strings.xml revision 1.5
1<chapter xmlns="http://docbook.org/ns/docbook" version="5.0" 
2	 xml:id="std.strings" xreflabel="Strings">
3<?dbhtml filename="strings.html"?>
4
5<info><title>
6  Strings
7  <indexterm><primary>Strings</primary></indexterm>
8</title>
9  <keywordset>
10    <keyword>ISO C++</keyword>
11    <keyword>library</keyword>
12  </keywordset>
13</info>
14
15<!-- Sect1 01 : Character Traits -->
16
17<!-- Sect1 02 : String Classes -->
18<section xml:id="std.strings.string" xreflabel="string"><info><title>String Classes</title></info>
19  
20
21  <section xml:id="strings.string.simple" xreflabel="Simple Transformations"><info><title>Simple Transformations</title></info>
22    
23    <para>
24      Here are Standard, simple, and portable ways to perform common
25      transformations on a <code>string</code> instance, such as
26      "convert to all upper case." The word transformations
27      is especially apt, because the standard template function
28      <code>transform&lt;&gt;</code> is used.
29   </para>
30   <para>
31     This code will go through some iterations.  Here's a simple
32     version:
33   </para>
34   <programlisting>
35   #include &lt;string&gt;
36   #include &lt;algorithm&gt;
37   #include &lt;cctype&gt;      // old &lt;ctype.h&gt;
38
39   struct ToLower
40   {
41     char operator() (char c) const  { return std::tolower(c); }
42   };
43
44   struct ToUpper
45   {
46     char operator() (char c) const  { return std::toupper(c); }
47   };
48
49   int main()
50   {
51     std::string  s ("Some Kind Of Initial Input Goes Here");
52
53     // Change everything into upper case
54     std::transform (s.begin(), s.end(), s.begin(), ToUpper());
55
56     // Change everything into lower case
57     std::transform (s.begin(), s.end(), s.begin(), ToLower());
58
59     // Change everything back into upper case, but store the
60     // result in a different string
61     std::string  capital_s;
62     capital_s.resize(s.size());
63     std::transform (s.begin(), s.end(), capital_s.begin(), ToUpper());
64   }
65   </programlisting>
66   <para>
67     <emphasis>Note</emphasis> that these calls all
68      involve the global C locale through the use of the C functions
69      <code>toupper/tolower</code>.  This is absolutely guaranteed to work --
70      but <emphasis>only</emphasis> if the string contains <emphasis>only</emphasis> characters
71      from the basic source character set, and there are <emphasis>only</emphasis>
72      96 of those.  Which means that not even all English text can be
73      represented (certain British spellings, proper names, and so forth).
74      So, if all your input forevermore consists of only those 96
75      characters (hahahahahaha), then you're done.
76   </para>
77   <para><emphasis>Note</emphasis> that the
78      <code>ToUpper</code> and <code>ToLower</code> function objects
79      are needed because <code>toupper</code> and <code>tolower</code>
80      are overloaded names (declared in <code>&lt;cctype&gt;</code> and
81      <code>&lt;locale&gt;</code>) so the template-arguments for
82      <code>transform&lt;&gt;</code> cannot be deduced, as explained in
83      <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/ml/libstdc++/2002-11/msg00180.html">this
84      message</link>.
85      <!-- section 14.8.2.4 clause 16 in ISO 14882:1998  -->
86      At minimum, you can write short wrappers like
87   </para>
88   <programlisting>
89   char toLower (char c)
90   {
91      return std::tolower(c);
92   } </programlisting>
93   <para>(Thanks to James Kanze for assistance and suggestions on all of this.)
