, a (SUBREG (MEM...)) forces reloading into a register.  */
246  if (reload_completed && GET_CODE (op) == SUBREG)
247    op = SUBREG_REG (op);
248
249  if (! MEM_P (op))
250    return false;
251
252  op = XEXP (op, 0);
253  if (GET_CODE (op) != PLUS)
254    return false;
255
256  if (REG_P (XEXP (op, 0)) && REG_OK_FOR_BASE_P (XEXP (op, 0)))
257    return GET_CODE (XEXP (op, 1)) == CONST_INT;
258
259  return false;
260})
261
262;; True iff OP is a base14 operand.
263
264(define_predicate "base14_operand"
265  (match_code "const_int")
266{
267  if (!INT_14_BITS (op))
268    return false;
269
270  /* Although this may not be necessary, we require that the
271     base value is correctly aligned for its mode as this is
272     assumed in the instruction encoding.  */
273  switch (mode)
274    {
275    case E_BLKmode:
276    case E_QImode:
277    case E_HImode:
278      return true;
279
280    case E_VOIDmode:
281      return false;
282
283    default:
284      return (INTVAL (op) % GET_MODE_SIZE (mode)) == 0;
285    }
286
287  return false;
288})
289
290;; True iff the operand OP can be used as the destination operand of
291;; an integer store.  This also implies the operand could be used as
292;; the source operand of an integer load.  LO_SUM DLT and indexed
293;; memory operands are not allowed.  We accept reloading pseudos and
294;; other memory operands.
295
296(define_predicate "integer_store_memory_operand"
297  (match_code "reg,mem")
298{
299  if (reload_in_progress
300      && REG_P (op)
301      && REGNO (op) >= FIRST_PSEUDO_REGISTER
302      && reg_renumber [REGNO (op)] < 0)
303    return true;
304
305  if (reg_plus_base_memory_operand (op, mode))
306    {
307      if (reload_in_progress)
308	return true;
309
310      /* Extract CONST_INT operand.  */
311      if (GET_CODE (op) == SUBREG)
312	op = SUBREG_REG (op);
313      op = XEXP (op, 0);
314      op = REG_P (XEXP (op, 0)) ? XEXP (op, 1) : XEXP (op, 0);
315      return base14_operand (op, mode) || INT_5_BITS (op);
316    }
317
318  if (!MEM_P (op))
319    return false;
320
321  return ((reload_in_progress || memory_address_p (mode, XEXP (op, 0)))
322	  && !IS_LO_SUM_DLT_ADDR_P (XEXP (op, 0))
323	  && !IS_INDEX_ADDR_P (XEXP (op, 0)));
324})
325
326;; True iff the operand OP can be used as the destination operand of
327;; a floating point store.  This also implies the operand could be used as
328;; the source operand of a floating point load.  LO_SUM DLT and indexed
329;; memory operands are not allowed.  Symbolic operands are accepted if
330;; INT14_OK_STRICT is true.  We accept reloading pseudos and other memory
331;; operands.
332
333(define_predicate "floating_point_store_memory_operand"
334  (match_code "reg,mem")
335{
336  if (reload_in_progress
337      && REG_P (op)
338      && REGNO (op) >= FIRST_PSEUDO_REGISTER
339      && reg_renumber [REGNO (op)] < 0)
340    return true;
341
342  if (reg_plus_base_memory_operand (op, mode))
343    {
344      if (reload_in_progress)
345	return true;
346
347      /* Extract CONST_INT operand.  */
348      if (GET_CODE (op) == SUBREG)
349	op = SUBREG_REG (op);
350      op = XEXP (op, 0);
351      op = REG_P (XEXP (op, 0)) ? XEXP (op, 1) : XEXP (op, 0);
352      return ((TARGET_PA_20
353	       && !TARGET_ELF32
354	       && base14_operand (op, mode))
355	      || INT_5_BITS (op));
356    }
357
358  if (!MEM_P (op))
359    return false;
360
361  return ((reload_in_progress || memory_address_p (mode, XEXP (op, 0)))
362	  && (INT14_OK_STRICT || !symbolic_memory_operand (op, VOIDmode))
363	  && !IS_LO_SUM_DLT_ADDR_P (XEXP (op, 0))
364	  && !IS_INDEX_ADDR_P (XEXP (op, 0)));
365})
366
367;; Return true iff OP is an integer register.
