1//=-- lsan_common.cc ------------------------------------------------------===//
2//
3// This file is distributed under the University of Illinois Open Source
4// License. See LICENSE.TXT for details.
5//
6//===----------------------------------------------------------------------===//
7//
8// This file is a part of LeakSanitizer.
9// Implementation of common leak checking functionality.
10//
11//===----------------------------------------------------------------------===//
12
13#include "lsan_common.h"
14
15#include "sanitizer_common/sanitizer_common.h"
16#include "sanitizer_common/sanitizer_flag_parser.h"
17#include "sanitizer_common/sanitizer_flags.h"
18#include "sanitizer_common/sanitizer_placement_new.h"
19#include "sanitizer_common/sanitizer_procmaps.h"
20#include "sanitizer_common/sanitizer_report_decorator.h"
21#include "sanitizer_common/sanitizer_stackdepot.h"
22#include "sanitizer_common/sanitizer_stacktrace.h"
23#include "sanitizer_common/sanitizer_suppressions.h"
24#include "sanitizer_common/sanitizer_thread_registry.h"
25#include "sanitizer_common/sanitizer_tls_get_addr.h"
26
27#if CAN_SANITIZE_LEAKS
28namespace __lsan {
29
30// This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
31// also to protect the global list of root regions.
32BlockingMutex global_mutex(LINKER_INITIALIZED);
33
34Flags lsan_flags;
35
36void DisableCounterUnderflow() {
37  if (common_flags()->detect_leaks) {
38    Report("Unmatched call to __lsan_enable().\n");
39    Die();
40  }
41}
42
43void Flags::SetDefaults() {
44#define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
45#include "lsan_flags.inc"
46#undef LSAN_FLAG
47}
48
49void RegisterLsanFlags(FlagParser *parser, Flags *f) {
50#define LSAN_FLAG(Type, Name, DefaultValue, Description) \
51  RegisterFlag(parser, #Name, Description, &f->Name);
52#include "lsan_flags.inc"
53#undef LSAN_FLAG
54}
55
56#define LOG_POINTERS(...)                           \
57  do {                                              \
58    if (flags()->log_pointers) Report(__VA_ARGS__); \
59  } while (0)
60
61#define LOG_THREADS(...)                           \
62  do {                                             \
63    if (flags()->log_threads) Report(__VA_ARGS__); \
64  } while (0)
65
66ALIGNED(64) static char suppression_placeholder[sizeof(SuppressionContext)];
67static SuppressionContext *suppression_ctx = nullptr;
68static const char kSuppressionLeak[] = "leak";
69static const char *kSuppressionTypes[] = { kSuppressionLeak };
70static const char kStdSuppressions[] =
71#if SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
72  // For more details refer to the SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
73  // definition.
74  "leak:*pthread_exit*\n"
75#endif  // SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
76#if SANITIZER_MAC
77  // For Darwin and os_log/os_trace: https://reviews.llvm.org/D35173
78  "leak:*_os_trace*\n"
79#endif
80  // TLS leak in some glibc versions, described in
81  // https://sourceware.org/bugzilla/show_bug.cgi?id=12650.
82  "leak:*tls_get_addr*\n";
83
84void InitializeSuppressions() {
85  CHECK_EQ(nullptr, suppression_ctx);
86  suppression_ctx = new (suppression_placeholder) // NOLINT
87      SuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
88  suppression_ctx->ParseFromFile(flags()->suppressions);
89  if (&__lsan_default_suppressions)
90    suppression_ctx->Parse(__lsan_default_suppressions());
91  suppression_ctx->Parse(kStdSuppressions);
92}
93
94static SuppressionContext *GetSuppressionContext() {
95  CHECK(suppression_ctx);
96  return suppression_ctx;
97}
98
99static InternalMmapVector<RootRegion> *root_regions;
100
101InternalMmapVector<RootRegion> const *GetRootRegions() { return root_regions; }
102
103void InitializeRootRegions() {
104  CHECK(!root_regions);
105  ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)];
106  root_regions = new (placeholder) InternalMmapVector<RootRegion>();  // NOLINT
107}
108
109const char *MaybeCallLsanDefaultOptions() {
110  return (&__lsan_default_options) ? __lsan_default_options() : "";
111}
112
113void InitCommonLsan() {
114  InitializeRootRegions();
115  if (common_flags()->detect_leaks) {
116    // Initialization which can fail or print warnings should only be done if
117    // LSan is actually enabled.