94   </para>
95   <para>Another common operation is trimming off excess whitespace.  Much
96      like transformations, this task is trivial with the use of string's
97      <code>find</code> family.  These examples are broken into multiple
98      statements for readability:
99   </para>
100   <programlisting>
101   std::string  str (" \t blah blah blah    \n ");
102
103   // trim leading whitespace
104   string::size_type  notwhite = str.find_first_not_of(" \t\n");
105   str.erase(0,notwhite);
106
107   // trim trailing whitespace
108   notwhite = str.find_last_not_of(" \t\n");
109   str.erase(notwhite+1); </programlisting>
110   <para>Obviously, the calls to <code>find</code> could be inserted directly
111      into the calls to <code>erase</code>, in case your compiler does not
112      optimize named temporaries out of existence.
113   </para>
114
115  </section>
116  <section xml:id="strings.string.case" xreflabel="Case Sensitivity"><info><title>Case Sensitivity</title></info>
117    
118    <para>
119    </para>
120
121   <para>The well-known-and-if-it-isn't-well-known-it-ought-to-be
122      <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.gotw.ca/gotw/">Guru of the Week</link>
123      discussions held on Usenet covered this topic in January of 1998.
124      Briefly, the challenge was, <quote>write a 'ci_string' class which
125      is identical to the standard 'string' class, but is
126      case-insensitive in the same way as the (common but nonstandard)
127      C function stricmp()</quote>.
128   </para>
129   <programlisting>
130   ci_string s( "AbCdE" );
131
132   // case insensitive
133   assert( s == "abcde" );
134   assert( s == "ABCDE" );
135
136   // still case-preserving, of course
137   assert( strcmp( s.c_str(), "AbCdE" ) == 0 );
138   assert( strcmp( s.c_str(), "abcde" ) != 0 ); </programlisting>
139
140   <para>The solution is surprisingly easy.  The original answer was
141   posted on Usenet, and a revised version appears in Herb Sutter's
142   book <emphasis>Exceptional C++</emphasis> and on his website as <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.gotw.ca/gotw/029.htm">GotW 29</link>.
143   </para>
144   <para>See?  Told you it was easy!</para>
145   <para>
146     <emphasis>Added June 2000:</emphasis> The May 2000 issue of C++
147     Report contains a fascinating <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://lafstern.org/matt/col2_new.pdf"> article</link> by
148     Matt Austern (yes, <emphasis>the</emphasis> Matt Austern) on why
149     case-insensitive comparisons are not as easy as they seem, and
150     why creating a class is the <emphasis>wrong</emphasis> way to go
151     about it in production code.  (The GotW answer mentions one of
152     the principle difficulties; his article mentions more.)
153   </para>
154   <para>Basically, this is "easy" only if you ignore some things,
155      things which may be too important to your program to ignore.  (I chose
156      to ignore them when originally writing this entry, and am surprised
157      that nobody ever called me on it...)  The GotW question and answer
158      remain useful instructional tools, however.
159   </para>
160   <para><emphasis>Added September 2000:</emphasis>  James Kanze provided a link to a
161      <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.unicode.org/reports/tr21/tr21-5.html">Unicode
162      Technical Report discussing case handling</link>, which provides some
163      very good information.
164   </para>
165
166  </section>
167  <section xml:id="strings.string.character_types" xreflabel="Arbitrary Characters"><info><title>Arbitrary Character Types</title></info>
168    
169    <para>
170    </para>
171
172   <para>The <code>std::basic_string</code> is tantalizingly general, in that
173      it is parameterized on the type of the characters which it holds.
174      In theory, you could whip up a Unicode character class and instantiate
175      <code>std::basic_string&lt;my_unicode_char&gt;</code>, or assuming
176      that integers are wider than characters on your platform, maybe just
177      declare variables of type <code>std::basic_string&lt;int&gt;</code>.
178   </para>
179   <para>That's the theory.  Remember however that basic_string has additional
180      type parameters, which take default arguments based on the character
181      type (called <code>CharT</code> here):
182   </para>
183   <programlisting>
184      template &lt;typename CharT,
185		typename Traits = char_traits&lt;CharT&gt;,
186		typename Alloc = allocator&lt;CharT&gt; &gt;
187      class basic_string { .... };</programlisting>
188   <para>Now, <code>allocator&lt;CharT&gt;</code> will probably Do The Right
189      Thing by default, unless you need to implement your own allocator
190      for your characters.