368
369(define_predicate "ireg_operand"
370  (and (match_code "reg")
371       (match_test "REGNO (op) > 0 && REGNO (op) < 32")))
372
373;; Return truth value of whether OP is an integer which fits the range
374;; constraining immediate operands in three-address insns, or is an
375;; integer register.
376
377(define_predicate "ireg_or_int5_operand"
378  (ior (match_operand 0 "ireg_operand")
379       (match_operand 0 "int5_operand")))
380
381;; True iff OP is a CONST_INT of the forms 0...0xxxx, 0...01...1xxxx,
382;; or 1...1xxxx. Such values can be the left hand side x in (x << r),
383;; using the zvdepi instruction.
384
385(define_predicate "lhs_lshift_cint_operand"
386  (match_code "const_int")
387{
388  unsigned HOST_WIDE_INT x;
389  x = INTVAL (op) >> 4;
390  return (x & (x + 1)) == 0;
391})
392
393;; True iff OP can be used in a zvdep instruction.
394
395(define_predicate "lhs_lshift_operand"
396  (ior (match_operand 0 "register_operand")
397       (match_operand 0 "lhs_lshift_cint_operand")))
398
399;; Accept anything that can be used as a destination operand for a
400;; move instruction.  We don't accept indexed memory operands since
401;; they are supported only for floating point stores.
402
403(define_predicate "move_dest_operand"
404  (match_code "subreg,reg,mem")
405{
406  if (register_operand (op, mode))
407    return true;
408
409  if (GET_MODE (op) != mode)
410    return false;
411
412  if (GET_CODE (op) == SUBREG)
413    op = SUBREG_REG (op);
414
415  if (! MEM_P (op))
416    return false;
417
418  op = XEXP (op, 0);
419
420  return (memory_address_p (mode, op)
421	  && !IS_INDEX_ADDR_P (op)
422	  && !IS_LO_SUM_DLT_ADDR_P (op));
423})
424
425;; Accept anything that can be used as a source operand for a move
426;; instruction.
427
428(define_predicate "move_src_operand"
429  (match_code "subreg,reg,const_int,const_double,mem")
430{
431  if (register_operand (op, mode))
432    return true;
433
434  if (op == CONST0_RTX (mode))
435    return true;
436
437  if (CONST_INT_P (op))
438    return pa_cint_ok_for_move (INTVAL (op));
439
440  if (GET_MODE (op) != mode)
441    return false;
442
443  if (GET_CODE (op) == SUBREG)
444    op = SUBREG_REG (op);
445
446  if (! MEM_P (op))
447    return false;
448
449  /* Until problems with management of the REG_POINTER flag are resolved,
450     we need to delay creating move insns with unscaled indexed addresses
451     until CSE is not expected.  */
452  if (!TARGET_NO_SPACE_REGS
453      && !cse_not_expected
454      && GET_CODE (XEXP (op, 0)) == PLUS
455      && REG_P (XEXP (XEXP (op, 0), 0))
456      && REG_P (XEXP (XEXP (op, 0), 1)))
457    return false;
458
459  return memory_address_p (mode, XEXP (op, 0));
460})
461
462;; True iff OP is not a symbolic memory operand. 