118    InitializeSuppressions();
119    InitializePlatformSpecificModules();
120  }
121}
122
123class Decorator: public __sanitizer::SanitizerCommonDecorator {
124 public:
125  Decorator() : SanitizerCommonDecorator() { }
126  const char *Error() { return Red(); }
127  const char *Leak() { return Blue(); }
128};
129
130static inline bool CanBeAHeapPointer(uptr p) {
131  // Since our heap is located in mmap-ed memory, we can assume a sensible lower
132  // bound on heap addresses.
133  const uptr kMinAddress = 4 * 4096;
134  if (p < kMinAddress) return false;
135#if defined(__x86_64__)
136  // Accept only canonical form user-space addresses.
137  return ((p >> 47) == 0);
138#elif defined(__mips64) && defined(_LP64)
139  return ((p >> 40) == 0);
140#elif defined(__aarch64__)
141  unsigned runtimeVMA =
142    (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
143  return ((p >> runtimeVMA) == 0);
144#else
145  return true;
146#endif
147}
148
149// Scans the memory range, looking for byte patterns that point into allocator
150// chunks. Marks those chunks with |tag| and adds them to |frontier|.
151// There are two usage modes for this function: finding reachable chunks
152// (|tag| = kReachable) and finding indirectly leaked chunks
153// (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
154// so |frontier| = 0.
155void ScanRangeForPointers(uptr begin, uptr end,
156                          Frontier *frontier,
157                          const char *region_type, ChunkTag tag) {
158  CHECK(tag == kReachable || tag == kIndirectlyLeaked);
159  const uptr alignment = flags()->pointer_alignment();
160  LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end);
161  uptr pp = begin;
162  if (pp % alignment)
163    pp = pp + alignment - pp % alignment;
164  for (; pp + sizeof(void *) <= end; pp += alignment) {  // NOLINT
165    void *p = *reinterpret_cast<void **>(pp);
166    if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
167    uptr chunk = PointsIntoChunk(p);
168    if (!chunk) continue;
169    // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
170    if (chunk == begin) continue;
171    LsanMetadata m(chunk);
172    if (m.tag() == kReachable || m.tag() == kIgnored) continue;
173
174    // Do this check relatively late so we can log only the interesting cases.
175    if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
176      LOG_POINTERS(
177          "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
178          "%zu.\n",
179          pp, p, chunk, chunk + m.requested_size(), m.requested_size());
180      continue;
181    }
182
183    m.set_tag(tag);
184    LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
185                 chunk, chunk + m.requested_size(), m.requested_size());
186    if (frontier)
187      frontier->push_back(chunk);
188  }
189}
190
191// Scans a global range for pointers
192void ScanGlobalRange(uptr begin, uptr end, Frontier *frontier) {
193  uptr allocator_begin = 0, allocator_end = 0;
194  GetAllocatorGlobalRange(&allocator_begin, &allocator_end);
195  if (begin <= allocator_begin && allocator_begin < end) {
196    CHECK_LE(allocator_begin, allocator_end);
197    CHECK_LE(allocator_end, end);
198    if (begin < allocator_begin)
199      ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL",
200                           kReachable);
201    if (allocator_end < end)
202      ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL", kReachable);
203  } else {
204    ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable);
205  }
206}
207
208void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) {
209  Frontier *frontier = reinterpret_cast<Frontier *>(arg);
210  ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable);
211}
212
213// Scans thread data (stacks and TLS) for heap pointers.
214static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
215                           Frontier *frontier) {
216  InternalMmapVector<uptr> registers(suspended_threads.RegisterCount());
217  uptr registers_begin = reinterpret_cast<uptr>(registers.data());
218  uptr registers_end =
219      reinterpret_cast<uptr>(registers.data() + registers.size());
220  for (uptr i = 0; i < suspended_threads.ThreadCount(); i++) {
221    tid_t os_id = static_cast<tid_t>(suspended_threads.GetThreadID(i));
222    LOG_THREADS("Processing thread %d.\n", os_id);
223    uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
224    DTLS *dtls;
225    bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
226                                              &tls_begin, &tls_end,
227                                              &cache_begin, &cache_end, &dtls);
228    if (!thread_found) {
229      // If a thread can't be found in the thread registry, it's probably in the
230      // process of destruction. Log this event and move on.