191   </para>
192   <para>But <code>char_traits</code> takes more work.  The char_traits
193      template is <emphasis>declared</emphasis> but not <emphasis>defined</emphasis>.
194      That means there is only
195   </para>
196   <programlisting>
197      template &lt;typename CharT&gt;
198	struct char_traits
199	{
200	    static void foo (type1 x, type2 y);
201	    ...
202	};</programlisting>
203   <para>and functions such as char_traits&lt;CharT&gt;::foo() are not
204      actually defined anywhere for the general case.  The C++ standard
205      permits this, because writing such a definition to fit all possible
206      CharT's cannot be done.
207   </para>
208   <para>The C++ standard also requires that char_traits be specialized for
209      instantiations of <code>char</code> and <code>wchar_t</code>, and it
210      is these template specializations that permit entities like
211      <code>basic_string&lt;char,char_traits&lt;char&gt;&gt;</code> to work.
212   </para>
213   <para>If you want to use character types other than char and wchar_t,
214      such as <code>unsigned char</code> and <code>int</code>, you will
215      need suitable specializations for them.  For a time, in earlier
216      versions of GCC, there was a mostly-correct implementation that
217      let programmers be lazy but it broke under many situations, so it
218      was removed.  GCC 3.4 introduced a new implementation that mostly
219      works and can be specialized even for <code>int</code> and other
220      built-in types.
221   </para>
222   <para>If you want to use your own special character class, then you have
223      <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/ml/libstdc++/2002-08/msg00163.html">a lot
224      of work to do</link>, especially if you with to use i18n features
225      (facets require traits information but don't have a traits argument).
226   </para>
227   <para>Another example of how to specialize char_traits was given <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/ml/libstdc++/2002-08/msg00260.html">on the
228      mailing list</link> and at a later date was put into the file <code>
229      include/ext/pod_char_traits.h</code>.  We agree
230      that the way it's used with basic_string (scroll down to main())
231      doesn't look nice, but that's because <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/ml/libstdc++/2002-08/msg00236.html">the
232      nice-looking first attempt</link> turned out to <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/ml/libstdc++/2002-08/msg00242.html">not
233      be conforming C++</link>, due to the rule that CharT must be a POD.
234      (See how tricky this is?)
235   </para>
236
237  </section>
238
239  <section xml:id="strings.string.token" xreflabel="Tokenizing"><info><title>Tokenizing</title></info>
240    
241    <para>
242    </para>
243   <para>The Standard C (and C++) function <code>strtok()</code> leaves a lot to
244      be desired in terms of user-friendliness.  It's unintuitive, it
245      destroys the character string on which it operates, and it requires
246      you to handle all the memory problems.  But it does let the client
247      code decide what to use to break the string into pieces; it allows
248      you to choose the "whitespace," so to speak.
249   </para>
250   <para>A C++ implementation lets us keep the good things and fix those
251      annoyances.  The implementation here is more intuitive (you only
252      call it once, not in a loop with varying argument), it does not
253      affect the original string at all, and all the memory allocation
254      is handled for you.
255   </para>
256   <para>It's called stringtok, and it's a template function. Sources are
257   as below, in a less-portable form than it could be, to keep this
258   example simple (for example, see the comments on what kind of
259   string it will accept).