463
464(define_predicate "nonsymb_mem_operand"
465  (match_code "subreg,mem")
466{
467  if (GET_CODE (op) == SUBREG)
468    op = SUBREG_REG (op);
469
470  if (! MEM_P (op))
471    return false;
472
473  /* Until problems with management of the REG_POINTER flag are resolved,
474     we need to delay creating move insns with unscaled indexed addresses
475     until CSE is not expected.  */
476  if (!TARGET_NO_SPACE_REGS
477      && !cse_not_expected
478      && GET_CODE (XEXP (op, 0)) == PLUS
479      && REG_P (XEXP (XEXP (op, 0), 0))
480      && REG_P (XEXP (XEXP (op, 0), 1)))
481    return false;
482
483  return (!symbolic_memory_operand (op, mode)
484	  && memory_address_p (mode, XEXP (op, 0)));
485})
486
487;; True iff OP is anything other than a hard register.
488
489(define_predicate "non_hard_reg_operand"
490  (match_test "! (REG_P (op) && REGNO (op) < FIRST_PSEUDO_REGISTER)"))
491
492;; True iff OP is a reference to a label whose address can be loaded
493;; while generating PIC code.
494
495(define_predicate "pic_label_operand"
496  (match_code "label_ref,const")
497{
498  if (!flag_pic)
499    return false;
500
501  switch (GET_CODE (op))
502    {
503    case LABEL_REF:
504      return true;
505    case CONST:
506      op = XEXP (op, 0);
507      return (GET_CODE (XEXP (op, 0)) == LABEL_REF
508	      && CONST_INT_P (XEXP (op, 1)));
509    default:
510      gcc_unreachable ();
511    }
512  return false;
513})
514
515;; True iff the operand OP lives in text space.  OP is a symbolic operand.
516;; If so, SYMBOL_REF_FLAG, which is set by pa_encode_section_info, is true.
517
518(define_special_predicate "read_only_operand"
519  (match_test "true")
520{
521  if (GET_CODE (op) == CONST)
522    op = XEXP (XEXP (op, 0), 0);
523  if (GET_CODE (op) == SYMBOL_REF)
524    {
525      if (flag_pic)
526        return SYMBOL_REF_FLAG (op) && !CONSTANT_POOL_ADDRESS_P (op);
527      else
528        return SYMBOL_REF_FLAG (op) || CONSTANT_POOL_ADDRESS_P (op);
529    }
530  return true;
531})
532
533;; True iff the operand is a register operand, or a non-symbolic
534;; memory operand after reload.  A SUBREG is not accepted since it
535;; will need a reload.
536;;
537;; This predicate is used for branch patterns that internally handle
538;; register reloading.  We need to accept non-symbolic memory operands
539;; after reload to ensure that the pattern is still valid if reload
540;; didn't find a hard register for the operand.  We also reject index
541;; and lo_sum DLT address as these are invalid for move destinations.
542
543(define_predicate "reg_before_reload_operand"
544  (match_code "reg,mem")
545{
546  rtx op0;
547
548  if (register_operand (op, mode))
549    return true;
550
551  if (!reload_in_progress && !reload_completed)
552    return false;
553
554  if (! MEM_P (op))
555    return false;
556
557  op0 = XEXP (op, 0);
558
559  return (memory_address_p (mode, op0)
560	  && !IS_INDEX_ADDR_P (op0)
561	  && !IS_LO_SUM_DLT_ADDR_P (op0)
562	  && !symbolic_memory_operand (op, mode));
563})
564
565;; True iff OP is a register or const_0 operand for MODE.
566
567(define_predicate "reg_or_0_operand"
568  (ior (match_operand 0 "register_operand")
569       (match_operand 0 "const_0_operand")))
570
571;; True iff OP is either a register, zero, or a non-symbolic memory operand.
572
573(define_predicate "reg_or_0_or_nonsymb_mem_operand"
574  (ior (match_operand 0 "reg_or_0_operand")
575       (match_operand 0 "nonsymb_mem_operand")))
576
577;; Accept REG and any CONST_INT that can be moved in one instruction
578;; into a general register.
579
580(define_predicate "reg_or_cint_move_operand"
581  (ior (match_operand 0 "register_operand")
582       (match_operand 0 "cint_move_operand")))
583
584;; True iff OP can be used to compute (reg | OP).