231      LOG_THREADS("Thread %d not found in registry.\n", os_id);
232      continue;
233    }
234    uptr sp;
235    PtraceRegistersStatus have_registers =
236        suspended_threads.GetRegistersAndSP(i, registers.data(), &sp);
237    if (have_registers != REGISTERS_AVAILABLE) {
238      Report("Unable to get registers from thread %d.\n", os_id);
239      // If unable to get SP, consider the entire stack to be reachable unless
240      // GetRegistersAndSP failed with ESRCH.
241      if (have_registers == REGISTERS_UNAVAILABLE_FATAL) continue;
242      sp = stack_begin;
243    }
244
245    if (flags()->use_registers && have_registers)
246      ScanRangeForPointers(registers_begin, registers_end, frontier,
247                           "REGISTERS", kReachable);
248
249    if (flags()->use_stacks) {
250      LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp);
251      if (sp < stack_begin || sp >= stack_end) {
252        // SP is outside the recorded stack range (e.g. the thread is running a
253        // signal handler on alternate stack, or swapcontext was used).
254        // Again, consider the entire stack range to be reachable.
255        LOG_THREADS("WARNING: stack pointer not in stack range.\n");
256        uptr page_size = GetPageSizeCached();
257        int skipped = 0;
258        while (stack_begin < stack_end &&
259               !IsAccessibleMemoryRange(stack_begin, 1)) {
260          skipped++;
261          stack_begin += page_size;
262        }
263        LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n",
264                    skipped, stack_begin, stack_end);
265      } else {
266        // Shrink the stack range to ignore out-of-scope values.
267        stack_begin = sp;
268      }
269      ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
270                           kReachable);
271      ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier);
272    }
273
274    if (flags()->use_tls) {
275      if (tls_begin) {
276        LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end);
277        // If the tls and cache ranges don't overlap, scan full tls range,
278        // otherwise, only scan the non-overlapping portions
279        if (cache_begin == cache_end || tls_end < cache_begin ||
280            tls_begin > cache_end) {
281          ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
282        } else {
283          if (tls_begin < cache_begin)
284            ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
285                                 kReachable);
286          if (tls_end > cache_end)
287            ScanRangeForPointers(cache_end, tls_end, frontier, "TLS",
288                                 kReachable);
289        }
290      }
291      if (dtls && !DTLSInDestruction(dtls)) {
292        for (uptr j = 0; j < dtls->dtv_size; ++j) {
293          uptr dtls_beg = dtls->dtv[j].beg;
294          uptr dtls_end = dtls_beg + dtls->dtv[j].size;
295          if (dtls_beg < dtls_end) {
296            LOG_THREADS("DTLS %zu at %p-%p.\n", j, dtls_beg, dtls_end);
297            ScanRangeForPointers(dtls_beg, dtls_end, frontier, "DTLS",
298                                 kReachable);
299          }
300        }
301      } else {
302        // We are handling a thread with DTLS under destruction. Log about
303        // this and continue.
304        LOG_THREADS("Thread %d has DTLS under destruction.\n", os_id);
305      }
306    }
307  }
308}
309
310void ScanRootRegion(Frontier *frontier, const RootRegion &root_region,
311                    uptr region_begin, uptr region_end, bool is_readable) {
312  uptr intersection_begin = Max(root_region.begin, region_begin);
313  uptr intersection_end = Min(region_end, root_region.begin + root_region.size);
314  if (intersection_begin >= intersection_end) return;
315  LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
316               root_region.begin, root_region.begin + root_region.size,
317               region_begin, region_end,
318               is_readable ? "readable" : "unreadable");
319  if (is_readable)
320    ScanRangeForPointers(intersection_begin, intersection_end, frontier, "ROOT",
321                         kReachable);
322}
323
324static void ProcessRootRegion(Frontier *frontier,
325                              const RootRegion &root_region) {
326  MemoryMappingLayout proc_maps(/*cache_enabled*/ true);
327  MemoryMappedSegment segment;
328  while (proc_maps.Next(&segment)) {
329    ScanRootRegion(frontier, root_region, segment.start, segment.end,
330                   segment.IsReadable());
331  }
332}
333
334// Scans root regions for heap pointers.