260   </para>
261
262<programlisting>
263#include &lt;string&gt;
264template &lt;typename Container&gt;
265void
266stringtok(Container &amp;container, string const &amp;in,
267	  const char * const delimiters = " \t\n")
268{
269    const string::size_type len = in.length();
270	  string::size_type i = 0;
271
272    while (i &lt; len)
273    {
274	// Eat leading whitespace
275	i = in.find_first_not_of(delimiters, i);
276	if (i == string::npos)
277	  return;   // Nothing left but white space
278
279	// Find the end of the token
280	string::size_type j = in.find_first_of(delimiters, i);
281
282	// Push token
283	if (j == string::npos)
284	{
285	  container.push_back(in.substr(i));
286	  return;
287	}
288	else
289	  container.push_back(in.substr(i, j-i));
290
291	// Set up for next loop
292	i = j + 1;
293    }
294}
295</programlisting>
296
297
298   <para>
299     The author uses a more general (but less readable) form of it for
300     parsing command strings and the like.  If you compiled and ran this
301     code using it:
302   </para>
303
304
305   <programlisting>
306   std::list&lt;string&gt;  ls;
307   stringtok (ls, " this  \t is\t\n  a test  ");
308   for (std::list&lt;string&gt;const_iterator i = ls.begin();
309	i != ls.end(); ++i)
310   {
311       std::cerr &lt;&lt; ':' &lt;&lt; (*i) &lt;&lt; ":\n";
312   } </programlisting>
313   <para>You would see this as output:
314   </para>
315   <programlisting>
316   :this:
317   :is:
318   :a:
319   :test: </programlisting>
320   <para>with all the whitespace removed.  The original <code>s</code> is still
321      available for use, <code>ls</code> will clean up after itself, and
322      <code>ls.size()</code> will return how many tokens there were.
323   </para>
324   <para>As always, there is a price paid here, in that stringtok is not
325      as fast as strtok.  The other benefits usually outweigh that, however.
326   </para>
327
328   <para><emphasis>Added February 2001:</emphasis>  Mark Wilden pointed out that the
329      standard <code>std::getline()</code> function can be used with standard
330      <code>istringstreams</code> to perform
331      tokenizing as well.  Build an istringstream from the input text,
332      and then use std::getline with varying delimiters (the three-argument
333      signature) to extract tokens into a string.
334   </para>
335
336
337  </section>
338  <section xml:id="strings.string.shrink" xreflabel="Shrink to Fit"><info><title>Shrink to Fit</title></info>
339    
340    <para>
341    </para>
342   <para>From GCC 3.4 calling <code>s.reserve(res)</code> on a
343      <code>string s</code> with <code>res &lt; s.capacity()</code> will
344      reduce the string's capacity to <code>std::max(s.size(), res)</code>.
345   </para>
346   <para>This behaviour is suggested, but not required by the standard. Prior
347      to GCC 3.4 the following alternative can be used instead
348   </para>
349   <programlisting>
350      std::string(str.data(), str.size()).swap(str);
351   </programlisting>
352   <para>This is similar to the idiom for reducing
353      a <code>vector</code>'s memory usage
354      (see <link linkend="faq.size_equals_capacity">this FAQ
355      entry</link>) but the regular copy constructor cannot be used
356      because libstdc++'s <code>string</code> is Copy-On-Write in GCC 3.
357   </para>
358   <para>In <link linkend="status.iso.2011">C++11</link> mode you can call
359      <code>s.shrink_to_fit()</code> to achieve the same effect as
360      <code>s.reserve(s.size())</code>.
361   </para>
362
363
364  </section>
365
366  <section xml:id="strings.string.Cstring" xreflabel="CString (MFC)"><info><title>CString (MFC)</title></info>
367    
368    <para>
369    </para>
370
371   <para>A common lament seen in various newsgroups deals with the Standard
372      string class as opposed to the Microsoft Foundation Class called
373      CString.  Often programmers realize that a standard portable
374      answer is better than a proprietary nonportable one, but in porting
375      their application from a Win32 platform, they discover that they
376      are relying on special functions offered by the CString class.
377   </para>
378   <para>Things are not as bad as they seem.  In
379      <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/ml/gcc/1999-04n/msg00236.html">this
380      message</link>, Joe Buck points out a few very important things:
381   </para>
382      <itemizedlist>
383	 <listitem><para>The Standard <code>string</code> supports all the operations
384	     that CString does, with three exceptions.
385	 </para></listitem>
386	 <listitem><para>Two of those exceptions (whitespace trimming and case
387	     conversion) are trivial to implement.  In fact, we do so
388	     on this page.