585
586(define_predicate "reg_or_cint_ior_operand"
587  (ior (match_operand 0 "register_operand")
588       (match_operand 0 "cint_ior_operand")))
589
590;; Return 1 if OP is a CONST_INT with the value 2, 4, or 8.  These are
591;; the valid constants for shadd instructions.
592
593(define_predicate "mem_shadd_operand"
594  (and (match_code "const_int")
595       (match_test "pa_mem_shadd_constant_p (INTVAL (op))")))
596
597(define_predicate "shadd_operand"
598  (and (match_code "const_int")
599       (match_test "pa_shadd_constant_p (INTVAL (op))")))
600
601;; Return truth value of statement that OP is a symbolic memory operand.
602
603(define_predicate "symbolic_memory_operand"
604  (match_code "subreg,mem")
605{
606  if (GET_CODE (op) == SUBREG)
607    op = SUBREG_REG (op);
608  if (!MEM_P (op))
609    return false;
610  op = XEXP (op, 0);
611  if (GET_CODE (op) == LO_SUM)
612    op = XEXP (op, 1);
613  return pa_symbolic_expression_p (op);
614})
615
616;; True iff OP is a symbolic operand.
617;; Note: an inline copy of this code is present in pa_secondary_reload.
618
619(define_predicate "symbolic_operand"
620  (match_code "symbol_ref,label_ref,const")
621{
622  switch (GET_CODE (op))
623    {
624    case SYMBOL_REF:
625      return !SYMBOL_REF_TLS_MODEL (op);
626    case LABEL_REF:
627      return true;
628    case CONST:
629      op = XEXP (op, 0);
630      return (GET_CODE (op) == PLUS
631	      && ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
632		   && !SYMBOL_REF_TLS_MODEL (XEXP (op, 0)))
633		  || GET_CODE (XEXP (op, 0)) == LABEL_REF)
634	      && GET_CODE (XEXP (op, 1)) == CONST_INT);
635    default:
636      break;
637    }
638  return false;
639})
640
641;; Return true if OP is a symbolic operand for the TLS Global Dynamic model.
642
643(define_predicate "tgd_symbolic_operand"
644  (and (match_code "symbol_ref")
645       (match_test "SYMBOL_REF_TLS_MODEL (op) == TLS_MODEL_GLOBAL_DYNAMIC")))
646
647;; Return true if OP is a symbolic operand for the TLS Local Dynamic model.
648
649(define_predicate "tld_symbolic_operand"
650  (and (match_code "symbol_ref")
651       (match_test "SYMBOL_REF_TLS_MODEL (op) == TLS_MODEL_LOCAL_DYNAMIC")))
652
653;; Return true if OP is a symbolic operand for the TLS Initial Exec model.
654
655(define_predicate "tie_symbolic_operand"
656  (and (match_code "symbol_ref")
657       (match_test "SYMBOL_REF_TLS_MODEL (op) == TLS_MODEL_INITIAL_EXEC")))
658
659;; Return true if OP is a symbolic operand for the TLS Local Exec model.
660
661(define_predicate "tle_symbolic_operand"
662  (and (match_code "symbol_ref")
663       (match_test "SYMBOL_REF_TLS_MODEL (op) == TLS_MODEL_LOCAL_EXEC")))
664
665;; True iff OP is an operator suitable for use in a double-word cmpib
666;; instruction.
667
668(define_predicate "cmpib_comparison_operator"
669  (match_code "eq,ne,lt,le,leu,gt,gtu,ge"))
670
671;; True iff OP is an operator suitable for use in a movb instruction.
672
673(define_predicate "movb_comparison_operator"
674  (match_code "eq,ne,lt,ge"))
675
676;; True iff OP is a PLUS, XOR or IOR operator.
677
678(define_predicate "plus_xor_ior_operator"
679  (match_code "plus,xor,ior"))
680