335static void ProcessRootRegions(Frontier *frontier) {
336  if (!flags()->use_root_regions) return;
337  CHECK(root_regions);
338  for (uptr i = 0; i < root_regions->size(); i++) {
339    ProcessRootRegion(frontier, (*root_regions)[i]);
340  }
341}
342
343static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
344  while (frontier->size()) {
345    uptr next_chunk = frontier->back();
346    frontier->pop_back();
347    LsanMetadata m(next_chunk);
348    ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
349                         "HEAP", tag);
350  }
351}
352
353// ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
354// which are reachable from it as indirectly leaked.
355static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
356  chunk = GetUserBegin(chunk);
357  LsanMetadata m(chunk);
358  if (m.allocated() && m.tag() != kReachable) {
359    ScanRangeForPointers(chunk, chunk + m.requested_size(),
360                         /* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
361  }
362}
363
364// ForEachChunk callback. If chunk is marked as ignored, adds its address to
365// frontier.
366static void CollectIgnoredCb(uptr chunk, void *arg) {
367  CHECK(arg);
368  chunk = GetUserBegin(chunk);
369  LsanMetadata m(chunk);
370  if (m.allocated() && m.tag() == kIgnored) {
371    LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n",
372                 chunk, chunk + m.requested_size(), m.requested_size());
373    reinterpret_cast<Frontier *>(arg)->push_back(chunk);
374  }
375}
376
377static uptr GetCallerPC(u32 stack_id, StackDepotReverseMap *map) {
378  CHECK(stack_id);
379  StackTrace stack = map->Get(stack_id);
380  // The top frame is our malloc/calloc/etc. The next frame is the caller.
381  if (stack.size >= 2)
382    return stack.trace[1];
383  return 0;
384}
385
386struct InvalidPCParam {
387  Frontier *frontier;
388  StackDepotReverseMap *stack_depot_reverse_map;
389  bool skip_linker_allocations;
390};
391
392// ForEachChunk callback. If the caller pc is invalid or is within the linker,
393// mark as reachable. Called by ProcessPlatformSpecificAllocations.
394static void MarkInvalidPCCb(uptr chunk, void *arg) {
395  CHECK(arg);
396  InvalidPCParam *param = reinterpret_cast<InvalidPCParam *>(arg);
397  chunk = GetUserBegin(chunk);
398  LsanMetadata m(chunk);
399  if (m.allocated() && m.tag() != kReachable && m.tag() != kIgnored) {
400    u32 stack_id = m.stack_trace_id();
401    uptr caller_pc = 0;
402    if (stack_id > 0)
403      caller_pc = GetCallerPC(stack_id, param->stack_depot_reverse_map);
404    // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
405    // it as reachable, as we can't properly report its allocation stack anyway.
406    if (caller_pc == 0 || (param->skip_linker_allocations &&
407                           GetLinker()->containsAddress(caller_pc))) {
408      m.set_tag(kReachable);
409      param->frontier->push_back(chunk);
410    }
411  }
412}
413
414// On Linux, treats all chunks allocated from ld-linux.so as reachable, which
415// covers dynamically allocated TLS blocks, internal dynamic loader's loaded
416// modules accounting etc.
417// Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
418// They are allocated with a __libc_memalign() call in allocate_and_init()
419// (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
420// blocks, but we can make sure they come from our own allocator by intercepting
421// __libc_memalign(). On top of that, there is no easy way to reach them. Their
422// addresses are stored in a dynamically allocated array (the DTV) which is
423// referenced from the static TLS. Unfortunately, we can't just rely on the DTV
424// being reachable from the static TLS, and the dynamic TLS being reachable from
425// the DTV. This is because the initial DTV is allocated before our interception
426// mechanism kicks in, and thus we don't recognize it as allocated memory. We
427// can't special-case it either, since we don't know its size.
428// Our solution is to include in the root set all allocations made from
429// ld-linux.so (which is where allocate_and_init() is implemented). This is
430// guaranteed to include all dynamic TLS blocks (and possibly other allocations
431// which we don't care about).
432// On all other platforms, this simply checks to ensure that the caller pc is
433// valid before reporting chunks as leaked.