389	 </para></listitem>
390	 <listitem><para>The third is <code>CString::Format</code>, which allows formatting
391	     in the style of <code>sprintf</code>.  This deserves some mention:
392	 </para></listitem>
393      </itemizedlist>
394   <para>
395      The old libg++ library had a function called form(), which did much
396      the same thing.  But for a Standard solution, you should use the
397      stringstream classes.  These are the bridge between the iostream
398      hierarchy and the string class, and they operate with regular
399      streams seamlessly because they inherit from the iostream
400      hierarchy.  An quick example:
401   </para>
402   <programlisting>
403   #include &lt;iostream&gt;
404   #include &lt;string&gt;
405   #include &lt;sstream&gt;
406
407   string f (string&amp; incoming)     // incoming is "foo  N"
408   {
409       istringstream   incoming_stream(incoming);
410       string          the_word;
411       int             the_number;
412
413       incoming_stream &gt;&gt; the_word        // extract "foo"
414		       &gt;&gt; the_number;     // extract N
415
416       ostringstream   output_stream;
417       output_stream &lt;&lt; "The word was " &lt;&lt; the_word
418		     &lt;&lt; " and 3*N was " &lt;&lt; (3*the_number);
419
420       return output_stream.str();
421   } </programlisting>
422   <para>A serious problem with CString is a design bug in its memory
423      allocation.  Specifically, quoting from that same message:
424   </para>
425   <programlisting>
426   CString suffers from a common programming error that results in
427   poor performance.  Consider the following code:
428
429   CString n_copies_of (const CString&amp; foo, unsigned n)
430   {
431	   CString tmp;
432	   for (unsigned i = 0; i &lt; n; i++)
433		   tmp += foo;
434	   return tmp;
435   }
436
437   This function is O(n^2), not O(n).  The reason is that each +=
438   causes a reallocation and copy of the existing string.  Microsoft
439   applications are full of this kind of thing (quadratic performance
440   on tasks that can be done in linear time) -- on the other hand,
441   we should be thankful, as it's created such a big market for high-end
442   ix86 hardware. :-)
443
444   If you replace CString with string in the above function, the
445   performance is O(n).
446   </programlisting>
447   <para>Joe Buck also pointed out some other things to keep in mind when
448      comparing CString and the Standard string class:
449   </para>
450      <itemizedlist>
451	 <listitem><para>CString permits access to its internal representation; coders
452	     who exploited that may have problems moving to <code>string</code>.
453	 </para></listitem>
454	 <listitem><para>Microsoft ships the source to CString (in the files
455	     MFC\SRC\Str{core,ex}.cpp), so you could fix the allocation
456	     bug and rebuild your MFC libraries.
457	     <emphasis><emphasis>Note:</emphasis> It looks like the CString shipped
458	     with VC++6.0 has fixed this, although it may in fact have been
459	     one of the VC++ SPs that did it.</emphasis>
460	 </para></listitem>
461	 <listitem><para><code>string</code> operations like this have O(n) complexity
462	     <emphasis>if the implementors do it correctly</emphasis>.  The libstdc++
463	     implementors did it correctly.  Other vendors might not.
464	 </para></listitem>
465	 <listitem><para>While parts of the SGI STL are used in libstdc++, their
466	     string class is not.  The SGI <code>string</code> is essentially
467	     <code>vector&lt;char&gt;</code> and does not do any reference
468	     counting like libstdc++'s does.  (It is O(n), though.)
469	     So if you're thinking about SGI's string or rope classes,
470	     you're now looking at four possibilities:  CString, the
471	     libstdc++ string, the SGI string, and the SGI rope, and this
472	     is all before any allocator or traits customizations!  (More
473	     choices than you can shake a stick at -- want fries with that?)
474	 </para></listitem>
475      </itemizedlist>
476
477  </section>
478</section>
479
480<!-- Sect1 03 : Interacting with C -->
481
482</chapter>
483