434void ProcessPC(Frontier *frontier) {
435  StackDepotReverseMap stack_depot_reverse_map;
436  InvalidPCParam arg;
437  arg.frontier = frontier;
438  arg.stack_depot_reverse_map = &stack_depot_reverse_map;
439  arg.skip_linker_allocations =
440      flags()->use_tls && flags()->use_ld_allocations && GetLinker() != nullptr;
441  ForEachChunk(MarkInvalidPCCb, &arg);
442}
443
444// Sets the appropriate tag on each chunk.
445static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
446  // Holds the flood fill frontier.
447  Frontier frontier;
448
449  ForEachChunk(CollectIgnoredCb, &frontier);
450  ProcessGlobalRegions(&frontier);
451  ProcessThreads(suspended_threads, &frontier);
452  ProcessRootRegions(&frontier);
453  FloodFillTag(&frontier, kReachable);
454
455  CHECK_EQ(0, frontier.size());
456  ProcessPC(&frontier);
457
458  // The check here is relatively expensive, so we do this in a separate flood
459  // fill. That way we can skip the check for chunks that are reachable
460  // otherwise.
461  LOG_POINTERS("Processing platform-specific allocations.\n");
462  ProcessPlatformSpecificAllocations(&frontier);
463  FloodFillTag(&frontier, kReachable);
464
465  // Iterate over leaked chunks and mark those that are reachable from other
466  // leaked chunks.
467  LOG_POINTERS("Scanning leaked chunks.\n");
468  ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
469}
470
471// ForEachChunk callback. Resets the tags to pre-leak-check state.
472static void ResetTagsCb(uptr chunk, void *arg) {
473  (void)arg;
474  chunk = GetUserBegin(chunk);
475  LsanMetadata m(chunk);
476  if (m.allocated() && m.tag() != kIgnored)
477    m.set_tag(kDirectlyLeaked);
478}
479
480static void PrintStackTraceById(u32 stack_trace_id) {
481  CHECK(stack_trace_id);
482  StackDepotGet(stack_trace_id).Print();
483}
484
485// ForEachChunk callback. Aggregates information about unreachable chunks into
486// a LeakReport.
487static void CollectLeaksCb(uptr chunk, void *arg) {
488  CHECK(arg);
489  LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
490  chunk = GetUserBegin(chunk);
491  LsanMetadata m(chunk);
492  if (!m.allocated()) return;
493  if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
494    u32 resolution = flags()->resolution;
495    u32 stack_trace_id = 0;
496    if (resolution > 0) {
497      StackTrace stack = StackDepotGet(m.stack_trace_id());
498      stack.size = Min(stack.size, resolution);
499      stack_trace_id = StackDepotPut(stack);
500    } else {
501      stack_trace_id = m.stack_trace_id();
502    }
503    leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(),
504                                m.tag());
505  }
506}
507
508static void PrintMatchedSuppressions() {
509  InternalMmapVector<Suppression *> matched;
510  GetSuppressionContext()->GetMatched(&matched);
511  if (!matched.size())
512    return;
513  const char *line = "-----------------------------------------------------";
514  Printf("%s\n", line);
515  Printf("Suppressions used:\n");
516  Printf("  count      bytes template\n");
517  for (uptr i = 0; i < matched.size(); i++)
518    Printf("%7zu %10zu %s\n", static_cast<uptr>(atomic_load_relaxed(
519        &matched[i]->hit_count)), matched[i]->weight, matched[i]->templ);
520  Printf("%s\n\n", line);
521}
522
523struct CheckForLeaksParam {
524  bool success;
525  LeakReport leak_report;
526};
527
528static void ReportIfNotSuspended(ThreadContextBase *tctx, void *arg) {
529  const InternalMmapVector<tid_t> &suspended_threads =
530      *(const InternalMmapVector<tid_t> *)arg;
531  if (tctx->status == ThreadStatusRunning) {
532    uptr i = InternalLowerBound(suspended_threads, 0, suspended_threads.size(),
533                                tctx->os_id, CompareLess<int>());
534    if (i >= suspended_threads.size() || suspended_threads[i] != tctx->os_id)
535      Report("Running thread %d was not suspended. False leaks are possible.\n",
536             tctx->os_id);
537  };
538}
539
540static void ReportUnsuspendedThreads(
541    const SuspendedThreadsList &suspended_threads) {
542  InternalMmapVector<tid_t> threads(suspended_threads.ThreadCount());
543  for (uptr i = 0; i < suspended_threads.ThreadCount(); ++i)
544    threads[i] = suspended_threads.GetThreadID(i);
545
546  Sort(threads.data(), threads.size());
547
548  GetThreadRegistryLocked()->RunCallbackForEachThreadLocked(
549      &ReportIfNotSuspended, &threads);
550}
551
552static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
553                                  void *arg) {
554  CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
555  CHECK(param);
556  CHECK(!param->success);
557  ReportUnsuspendedThreads(suspended_threads);
558  ClassifyAllChunks(suspended_threads);
559  ForEachChunk(CollectLeaksCb, &param->leak_report);
560  // Clean up for subsequent leak checks. This assumes we did not overwrite any
561  // kIgnored tags.
562  ForEachChunk(ResetTagsCb, nullptr);
563  param->success = true;
564}
565
566static bool CheckForLeaks() {
567  if (&__lsan_is_turned_off && __lsan_is_turned_off())
568      return false;
569  EnsureMainThreadIDIsCorrect();
570  CheckForLeaksParam param;
571  param.success = false;
572  LockThreadRegistry();
573  LockAllocator();
574  DoStopTheWorld(CheckForLeaksCallback, &param);
575  UnlockAllocator();
576  UnlockThreadRegistry();
577
578  if (!param.success) {
579    Report("LeakSanitizer has encountered a fatal error.\n");
580    Report(
581        "HINT: For debugging, try setting environment variable "
582        "LSAN_OPTIONS=verbosity=1:log_threads=1\n");
583    Report(
584        "HINT: LeakSanitizer does not work under ptrace (strace, gdb, etc)\n");
585    Die();
586  }
587  param.leak_report.ApplySuppressions();
588  uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount();
589  if (unsuppressed_count > 0) {
590    Decorator d;
591    Printf("\n"
592           "================================================================="
593           "\n");
594    Printf("%s", d.Error());
595    Report("ERROR: LeakSanitizer: detected memory leaks\n");
596    Printf("%s", d.Default());
597    param.leak_report.ReportTopLeaks(flags()->max_leaks);
598  }
599  if (common_flags()->print_suppressions)
600    PrintMatchedSuppressions();
601  if (unsuppressed_count > 0) {
602    param.leak_report.PrintSummary();
603    return true;
604  }
605  return false;
606}
607
608static bool has_reported_leaks = false;
609bool HasReportedLeaks() { return has_reported_leaks; }
610
611void DoLeakCheck() {
612  BlockingMutexLock l(&global_mutex);
613  static bool already_done;
614  if (already_done) return;
615  already_done = true;
616  has_reported_leaks = CheckForLeaks();
617  if (has_reported_leaks) HandleLeaks();
618}
619
620static int DoRecoverableLeakCheck() {
621  BlockingMutexLock l(&global_mutex);
622  bool have_leaks = CheckForLeaks();
623  return have_leaks ? 1 : 0;
624}
625
626void DoRecoverableLeakCheckVoid() { DoRecoverableLeakCheck(); }
627
628static Suppression *GetSuppressionForAddr(uptr addr) {
629  Suppression *s = nullptr;
630
631  // Suppress by module name.
632  SuppressionContext *suppressions = GetSuppressionContext();
633  if (const char *module_name =
634          Symbolizer::GetOrInit()->GetModuleNameForPc(addr))
635    if (suppressions->Match(module_name, kSuppressionLeak, &s))
636      return s;
637
638  // Suppress by file or function name.
639  SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr);
640  for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
641    if (suppressions->Match(cur->info.function, kSuppressionLeak, &s) ||
642        suppressions->Match(cur->info.file, kSuppressionLeak, &s)) {
643      break;
644    }
645  }
646  frames->ClearAll();
647  return s;
648}
649
650static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
651  StackTrace stack = StackDepotGet(stack_trace_id);
652  for (uptr i = 0; i < stack.size; i++) {
653    Suppression *s = GetSuppressionForAddr(
654        StackTrace::GetPreviousInstructionPc(stack.trace[i]));
655    if (s) return s;
656  }
657  return nullptr;
658}
659
660///// LeakReport implementation. /////
661
662// A hard limit on the number of distinct leaks, to avoid quadratic complexity
663// in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
664// in real-world applications.
665// FIXME: Get rid of this limit by changing the implementation of LeakReport to
666// use a hash table.
667const uptr kMaxLeaksConsidered = 5000;
668
669void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id,
670                                uptr leaked_size, ChunkTag tag) {
671  CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
672  bool is_directly_leaked = (tag == kDirectlyLeaked);
673  uptr i;
674  for (i = 0; i < leaks_.size(); i++) {
675    if (leaks_[i].stack_trace_id == stack_trace_id &&
676        leaks_[i].is_directly_leaked == is_directly_leaked) {
677      leaks_[i].hit_count++;
678      leaks_[i].total_size += leaked_size;
679      break;
680    }
681  }
682  if (i == leaks_.size()) {
683    if (leaks_.size() == kMaxLeaksConsidered) return;
684    Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id,
685                  is_directly_leaked, /* is_suppressed */ false };
686    leaks_.push_back(leak);
687  }
688  if (flags()->report_objects) {
689    LeakedObject obj = {leaks_[i].id, chunk, leaked_size};
690    leaked_objects_.push_back(obj);
691  }
692}
693
694static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
695  if (leak1.is_directly_leaked == leak2.is_directly_leaked)
696    return leak1.total_size > leak2.total_size;
697  else
698    return leak1.is_directly_leaked;
699}
700
701void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
702  CHECK(leaks_.size() <= kMaxLeaksConsidered);
703  Printf("\n");
704  if (leaks_.size() == kMaxLeaksConsidered)
705    Printf("Too many leaks! Only the first %zu leaks encountered will be "
706           "reported.\n",
707           kMaxLeaksConsidered);
708
709  uptr unsuppressed_count = UnsuppressedLeakCount();
710  if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
711    Printf("The %zu top leak(s):\n", num_leaks_to_report);
712  Sort(leaks_.data(), leaks_.size(), &LeakComparator);
713  uptr leaks_reported = 0;
714  for (uptr i = 0; i < leaks_.size(); i++) {
715    if (leaks_[i].is_suppressed) continue;
716    PrintReportForLeak(i);
717    leaks_reported++;
718    if (leaks_reported == num_leaks_to_report) break;
719  }
720  if (leaks_reported < unsuppressed_count) {
721    uptr remaining = unsuppressed_count - leaks_reported;
722    Printf("Omitting %zu more leak(s).\n", remaining);
723  }
724}
725
726void LeakReport::PrintReportForLeak(uptr index) {
727  Decorator d;
728  Printf("%s", d.Leak());
729  Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
730         leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
731         leaks_[index].total_size, leaks_[index].hit_count);
732  Printf("%s", d.Default());
733
734  PrintStackTraceById(leaks_[index].stack_trace_id);
735
736  if (flags()->report_objects) {
737    Printf("Objects leaked above:\n");
738    PrintLeakedObjectsForLeak(index);
739    Printf("\n");
740  }
741}
742
743void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
744  u32 leak_id = leaks_[index].id;
745  for (uptr j = 0; j < leaked_objects_.size(); j++) {
746    if (leaked_objects_[j].leak_id == leak_id)
747      Printf("%p (%zu bytes)\n", leaked_objects_[j].addr,
748             leaked_objects_[j].size);
749  }
750}
751
752void LeakReport::PrintSummary() {
753  CHECK(leaks_.size() <= kMaxLeaksConsidered);
754  uptr bytes = 0, allocations = 0;
755  for (uptr i = 0; i < leaks_.size(); i++) {
756      if (leaks_[i].is_suppressed) continue;
757      bytes += leaks_[i].total_size;
758      allocations += leaks_[i].hit_count;
759  }
760  InternalScopedString summary(kMaxSummaryLength);
761  summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes,
762                 allocations);
763  ReportErrorSummary(summary.data());
764}
765
766void LeakReport::ApplySuppressions() {
767  for (uptr i = 0; i < leaks_.size(); i++) {
768    Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
769    if (s) {
770      s->weight += leaks_[i].total_size;
771      atomic_store_relaxed(&s->hit_count, atomic_load_relaxed(&s->hit_count) +
772          leaks_[i].hit_count);
773      leaks_[i].is_suppressed = true;
774    }
775  }
776}
777
778uptr LeakReport::UnsuppressedLeakCount() {
779  uptr result = 0;
780  for (uptr i = 0; i < leaks_.size(); i++)
781    if (!leaks_[i].is_suppressed) result++;
782  return result;
783}
784
785} // namespace __lsan
786#else // CAN_SANITIZE_LEAKS
787namespace __lsan {
788void InitCommonLsan() { }
789void DoLeakCheck() { }
790void DoRecoverableLeakCheckVoid() { }
791void DisableInThisThread() { }
792void EnableInThisThread() { }
793}
794#endif // CAN_SANITIZE_LEAKS
795
796using namespace __lsan;  // NOLINT
797
798extern "C" {
799SANITIZER_INTERFACE_ATTRIBUTE
800void __lsan_ignore_object(const void *p) {
801#if CAN_SANITIZE_LEAKS
802  if (!common_flags()->detect_leaks)
803    return;
804  // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
805  // locked.
806  BlockingMutexLock l(&global_mutex);
807  IgnoreObjectResult res = IgnoreObjectLocked(p);
808  if (res == kIgnoreObjectInvalid)
809    VReport(1, "__lsan_ignore_object(): no heap object found at %p", p);
810  if (res == kIgnoreObjectAlreadyIgnored)
811    VReport(1, "__lsan_ignore_object(): "
812           "heap object at %p is already being ignored\n", p);
813  if (res == kIgnoreObjectSuccess)
814    VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
815#endif // CAN_SANITIZE_LEAKS
816}
817
818SANITIZER_INTERFACE_ATTRIBUTE
819void __lsan_register_root_region(const void *begin, uptr size) {
820#if CAN_SANITIZE_LEAKS
821  BlockingMutexLock l(&global_mutex);
822  CHECK(root_regions);
823  RootRegion region = {reinterpret_cast<uptr>(begin), size};
824  root_regions->push_back(region);
825  VReport(1, "Registered root region at %p of size %llu\n", begin, size);
826#endif // CAN_SANITIZE_LEAKS
827}
828
829SANITIZER_INTERFACE_ATTRIBUTE
830void __lsan_unregister_root_region(const void *begin, uptr size) {
831#if CAN_SANITIZE_LEAKS
832  BlockingMutexLock l(&global_mutex);
833  CHECK(root_regions);
834  bool removed = false;
835  for (uptr i = 0; i < root_regions->size(); i++) {
836    RootRegion region = (*root_regions)[i];
837    if (region.begin == reinterpret_cast<uptr>(begin) && region.size == size) {
838      removed = true;
839      uptr last_index = root_regions->size() - 1;
840      (*root_regions)[i] = (*root_regions)[last_index];
841      root_regions->pop_back();
842      VReport(1, "Unregistered root region at %p of size %llu\n", begin, size);
843      break;
844    }
845  }
846  if (!removed) {
847    Report(
848        "__lsan_unregister_root_region(): region at %p of size %llu has not "
849        "been registered.\n",
850        begin, size);
851    Die();
852  }
853#endif // CAN_SANITIZE_LEAKS
854}
855
856SANITIZER_INTERFACE_ATTRIBUTE
857void __lsan_disable() {
858#if CAN_SANITIZE_LEAKS
859  __lsan::DisableInThisThread();
860#endif
861}
862
863SANITIZER_INTERFACE_ATTRIBUTE
864void __lsan_enable() {
865#if CAN_SANITIZE_LEAKS
866  __lsan::EnableInThisThread();
867#endif
868}
869
870SANITIZER_INTERFACE_ATTRIBUTE
871void __lsan_do_leak_check() {
872#if CAN_SANITIZE_LEAKS
873  if (common_flags()->detect_leaks)
874    __lsan::DoLeakCheck();
875#endif // CAN_SANITIZE_LEAKS
876}
877
878SANITIZER_INTERFACE_ATTRIBUTE
879int __lsan_do_recoverable_leak_check() {
880#if CAN_SANITIZE_LEAKS
881  if (common_flags()->detect_leaks)
882    return __lsan::DoRecoverableLeakCheck();
883#endif // CAN_SANITIZE_LEAKS
884  return 0;
885}
886
887#if !SANITIZER_SUPPORTS_WEAK_HOOKS
888SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
889const char * __lsan_default_options() {
890  return "";
891}
892
893SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
894int __lsan_is_turned_off() {
895  return 0;
896}
897
898SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
899const char *__lsan_default_suppressions() {
900  return "";
901}
902#endif
903} // extern "C"
904